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Abstract

Hadwiger’s conjecture asserts that every graph with chromatic number t contains a com-
plete minor of order t. Given integers n ≥ 2k+1 ≥ 5, the Kneser graph K(n, k) is the graph
with vertices the k-subsets of an n-set such that two vertices are adjacent if and only if the
corresponding k-subsets are disjoint. We prove that Hadwiger’s conjecture is true for the
complements of Kneser graphs.
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1 Introduction

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph

of G by contracting edges. An H-minor is a minor isomorphic to H. The Hadwiger number of

G, denoted by h(G), is the maximum integer t such that G contains a Kt-minor, where Kt is

the complete graph with t vertices.

Hadwiger [8] conjectured that every graph that is not (t−1)-colourable contains a Kt-minor;

that is, h(G) ≥ χ(G) for every graph G, where χ(G) is the chromatic number of G. Hadwiger’s

conjecture is widely believed to be one of the most difficult and beautiful problems in graph

theory. It has been proved [11] for graphs with χ(G) ≤ 6, and is open for graphs with χ(G) ≥ 7.

It has also been proved for certain special classes of graphs, including powers of cycles and their

complements [9], proper circular arc graphs [2], line graphs [10], quasi-line graphs [6] and 3-arc

graphs [7]. See [13] for a survey.

A strengthening of Hadwiger’s conjecture due to Hajós asserts that every graph G with

χ(G) ≥ t contains a subdivision of Kt. Catlin [4] proved that Hajós’ conjecture fails for every

t ≥ 7. Obviously, if Hadwiger’s conjecture is false, then counterexamples must be found among

counterexamples to Hajós’ conjecture. In [12] Thomassen presented several new classes of coun-

terexamples to Hajós’ conjecture, including the complements of the Kneser graphs K(3k− 1, k)

for sufficiently large k. (The Kneser graph K(n, k) is the graph with vertices the k-subsets of an

n-set such that two vertices are adjacent if and only if the corresponding k-subsets are disjoint.)

∗Research supported by ARC Discovery Project DP120101081.
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He wrote [12] that ‘it does not seem obvious’ that these classes all satisfy Hadwiger’s conjecture.

Motivated by this comment, we prove in this paper that indeed the complement of every Kneser

graph satisfies Hadwiger’s conjecture. We notice that in the special case when k divides n this

was established in [9].

Throughout the paper we use K(n, k) (instead of K(n, k)) to denote the complement of

K(n, k). The main result of this paper is as follows.

Theorem 1. Let n and k be integers with n ≥ 2k + 1 ≥ 5. The complement K(n, k) of the

Kneser graph K(n, k) satisfies Hadwiger’s conjecture; that is,

h(K(n, k)) ≥ χ(K(n, k)).

In the case when 2k + 1 ≤ n ≤ 3k − 1, the independence number of K(n, k) is equal to 2,

and so Theorem 1 asserts that Hadwiger’s conjecture is true for this special family of graphs

with independence number 2. Moreover, in this case the gap between the Hadwiger number

and the chromatic number can be arbitrarily large when n, k vary (see the proof of Corollary

7). In general, Hadwiger’s conjecture for graphs of independence number 2 is an interesting but

challenging problem; see a related discussion in [5].

Since K(n, 2) is the line graph of Kn and Hadwiger’s conjecture is true for all line graphs

[10], the result in Theorem 1 is known when k = 2. In the rest of the paper we prove Theorem

1 for k ≥ 3.

2 Preliminaries

We always use n and k to denote positive integers with n ≥ 2k+1 ≥ 7. Denote [n] = {1, 2, . . . , n}

and call its elements labels. Denote [i, j] = {i, i + 1, . . . , j} for integers i ≤ j. Denote the set

of all k-subsets of [n] by
([n]
k

)

. We take the Kneser graph K(n, k) as defined on the vertex set
([n]
k

)

such that two members of
([n]
k

)

are adjacent if and only if they are disjoint. We will use the

following well-known result in the proof of Theorem 1.

Lemma 2. (Baranyai [1]) χ(K(n, k)) =
⌈

N/⌊n
k
⌋
⌉

, where N =
(

n
k

)

.

The complete k-uniform hypergraph Kk
n is the hypergraph with n vertices and all possible

hyperedges of size k. We take Kk
n to have vertex set [n] and hyperedge set

([n]
k

)

; in this way

each k-subset of [n] is viewed as a vertex of K(n, k) as well as a hyperedge of Kk
n. A uniform

hypergraph is called almost regular if the degrees of any two vertices differ by at most one, where

the degree of a vertex is the number of hyperedges containing the vertex. We treat a family

of hyperedges of a hypergraph as a spanning sub-hypergraph with the same vertex set as the

hypergraph under consideration.

Lemma 3. (Baranyai [1]) Let a1, a2, . . . , al be positive integers such that Σl
i=1ai =

(

n
k

)

. Then

the set of hyperedges of Kk
n can be partitioned into E1, E2, . . . , El such that for 1 ≤ j ≤ l, |Ej| = aj

and Ej is an almost regular hypergraph (with the same vertex set as Kk
n).

Denote by Ai(n, k), 1 ≤ i ≤ n − k + 1, the family of k-subsets of [n] with i as the smallest

label. That is, Ai(n, k) = {A ∈
([n]
k

)

: i ∈ A, A \ {i} ⊆ [i + 1, n]}. It is clear that |Ai(n, k)| =
(

n−i
k−1

)

, 1 ≤ i ≤ n − k + 1. We say that a label of [n] is covered by a family F ⊆
([n]
k

)

if it is in

at least one member of F .

2



Lemma 4. Let i be an integer between 1 and n− k + 1, and l an integer between 1 and
(

n−i
k−1

)

.

Let di = ⌊
(

n−i
k−1

)

/l⌋. Then Ai(n, k) can be partitioned into Al
i1(n, k),A

l
i2(n, k), . . . ,A

l
idi

(n, k) each

with size |Al
ij(n, k)| = l, together with Al

i,di+1(n, k) of size
(

n−i
k−1

)

−dil when
(

n−i
k−1

)

is not divisible

by l, such that for 1 ≤ j ≤ di the hyperedges of Al
ij(n, k) cover at least min{n− i+1, l(k−1)+1}

labels of [n].

Proof. Since Ai(n, k) = {X ∪{i} : X ∈
([i+1,n]

k−1

)

}, by applying Lemma 3 to Kk−1
n−i with vertex set

[i+1, n] and setting a1 = a2 = · · · = adi = l together with adi+1 =
(

n−i
k−1

)

−dil if l is not a divisor of
(

n−i
k−1

)

, we obtain that Ai(n, k) can be partitioned into Al
i1(n, k),A

l
i2(n, k), . . . ,A

l
idi

(n, k) together

with Al
i,di+1(n, k) if l is not a divisor of

(

n−i
k−1

)

, whose sizes are as stated in the lemma such that

Bl
ij(n, k) = {A \ {i} : A ∈ Al

ij(n, k)}, 1 ≤ j ≤ di is an almost regular hypergraph with vertex

set [i + 1, n]. Hence, if n − i > l(k − 1), then for 1 ≤ j ≤ di each vertex v ∈ [i + 1, n] has

degree 0 or 1 in Bl
ij(n, k), and so the hyperedges of Al

ij(n, k) cover l(k− 1) + 1 labels of [i, n]. If

n− i ≤ l(k− 1), then for 1 ≤ j ≤ di each vertex v ∈ [i+1, n] has positive degree in Bl
ij(n, k), for

otherwise all labels of [i + 1, n] would have degrees 0 or 1 in Bl
ij(n, k) with 0 occurring at least

once, yielding n − i > l(k − 1), a contradiction. Thus, if n − i ≤ l(k − 1), then the hyperedges

of Al
ij(n, k) cover all labels of [i, n].

Denote by C(n, k) the family of k-subsets of [n] containing n. Then |C(n, k)| =
(

n−1
k−1

)

. Similar

to the proof of Lemma 4, we can prove the following result by using Lemma 3.

Lemma 5. Let l be an integer between 2 and
(

n−1
k−1

)

. Let r = ⌊
(

n−1
k−1

)

/l⌋. Then C(n, k) can be par-

titioned into Cl
1(n, k), C

l
2(n, k), . . . , C

l
r(n, k) each with size |Cl

i(n, k)| = l, together with Cl
r+1(n, k)

of size
(

n−1
k−1

)

− rl when
(

n−1
k−1

)

is not divisible by l, such that for 1 ≤ i ≤ r the hyperedges of

Cl
i(n, k) cover at least min{n, l(k − 1) + 1} labels of [n].

A Kt-minor of a graph G can be viewed as a family of t vertex-disjoint connected subgraphs

of G such that there exists at least one edge of G between each pair of subgraphs. Each subgraph

in the family is called a branch set.

In the proof of Theorem 1 we will use the following well known identity: for integers a ≥ b ≥ 0,

a
∑

i=0

(

i

b

)

=

(

a+ 1

b+ 1

)

.

3 Proof of Theorem 1

Throughout this section we always write n = sk + t, where s ≥ 2 and 0 ≤ t ≤ k − 1.

3.1 s = 2

Lemma 6. Let n = 2k + t, where k ≥ 2 and 1 ≤ t ≤ k − 1. Then

h(K(n, k)) ≥

{

1
2

(

n
k

)

+ 1
2

(

n−1
k−1

)

− 1
2

(

n−k
k

)

− k−1
2 , 1 ≤ t ≤ k − 2

1
2

(

n
k

)

+ 1
6

(

n−1
k−1

)

− 1
2

(

n−1−k
k

)

− k−1
2 − 2

3 , t = k − 1.
(1)
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Proof. Case 1: 1 ≤ t ≤ k − 2. Let A2
i1(n, k),A

2
i2(n, k), . . . ,A

2
idi
(n, k) be as in Lemma 4 each

with size 2, where 1 ≤ i ≤ k and di = ⌊
(

n−i
k−1

)

/2⌋. Then by Lemma 4 the hyperedges of A2
ij(n, k)

(1 ≤ i ≤ k, 1 ≤ j ≤ di) cover at least min{n − i+ 1, 2k − 1} ≥ min{n − k + 1, 2k − 1} labels of

[n].

Since 1 ≤ t ≤ k − 2, we have min{n − k + 1, 2k − 1} + k ≥ n + 1 and hence for i 6= i′,

1 ≤ j ≤ di, 1 ≤ j′ ≤ di′ there is at least one edge of K(n, k) between the subgraphs induced by

A2
ij(n, k) and A2

i′j′(n, k). Similarly, for 2 ≤ i ≤ k and 1 ≤ j ≤ di, each A ∈ A1(n, k) is adjacent

to at least one member of A2
ij(n, k) in K(n, k). Since for 1 ≤ j ≤ di all hyperedges in A2

ij(n, k)

contain i, ∪di
j=1A

2
ij(n, k) induces a complete subgraph of K(n, k). Therefore, the isolated vertices

A ∈ A1(n, k) of K(n, k) and the subgraphs of K(n, k) induced by A2
ij(n, k) for 2 ≤ i ≤ k and

1 ≤ j ≤ di are branch sets of K(n, k), that is, they give rise to a complete minor of K(n, k).

The number of such branch sets is given by

|A1(n, k)|+

k
∑

i=2

di ≥

(

n− 1

k − 1

)

+
1

2

k
∑

i=2

(

n− i

k − 1

)

−
k − 1

2

=

(

n− 1

k − 1

)

+
1

2

((

n− 1

k

)

−

(

n− k

k

))

−
k − 1

2

=
1

2

(

n

k

)

+
1

2

(

n− 1

k − 1

)

−
1

2

(

n− k

k

)

−
k − 1

2
.

This proves the first bound in (1).

Case 2: t = k − 1. We now prove the second bound in (1). By what we proved in Case

1 with n replaced by n − 1, we have a complete minor of K(n − 1, k) of order no less than
1
2

(

n−1
k

)

+ 1
2

(

n−2
k−1

)

− 1
2

(

n−k−1
k

)

− k−1
2 such that all vertices involved are members of

([n−1]
k

)

. Since

K(n− 1, k) is a subgraph of K(n, k), this complete minor is also a minor of K(n, k).

Let C3
1(n, k), C

3
2 (n, k), . . . , C

3
r (n, k) be as in Lemma 5 each with size 3, where r = ⌊

(

n−1
k−1

)

/3⌋.

Then by Lemma 5 the hyperedges of C3
i (n, k) (1 ≤ i ≤ r) cover at least min{3k−1, 3(k−1)+1} =

3k − 2 labels of [n]. Since n = 3k − 1 and k ≥ 2, it follows that there is at least one edge of

K(n, k) between each C3
i (n, k) (1 ≤ i ≤ r) and each of the branch sets in the complete minor

mentioned in the previous paragraph. These branch sets and the subgraphs induced by C3
i (n, k)

(1 ≤ i ≤ r) form a larger family of branch sets of K(n, k), because ∪r
i=1C

3
i (n, k) induces a

complete subgraph of K(n, k) as all members of C(n, k) contain n. The number of branch sets

in this enlarged family is no less than

1

2

(

n− 1

k

)

+
1

2

(

n− 2

k − 1

)

−
1

2

(

n− 1− k

k

)

−
k − 1

2
+

⌊(

n− 1

k − 1

)

/

3

⌋

≥
1

2

(

n− 1

k

)

+
1

3

(

n− 1

k − 1

)

−
2

3
+

1

2

(

n− 2

k − 1

)

−
1

2

(

n− 1− k

k

)

−
k − 1

2

=
1

2

(

n

k

)

+

(

2k − 1

6k − 4
−

1

6

)(

n− 1

k − 1

)

−
1

2

(

n− 1− k

k

)

−
k − 1

2
−

2

3

≥
1

2

(

n

k

)

+
1

6

(

n− 1

k − 1

)

−
1

2

(

n− 1− k

k

)

−
k − 1

2
−

2

3
.

This proves the second bound in (1).
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Corollary 7. Let k ≥ 3 and 2k + 1 ≤ n ≤ 3k − 1. Then

h(K(n, k)) ≥

⌈(

n

k

)

/

2

⌉

= χ(K(n, k)).

Proof. Write n = 2k + t with 1 ≤ t ≤ k − 1. One can verify that
(

n−1
k−1

)

−
(

n−k
k

)

− (k − 1) ≥ 0,

and that 1
6

(

n−1
k−1

)

− 1
2

(

n−1−k
k

)

− k−1
2 − 2

3 ≥ 0 for n = 3k − 1 with k ≥ 3. Thus h(K(n, k)) ≥ 1
2

(

n
k

)

by Lemma 6, which implies h(K(n, k)) ≥
⌈(

n
k

)/

2
⌉

= χ(K(n, k)) by Lemma 2.

3.2 s = 3

Lemma 8. Let n = 3k + t, where k ≥ 3 and 0 ≤ t ≤ k − 1. Then

h(K(n, k)) ≥











































1
3

(

n
k

)

+ 2
3

(

n−1
k−1

)

− 1
3

(

n−k
k

)

− 2(k−2)
3 , 0 ≤ t ≤ k − 3

1
3

(

n
k

)

+ 1
3

(

n−1
k−1

)

− 1
3

(

n−k−1
k

)

− 2(k−2)
3 − 3

4 , t = k − 2

60, t = k − 1 = 2

505, t = k − 1 = 3

1
3

(

n
k

)

+ 1
6

(

n−1
k−1

)

+ 1
6(n−1)

(

n−1
k−1

)

− 1
3

(

n−k−2
k

)

− 2(k−2)
3 − 3

2 , t = k − 1 ≥ 4.

Proof. Case 1: 0 ≤ t ≤ k − 3. Let A3
i1(n, k),A

3
i2(n, k), . . . ,A

3
idi
(n, k) be as in Lemma 4 each

with size 3, where 1 ≤ i ≤ k and di = ⌊
(

n−i
k−1

)

/3⌋. Then by Lemma 4 the hyperedges of A3
ij(n, k)

(1 ≤ i ≤ k, 1 ≤ j ≤ di) cover at least min{n − i+ 1, 3k − 2} ≥ min{n − k + 1, 3k − 2} labels of

[n].

Since 0 ≤ t ≤ k − 3, we have min{n − k + 1, 3k − 2} + k ≥ n + 1 and hence for i 6= i′,

1 ≤ j ≤ di, 1 ≤ j′ ≤ di′ there is at least one edge of K(n, k) between the subgraphs induced by

A3
ij(n, k) and A3

i′j′(n, k). Similarly, for 2 ≤ i ≤ k and 1 ≤ j ≤ di, each A ∈ A1(n, k) is adjacent

to at least one member of A3
ij(n, k) in K(n, k). Since for 1 ≤ j ≤ di all hyperedges in A3

ij(n, k)

contain i, ∪di
j=1A

3
ij(n, k) induces a complete subgraph of K(n, k). Therefore, the isolated vertices

A ∈ A1(n, k) of K(n, k) and the subgraphs of K(n, k) induced by A3
ij(n, k) for 2 ≤ i ≤ k and

1 ≤ j ≤ di are branch sets of K(n, k) yielding a complete minor. The number of such branch

sets is given by (noting that 3 divides |At+3(n, k)| =
(3(k−1)

k−1

)

)

|A1(n, k)|+

k
∑

i=2

di =

(

n− 1

k − 1

)

+

k
∑

i=2

⌊(

n− i

k − 1

)

/3

⌋

(2)

≥

(

n− 1

k − 1

)

+
1

3

k
∑

i=2

(

n− i

k − 1

)

−
2(k − 2)

3

=

(

n− 1

k − 1

)

+
1

3

((

n− 1

k

)

−

(

n− k

k

))

−
2(k − 2)

3

=
1

3

(

n

k

)

+
2

3

(

n− 1

k − 1

)

−
1

3

(

n− k

k

)

−
2(k − 2)

3
.

Case 2: t = k − 2. By what we proved in Case 1 with n replaced by n − 1, we have a

complete minor of K(n−1, k) (and hence of K(n, k)) with order no less than 1
3

(

n−1
k

)

+ 2
3

(

n−2
k−1

)

−

1
3

(

n−k−1
k

)

− 2(k−2)
3 such that all vertices involved are members of

([n−1]
k

)

.
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Let C4
1(n, k), C

4
2 (n, k), . . . , C

4
r (n, k) be as in Lemma 5 each with size 4, where r = ⌊

(

n−1
k−1

)

/4⌋.

Then by Lemma 5 the hyperedges of C4
i (n, k) (1 ≤ i ≤ r) cover at least min{4k−2, 4(k−1)+1} =

4k − 3 labels of [n]. Since n = 4k − 2 and k ≥ 3, it follows that there is at least one edge of

K(n, k) between each C4
i (n, k) (1 ≤ i ≤ r) and each of the branch sets in the above-mentioned

complete minor. These branch sets and the subgraphs induced by C4
i (n, k) (1 ≤ i ≤ r) form

a larger family of branch sets of K(n, k), because ∪r
i=1C

4
i (n, k) induces a complete subgraph of

K(n, k) as all members of C(n, k) contain n. The number of branch sets in this enlarged family

is no less than

1

3

(

n− 1

k

)

+
2

3

(

n− 2

k − 1

)

−
1

3

(

n− k − 1

k

)

−
2(k − 2)

3
+

⌊

1

4

(

n− 1

k − 1

)⌋

≥
1

3

(

n− 1

k

)

+
1

4

(

n− 1

k − 1

)

−
3

4
+

2

3

(

n− 2

k − 1

)

−
1

3

(

n− 1− k

k

)

−
2(k − 2)

3

=
1

3

(

n

k

)

+

(

2(n− k)

3n − 3
−

1

12

)(

n− 1

k − 1

)

−
1

3

(

n− 1− k

k

)

−
2(k − 2)

3
−

3

4

≥
1

3

(

n

k

)

+
1

3

(

n− 1

k − 1

)

−
1

3

(

n− k − 1

k

)

−
2(k − 2)

3
−

3

4
.

Case 3: t = k − 1. Replacing n by n − 1 in Case 2 above, we obtain a complete minor of

K(n, k) of order no less than 1
3

(

n−1
k

)

+ 1
3

(

n−2
k−1

)

− 1
3

(

n−k−2
k

)

− 2(k−2)
3 − 3

4 such that all vertices

involved are members of
([n−1]

k

)

.

Let C4
1(n, k), C

4
2 (n, k), . . . , C

4
r (n, k) be as in Lemma 5 each with size 4, where r = ⌊

(

n−1
k−1

)

/4⌋.

Then by Lemma 5 the hyperedges of C4
i (n, k) (1 ≤ i ≤ r) cover at least min{4k−1, 4(k−1)+1} =

4k − 3 labels of [n]. Since n = 4k − 1 and k ≥ 3, it follows that there is at least one edge of

K(n, k) between each C4
i (n, k) (1 ≤ i ≤ r) and each of the branch sets in the complete minor

mentioned in the previous paragraph. These branch sets and the subgraphs induced by C4
i (n, k)

(1 ≤ i ≤ r) form a larger family of branch sets of K(n, k), because ∪r
i=1C

4
i (n, k) induces a

complete subgraph of K(n, k) as all members of C(n, k) contain n. The number of branch sets

in this enlarged family is no less than

1

3

(

n− 1

k

)

+
1

3

(

n− 2

k − 1

)

−
1

3

(

n− k − 2

k

)

−
2(k − 2)

3
−

3

4
+

⌊

1

4

(

n− 1

k − 1

)⌋

≥
1

3

(

n− 1

k

)

+
1

3

(

n− 2

k − 1

)

−
1

3

(

n− k − 2

k

)

−
2(k − 2)

3
−

3

2
+

1

4

(

n− 1

k − 1

)

=
1

3

(

n

k

)

+
1

6

(

n− 1

k − 1

)

+
1

6(n − 1)

(

n− 1

k − 1

)

−
1

3

(

n− k − 2

k

)

−
2(k − 2)

3
−

3

2
.

In the case when t = k − 1 = 2 or 3, the lower bound above can be improved. For example,

when t = k − 1 = 2, by following the argument above but improving the estimate in (2) we

obtain that K(11, 3) has a complete minor of order at least
(8
2

)

+
(⌊(7

2

)

/3
⌋

+
⌊(6

2

)

/3
⌋)

+
⌊(9

2

)

/4
⌋

+
⌊(10

2

)

/4
⌋

= 28 + 7 + 5 + 9 + 11 = 60. Similarly, when t = k − 1 = 3 we see that K(15, 4) has a

complete minor of order at least 505.

Corollary 9. Let k ≥ 3 and 3k ≤ n ≤ 4k − 1. Then

h(K(n, k)) ≥

⌈(

n

k

)

/

3

⌉

= χ(K(n, k)).
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Proof. Write n = 3k+ t, where 0 ≤ t ≤ k−1. By Lemma 2 it suffices to prove that h(K(n, k)) ≥
1
3

(

n
k

)

. By Lemma 8, when 0 ≤ t ≤ k− 3 it suffices to prove 2
(

n−1
k−1

)

≥
(

n−k
k

)

+2(k− 2). This can

be easily verified by using
(

n−k
k

)

= n−2k+1
k

(

n−k
k−1

)

= k+t+1
k

(

n−k
k−1

)

< 2
(

n−k
k−1

)

.

In the case when t = k− 2, by Lemma 8 it suffices to show 1
3

(

n−1
k−1

)

≥ 1
3

(

n−k−1
k

)

+ 2(k−2)
3 + 3

4 ,

which can be easily verified by using n = 4k − 2 ≥ 10 and 1
2

(

n−1−k
k

)

= k−1
k

(

n−1−k
k−1

)

.

If t = k − 1 = 2, then n = 4k − 1 = 11 and by Lemma 8, h(K(11, 3)) ≥ 60 > 55 = 1
3

(11
3

)

. If

t = k − 1 = 3, then n = 4k − 1 = 15 and by Lemma 8, h(K(15, 4)) ≥ 505 > 455 = 1
3

(

15
4

)

.

Finally, in the case when t = k−1 ≥ 4, by Lemma 8 it suffices to show
(

n−1
k−1

)

+ 1
(n−1)

(

n−1
k−1

)

≥

2
(

n−2−k
k

)

+ 4(k − 2) + 9, which can be verified by using n = 4k − 1 and k ≥ 5.

3.3 s ≥ 4 and k ≥ 4

In this section we set

l′ = ⌊(n− 1)/(k − 1)⌋ , l =

{

⌊(l′ + 1)/2⌋ , if (n, k) = (19, 4)

⌈(l′ + 1)/2⌉ , if (n, k) 6= (19, 4),
n′ := n− l(k − 1).

Obviously, 4 ≤ s ≤ l′ and 2 ≤ l < l′.

Lemma 10. With the notation above we have

(a) l ≤ l′+2
2 ≤ 1

2

(

s+ 3 + s−1
k−1

)

;

(b) n
2 < l(k − 1) + 1 ≤ n−1

2 + k;

(c) 1
l

(

n−n′

k−1

)

> n′.

Proof. (a) The left-hand side inequality follows from the definition of l and the right-hand side

inequality follows from l′ =
⌊

s(k−1)+s+t−1
k−1

⌋

≤ s+ 1 + s−1
k−1 .

(b) If (n, k) 6= (19, 4), then l(k−1)+1 ≥ 1
2 (l

′+1)(k−1)+1 = l′·k−1
2 + k+1

2 = ⌊n−1
k−1⌋·

k−1
2 + k+1

2 ≥
n−1−(k−2)

k−1 · k−1
2 + k+1

2 = n
2 + 1 > n

2 . If (n, k) = (19, 4), then l(k − 1) + 1 = 3 · (4 − 1) + 1 > n
2 .

On the other hand, since l ≤ ⌈ l
′+1
2 ⌉ = ⌈12(⌊

n−1
k−1 ⌋ + 1)⌉ ≤ 1

2 (⌊
n−1
k−1⌋ + 2) ≤ 1

2 · n−1
k−1 + 1, we have

l(k − 1) ≤ n−1
2 + (k − 1) no matter whether (n, k) 6= (19, 4) or not.

(c) Since l(k − 1) + 1 > n
2 and k ≥ 4, we have 1

l

(

n−n′

k−1

)

− n′ = 1
l

(

l(k−1)
k−1

)

− (n − l(k − 1)) =
(

l(k−1)−1
k−2

)

− (n− l(k − 1)) > 0.

Lemma 11. Let n = sk + t be such that s ≥ 4, k ≥ 4 and 0 ≤ t ≤ k − 1. Then

h(K(n, k)) ≥

⌈(

n

k

)

/

s

⌉

= χ(K(n, k)).

Proof. Let Al
i1(n, k),A

l
i2(n, k), . . . ,A

l
idi
(n, k) be as in Lemma 4 each with size l, where 1 ≤ i ≤ n′

and di = ⌊
(

n−i
k−1

)

/l⌋. Then by Lemmas 4 and 10(b) the hyperedges of Al
ij(n, k) (1 ≤ i ≤ n′, 1 ≤

j ≤ di) cover at least min{n− i+1, l(k− 1)+ 1} = l(k− 1)+ 1 > n
2 labels. Moreover, similar to

the proofs of Lemmas 6 and 8, for each i, ∪di
j=1A

l
ij(n, k) induces a complete subgraph of K(n, k).

It follows that the subgraphs of K(n, k) induced by Al
ij(n, k), 1 ≤ i ≤ n′, 1 ≤ j ≤ di, give rise to

7



a complete minor of K(n, k) with order
∑n′

i=1 di. It remains to prove
∑n′

i=1 di ≥
1
s

(

n
k

)

. In fact,

using Lemma 10(c), we have

n′

∑

i=1

di >
1

l

n′

∑

i=1

(

n− i

k − 1

)

− n′

=
1

l

n′
−1
∑

i=1

(

n− i

k − 1

)

+

(

1

l

(

n− n′

k − 1

)

− n′

)

>
1

l

n′
−1
∑

i=1

(

n− i

k − 1

)

=
1

l

((

n

k

)

−

(

n− n′ + 1

k

))

=
1

l
(1− f(n, k))

(

n

k

)

,

where

f(n, k) :=

(

n− n′ + 1

k

)

/

(

n

k

)

=

(

l(k − 1) + 1

k

)

/

(

n

k

)

.

In what follows we prove (1− f(n, k))s ≥ l and thus complete the proof.

Since l(k − 1) + 1 ≤ n−1
2 + k by Lemma 10(b), we have

f(n, k) =
k−1
∏

j=0

(l(k − 1) + 1)− j

n− j

≤

k−1
∏

j=0

n−1
2 + k − j

n− j

=

k−1
∏

j=0

(

1

2
+

k − j+1
2

n− j

)

. (3)

Denote the upper bound in (3) by g(n, k). Then g(n, k) ≤ g(n − 1, k) and it suffices to prove

(1− g(n, k))s ≥ l.

Case 1: k ≥ 5 and s ≥ 4. Note that (k−1)/(sk−1) ≤ 1/s and (k/2)/(sk−k+1) ≤ 1/(2s−2)

for any s ≥ 1 and k ≥ 1, and (k − j+1
2 )/(sk − j) < 1/s for any s ≥ 2, k ≥ 1 and j ≥ 0. Hence

g(n, k) ≤ g(sk, k)

=

(

1

2
+

1

s
−

1

2sk

)

·

(

1

2
+

k − 1

sk − 1

)

·

k−2
∏

j=2

(

1

2
+

k − j+1
2

n− j

)

·

(

1

2
+

k
2

sk − k + 1

)

<

(

1

2
+

1

s

)(

1

2
+

1

s

)(

1

2
+

1

s

)k−3(1

2
+

1

2s − 2

)

=

(

1

2
+

1

s

)k−1(1

2
+

1

2s− 2

)

≤











0.211, if k ≥ 5 and s = 4

0.151, if k ≥ 5 and s = 5

0.119, if k ≥ 5 and s ≥ 6.

(4)
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Since k ≥ 5 and l is an integer, by Lemma 10(a) we get l ≤ s − 1 if s = 4 or 5. Thus, when

k ≥ 5 and 4 ≤ s ≤ 5, by (4) we have (1− g(n, k))s ≥ s− 1 ≥ l as required. Suppose that k ≥ 5

and s ≥ 6. Then (1 − g(n, k))s > (1 − 0.119)s = 0.881s by (4). Combining this with Lemma

10(a), it suffices to show 0.881s ≥ 1
2

(

s+ 3 + s−1
k−1

)

, that is, 0.762sk−1.762s−3k+4 ≥ 0, which

is satisfied as k ≥ 5 and s ≥ 6.

Case 2: k = 4 and s ≥ 4. We have

g(n, 4) ≤ g(4s, 4)

=

3
∏

j=0

(

1

2
+

4− j+1
2

4s− j

)

=
4s + 7

8s
·
4s+ 5

8s− 2
·
4s+ 3

8s− 4
·
4s+ 1

8s− 6

≤



















0.224, if s = 4

0.176, if s = 5

0.149, if s = 6

0.133, if s ≥ 7.

(5)

It can be verified that for 4 ≤ s ≤ 6 we have l ≤ s − 1 (noting that l = ⌊(l′ + 1)/2⌋ when

(n, k) = (19, 4)) and hence (1 − g(n, 4))s ≥ s − 1 ≥ l by (5) as required. If s ≥ 7, then by (5),

(1 − g(n, 4))s ≥ 0.867s. It can be verified that 0.867s ≥ 1
2 (s + 3 + s−1

3 ). This together with

Lemma 10(a) implies (1− g(n, 4))s ≥ l.

3.4 s ≥ 4 and k = 3

Lemma 12. Let n = 3s + t be such that s ≥ 4 and 0 ≤ t ≤ 2. If n 6= 14, then

h(K(n, 3)) ≥

⌈(

n

3

)

/

s

⌉

= χ(K(n, 3)).

Proof. Write n := 4s′ + t′, where 0 ≤ t′ ≤ 3. Set

l =

{

s′, if t′ = 0 or 1
s′ + 1, if t′ = 2 or 3,

n′ = n− 2l.

Let Al
i1(n, 3),A

l
i2(n, 3), . . . ,A

l
idi

(n, 3) be as in Lemma 4 each with size l, where 1 ≤ i ≤ n′ and

di = ⌊
(

n−i
2

)

/l⌋. Then by Lemma 4 hyperedges of Al
ij(n, 3) (1 ≤ i ≤ n′, 1 ≤ j ≤ di) cover at

least min{n − i + 1, 2l + 1} = 2l + 1 > n
2 labels. Similar to the proof of Lemma 11, one can

verify that the subgraphs of K(n, 3) induced by Al
ij(n, 3), 1 ≤ i ≤ n′, 1 ≤ j ≤ di, give rise to

a complete minor of K(n, 3) of order
∑n′

i=1 di. It remains to prove
∑n′

i=1 di ≥
1
s

(

n
3

)

. Denoting

f(n) =
∑n′

i=1 di, we have

f(n) ≥
1

l

n′

∑

i=1

(

n− i

2

)

− n′

=
1

l

((

n

3

)

−

(

n− n′

3

))

− n′

=
1

l

((

n

3

)

−

(

2l

3

))

− (n− 2l).
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Denote this lower bound by g(n). One can verify that n−1
2 ≤ 2l ≤ n

2 + 1. Hence
(

n
3

)

−
(

2l
3

)

≥ 1
6

(

n(n− 1)(n − 2)− (n2 + 1)(n2 )(
n
2 − 1)

)

= 1
48n(7n

2 − 24n + 20) > 0. Since l ≤ n+2
4

and n−2
3 ≤ s ≤ n

3 , we have g(n) − 1
s

(

n
3

)

≥ 4
n+2 · 1

48n(7n
2 − 24n + 20) − n + n−1

2 − 3
n−2

(

n
3

)

=

n
12(n+2)(7n

2−24n+20)− n2+1
2 = 1

12(n+2)(n
3−36n2+14n−12). The function x3−36x2+14x−12

is monotonically increasing when x ≥ 24, and it takes positive values when x ≥ 36. Therefore,

f(n) ≥ g(n) ≥ 1
s

(

n
3

)

for n ≥ 36 as required.

In Table 1 we give the values of χ(n) = ⌈
(

n
3

)

/s⌉ and at least one of f(n) and g(n) for

12 ≤ n ≤ 35 with n /∈ {14, 18, 22, 26}. Since f(n) ≥ g(n), we see from this table that for

12 ≤ n ≤ 35 but n 6= 14, either f(n) ≥ χ(n) as required or f(n − 1) ≥ χ(n). The latter case

occurs when n ∈ {14, 18, 22, 26}, and in this case the subgraph K(n − 1, 3) of K(n, 3) contains

a complete minor of order at least χ(n).

Table 1: Values of f(n), g(n) and χ(n) for 12 ≤ n ≤ 35

n 12 13 14 15 16 17 18 19 20 21 22 23

l 3 3 4 4 4 4 5 5 5 5 6 6
f(n) 168 255
g(n) 60 81 92 118 147 194 231
χ(n) 55 72 91 91 112 136 136 162 190 190 220 253

n 24 25 26 27 28 29 30 31 32 33 34 35

l 6 6 7 7 7 7 8 8 8 8 9 9
f(n)
g(n) 288 333 352 402 455 423 476 534 595 558 619
χ(n) 253 288 325 325 364 406 406 450 496 496 544 595

Lemma 13. h(K(14, 3)) ≥ χ(K(14, 3)).

Proof. Since
([14]

3

)

\C(14, 3) is simply
([13]

3

)

, by Table 1 and the proof of Lemma 12 we know that
(

[14]
3

)

\ C(14, 3) contains a complete minor of order at least f(13) = 88 such that the hyperedges

(of K3
14) in each of its branch sets cover at least ⌈13/2⌉ = 7 labels of [13].

By Lemma 5, C(14, 3) can be partitioned into ⌈
(13
2

)

/4⌉ = 20 hypergraphs C4
1(14, 3), C

4
2(14, 3),

. . ., C4
20(14, 3) with |C4

i (14, 3)| = 4 (1 ≤ i ≤ 19) and |C4
20(14, 3)| = 2 such that the hyperedges of

C4
i (14, 3) (1 ≤ i ≤ 19) cover min{14, 4 · (3− 1) + 1} = 9 labels of [14]. Thus there is at least one

edge between C4
i (14, 3) (1 ≤ i ≤ 19) and each branch set of the complete minor in the previous

paragraph. On the other hand, each C4
i (14, 3) (1 ≤ i ≤ 19) induces a complete subgraph of

K(14, 3) since all its members contain label 14. Therefore, K(14, 3) has a complete minor of

order at least 88 + 19 > 91 = χ(K(14, 3)).

Theorem 1 follows from Corollaries 7 and 9 and Lemmas 11, 12 and 13.
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