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Some Remarks on Rainbow Connectivity

Nina Kamcev Michael Krivelevich’ Benny Sudakov

Abstract

An edge (vertex) coloured graph is rainbow-connected ifdtis a rainbow path between any two
vertices, i.e. a path all of whose edges (internal verticas)y distinct colours. Rainbow edge (vertex)
connectivity of a grapl® is the smallest number of colours needed for a rainbow edgyge) colouring
of G. In this paper we propose a very simple approach to studgimpow connectivity in graphs. Using
this idea, we give a unified proof of several known resultsyeas some new ones.

1 Introduction

An edge colouring of a grapB is rainbowif there is a rainbow path between any two vertices, that iath p
on which all edges have distinct colours. Any connectedlg@pf ordern can be made rainbow-connected
usingn — 1 colours by choosing a spanning tree and giving each edde a&tanning tree afiiérent colour.
Hence we can define thrainbow connectivityrc(G), as the minimal number of colours needed for a rainbow
colouring ofG.

Rainbow connectivity is introduced in 2008 by Chartrandle{@ as a way of strengthening the notion
of connectivity, see for exampl&]| [8], [10], [13], [17], and the survey18]. The concept has attracted a
considerable amount of attention in recent years. It is afsaterest in applied settings, such as securing
sensitive information transfer and networking. For ins&rj7] describe the following setting in networking:
we want to route messages in a cellular network such that k@clon the route between two vertices is
assigned with a distinct channel. Then, the minimum numlbeahannels to use is equal to the rainbow
connectivity of the underlying network.

We are interested in upper bounds for rainbow connectifiityt studied by Caro et al.6]. The trivial
lower bound isc(G) > diam(G), and it turns out that for many classes of graphs, this is aoredde guess
for the value of rainbow connectivity. Caro et a&] fhowed that a connected graph of ordemnd minimum
degree > 3 has rainbow connectivity at mo3. Since the diameter of such a graph is at m&bt(see, e.g.,
[11]), it is natural to ask whether the rainbow connectivity®fs of the same order. Krivelevich and Yuster
[17] showed that indeert(G) < %. Then Chandran et a8] settled this question by proving(G) < %+3,
which is asymptotically tight.

A randomr-regular graph of ordemis a graph sampled fro@,, ;, which denotes the uniform probability
space of alt-regular graphs onlabelled vertices. These graphs were extensively studidtkilast 30 years,
see, e.g.,40]. In this paper we considés, ; for r constant anth — co. We say that an event holeath high
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probability (whp) if its probability tends to 1 astends to infinity, but only over the values ofor which nr
is even (so tha®G, ; is non-empty).
A randomr-regular graph has quite strong connectivity properties gkample, the diameter @, , is

whp asymptotic tqo'go(%, see p]. The natural question of rainbow connectivity of randorgular graphs

was first studied by Frieze and TsourakakiS][ who showed that whpc (G, ) = O(Iog"jr n), for a constant
¢r > 2. Dudek et al. 10] improved this bound tec (G ;) = O(logn) whp, which is the correct dependence
onn. We will return to this result later.

The aim of this note is to present a simple approach which idaately implies results on rainbow colour-
ing of several classes of graphs. It provides a unified agproa various settings, yields new theorems,
strengthens some of the earlier results and simplifies thef@rlt is based on edge- and vertex-splitting.

The main idea of the edge-splitting lemma is simple: we dgumseG into two edge-disjoint spanning
treesT; and T, with a common root vertex and small diameters. We ufierdint palettes for edges of
andT>, ensuring that each tree contains a rainbow path from arigxés the root. Hence if we can get the
diameters off1 and T, ‘close’ to the diameter o6 (say within a constant factor), then we have obtained a
strong result.

We exhibit a few applications of the lemma. First we use itit@ @ straightforward proof of the result of
Krivelevich and Yuster17], that is

- 16n
Theorem 1.1. For a connected n-vertex graph G of minimum degiee4, rc(G) < =

Next we turn to random regular graphs. The rainbow coloudgh&, , of Dudek et al. 10] typically
usesQ(r logn) colours, which for large is significantly bigger than the diameter®f, ;. Using our splitting
lemma we can improve it to an asymptotically tight bound.

clogn

Theorem 1.2. There is an absolute constant c such that for 5, rc(Gy ) < logr

Forr > 6, the theorem is an immediate consequence of the contiglitifferent models of random
regular graphs. With little extra work, our approach alsoksdor 5-regular graphs. We would like to point
out that the proof of Dudek et al. works starting frors 4.

The question of which characteristics@&{f , ensure small rainbow connectivity arises naturally. Rewal
that expander graphs also have diameter logarithmig ittmakes sense to look at expansion properties. The
following theorem can be viewed as a generalisation of teeipus result ore, ;.

Theorem 1.3. Lete > 0. Let G be a graph of order n and degree r whose edge expansianléaster.
Furthermore, assume thatx max{64e tlog(64¢™1), 324). Then r¢G) = O(e tlogn).

In particular, this theorem applies to, (, 1)-graphs withd < r(1 — 2¢), i.e. n-vertexr-regular graphs whose
all eigenvalues except the largest one are at mastbsolute value.

Krivelevich and Yuster 17] have introduced the corresponding conceptaihbow vertex connectivity
rve(G), the minimal number of colours needed for a rainbow coluyief vertices ofG. The only point to
clarify is that a path is said to be rainbow if itsternal vertices carry distinct colours. The easy bounds
diamG) — 1 < rve(G) < n also hold in this setting. Krivelevich and Yuster have destated that it is
impossible to bound the rainbow connectivity ®fin terms of its vertex rainbow connectivity, or the other
way around. They also boumnrdc(G) in terms of the minimal degree.

Our approach essentially works for vertex colouring as wallSection 3 we present the vertex-splitting
lemma. It is then used to prove the vertex-colouring anaagfiurheoreni.2 on random regular graphs.
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clog

Theorem 1.4. There is an absolute constant c such that wh®yg) < g rn forallr > 28

2 Edgerainbow connectivity

2.1 The edge-splitting lemma

We state and prove the main lemma. The rest of the sectionthisessme notation for spanning subgraphs
G1 andGo.

Lemma2.l. Let G= (V, E) be a graph. Suppose G has two connected spanning subgraphg\GE;) and
G2 = (V, Ep) such thaiE; N Ey| < ¢. Then r¢G) < diam(G1) + diam(Gy) + c.

Proof. Let B = E1 N E,. Colour the edges d in distinct colours. These colours will remain unchanged] a
the remaining edges get coloured according to graph distainé; andG,, denoted byd; andd,. Choose
an arbitraryv € V and define distance set = {u € V : di(v,u) = j}andW; = {u € V : dx(v,u) = j}. For

1 < j < diam(Gy), colour the edges betweéh_; andU; with coloura;. Similarly, using a new paletté),
colour the edges betwedH;_; andW; with colourb; for each 1< j < diam(Gy). The colouring indeed uses
at most diam(G,) + diam(G,) + ¢ colours.

To see that it is a rainbow colouring, look at two verticgsand x, in V. Let P; be a shortest path iG;
from x; to v. By our definition of colouring on distance sets, both p&hsnd P, are rainbow. If they are
edge-disjoint, the concatenation is a rainbow path betwegandx,. Otherwise P1 andP, can only intersect
in edges ofB. If this occurs, we walk fronk; alongP; to the earliest common edge. We use this edge to
switch toP, and walk tox. O

2.2 Rainbow connectivity and minimum degree

In this setting, the best possible result has been shown apdihn et al§]. Namely, a connected grajghof
ordern and minimum degreé satisfiesc(G) < % + 3. We show how the splitting lemma can be used with
basic graph theory to obtain a good upper boun(;) < %.

Proof of Theoremi..1 Let G = (V,E) be as in the statement. We sgBtinto two spanning subgraphs of
minimum degree at Ieaég—l. First assume that all vertices Gfhave even degree. Then, using connectedness
of G, order its edges along an Eulerian cyelee, ... ey, and define

Fi={g:je[mevery and F,={g:|e[m]odd.

Edges around each vertex are coupled into adjacent pgifs;, so this is indeed a balanced split. Let
H; = (V, Fj) be the associated graphs.
To apply this splitting to gener#&, note that the number of vertices of odd degree is even, sawaad
a matchingM between those vertices. Everdf = (V, E U M) contains double edges, it still has an Eulerian
cycle. We apply the above procedureGf and then remove the auxiliary edgéls The end result is that a
vertex of odd degred in G has degreé§—1 in Hi, so indeed subgraplt$ have minimum degree at Iea(%'l.
The graphH; may not be connected. But since the minimum degree of th'rmgsa‘sg—l, each connected
component has order at Iea(%st Hence the number of componentstdf is at most%, SO we can add a
2n

setB; ¢ E such thatG; = (V,F1 U By) is connected, aniB;| < 5. We define the seB, analogously. An

elementary graph-theoretic result (mentioned in the thtotion, see alsolfl]) shows that subgraphG



and G, of G have diameters at mogﬁL+l < @ Applying the edge-splitting lemma 6, andG; gives
2
re(G) < & + & 4 4n < 160 O

2.3 Expanders

We adopt a weak definition of an expander. As bef@re; (V, E), the degree is fixed and the ordem tends
to infinity. ForS c V, we defineout(S) to be the set of edges with exactly one endpoirs inA graphG has
edge expansiof if every setS c V with |S| < g satisfiegout(S)| > @|S| .

Frieze and Molloy 12] have shown using the Lovasz Local Lemma that the naturalamnk-splitting of
E givesk expander graphs with positive probability. We state thHesotem fok = 2.

Theorem 2.2. Letr be a natural number] > 0 a real number, and G= (V, E) an r-regular graph with edge
expansiond. Suppose

® 81? and 12
logr logr

Then there is a partition E= E; U E, such that both subgraphs; &G (V, E;j) have edge expansion at least
1-273%.

Under stronger conditions on expansion, they also give @amised polynomial-time algorithm for the
splitting, which immediately gives a rainbow colouring.

Proof of Theorenl.3 LetG be anr-regular graph with edge expansien We will apply Theoren®.2with
A= % The hypothesis > 64t log (646_1) ensures th%%r > 32, and the second inequality follows from
r > 324. We get a partitioe = E; U E such that each graph; = (V, E;) has edge expansion at legst
The maximum degree @; is at mostr, so every se8 of order|S| < 2 has a neighbourhool(S) of order
r(s) = (l+ g) |S|. Thus the number of vertices within distance at mdsbm any vertex inG;j is at least
min{(1+ €/4)',n/2} and thereforeliam(G;) = O(e~*logn).

Applying Lemmaz2.1givesrc(G) < diam(Gy) + diam(Gy) = O(e tlogn). O

2.4 Random regular graphs

Two sequences of probability spacgsandG,, on the same underlying measurable spaces are callgayu-
ous written ¥, ~ Gy, if a sequence of eventdy) occurs whp inF, if and only if it occurs whp inG,. LetG
andG’ be two models of random graphs on the same vertex set. We get eandom grapks by taking the
union of independently chosen gragbse G andG; € G’, conditional on the ever(G;) N E(G2) = 0. The
probability space of such disjoint unions is denotedzoy G'.

It is known thatG, , is contiguous with any other model which builds enegular graph as an edge-
disjoint union of random regular graphs and HamiltonianeycThis goes back to the work of Jansad]|
Robinson and WormaldLp], and is also laid out in the surve2(]. The specific results we use in proving
Theoreml.2areGp = Gnr @ Gp i andGy 112 = G ¢ @ Hp, whereH, is a random Hamiltonian cycle on

[n]. Recall that Theoren.2says that for > 5, rc(Gy, ;) < Ckl)oggr” whp.

Proof of Theoremi.2forr > 6. As usually, we assume that is even, and defing so thatG, ,, are non-

empty fori = 1, 2. If r is odd, them is even and we can set = % Otherwise, we sat; = rp = % or

ri = 5 = 1 as appropriate. The observation at the end of the proolvesthe case = 6.



Let G; be a randonm;-regular graphr; > 3. Then with high probabilitdiam(G;) < (1;)‘;((1,{)_';’)@’” < g'{;g?

wherec is a suitable constant. L& be the union of two such edge-disjoint gragbsandG,. The splitting
lemma givesc(G) < ﬁg)ggr”.
SinceG was a random element &, ;, ® Gn r,, the randonr-regular graph has the same property whp.
Forr = 6 and oddn, we takeG to be sampled fronH, & H, ® H,. The first two Hamiltonian cycles
belong toG,, resp.G,. We split the edges of the third Hamiltonian cyélg alternately, so thaﬁg—l edges are
assigned t@; and”Lz1 to G,. Then we can quote Propositi@¥, a result of Bollobas and Chung which says

that the union of a Hamiltonian cycle and a random perfecthiag) has whp logarithmic diametef]] O

The remainder of the section deals with the case 5. SinceGp 5 ~ Gn 1 @ Hp @ Hy,, we can model
our 5-regular graph as a union of two random grahfndG,, where eacl; is an edge-disjoint union of
a Hamiltonian cycle and a matching of sil_z%J. The following theorem says that whp ea@hhas diameter
O(logn), sorc(G) = O(log n) whp follows from the splitting lemma.

Theorem 2.3. Let G be a random graph dm], the union of the cyclél, 2,...,n, 1) and a random matching
on[n] consisting ot%J edges. Then G has diamete(l@yn) whp.

The theorem can be proved by adapting the argument of Kviwdlet al. [L6], who showed that starting

from a connected-vertex graptC and in addition, turning each pair of vertices into an edgé wiobability

£, the resulting graph typically has logarithmic diametehisTis very similar to what we need whéhis

a Hamiltonian cycle. However, since we are adding a randonchimey rather than independent edges, our
model is slightly dfferent. Instead of reproving the result @8] in our setting, we decided to give affifirent
(very short) proof relying on the following result (se&0]), which by contiguity simply says thads, 3 has
logarithmic diameter whp. Without assuming that the cyeld matching are edge disjoint this was proved
earlier by Bollobas and Chund]|

Proposition 2.4. Let H be a graph formed by taking a disjoint union of a randontahiag of size{%J and
an n-cycle. Then the diameter of H is wiip+ o(1)) log, n.

Denotem = [‘%J Note thatG in Theorem2.3 can be built in two steps as follows. First we select a
random subseB = {bq, by, ..., bon} C [n] of order 2n, and then independently a random perfect matching
on{by, by,...,bym}. Throughout the proof we identify the vertices @fwith natural numbers up to and
assumeé; < by < -+ < bom.

Given a subseB, define variable¥; = b, — bj fori = 1,...2m - 1. Moreover, we defin&, = b; and
Yom = N — by to record the positions of the first and the last verteBinAn important observation is that
a random seB of order 2ninduces a random sequend®,(Y1, ..., Yon) with Y; > 1 fori < 2m, Yo, > O
andzizzr?,Yi = n and, vice versa, given such a random sequence, we can unigpebduce a corresponding
setB, which is uniformly distributed over all subsets of pf order 2n. To complete the proof, we need the
following simple lemma aboutX{).

Lemma2.5. Let(Yo, Y1,..., Yoy) be a random sequence as defined above. Fix a set of indigds < i <
-+ <ig< 2m. TherP[Y2y > logn] = o(1) and

S
Z Y, > 105] <e?s

=1

P




Proof of Lemma.5. Since permuting the variablég, i < 2m, does not change the probability space, without
loss of generality we may assumig, (...is) = (0,..., s—1). Recall thaty; were defined by; = bj,1 — b, so
that}, > 3 Y; > 10s means exactly that there are at msstl vertices ofB among the first 18vertices. On the
other hand|B N [10g]| is a hypergeometric random variable with méﬁh- 10s. Therefore, by the standard
tail bounds (see, e.g., Theorem 2.10185]).

1 2(4n-1)°2
ZYi>10s:P[|Bm[1OS]|§s—l]§e‘ < e %S,

P <
i=0

Similarly, Yom > logn means that no vertex @ is in the interval i — log n, n]. The probability of this event
is (" 03" /(o) = 0(2). O

Proof of Theoren2.3. As we explained, ous can be constructed as follows. Start with a cyale, . . . bombs.
Pick a random perfect matching on B = {by, b», ... bym} whose edges do not coincide with any edges of the
cycle. LetH = H(M) be the graph ol formed as the union of the cyclgb; . .. bynb; and the matchingd.
Choose a random sequend,(Y1,. .., Yom) as above. The grapB on [n] is obtained by subdividing each
edgebibi.1 into Y; edges. The exception is the edmgbi, which is subdivided intdro, + Yo edges. Note
thatM and (¥;) are chosen independently. Sinlgkeis random, by Propositio@.4whp H(M) has diameter at
most (1+ 0(1)) log,(2m) < 1.5logn — 1. Condition on this event, and fix an arbitray which satisfies the
condition.

We will show that for randomY), whp G will have small diameter. We further condition on the event
that Yo, < logn, which by the previous lemma holds whp. Let 1.5logn. Take the vertices andv in
[n], and single out the segments to which they beldngs u < bi,1 andb; < v < bj,4 (i andj are possibly
0 or 2n - 1). H contains a pathP betweenb; andb; of length at moss — 1, which we turn into a path in
G as follows. If an edge o belongs to the matchiniyl, then it is also an edge @&. Otherwise, if the
edge has fornbby. 1, we replace it by the segmehbt, bk + 1, b + 2,..., b1 in G, whose length i. If
P contains the edgb,mb;, the corresponding segment has lendth + Y. At the ends of the path, we walk
from uto by and fromb; to v. Denote byU the set of indice& < 2m such thatP contains a verteky. Since
Y; > 1 fori < 2m, the distance betweamandv in G is at mostYon + 1 + > ey MaxXl, Yi} < S+ Dkeu Y-
Note also thatU| = |P| + 1 < sand thatP, U do not depend on variable¥\. Thus, by Lemm&.5, the
probability that this distance exceedssli¢ at moste 2 = n=3. Taking the union bound over all pairs of
vertices, Pdliam(G) > 11s| M] = O(n"%). Since we conditioned on the event with probability (1), the
probability thatdiam(G) > 11sis at mosio(1), completing the proof. O

3 Vertex rainbow connectivity

We now state the vertex-colouring analogue of Lenfiria

Lemma3.1l. Let G= (V,E) be a graph. Suppose that \W, c V satisfy:1) V1 UV, = V; 2) [V1 N V,| < ¢;
3) every vertex ¥ V1 has a neighbour in ¥and vice versaz) G[Vi] is connected, for + 1, 2. Then

rve(G) < diam(G[V1]) + diam(G[V2]) + ¢ + 2.

Proof. Let B = V1 N V,. Colour the vertices oB in distinct colours. These colours will remain unchanged,
and the remaining vertices get coloured according to grégthritesd; in G = G[V;]. Choose root vertices



Vi € V; such thatv;v, is an edge ofs. Give each distance s@ € V; : di(v1,u) = j} the coloura;, for
0 < j < diam(Gy). Similarly, each sefu € V5, : da(v2, u) = j} gets colout;.

To see that it is a rainbow vertex colouring, look at two \@six; € V1 andxy in V. Suppose first that,
lies inV,, and letP; be a shortest path 1G; from x; tov;. By our definition of colouring on distance sets, both
pathsP; andP, are rainbow. If they are vertex-disjoint, the concatemafg — vi1vo — P, is a rainbow path
betweenx; andx,. Otherwise P, andP, can only intersect in vertices &. If this occurs, we walk fronmk;
alongP; to the earliest common vertex. We use this vertex to switdPptand walk toxo.

If xo does not lie inVy, we replace it with its neighbour N5, which exists by hypothesis, and then
proceed with the argument. The case whare:; ¢ V1 is treated similarly. m]

3.1 Random regular graphs

Lemma 3.2. Let G be an r-regular graph, B 28. Then the vertices of G can be partitioned as\J; U U,
so that each ¥ V has at least).11r neighbours in both Y and U,.

Proof. This is a standard application of the Lovasz Local Lemmanddey = 0.11 for the rest of the paper.
For each vertex, put it into U; randomly and independently with probability2l LetE, be the event that
does not satisfy the statement of the lemma. By the standaedhGt bounds the probability of this event is

at most %‘2(%‘7)2'. Two eventsE, andE, are adjacent in the dependency grapt @ndv are at distance at
most 2 from each other,and otherwise they are independemtce each event has degree at mostr? in
the dependency graph. Then foe 0.11 andr > 28, the condition

(A+1)eP[E)] < (12 + 1)- 26723 < 1,

is satisfied. Therefore, by the Local Lemma, with positivebability no eveng, occurs. m]

To use such a partition, we need an estimate on the numbergesegpanned by subsets of vertices of
Gn,r. Similar results have appeared e.g. 2 put for our purposes we need a more explicit dependence on
the degree. To prove the estimate, we work in tpairing (configuration) modébr r-regular graphs. Fan
even, we take a set oh points partitioned inta cellsvy, Vo, ... V,, €ach cell containing points. A perfect
matching (ormairing) P induces a multigrapks(P) in which the cells are regarded as vertices and paik in
as edges. For fixed degreeand P chosen uniformly from the set of pairindg%, ;, G(P) is a simple graph
with probability bounded away from zero, and each simpl@lgraccurs with equal probability. It is known
(see, e.g.,40Q)) that if an event holds whp i(P), then holds it holds whp even on the condition tG#P) is
a simple graph, and therefore it holds whp&R .

Lemma3.3. Letr > 3 be a fixed integer. Let P be a pairing selected uniformly fram.Rf Eq c [n]@ is a
fixed set of nx % pairs of vertices from n, then

P [Eo c E(G(P))] < z(z—nr)m.

Proof. The total number of pairingP is %"{ In order to bound from above the number of pairif®)s
inducing Ey, first for each edge = (u, V) eon, choose a point in the cell afand a point in the cell of in
at mostr? ways, the total number of such choices is then at m@¥st The remainingn — 2m points can be

paired in—"=2"!__ \vays. Altogether, using Stirling’s formula, the probatyilof getting Eq is at most

(z-mp2T"



(nr — 2m)! (3 )!
(nn! (% - m)i2-m

B o (00 =2m\" (nr=2m\?" nr \% (nr—2m)\"
e (12 ) e

P[Eo c E(G(P))] < r®M.

nr e nr—2m
2m\Z [ e \" o 2r\™
=(1+o0()|1-— <2 <2|—] .
(1+ ())( nr) (nr—Zm) - [n_ZTm] - (n)
Here we used that since-1x < €7, then (1- 2M% < e ™™ and that?® < 1. O

Lemma 3.4. Let P be a random element of, P, and GP) be the corresponding r-regular multigraph én].
We obtain its maximal simple subgra@iP) by deleting the loops and identifying the parallel edges @G

(i) Assume thay’r > 3. Then there is an absolute constant- 0 such that whp all vertex sets §[n] of
order up toan span fewer tharhslzﬂ edges irG(P).

(i) There is an absolute constagt> 0 such that whp all vertex sets §[n] of order up to'gr—” span fewer
than3/S| edges inG(P).

Proof. Denote the event thai(P)[S] contains at leasEld edges byBs. Fix the orderS| = s. SinceG(P) is
a subgraph o6(P), we can apply the previous lemma to each subget S of S—2d edges to get

sd/2 sd/2
52/2)(2r) S2(25er) .

P[Bs] < Z(Sd/z a T

Taking the union bound over all sets of vertices of orslgives

V

Se[n]©®

< (Z)P Bs] < 2[”—: (S : %)gr.

For (i) setd = y'r > 3 and choose so that the term in square brackets is less 1%1&»7 s = an (note that
this term is increasing ig). We split the range o$intoy'r < s< n? andni < s< anto get

1 _3 _
P[\S/ le < n4-O(n s)+ Zl 251 = (1),
s>n4

P

as required.
For (i), setd = 6. Takeg such that? = ? again makes the term in brackets at méstThe same

calculation gives the result.
o

From the discussion above, conditional on the event®{B) is a simple graph (which is exact@(P) =

G(P)), G(P) satisfies the statement of LemrBal. Therefore the same holds for the random regular graph
Gn,r- We can now prove the main result of this sectioug(G, ) = O('lg%) whp forr > 28.



Proof of Theoreni.4. Let G be a randonr-regular graphy = 0.11. Use Lemm&.2to obtain a partition
V = U; U U such that eacki € V has at leasyr neighbours in each part.

All statements abou® from now on will hold with high probability. In particular, &assume thab
satisfies Lemma&.4with y’ = £, wheree = 0.02 is chosen so thgt- > 3. We only need the extra ¢le)
factor later, for Claim 3. Such edge distribution implieattbach connected componentGjU;] contains at
leastan vertices, where is the constant from Lemni&4.

Claim 1. We can findw; c V such thaw; = O(1) andG[U; U W] is connected.

For a set of verticeA c V, denotel/(A) = {ve V : dg(v, A) < j}. Itis well-known that a random regular
graph has good expansion properties (g [.e. there is a constat > 0 such that whiil’'(A)| > (1 + ¢)|A|
whenevetAl < 5. Now suppose thah has linear ordetAl > an, and take an integer> %—115)92. Iterating
the expansion property gives that(A)| > 5. To prove Claim 1, suppos& and B are vertex sets of two
connected components 6{U;], each of order at leasin. We just showed that'(A) N T'(B) # 0, so there
is a path of length at most #om A to Bin G. Adding the vertices of this path ¥ reduces the number of
connected components by one, so repeating thisstéimes ensures that, = U; U W, spans a connected
graphG; = G[V;]. Choose a large integersuch thatW;| < afor all n andr. The vertex set¥; andV, now
satisfy|V1 N Vy| < 2a, so we turn to the diameters Gf andG,.

Claim 2. Forr > 112 (so thayr > 12), everyT c V; of order at most; satisfiesIg, (T)| > (1+ 3)[TI.

Suppose€rl does not satisfy the claim, and Bt=I'g,(T). Since all the edges iG; with an endpoint ifl

lie in Gi[S], we get thatS spans at least
r’m rs 3yr|S
"yél2 pil Iyr S 24l |=3|S|
21+%)

edges. Note that by the hypothes$ < (1+ 33)- frnz < 21 Hence we can deduce from Lem®a (i) that
S spans fewer than|S| edges, which is a contrad|ct|on

Claim 3. Leta be the constant from Lemn®4 (i) ande > 0 as above. Every subsg&tc V; of order at
most = satisfiegl',(T)| > (1 + €)|T|.

Assume thaf does not expand, and use Lem@dfor S = I',/(T), vy =
G; with an endpoint inT lie in Gj[S], we get thatS spans at least

YT Sl _ s
2 “21+e) 2

edges. This contradicts statement (i) of Lem3né

Forr > 112, Claim 2 implies that starting from any vertex V;, we can expand i; to a set of order
'8” in C}g(g’?” steps, where; is a constant independent ofindn. FurtherO(logr) steps give a set of order
1%, by Claim 3. Forr < 112, we use directly Claim @(logn) times (thus avoiding Claim 2) to expand to a
set of order{®Z. In this range, log < log 112 and henc®(logn) = ('Oﬂ)

logr
Denotek = Clg’ggr”, wherec > c; is suficiently large for the described expansion to go through.p8se

the diameter ofG; is larger than;, and takexp and xg such that the shortest patax; ... xgr is longer
than %k (such a path exists singg; is connected). Then we can use the procedure above to expand f
verticesxo, X3k, Xek - .. IN K steps to ge% disjoint (by the choice of the path) neighbourhoods, each of order
which is a contradiction. Thus applying Lemmal to subsetsV; andV, givesrve(G) < X191 55

l+€’ alogr ’
required. m|

l+€ > 2. Since all the edges of

Remark. The constanty = 0.11 ande = 0.02 are chosen so that Theordmd holds forr > 28. If we are
only interested in large values ofwe can sey arbitrarily close to & and, saye = 0.25



Concluding remarks

In this paper we proposed a simple approach to studyingeaimgonnectivity and rainbow vertex connectivity
in graphs. Using it we gave a unified proof of several knownltesas well as of some new ones. Two
obvious interesting questions which remain open are to ghaivrainbow edge connectivity and rainbow
vertex connectivity of random 3-regular graphsrovertices are logarithmic in.
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