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Abstract
A drawing of a graph is pseudolinear if there is a pseudoline arrangement such that

each pseudoline contains exactly one edge of the drawing. The pseudolinear crossing
number c̃r(G) of a graph G is the minimum number of pairwise crossings of edges in
a pseudolinear drawing of G. We establish several facts on the pseudolinear crossing
number, including its computational complexity and its relationship to the usual cross-
ing number and to the rectilinear crossing number. This investigation was motivated
by open questions and issues raised by Marcus Schaefer in his comprehensive survey
of the many variants of the crossing number of a graph.
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rectilinear crossing number
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1 Introduction
In his comprehensive survey of the many variants of the crossing number of a graph, Schae-
fer [16] brought up several issues regarding the pseudolinear crossing number, including its
computational complexity and its relationship to other variants of crossing number. Our
aim in this paper is to settle some of these issues.

A pseudoline is a simple closed curve in the projective plane P2 which does not disconnect
P2. A pseudoline arrangement is a set of pseudolines that pairwise intersect (necessarily,
cross) each other exactly once.

Let D be a drawing of a graph G in the plane, and let C be a disk containing D. By
identifying antipodal points on the boundary of C and discarding R2 \ C we may regard D
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as lying in P2. If each edge can be extended to a pseudoline so that the result is a pseudoline
arrangement, then D is a pseudolinear drawing. The pseudolinear crossing number c̃r(G) of
G is the minimum number of pairwise crossings of edges in a pseudolinear drawing of G.

We recall that the crossing number cr(G) of a graph G is the minimum number of pairwise
crossings of edges in a drawing of G in the plane. A drawing in which each edge is a straight
line segment is a rectilinear drawing. The rectilinear crossing number cr(G) of G is the
minimum number of pairwise crossings of edges in a rectilinear drawing of G. A rectilinear
drawing is clearly pseudolinear. Since pseudolinear and rectilinear drawings are restricted
classes of drawings, it follows that for any graph G we have cr(G) ≤ c̃r(G) ≤ cr(G).

The decision problem CrossingNumber, which takes as input a graph G and an integer
k, and asks if cr(G) ≤ k, is NP-complete [8]. It is not difficult to prove that Rectilin-
earCrossingNumber (the corresponding variant for cr(G)) is NP-hard (cf. Lemma 5 be-
low). Bienstock’s reduction from Stretchability to RectilinearCrossingNumber [1]
implies that computing the rectilinear crossing number is ∃R-complete (see Section 4.4).

In [16], Schaefer listed the complexity of PseudolinearCrossingNumber (the corre-
sponding variant for c̃r(G)) as an open problem. Here we settle this question as follows.

Theorem 1. PseudolinearCrossingNumber is NP-complete.

Bienstock and Dean [2] showed that for any integers k, m with m ≥ k ≥ 4, there is a
graph G with cr(G) = k and cr(G) ≥ m. In [16], Schaefer wrote: “Bienstock and Dean’s
graphs Gm with cr(Gm) = 4 and cr(Gm) = m should give c̃r(Gm) = cr(Gm), since the proof
of cr(Gm) ≥ m seems to work with pseudolinear drawings.” As we set to work out the details,
we realized that the Bienstock and Dean proof does not carry over to the pseudolinear case
in a totally straightforward way: an obstacle to extend a set of segments to an arrangement
of pseudolines needs to be found. As it is often the case when settling a stronger result,
our proof of the following statement turned out to be simpler than the proof in [2]. For
this reason, and because this also implies the Bienstock and Dean result, it seems worth to
include here the following statement and its proof.

Theorem 2. For any integers k, m with m ≥ k ≥ 4, there is a graph G with cr(G) = k and
c̃r(G) ≥ m.

As Schaefer observes, this also separates the monotone crossing number mon-cr from the
pseudolinear crossing number, since for any graph G we have mon-cr(G) ≤

(
2cr(G)

2

)
[12].

Although pseudoline arrangements are defined in P2, we can alternatively think of them
as lying in the Euclidean plane R2: starting with the P2 representation, we delete the disk
boundary and extend infinitely (to rays) the segments that used to intersect the disk bound-
ary. An arrangement of pseudolines may then be naturally regarded as a cell complex cover-
ing the plane. Two arrangements are isomorphic if there is a one-to-one adjacency-preserving
correspondence between the objects in their associated cell complexes. Ringel [14] was the
first to exhibit a pseudoline arrangement (in R2) that is non-stretchable, that is, not isomor-
phic to any arrangement in which every pseudoline is a straight line.
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Schaefer wrote in [16]: “It should be possible to take a non-stretchable pseudoline arrange-
ment A and use Bienstock’s machinery [1] to build a graph GA for which c̃r(GA) < cr(GA).”
Using Schaefer’s roadmap, we have constructed a family of graphs to prove the following.

Theorem 3. For each integer m ≥ 1 there exists a graph G such that c̃r(G) = 36(1 + 4m)
and cr(G) ≥ 36(1 + 4m) + m.

Yet another reason that makes worth to include in its full detail the construction proving
this last result, is that we use it to prove the following.

Theorem 4. The decision problem “Is c̃r(G) = cr(G)”? is ∃R-complete.

Theorems 1 and 2 are proved in Sections 2 and 3, respectively. Theorems 3 and 4 are
proved in Section 4. Section 5 contains some concluding remarks and open questions.

1.1 Observations and terminology for the rest of the paper
Unless otherwise stated, a drawing is understood to be a drawing in R2. All drawings of
a graph G under consideration either minimize cr(G), or are pseudolinear or rectilinear
drawings of G. All such drawings are good, that is, no two edges cross each other more
than once, no adjacent edges cross each other, and no edge crosses itself. Thus we implicitly
assume that all drawings under consideration are good. A drawing D (in any surface Σ)
may be regarded as a one-dimensional subset of Σ. Taking this viewpoint, a region of D is
a connected component of Σ \ D. Thus, in the particular case in which D is an embedding,
the regions of D are simply the faces. Finally, two drawings D and D′ of the same graph in
a surface Σ are isomorphic if there is a self-homeomorphism of Σ that takes D to D′.

2 Complexity of PseudolinearCrossingNumber:
proof of Theorem 1

We prove NP-hardness in Lemma 5 and membership in NP in Lemma 6.
The fact that PseudolinearCrossingNumber is NP-hard is not difficult to prove, and

although we could not find any reference in the literature, perhaps it could be considered a
folklore result. It seems worth to include this proof, for completeness.

Lemma 5. PseudolinearCrossingNumber, RectilinearCrossingNumber, and Mo-
notoneCrossingNumber are NP-hard.

Proof. We claim that for any graph G there is a graph G′ obtained by subdividing each edge
of G at most 2|E(G)| times, and such that cr(G′) = cr(G). We note that the Rectilinear-
CrossingNumber part of the lemma follows at once from this claim. The other statements
also follow, since cr(G) ≤ mon-cr(G) ≤ c̃r(G) ≤ cr(G) hold for any graph G.

We now prove the claim. Let D be a crossing-minimal drawing of G. A segment of D is
an arc of D whose endpoints are either two vertices, or one vertex and one crossing, or two
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crossings, and is minimal with respect to this property. (Put differently, if we planarize D
by converting crossings into degree 4 vertices, the segments correspond to the edges of this
plane graph). By Fáry’s theorem [7], every planar graph has a plane rectilinear drawing.
Therefore there is a drawing D′ of G, with the same number of crossings as D, in which
every segment is straight. Now for each edge e of G, let ×(e) denote the number of crossings
of e. It is easy to see that if we subdivide each edge e a total of 2 · ×(e) times, then the
resulting graph G′ has a rectilinear drawing with cr(G) crossings: indeed, it suffices to place
two pairs of new (subdivision) vertices in a small neighborhood of each crossing of D′, one
pair on each of the crossing edges, and join each pair with a straight segment.

We now settle membership in NP. A pseudolinear model graph is a plane graph H with
two disjoint distinguished subsets of vertices T = {t1, t2, . . . , t2m} (where each terminal ti

has degree 1) and V , such that the following hold:

1. The boundary walk (say, in clockwise order) along the infinite face has the vertices
t1, t2, . . . , t2m (but not necessarily only these vertices) in this cyclic order.

2. There is a collection of paths P = {P1, P2, . . . , Pm} in H with the following properties:

(a) H = P1 ∪ P2 ∪ · · · ∪ Pm.
(b) The ends of Pi are ti and ti+m, for i = 1, 2, . . . , m.
(c) Each Pi contains exactly two vertices in V .
(d) Any two paths in P intersect each other in exactly one vertex, and if they intersect

in a vertex not in V , then this vertex has degree 4.

For each i = 1, 2, . . . , m, let ui, vi be the (only two) vertices in V contained in Pi. Then
the interior vertices of the subpath uiPivi (if any) are special vertices of H. This pseudolinear
model H induces a graph G with vertex set V , where u, v ∈ V are adjacent in G if and only
if there is a path in P that contains u and v.

Lemma 6. PseudolinearCrossingNumber is in NP.

Proof. The key claim is that a graph G = (V, E) has a pseudolinear drawing with exactly k
crossings if and only if G is induced by a pseudolinear model with exactly k special vertices.

For the “only if” part, suppose that G has a pseudolinear drawing with k crossings.
Extend the edges of G so that the resulting pseudolines form an arrangement; this can clearly
be done so that no more than two pseudolines intersect at a given point, unless this point
is in V . By transforming the edge crossings to (degree 4, special) vertices, and transforming
into vertices the intersections of the pseudolines with the disk boundary, the result is a
pseudolinear model plane graph H with exactly k special vertices. For the “if” part, suppose
that G is induced by a pseudolinear model graph with k special vertices. Consider then the
drawing of G obtained by removing all vertices that are neither in V nor special, and then
transforming each special vertex into a crossing. The result is a pseudolinear drawing of G
with k crossings.
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Thus the existence of a pseudolinear model graph H with k special vertices that induces
G provides a certificate that the pseudolinear crossing number of G is at most k. Since the
size of H is clearly polinomially bounded on the size of G, the lemma follows.

3 Separating c̃r from cr: proof of Theorem 2
We start by finding a substructure that guarantees that a drawing is not pseudolinear. A
clam is a drawing of two disjoint 2-paths P and Q, with exactly two faces in which the
infinite face is incident with the internal vertices of P and Q, and with no other vertices. It
is easy to see that, up to isomorphism, a clam drawing looks as the one depicted in Figure 1.

e1

e2

e3

e4

u v

x

y

w

z t

s

Figure 1: A clam.

Proposition 7 (An obstacle to pseudolinearity). Let P, Q be disjoint 2-paths of a graph G.
If D is a drawing of G whose restriction to P ∪Q is a clam, then D is not pseudolinear.

Proof. It clearly suffices to show that the restriction D′ of D to P ∪ Q is not pseudolinear.
Without any loss of generality we may assume that D′ is as shown in Figure 1.

By way of contradiction, suppose that D′ is pseudolinear. Thus there exists a disc C that
contains D′, such that in the projective plane that results by identifying antipodal points of
C, there is a pseudoline arrangement {`1, `2, `3, `4} where `i contains ei for i = 1, 2, 3, 4. Since
s is not incident with the infinite region ofD′, it follows that `1 must intersect the boundary of
the infinite region at some point in e4 between v and y (if the intersection occurred elsewhere,
`1 would intersect another pseudoline more than once). Totally analogous arguments show
that `2 intersects e3 at some point between v and x; `3 intersects e2 at some point between
u and y; and `4 intersects e1 at some point between u and x. Together with u, x, v, and
y, this gives 8 intersections between the 4 pseudolines, contradicting that any pseudoline
arrangement with 4 pseudolines has

(
4
2

)
= 6 intersection points.

Proof of Theorem 2. Consider the graph G drawn in Figure 2. The edges drawn as thick,
continuous segments are heavy. The other edges (the dotted ones) are light. We regard the
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drawing D of G in Figure 2 as a drawing in the sphere S2. We say that a drawing of G (in
either S2 or R2) is clean if no heavy edge is crossed.

Claim. No clean drawing of G in R2 is pseudolinear.

Proof. Up to isomorphism, there are exactly two clean drawings of G in S2, which correspond
to the two different embeddings of the subgraph of G induced by the heavy edges. One of
these clean drawings is D, and the other one, which we call D′, is obtained from D simply by
a Whitney switching on {a, b}; thus D′ can be obtained from D simply by the relabellings
v1↔v2, v3↔v4, v5↔v6, f1↔f3, and f2↔f4.

a

b

u2

u4

f1

f2

e1

e2 u5 u6

u3

u1

f4

e3

e4

f3

v5

v2
v1

v4 v3

v6

Figure 2: The spherical drawing D.

Let DR2 be a clean drawing of G in R2. Clearly DR2 can be obtained from a clean drawing
of G in S2 (that is, either D or D′) by removing a point from a region (yielding the infinite
region of DR2), which we call the special region (of D or D′). We suppose that DR2 is obtained
from D; a totally analogous argument is applied if DR2 is obtained from D′.

We refer to the drawing D in Figure 2. If the special region is outside the darkly shaded
area, then the restriction of DR2 to the paths u5au6 and u1bu2 is a clam; in this case DR2 is
not pseudolinear, by Proposition 7. If the special region is outside the lightly shaded area,
then the restriction of DR2 to the paths v5av6 and v1bv2 is a clam; thus also in this case DR2

is not pseudolinear, by Proposition 7. We conclude that if DR2 were pseudolinear, then the
special region would have to be contained in both shaded areas. Since obviously no region
satisfies this, we conclude that DR2 is not pseudolinear. �

Let G′ be obtained by substituting each heavy edge by m pairwise internally disjoint
2-paths, and the edge e1 by k − 3 pairwise internally disjoint 2-paths P1, P2, . . . , Pk−3. By
the Claim, in every pseudolinear drawing of G some heavy edge is crossed. It follows that in
every pseudolinear drawing of G′ at least m edges are crossed, and so c̃r(G′) ≥ m. Since in
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a drawing of G isomorphic to neither D nor D′ some heavy edge is crossed, it follows that
a drawing of G′ with fewer than m crossings has e3 crossing e4, f3 crossing f4, f1 crossing
f2, and e2 crossing one edge of each path Pi, for i = 1, 2, . . . , k − 3. Thus such a drawing
has at least 1 + 1 + 1 + (k − 3) = k crossings, and so cr(G′) ≥ k. Since a drawing of G′

with exactly k crossings is obtained from D by drawing all the paths Pi very close to e1, we
obtain cr(G′) ≤ k. Thus cr(G′) = k.

4 Separating cr from c̃r: proof of Theorems 3 and 4
To prove Theorems 3 and 4 we proceed as suggested by Schaefer in [16]. We make use of
weighted graphs, whose definition and main properties are reviewed in Section 4.1. We start
with a pseudoline arrangement A, and construct from A a parameterized (by an integer
m ≥ 1) family of weighted graphs (GA, wm); this is done in Section 4.2. We then determine
c̃r(GA, wm), and bound by below cr(GA, wm) (Section 4.3). The key property (cf. Propo-
sitions 9 and 10) is that cr(GA, wm) is strictly greater than c̃r(GA, wm) if and only if A is
non-stretchable. Theorems 3 and 4 then follow easily (Section 4.4).

4.1 Weighted graphs and crossing numbers
We make essential use of weighted graphs, a simple device exploited in several crossing
number constructions (see for instance [5, 6]).

We recall that a weighted graph is a pair (G, w), where G is a graph and w is a weight
function w : E(G) → N. A drawing of (G, w) is simply any drawing of G, but the caveat
is that in a drawing D of (G, w), a crossing between edges e, f contributes w(e)w(f) to the
weighted crossing number cr(D) of D. The weighted crossing number cr(G, w) of (G, w) is
then the minimum cr(D) over all drawings D of (G, w). (The weighted pseudolinear and
rectilinear crossing numbers are analogously defined). Weighted graphs are a useful artifice
for many crossing number related constructions, via the idea that (G, w) can be turned
into an ordinary, simple graph G′ by replacing each edge e with a collection P(e) of w(e)
internally disjoint 2-paths with the same endpoints as e. We say that G′ is the simple graph
associated to the weighted graph (G, w).

Proposition 8. Let (G, w) be a simple weighted graph, and let G′ be its associated simple
graph. Then:

(a) cr(G, w) = cr(G′).

(b) c̃r(G, w) = c̃r(G′).

(c) cr(G, w) = cr(G′).

Proof. Take a drawing D in which cr(G, w) is attained, and then, for each edge e of G, draw
the w(e) 2-paths in P(e) sufficiently close to e so that the following holds for all edges e′, e′′:
a 2-path of P(e′) crosses a 2-path of P(e′′) if and only if e′ crosses e′′ in D. This shows
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that cr(G′) ≤ cr(G, w). For the reverse inequality, note that it is always possible to have a
crossing-minimal drawing of G′ where the 2-paths of P(e) can be drawn sufficiently close to
each other, so that a 2-path in P(e) crosses a 2-path in P(f) if and only if every 2-path of
P(e) crosses every 2-path of P(f). It follows that we can regard the collection of 2-paths
P(e) as a weighted edge. Thus cr(G, w) ≤ cr(G′), and so (a) follows. For (b), we only need
the additional observation that each collection P(e) can be drawn so that each edge in P(e)
can be extended to a pseudoline, so that the final result is a pseudoline arrangement (see
Figure 3). The proof of (c) is totally analogous.

e

Figure 3: Above we show an edge e of weight 2 in a pseudolinear drawing of a weighted graph (G, w); the
extension of e to a pseudoline is also shown. Below we illustrate how to replace e by P(e) (two internally
disjoint 2-paths), and how to extend each of these 4 edges to a pseudoline, so that the result is a pseudoline
arrangement. By doing a similar operation on each edge of (G, w), we obtain a pseudolinear drawing of a
simple graph G′ such that c̃r(G′) = c̃r(G, w).

4.2 Construction of the graphs (GA, wm)
For each integer m ≥ 1, we describe a construction of a weighted graph (GA, wm), based on
an (any) arrangement A of pseudolines, presented as a wiring diagram (every arrangement
of pseudolines can be so represented, as shown by Goodman [9]). Let s := |A|, and let
[s] = {1, 2, . . . , s}. Suppose that the pseudolines of A are labelled `1, `2, . . . , `s, according to
the order in which they intersect a vertical line in the leftmost part of the wiring diagram (see
Figure 4 for the case in which A is Ringel’s non-stretchable arrangement of 9 pseudolines).

`5

`4

`3

`2

`1

`6
`7
`8
`9

`9
`8
`7

`5
`4
`3
`2
`1

`6

Figure 4: Ringel’s non-stretchable pseudoline arrangement R, as a wiring diagram.

For each i ∈ [s] add two copies of `i, drawn very close to `i: a pseudoline `′i slightly
above `i, and another pseudoline `′′i slightly below `i. Then transform this into (a drawing
of) a graph by converting each of the 3s left-hand side endpoints and each of the 3s right
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hand-side endpoints into (degree 1) vertices, and by transforming into a degree 4 vertex each
crossing of an `′i with an `′′j . (The remaining 5

(
s
2

)
crossings are not converted into vertices).

Before continuing with the construction, we label some of the current objects. For each
i ∈ [s]: (i) label ai (respectively, bi) the degree 1 vertex on the left (respectively, right)
hand side incident with `i; (ii) label ui (respectively, yi) the degree 1 vertex on the left
(respectively, right) hand side incident with `′i; and (iii) label vi (respectively, zi) the degree
1 vertex on the left (respectively, right) hand side incident with `′′i . Thus for each i ∈ [s],
there is an edge ei joining ai to bi (`i is the arc representing ei); there is a path Pi joining ui

to yi (`′i is the drawing of this path); and there is a path Qi joining vi to zi (`′′i is the drawing
of this path).

Now add the necessary edges to obtain a cycle C = v1a1u1v2a2 u2 · · · vsasusy1b1z1y2b2z2 · · ·
· · · ysbszs. Finally, add two vertices a, b, and make a adjacent to ai, ui, and vi for every i ∈ [s],
and make b adjacent to bi, yi, and zi for every i ∈ [s]. Let GA denote the constructed graph.
To help comprehension, we color black the edges that are either in C or incident with a or b;
color blue the edges in ∪s

i=1Pi ∪Qi; and red the edges e1, e2, . . . , es. In Figure 5 we illustrate
how to turn an arrangement (wiring diagram) A of 2 pseudolines into the graph GA.

Now for each positive integer m, we turn GA into a weighted graph (GA, wm) as follows.
Assign to each black edge a weight of k :=

(
s
2

)
(1 + 4m) + 2m; assign to each blue edge a

weight of m; and assign to each red edge a weight of 1.

z1

y1

z2

b1

b2

y2

u2

a2

v2

a1

a b

`1

`2 `1

`2

u1

v1

Figure 5: Let A be the arrangement with two pseudolines `1, `2 given above as a wiring
diagram. Below we draw the graph GA. The red edges e1 and e2 are drawn as thin, continuous
arcs; the blue edges are dotted; and the black edges are thick.
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4.3 Determining c̃r(GA, wm) and bounding cr(GA, wm)
First we determine c̃r(GA, wm), and then we find a lower bound for cr(GA, wm).

Proposition 9. c̃r(GA, wm) =
(

s
2

)
(1 + 4m). If A is stretchable, then cr(GA, wm) also equals(

s
2

)
(1 + 4m).

Proof. It is not difficult to verify that the drawing of (GA, wm) described in the construction
is pseudolinear. We claim that this drawing has exactly

(
s
2

)
(1 + 4m) crossings. Indeed, for

all i, j ∈ [s], i 6= j, edges ei and ej cross each other, yielding
(

s
2

)
crossings. Also, each red

edge crosses 2(s − 1) blue edges (for all i, j ∈ [s], i 6= j, the edge ei crosses both Pj and
Qj). Since each blue-red crossing contributes m to the crossing number, we have in total(

s
2

)
+ s · 2(s− 1) ·m =

(
s
2

)
(1 + 4m) crossings. Thus c̃r(GA, wm) ≤

(
s
2

)
(1 + 4m).

Now let D be a (not necessarily pseudolinear) crossing-minimal drawing of (GA, wm). We
note that since each black edge has weight greater than

(
s
2

)
(1 + 4m), no black edge can be

crossed in D. We may then assume without loss of generality that in D the paths Pi and
Qi, and the edges ei, are all drawn inside the disk bounded by C.

Now for i, j ∈ [s], i 6= j, (i) the endpoints of ei and ej are alternating along C; (ii)
the endpoints of ei and Pj are alternating along C; and (iii) the endpoints of ei and Qj

are alternating along C. Thus for all such i, j, ei crosses ej, and ei crosses Pj and also
Qj. Recalling again that blue-red crossings contribute m to the crossing number, it follows
that D has at least

(
s
2

)
+ s · (s − 1) · 2m =

(
s
2

)
(1 + 4m) crossings. Thus cr(GA, wm) (and,

consequently, c̃r(GA, wm)) is at least
(

s
2

)
(1 + 4m).

For the rectilinear crossing number part it suffices to prove that if A is stretchable, then
there is a rectilinear drawing of (GA, wm) with exactly

(
s
2

)
(1 + 4m) crossings. Suppose then

that A is stretchable. It is an easy exercise to show that then e1, e2, . . . , es can be drawn as
straight lines in the plane so that each of them has one endpoint on the line x = 0 and the
other endpoint on the line x = 1, so that the result is an arrangement isomorphic to A. It is
then straightforward to add Pi, Qi, C, a, b, and the edges incident with a and b, so that every
edge is a straight segment.

Proposition 10. If A is non-stretchable, then cr(GA, wm) ≥
(

s
2

)
(1 + 4m) + m.

Proof. Suppose that A is non-stretchable. Let D be a crossing-minimal rectilinear drawing
of (GA, wm). As in the proof of Proposition 9, no black edge may be crossed in D, and we
may assume without any loss of generality that all the paths Pi, Qi, and all the edges ei

are drawn inside the disk bounded by C. For each i ∈ [s], the path Pi cannot cross Qi, as
otherwise this would add at least m2 crossings to the

(
s
2

)
(1 + 4m) crossings already counted

in the proof of Proosition 9. On the other hand, if for every i ∈ [s] the edge ei crosses
neither Pi or Qi, then the drawing induced by ∪s

i=1Pi forms an arrangement isomorphic to
A; the same conclusion holds for ∪s

i=1Qi. If no edge ei crosses Pi ∪ Qi, then every ei must
be drawn inside the strip bounded by Pi ∪ Qi, and so it follows that the drawings of the
edges e1, e2, . . . , es would form a straight line arrangement isomorphic to A, contradicting
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its nonstretchability. We conclude that for some i ∈ [s], the edge ei must cross either Pi or
Qi. In either case, the crossing contributes m to cr(GA, wm), in addition to the

(
s
2

)
(1 + 4m)

crossings already counted in the proof of Proposition 9.

4.4 Proofs of Theorems 3 and 4
Proof of Theorem 3. Let R denote Ringel’s non-stretchable arrangement with 9 pseudolines.
Theorem 3 follows at once using (GR, wm), by combining Proposition 8 (b) and (c) with
Propositions 9 and 10.

Let us denote PCN ?=RCN the decision problem of determining if the pseudolinear cross-
ing number and the rectilinear crossing number of an input graph are the same. Shor [17]
proved that Stretchability (the problem of deciding if a pseudoline arrangement is
stretchable) is NP-complete. By Mnëv’s universality theorem [11], it follows that Stretch-
ability is ∃R-complete (cf. [15]). We make a reduction to this problem to prove Theorem 4.

Proof of Theorem 4. We prove that Stretchability ∝ PCN ?=RCN. Let A be a pseudo-
line arrangement, and consider the weighted graph (GA, w1), which is clearly constructed
from A in polynomial time. Thus it suffices to prove that the answer to “Is A stretchable?”
is yes if and only if the answer to “Is c̃r(GA, w1) = cr(GA, w1)?” is yes. But this follows
immediately from Propositions 9 and 10.

5 Concluding Remarks
In Theorem 3 we proved that there exist arbitrarily large graphs G such that (roughly)
cr(G) ≥ (145/144)c̃r(G). At the end of his survey [16], Schaefer asked if there is a function f
such that, for every graph G, cr(G) ≤ f(c̃r(G)). The existence (or not) of such an f remains
an important open question.

As Bienstock and Dean [2], we make essential use of weighted graphs. Equivalently,
we allow the existence of collections of internally disjoint 2-paths with common endpoints;
as a result we get simple (ordinary, unweighted) graphs, but these graphs are clearly not
3-connected. Are these artifices really necessary to construct graphs with fixed crossing num-
ber and arbitrarily large rectilinear (or pseudolinar) crossing number? After unsuccessfully
investigating this issue, we are willing to put forward the following.

Conjecture 11. There is a function f such that for every 3-connected graph G, cr(G) ≤
f(cr(G)).
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