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Abstract

We study the topic of ‘extremal’ planar graphs, defining ex
P
(n,H) to

be the maximum number of edges possible in a planar graph on n vertices
that does not contain a given graph H as a subgraph. In particular, we ex-
amine the case when H is a small cycle, obtaining ex

P
(n, C4) ≤

15

7
(n−2)

for all n ≥ 4 and ex
P
(n,C5) ≤

12n−33

5
for all n ≥ 11, and showing that

both of these bounds are tight.

2010 Mathematical Subject Classification codes: 05C10, 05C35

1 Introduction

One of the best-known results in extremal graph theory is Turan’s Theorem
[5], which gives the maximum number of edges that a graph on n vertices can
have without containing a Kr subgraph. The Erdos-Stone Theorem [2] then
extends this to the case when Kr is replaced by an arbitrary graph H , showing

that the maximum number of edges possible is (1 + o(1))
(

χ(H)−2
χ(H)−1

)

(n2 ), where

χ(H) denotes the chromatic number of H . This latter result has been called
the ‘fundamental theorem of extremal graph theory’ [1].

Over the last decade, a large quantity of work has been carried out in the area
of ‘random’ planar graphs (see, for example, [3] and [4]). However, there seem
to be no known results on questions analogous to the Erdos-Stone Theorem,
i.e. how many edges can a planar graph on n vertices have without containing
a given smaller graph? It is consequently the aim of this paper to now make a
start on this topic of ‘extremal’ planar graphs.

Unfortunately, the case when the forbidden subgraph is a complete graph
(i.e. the analogue to Turan) is fairly trivial. Since K5 is not planar, the only
meaningful cases to look at are K3 and K4, and these are both straightforward:
for the former, it can be observed that K2,n−2 must be extremal (since all faces
have size four when drawn in the plane), and so the extremal number of edges is
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2n−4; for the latter, it suffices to note that there exist planar triangulations not
containing K4 (e.g. take a cycle of length n− 2 and then add two new vertices
that are both adjacent to all those in the cycle), and so the extremal number is
3n− 6.

The next most natural type of graph to investigate is perhaps a cycle. Hence,
in this paper we focus on the cases of C4 and C5, which turn out to be much
more interesting.

We begin, in Section 2, with the case when the forbidden subgraph is C4,
obtaining a tight bound for the extremal number. In Section 3, we then produce
a reasonably simple inequality for C5, before presenting the full C5 result in
Section 4, and demonstrating in Section 5 that the latter is tight. In Section 6,
we then finish with some concluding remarks.

2 C4

Let us start by introducing a convenient piece of notation:

Definition 1 Let us say that a graph is H-free if it does not contain H as
a subgraph (whether induced or not), and let ex

P
(n,H) denote the maximum

number of edges possible in a planar H-free graph on n vertices.

In this section, we shall look at the case when H = C4. In Theorem 2, we
shall give a simple proof to show that ex

P
(n,C4) ≤

15
7 (n− 2) for all n ≥ 4, and

then in Theorem 3 we shall demonstrate that this bound is actually tight, in the
sense that there are infinitely many values of n for which it is attained exactly.
In the following section, we shall then move on to looking at C5.

We begin with our aforementioned upper bound (note that in the proof,
as throughout this paper, we use the term ‘plane graph’ to mean a particular
embedding of a planar graph in the plane):

Theorem 2 ex
P
(n,C4) ≤

15
7 (n− 2) for all n ≥ 4.

Proof Let G be an arbitrary C4-free connected plane graph on n ≥ 4 vertices
(clearly it suffices to consider only connected graphs). Let fi denote the number
of faces of size i in G, and let f denote

∑

i fi.
Note that

∑

i≤2 fi = f4 = 0 (since G is connected, n ≥ 4 and G 6⊃ C4), and
so

2e(G) = 3f3 +
∑

i≥5

ifi

≥ 3f3 + 5
∑

i≥5

fi

= 3f3 + 5(f − f3)

= 5f − 2f3.
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Hence

f ≤
2(e(G) + f3)

5
. (1)

Observe also that no edge of G can be in two faces of size 3 without creating
a C4 (unless G = C3, which is not possible if n ≥ 4), and so it follows that

e(G) ≥ 3f3. Putting f3 ≤ e(G)
3 into (1), we thus obtain f ≤ 8

15e(G).
By Euler’s formula, we then have n − 2 = e(G) − f ≥ 7

15e(G), and so
e(G) ≤ 15

7 (n− 2).

Given the rather uncomplicated nature of the proof of Theorem 2 (it only
used the facts that G contained no faces of size 4 and had no edges in two faces
of size 3), it is perhaps surprising that equality should be achievable. However,
we shall now see that this is indeed the case:

Theorem 3 ex
P
(n,C4) =

15
7 (n− 2) for n ≡ 30 (mod 70).

Proof An examination of the proof of Theorem 2 shows that equality is achieved
for n if and only if there exists a connected C4-free plane graph on n vertices
for which every edge lies in one face of size 3 and one face of size 5. The
icosidodecahedron (see Figure 1) is an example of such a graph with 30 vertices.
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Figure 1: The icosidodecahedron.

Let us now use the notation G0 to denote the icosidodecahedron, and, for
k ≥ 1, let us then proceed to define further plane graphs Gk of order 30 + 70k
inductively via the illustration given in Figure 2. Here, the entire graph Gk−1

is placed into the central pentagon of Figure 2, and the entire graph G0 is then
placed between the two bold pentagons of Figure 2 (in such a way that these
are identified with the bold pentagons of Figure 1).

It can be checked that, for all k, Gk satisfies the specified conditions, and so
we are done.
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Figure 2: The graph Gk.

As an aside, we note that slightly more complicated examples can also be
produced whenever n ≡ 2 (mod 14) (apart from n ∈ {2, 16}, for which equality
is not possible).

3 C5 — a simple inequality

In Theorem 2 of the previous section, we gave a tight bound for ex
P
(n,C4). In

this section, we shall now move on to looking at ex
P
(n,C5).

By an exactly analogous method to the proof of Theorem 2 (with the addition
of taking into account the number of shared edges possible between different C3

faces and between C3 faces and C4 faces), we shall first see that it is reasonably
straightforward to obtain ex

P
(n,C5) ≤ 12

5 (n − 2) for all n ≥ 5 (Lemma 4).
Unfortunately, we shall then also observe that this time equality is not achievable
for large n (Observation 7). In the following section, we shall consequently
present a much more complicated proof that does provide a tight bound.

Readers may be tempted to skip this section and proceed straight to the
full result in Section 4. However, it should be noted that the simple inequality
given in Lemma 4 is actually used during the proof of the full result (in order
to deal with blocks of order 5 to 10), and also that the proof of Observation 7
is intended to aid understanding of the proof of the later result, which is rather
detailed.
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We start with the aforementioned ‘simple’ inequality:

Lemma 4 ex
P
(n,C5) ≤

12
5 (n− 2) for all n ≥ 5.

Proof The proof is by induction. It can be checked that the statement is true
for n = 5, so let us assume that it is true for all n ∈ {5, 6, . . . , k − 1}, and let
us now consider an arbitrary C5-free plane graph G on k ≥ 6 vertices. Let fi
denote the number of faces of size i in G, and let f denote

∑

i fi. Note that we
may assume that δ(G) ≥ 3, since otherwise we could simply delete a vertex of
minimal degree and obtain the result by applying the induction hypothesis to
the resulting graph.

Let us use e3 to denote the number of edges in G that are in at least one
face of size 3.

Claim 5 f3 ≤ e3
2 .

Proof Note that each face of size 3 must be a C3. For each one of these faces,
consider the number of edges that are also in another C3 face. Note that it
is possible for there to be two such edges (if they both belong to the same K4

subgraph), but that it is impossible to have all three (unless G = C3 or G = K4,
which may be ignored since k ≥ 6). Hence, the total number of edges in two
faces of size 3 is at most 1

22f3 (dividing by two to avoid double-counting), and
so we have

f3 =
1

3
(# edges in at least one face of size 3 + # edges in two faces of size 3)

≤
1

3
(e3 + f3),

from which the claim follows. End of Proof of Claim 5

Claim 6 f4 ≤ e(G)−e3
2 .

Proof Note that each face of size 4 must be a C4 (using the fact that k > 3),
and recall that each face of size 3 must be a C3. Observe that it is impossible
for a face of size 4 and a face of size 3 to have exactly one edge in common
without creating a C5, and that it is impossible for them to have two edges
in common without leaving a vertex in the middle of the facial boundary with
degree 2 (which would contradict the fact that δ(G) ≥ 3). Hence, the faces of
size 4 must be edge-disjoint from the faces of size 3. Each edge can be in at
most two faces of size 4, and each face of size 4 contains exactly four edges, so

we then obtain f4 ≤ 2
4 (e(G)− e3) =

e(G)−e3
2 . End of Proof of Claim 6

Note that a face of size 5 in a plane graph must be either a C5 or a C3

with a pendant edge (as shown in Figure 3). Since G contains no C5’s and has
minimum degree at least 3, we thus have f5 = 0. Hence (since also

∑

i<3 fi = 0),
we obtain

2e(G) = 3f3 + 4f4 +
∑

i≥6

ifi

≥ 3f3 + 4f4 + 6(f − f3 − f4),

5
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Figure 3: A C3 with a pendant edge.

and so

6f ≤ 2e(G) + 3f3 + 2f4

≤ 2e(G) +
3

2
e3 + e(G)− e3 by Claims 5 and 6

= 3e(G) +
1

2
e3

≤
7

2
e(G),

which gives f ≤ 7
12e(G).

Using Euler’s formula, we then have k− 2 ≥ e(G)− f ≥ 5
12e(G), from which

the result follows.

Figure 4 gives an example of a graph for which equality in Lemma 4 is
attained with n = 7. However, we shall now see (in Observation 7) that equality
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Figure 4: A graph achieving equality in Lemma 4 for n = 7.

is not possible for larger values of n.
Readers may proceed straight to Section 4 if they so wish. However, it is

hoped that the ideas presented in the proof of Observation 7, and in particular
the introduction of a graph G′, will prove helpful in understanding the later
detailed arguments.

Observation 7 ex
P
(n,C5) <

12
5 (n− 2) for all n ≥ 8.

Proof A careful examination of the proof of Lemma 4 shows that equality is
possible only if the plane graph G is connected and consists entirely of K4’s
and faces of size 6, combined in such a way that no two K4’s share an edge and
no two faces of size 6 share an edge (note that the outside face in Figure 4 has
size 6). It will consequently be convenient for us to consider the plane graph
G′ formed from G by deleting the central vertex from each K4, along with all
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Figure 5: The graph G′ formed from the graph G in Figure 4.

incident edges, to leave a C3 (see Figure 5 for an example). Hence, G′ will
then consist entirely of faces of size 3 and 6, with every edge of G′ lying on the
boundary between a face of size 3 and a face of size 6.

Let us use f ′ to denote the total number of faces in G′, f ′
3 to denote the

number of faces in G′ that have size 3, and f ′
6 to denote the number of faces that

have size 6. Then we consequently obtain 3f ′
3 = e(G′) = 6f ′

6, and f ′ = f ′
3+f ′

6 =
e(G′)

3 + e(G′)
6 = e(G′)

2 . Thus, Euler’s formula gives |G′| − 2 = e(G′)− f ′ = e(G′)
2 ,

and hence e(G′) = 2|G′| − 4.
Crucially, this implies that the average degree in G′ is less than 4. However,

vertices of degree 0 or 1 are clearly impossible, vertices of degree 3 are also
not possible (every vertex must have even degree, since the adjacent faces are
alternately size 3 and size 6), and it can be checked that a vertex of degree 2
is only possible for the special case shown in Figure 5 (using the fact that if
the faces adjacent to such a vertex v are cycles u1vu2 and u1vu2u3u4u5, then
u1u2u3u4u5 would be a C5). Hence, we obtain a contradiction.

4 C5 — the full result

In this section, we shall improve on the results of Lemma 4 and Observation 7
by showing that ex

P
(n,C5) ≤

12n−33
5 for all n ≥ 11 (see Theorem 8). As the

details are very lengthy, a sketch of the proof is also provided. In the following
section, we shall then demonstrate that this bound is tight, in the sense that
there are infinitely many values of n for which it is attained exactly.

Theorem 8 ex
P
(n,C5) ≤

12n−33
5 for all n ≥ 11.

Sketch of Proof Part I: We take a C5-free plane graph G, and use induction
to deal with the cases when δ(G) ≤ 2 or κ(G) ≤ 1, where κ(G) denotes the
vertex-connectivity of G (Lemma 4 is utilised for this latter case). This allows
us to simplify some of the details in later arguments.

Part II: Similarly to with the proof of Observation 7, we now form a new
plane graph G′ by deleting any edges that lie between two C3 faces, and we
again show that e(G′) ≤ 2|G′| − 4 (this time, the proof is complicated by the
fact that we do not assume that G achieves equality in Lemma 4, and so we
need to allow for the presence of faces of size 4), and hence that G′ contains
vertices of degree less than 4.
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Part III: We examine the case when e(G′) = 2|G′| − 4, and deduce that
equality implies that either (i) G′ consists solely of C4 faces or (ii) every edge
in G′ lies on the boundary between one C3 face and one C6 face. We then
show that the former would imply that G = G′, and so e(G) would also only be
2|G| − 4, while the latter is impossible (as in the proof of Observation 7).

Part IV: We then examine the remaining case when e(G′) ≤ 2|G′|−5, noting
that this implies a more considerable lower bound on the number of vertices of
degree 2 or 3 in G′. We find that the presence of each such vertex forces fewer
faces of small size (to avoid a C5), and we consequently obtain detailed inequal-
ities which essentially express the exact amount of negative impact that each
of these vertices has on e(G). Crucially, when combining this with our lower
bound for the number of such vertices, we find that the best we can do is to

obtain e(G) = 12|G|−33
5 .

Full Proof

Part I Our proof is by induction. It can be checked systematically that the
result ex

P
(n,C5) ≤

12n−33
5 holds for n ∈ {11, 12, 13} (this turns out to be not

as onerous as it might at first appear!), so let k ≥ 14 and let us assume that the
result holds for all n ∈ {11, 12, . . . , k − 3, k − 2, k − 1}.

Let G be a C5-free plane graph on k vertices, and let us deal in this part
of the proof with the cases when δ(G) ≤ 2 or κ(G) ≤ 1. For the former,
we may simply delete a vertex of minimum degree and then use the induction
hypothesis to obtain the result. For the latter, by considering an arbitrary block
in G (which will have k − i vertices for some i ≥ 1) and the union of all other
blocks, we may obtain

e(G) ≤ max
i≥1

{ex
P
(i + 1, C5) + ex

P
(k − i, C5)}

≤ max
i≥4

{

1 +
12(k − 1)− 33

5
, 3 +

12(k − 2)− 33

5
, 6 +

12(k − 3)− 33

5
,

12

5
(i − 1) +

12

5
(k − i− 2)

}

using the induction hypothesis and Lemma 4

=
12k − 36

5
.

Hence, for the remainder of the proof, we may assume that we have κ(G) ≥ 2
and δ(G) ≥ 3. Note that the condition that there are no cut-vertices implies
that all faces of G must be cycles. We shall often use this fact implicitly in the
rest of the proof.

Part II Let G′ denote the plane graph formed from G by (a) deleting any
edges that lie on two C3 faces in G and (b) also deleting any isolated vertices
that are thus produced (see Figure 6 for an example of this). In this part of the
proof, we shall work towards showing that e(G′) ≤ 2|G′|−4 by paying particular
attention to the number of faces in G′ that are C3’s or C4’s.
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Figure 6: Constructing the graph G′ from the graph G.

Observe that if two C3 faces in G share an edge, then (since G is C5-free)
these two faces must either be edge-disjoint to all other C3 faces in G or must
form part of a K4 consisting of three adjacent C3 faces in G. In the former case,
the two C3 faces in G will be replaced by a C4 face in G′; in the latter case, the
K4 in G will be replaced by a C3 face in G′.

Thus, all faces of G′ will be cycles, as with G. For the rest of the proof, it
will be extremely important to note further that all faces of size greater than 4
in G′ were also faces in G; that all C4 faces in G′ were either also faces in G or
are the remains of two adjacent C3 faces of G; and that all C3 faces in G′ were
either faces in G or formed the outside of a K4 in G. It follows from the latter
observation that there will now be no edges that lie on two C3 faces (we may
discount the possibility that G′ = C3, since this would imply that G = K4 and
hence that k = 4).

Let f ′
i denote the number of Ci faces in G′, and let e′i denote the number

of edges of G′ that are in at least one Ci face. Then, since there is no double-
counting, we have

f ′
3 =

1

3
e′3. (2)

Claim 9 A C4 face in G′ cannot share an edge with a C3 face.

Proof Clearly, a C4 face cannot share exactly one edge with a C3 face without
creating a C5. If a C4 face shares two edges with a C3 face, then it must look
as shown in Figure 7, where a C4 face F1 = v1v2v3v4 and a C3 face F2 = v2v3v4

❅
❅
❅

�
�
�

�
�
�

❅
❅
❅

✩

✪r

r
r rv1

v2

v4

v3F1 F2

Figure 7: A C4 face and a C3 face that share two edges.
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share the edges v2v3 and v3v4. However, note that if such a situation were to
occur in G′, then (since degG(v3) ≥ 3) it must be that either (a) F2 formed the
outside of a K4 in G, in which case we could then find a C5 ⊂ G (see Figure 8),
or (b) F1 is the remains of two C3 faces v1v2v3 and v1v3v4, in which case the
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Figure 8: A C5 ⊂ G in case (a).

vertex v3 and all edges incident to it should have been deleted when G′ was
constructed. Thus, it must be that such a situation does not occur. End of

Proof of Claim 9

Note that f ′
4 ≤

e′
4

2 , with equality if and only if every edge in a C4 face is
actually in two such faces. From Claim 9, we know that all C4 faces in G′ must
be edge-disjoint from all C3 faces, and so it follows that

f ′
4 ≤

e(G′)− e′3
2

, (3)

with equality if and only if every edge not in a C3 face is in two C4 faces.
Let f ′ denote

∑

i f
′
i . Then we have

2e(G′) ≥ 3f ′
3 + 4f ′

4 + 6(f ′ − f ′
3 − f ′

4)

and so

6f ′ ≤ 2e(G′) + 3f ′
3 + 2f ′

4

≤ 2e(G′) + e′3 + e(G′)− e′3 by (2) and (3)

= 3e(G′).

Thus, f ′ ≤ 1
2e(G

′).
Hence, since Euler’s formula then gives e(G′) = |G′| − 2 + f ′ ≤ |G′| − 2 +

1
2e(G

′), we obtain 1
2e(G

′) ≤ |G′| − 2, i.e. e(G′) ≤ 2|G′| − 4.

Part III In this part of the proof, we shall deal with the case when e(G′) =
2|G′| − 4. As mentioned in the sketch of the proof, we shall find that our ar-
gument splits into two subcases depending on whether G′ consists solely of C4

faces or is instead comprised of a mixture of C3’s and C6’s.
Let us start by noting (from an examination of Part II) that equality in

e(G′) ≤ 2|G′| − 4 implies that f ′ = f ′
3 + f ′

4 + f ′
6 and that every edge of G′ not

in a C3 face is in two C4 faces.
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Let E′
i,j denote the set of edges of G′ between a Ci face and a Cj face, and

let E′
i,i denote the set of edges of G

′ between two Ci faces. Recall that E
′
3,3 = ∅,

and also that E′
3,4 = ∅. Hence, E′

3,6 ∪E′
4,4 = E(G′).

If E′
3,6 and E′

4,4 are both non-empty, then there exists a face with edges
in both E′

3,6 and E′
4,4, which is clearly absurd. Thus, either E′

3,6 = E(G′) or
E′

4,4 = E(G′).
Let us first consider the case E′

4,4 = E(G′), when every edge in G′ is shared
by two C4 faces.

Claim 10 A C4 face in G′ can only share an edge with another C4 face if
neither is the remains of two adjacent C3 faces of G.

Proof First, note that we may discount the possibility that G′ = C4, since this
would imply that G also had only 4 vertices. Hence, two C4 faces in G′ can
only share at most two edges. In the case when two C4 faces share exactly one
edge, it is clear that neither can be the remains of two adjacent C3 faces without
creating a C5 in G. If two C4 faces share two edges, then they must look as
shown in Figure 9, where the C4 faces v1v2v3v4 and v2v3v4v5 share the edges

❅
❅
❅

�
�
�

�
�
�

❅
❅
❅r

r
r rrv1

v2

v4

v5v3

Figure 9: Two C4 faces that share two edges.

v2v3 and v3v4. However, note that the condition δ(G) ≥ 3 implies that we must
then have either v1v3 ∈ E(G) or v3v5 ∈ E(G), and both of these would produce
a C5. End of Proof of Claim 10

From Claim 10, it follows that if E′
4,4 = E(G′) then there can be no edges

in E(G′) \E(G), and hence E(G) = 2k− 4 < 12k−33
5 , and so we would be done.

Let us now consider the case when E′
3,6 = E(G′), i.e. when all edges in G′

lie on the boundary between a C3 face and a C6 face. In particular, let us
consider the vertices with degG′ ≤ 3 (note that such vertices must exist, since
E(G′) < 2|G′|), and let us copy the proof of Observation 7. Observe firstly
that there can’t be any vertices with degree less than 2, since all faces in G′ are
cycles. Secondly, note that if a vertex v of degree 2 exists, then it must lie on
the boundary of a C3 face v, v1, v2 and a C6 face v, v1, v3, v4, v5, v2, as shown in
Figure 10, in which case v1, v3, v4, v5, v2 would be a cycle of size 5, which is a
contradiction. Finally, note that if deg(v) = 3 and Γ(v) = {v1, v2, v3}, then it is
impossible for all the edges vv1, vv2 and vv3 to be in a C3 face without having
two adjacent such faces, which would also be a contradiction.
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Figure 10: A vertex v of degree 2 in the case when E′
3,6 = E(G′).

Part IV In this final part of the proof, we shall deal with the remaining case
when e(G′) ≤ 2|G′| − 5. The proof will follow from a very careful examina-
tion of the impact of vertices of degree 2 and 3 in G′. We shall look first at
vertices of degree 3, obtaining equation (5). We shall then consider vertices of
degree 2, producing (via equations (6) and (7) and Claim 12) Claim 11 and
equation (9). Finally, by plugging these newly derived inequalities into our
‘standard’ framework (i.e. the fact that 2e(G) equals the sum of all face sizes,
plus Euler’s formula), we obtain the result.

Let d′i denote the number of vertices of degree i in G′, and recall that there
can’t be any vertices with degree less than 2, since all faces in G′ are cycles.
Note that we must then have

2d′2 + d′3 ≥

{

10 if e(G′) = 2|G′| − 5
12 if e(G′) ≤ 2|G′| − 6

(4)

since 2d′2 + d′3 ≥
∑

i≥2(4− i)d′i = 4|G′| − 2e(G′).
Consider a vertex v of degree 3 in G′, and, in particular, consider the three

faces that it lies on. Note that if any of these is a C3 or is a C4 that was formed
from two adjacent C3’s in G, then neither of the others can have size less than
6 (this follows from Claims 9 and 10 and the recollection that G′ contains no
adjacent C3 faces). Hence, it follows that either (i) none of the three edges
incident to v were in any C3 faces in G or (ii) there is at least one edge incident
to v that was in two faces of size at least 6 in G.

Thus, we have

2

(

1

3
(# edges not in a C3 face in G)

+# edges in two faces of size at least 6 in G
)

≥ d′3

(where the multiplication of the left-hand side by 2 is to allow for possible
double-counting of an edge). If we let ei denote the number of edges of G that
are in at least one Ci face, then this corresponds to

2

(

1

3
(e(G) − e3) + (e(G)− e3 − e4)

)

≥ d′3. (5)

Now consider a vertex u of degree 2 in G′, and let ΓG′(u) = {u1, u2}. It
must be that either (i) u lies on a C3 face uu1u2 (formed from the outside of
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a K4 in G), as shown in Figure 11, or (ii) u lies on a C4 face uu1u3u2 formed
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Figure 11: The vertex u in case (i).

from two adjacent C3 faces T1 = uu1u3 and T2 = uu2u3, as shown in Figure 12.
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Figure 12: The vertex u in case (ii).

In case (i), it will be important to note that the other face containing u must
have size at least 7. In case (ii), it will be important to note that the other faces
bordering T1 and T2 in G cannot have been C3’s themselves (since only the edge
uu3 was deleted when G′ was constructed), and so T1 and T2 are two C3 faces
in G that both have exactly one edge (uu3) that is also in another C3 face in G.

Before proceeding, let us also take care to allow for any possible multiple-
counting. For case (i), note that it is possible for a face of size i ≥ 7 to be
adjacent in G′ to i− 6 faces of size 3; for case (ii), note that both vertices u and
u3 in Figure 12 can have degree 2 in G′.

Thus, allowing for this multiple-counting, we obtain

2

(

1

2
(# C3 faces in G that have exactly one

edge that is also in another C3 face in G)
)

+# C7 faces in G+ 2(# C8 faces in G)

+3(# C9 faces in G) + . . . ≥ d′2. (6)

Let fi denote the number of Ci faces in G, and let f3,1 denote the number
of C3 faces in G that have exactly one edge that is also in another C3 face in
G. Then (6) translates to

f3,1 +
∑

i≥7

(i− 6)fi ≥ d′2. (7)
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Claim 11 If e(G′) = 2|G′| − 5, then
∑

i≥7(i − 6)fi ≥ d′2 − 2.

Proof Note that, since G 6⊃ C5, f3,1 must be equal to 2l, where l is precisely
the number of C4 faces of G′ that were formed from the remains of two adjacent
C3 faces of G.

Let e′4,1 denote the number of edges of G′ that are in exactly one C4 face in
G′. Then, by Claim 10, we have e′4,1 ≥ 4l. Note that e′4 − e′4,1 will be precisely
the number of edges of G′ that are in exactly two C4 faces in G′, and thus

f ′
4 =

e′4,1 + 2(e′4 − e′4,1)

4

=
2e′4 − e′4,1

4

≤
2e′4 − 4l

4

=
e′4
2

− l. (8)

We know that 2e(G′) ≥ 3f ′
3 + 4f ′

4 + 6(f ′ − f ′
3 − f ′

4), and so

6f ′ ≤ 2e(G′) + 3f ′
3 + 2f ′

4

≤ 2e(G′) + e′3 + e′4 − 2l using (2) and (8)

≤ 2e(G′) + e′3 + e(G′)− e′3 − 2l by Claim 9

= 3e(G′)− 2l.

Hence, f ′ ≤ 1
2e(G

′)− l
3 .

Euler’s formula e(G′) = |G′| − 2 + f ′ then gives e(G′) ≤ 2
(

|G′| −
(

2 + l
3

))

.
If e(G′) = 2|G′| − 5, this implies that l ≤ 1 (since l is an integer), and hence
that f3,1 ≤ 2. The result then follows from (7). End of Proof of Claim 11

Claim 12 f3,1 ≤ 2e3 − 4f3.

Proof Note that it is impossible for all three edges in a C3 face in G to also be
in another C3 face in G without creating a C5 unless G = C3 or G = K4, both
of which may be ignored since we know that k > 4. Thus,

f3 =
1

3
(# edges in at least one C3 face in G +# edges in two C3 faces in G)

≤
1

3

(

e3 +
1

2
(f3,1 + 2(f3 − f3,1))

)

=
1

3
e3 +

1

3
f3 −

1

6
f3,1,

from which the claim follows. End of Proof of Claim 12

By (7) and Claim 12, we have

2e3 − 4f3 +
∑

i≥7

(i − 6)fi ≥ d′2. (9)
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We shall now use (5), (9) and Claim 11 to obtain our result. Letting f

denote
∑

i fi, we know that 2e(G) = 3f3+4f4+6(f − f3− f4)+
∑

i≥7(i− 6)fi,
so we have

6f = 2e(G) + 3f3 + 2f4 −
∑

i≥7

(i− 6)fi

≤ 2e(G) + 3f3 + e4 −
∑

i≥7

(i− 6)fi

= 2e(G) +
3

2
e3 + e4 −

∑

i≥7

(i− 6)fi −
3

4
(2e3 − 4f3)

= 2e(G) +
3

2
e3 + e(G)− e3 −

∑

i≥7

(i− 6)fi −
3

4
(2e3 − 4f3)− (e(G)− e3 − e4)

= 3e(G) +
1

2
e3 −

∑

i≥7

(i− 6)fi −
3

4
(2e3 − 4f3)− (e(G) − e3 − e4)

=
7

2
e(G)−

∑

i≥7

(i− 6)fi −
3

4
(2e3 − 4f3)− (e(G) − e3 − e4)−

1

2
(e(G)− e3)

=
7

2
e(G)−

3

4



2e3 − 4f3 +
∑

i≥7

(i − 6)fi



−

(

1

3
(e(G)− e3) + (e(G) − e3 − e4)

)

−
1

4

∑

i≥7

(i − 6)fi −
1

6
(e(G)− e3)

≤
7

2
e(G)−

3

4
d′2 −

1

2
d′3 −

1

4

∑

i≥7

(i− 6)fi by (5) and (9).

Thus, f ≤ 7
12e(G) − 1

8d
′
2 −

1
12d

′
3 −

1
24

∑

i≥7(i − 6)fi, and so Euler’s formula
e(G) = k − 2 + f then implies that

e(G) ≤
12

5
(k − (2 +

1

8
d′2 +

1

12
d′3 +

1

24

∑

i≥7

(i − 6)fi))

=
12k − (24 + 3

2d
′
2 + d′3 +

1
2

∑

i≥7(i− 6)fi)

5
.

It now only remains to show that 3
2d

′
2 + d′3 + 1

2

∑

i≥7(i − 6)fi ≥ 9. If

e(G′) ≤ 2|G′|−6, then 2d′2+d′3 ≥ 12 (from (4)), and so certainly 3
2d

′
2+d′3 ≥ 9. If

e(G′) = 2|G′|−5, then recall (from Claim 11) that we have
∑

i≥7(i−6)fi ≥ d′2−2,

and hence 3
2d

′
2 + d′3 +

1
2

∑

i≥7(i− 6)fi ≥ 2d′2+ d′3 − 1 ≥ 9 (using (4)).

5 C5 — extremal graphs

In the previous section, we showed that ex
P
(n,C5) ≤

12n−33
5 for all n ≥ 11. In

this section we shall now complete matters (in Theorem 14) by demonstrating
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that this bound is tight.
We start with a lemma that will prove useful:

Lemma 13 For infinitely many values of k, there exists a plane triangula-
tion Tk with vertex set {v1, v2, . . . , vk} satisfying (i) deg(vi) = 4 for i ≤ 6,
(ii) deg(vi) = 6 for i > 6, and (iii) E(Tk) ⊃ {v1v2, v3v4, v5v6}.

Proof Note first that the triangulation T6 shown in Figure 13 certainly satisfies
the conditions for k = 6.
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Figure 13: The triangulation T6.

We now proceed inductively. Given a triangulation satisfying the conditions,
let us construct a larger triangulation by subdividing all the edges and inserting
triangles between the new vertices, as shown in Figure 14.
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Figure 14: Constructing a larger triangulation.

It can be observed that conditions (i) and (ii) will also be satisfied by the
new triangulation, but (due to the subdividing of edges) not condition (iii).
However, we may then simply modify the new triangulation into one that does
satisfy all three conditions by applying the local transformation shown in Fig-
ure 15 (which includes some relabelling of the vertices) at the relevant three
places.

We may now proceed with our construction of extremal graphs:

Theorem 14 There exist infinitely many values of n for which ex
P
(n,C5) =

12n−33
5 .

Proof We shall use the triangulations guaranteed by Lemma 13 to construct

specific plane graphs with 15k+9 vertices and 12(15k+9)−33
5 edges, and we shall

then show that these graphs are C5-free.
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Figure 15: Modifying the triangulation to satisfy condition (iii).

Let Tk be a plane triangulation satisfying the conditions of Lemma 13, and
let E∗ denote the set of edges {v1v2, v3v4, v5v6}. Let us now construct a new
plane graph G by (i) subdividing all edges in E(Tk) \ E∗ and (ii) replacing
all edges in E∗ with the ‘diamond-holder’ structure shown in Figure 16. An
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Figure 16: Replacing an edge with a ‘diamond-holder’.

example of this is shown in Figure 17.
Note that the k original vertices (shown as large vertices in Figure 17) will

now all have degree 6 (including the six that only had degree 4 in Tk), and so
each can be thought of as forming the centre of a ‘star’ of size six (i.e. K1,6).
Hence, G consists of k of these stars, together with the three ‘diamonds’ (i.e. K4

minus an edge) from the centres of the diamond-holders.
Finally, let us now replace each star with the ‘snowflake’ structure shown

in Figure 18, where the central vertex is replaced by a hexagon and the edges
are replaced by K4’s. Thus, the final graph G∗ will consist of k snowflakes and
three diamonds.

Observe that each diamond contains 4 vertices, 2 of which will be shared
with snowflakes, and 5 edges; each snowflake contains 18 vertices, 6 of which
will be shared with other snowflakes/diamonds, and 36 edges.

Hence, allowing for double-counting of the shared vertices, we find that G∗

contains 3(2+ 2
2 ) + k(12+ 6

2 ) = 15k+9 vertcies and 3× 5+ 36k = 12(15k+9)−33
5

edges, thus achieving the bound of Theorem 8.
It now only remains to show that G∗ is C5-free.
To see this, let us first examine the earlier graph G. Due to the subdividing

of the edges of Tk (and the resulting doubling of all cycle lengths), note that G
can contain no cycles of length less than six apart from those (of length three
and four) contained entirely within a diamond-holder.
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Figure 17: Constructing a new graph G from a triangulation T15.

✟✟
✟✟
✟✟❍❍❍❍❍❍

①r
r

r
r

r

r
✲

✔
✔
✔
✔
✔✔

❚
❚
❚
❚
❚❚

r r

r
✔
✔
✔
✔
✔✔

❚
❚
❚
❚
❚❚r

rr
r rr rr r✑
✑✑
◗
◗◗

r rr
rr

◗
◗◗
✑
✑✑r
✑✑◗◗

◗◗✑✑

Figure 18: Replacing a star with a ‘snowflake’.

Now observe that any cycle in G∗ of length less than six must either induce
a cycle of length less than six in G or must be contained entirely within a single
snowflake.

Hence, any C5 in G∗ must either be contained entirely within the structure
formed from a diamond-holder (see Figure 19) or must be contained within one
snowflake. However, it can be seen that Figures 18 and 19 are both C5-free,
and hence so is G∗.

As an aside, let us remark that it is also possible to produce graphs attaining
equality in Theorem 8 via alternative constructions to that used in Theorem 14
(for example, it is possible to obtain such graphs when n ∈ {14, 39, 54}).

6 Concluding remarks

In this paper, we have made a start on the topic of ‘extremal’ planar graphs,
defining ex

P
(n,H) to be the maximum number of edges possible in a planar
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Figure 19: The structure formed from a diamond-holder.

graph on n vertices that does not contain a given graph H as a subgraph. We
observed that the case when H is a complete graph is straightforward, and
consequently focused on the more exciting examples of C4 and C5, obtaining
the tight bounds ex

P
(n,C4) ≤ 15

7 (n − 2) for all n ≥ 4 (in Section 2) and
ex

P
(n,C5) ≤

12n−33
5 for all n ≥ 11 (in Section 4).

The next step would seem to be to look at larger cycles. As the C5 proof
is rather intricate, it may be impractical to try to obtain exact results, but it
would perhaps be reasonable to investigate the leading term in the extremal
numbers and to work towards a general formula for this.

Of course, there are also many other options to choose for the forbidden
subgraph — the simplest would perhaps be K4 minus one edge. In particular,
it would be interesting to discover whether or not the chromatic number ever
plays a role, as in the Erdos-Stone Theorem.

Another angle to take on the problem would be to examine which graphs
have extremal number 3n − 6. We have observed that K4 certainly falls into
this category, and it would be interesting to develop necessary and sufficient
conditions for all such graphs.

There are also various ways to extend the topic further. For example, one
natural idea would be to investigate extremal problems on other surfaces, such
as the torus, while another option would be to forbid several subgraphs at once.

There seems to be a large amount of uncharted territory here, and it is hoped
that this paper has made a useful start.
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