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ON STRING GRAPH LIMITS AND THE STRUCTURE OF A

TYPICAL STRING GRAPH

SVANTE JANSON AND ANDREW J. UZZELL

Abstract. We study limits of convergent sequences of string graphs, that is,
graphs with an intersection representation consisting of curves in the plane.
We use these results to study the limiting behavior of a sequence of random
string graphs. We also prove similar results for several related graph classes.

1. Introduction

Given a graph property P , it is interesting to study the structure of a typical
graph that satisfies P . A natural definition of a “typical” graph is a graph cho-
sen uniformly at random from all graphs of a given order that satisfy P . One
can choose a sequence of random graphs in this way and then study its limiting
behavior. The theory of graph limits concerns the asymptotic behavior of certain
sequences of graphs, and therefore provides a natural framework for studying the
structure of a typical graph with a given property. In this paper, we will study
the structure of string graphs. We will study graph limits of string graphs and of
related graph classes and draw some conclusions about random string graphs and
random elements of these other classes.

A planar curve is the image of a continuous function f : [0, 1] → R2. The points
f(0) and f(1) are called the endpoints of the curve. A string representation of a
graph G is a collection of planar curves {Av : v ∈ V (G)} such that Au ∩ Av 6= ∅ if
and only if uv ∈ E(G). We say that a graph G is a string graph if it has a string
representation and we let SG denote the family of string graphs. String graphs have
been studied by many authors, see e.g. [27, 9, 19, 25] and the further references
given there.

It is intuitively clear that a graph has a string representation if and only if it has
an intersection representation consisting of arcwise-connected sets. Alternatively,
we may assume that the curves in the definition are homeomorphic images of [0, 1],
and there are several other variations of the definition that give the same class of
graphs. Although such equivalences are well-known, we have not found a detailed
proof of these equivalences in the literature, so we give a proof in Appendix A.

As mentioned above, we will also study several special classes of string graphs.
First, an outer-string representation of a graph G is a string representation such
that all of the curves Av lie in a disk and such that each Av has an endpoint on
the boundary of the disk. We say that a graph G is an outer-string graph if it
has an outer-string representation and let OSG denote the family of outer-string
graphs. (Outer-string graphs were first so called in [18], but were studied in the
monograph [19], there denoted Ng0. Sinden [27] studied a special case in which
the strings are required to meet the boundary of the disk in a prescribed order.)
It is clear from the definition that every outer-string graph is a string graph. It
was shown in [19] that the converse does not hold; one consequence of our results
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is that only a very small fraction of all string graphs are outer-string graphs (see
Remark 4.5).

Next, we consider the class of graphs with an intersection representation con-
sisting of strings lying between two parallel segments, with one endpoint on each
segment. It has been discovered several times [12, 19, 21] that this class is equal to
the class of incomparability graphs. (Recall that if < is a partial order on [n], then
the incomparability graph of < is the graph with vertex set [n] in which x ∼ y if and
only if neither x < y nor y < x.) We let ICG denote the class of incomparability
graphs.

Finally, we say that a graph is a two-clique graph if it is the disjoint union of at
most two cliques. We let T CG denote the class of two-clique graphs.

It is easy to see that all of these classes are hereditary. They are related by the
following theorem [19, Theorem 5.8]. For k ≥ 1, the authors of [19] defined kNG to
be the set of graphs G with the property that if H1, . . . , Hk are cliques such that
the vertex sets of G and of the Hi are all pairwise disjoint, then any graph F with
V (F ) = V (G ∪H1 ∪ · · · ∪Hk) and E(F ) ⊇ E(G ∪H1 ∪ · · · ∪Hk) is a string graph.

Theorem 1.1 ([19]). We have the following characterizations of the classes kNG.

(i) 1NG equals the class OSG of outer-string graphs;
(ii) 2NG equals the class ICG of incomparability graphs;
(iii) 3NG equals the class T CG of two-clique graphs.

Moreover, 4NG = {K0}, where K0 denotes the null graph, and kNG = ∅ for
k ≥ 5. �

It is easy to see that kNG ⊆ (k − 1)NG for all k ≥ 2, and it is shown in [19]
that (for k ≤ 5) all of these inclusions are strict.

1.1. Preliminaries. As noted above, we will use the theory of graph limits to study
these graph classes. For the basic notions of graph limits, see the recent book by
Lovász [22] or, e.g., [4, 8, 23]. We recall that certain sequences of graphs (Gn),
with |V (Gn)| → ∞, are defined to be convergent. A convergent sequence of graphs
has a limit, a graph limit ; these objects can be defined in several different ways.
A graphon is a (measurable) symmetric function [0, 1]2 → [0, 1]. Each graphon W
defines a unique graph limit Γ (we say that W represents Γ), and every graph limit
is represented by some graphon; however, the representing graphon is not unique.
We say that two graphons W and W ′ are equivalent, and write W ∼= W ′, if they
represent the same graph limit. (Hence, the graph limits correspond to equivalence
classes of graphons, and may be defined in this way.)

The entropy of a graphon W is defined as

Ent(W ) =

∫ 1

0

∫ 1

0

h(W (x, y)) dx dy,

where h(x) = −x log2(x)− (1− x) log2(1− x) is the usual binary entropy function,
see [14] and [6]. The entropy Ent(Γ) of a graph limit Γ is the entropy of any
representing graphon; equivalent graphons have the same entropy, so this defines
Ent(Γ) uniquely.

If P is a graph class (or graph property, we do not distinguish between these),

then P̂ denotes the set of all graph limits Γ such that there exists a sequenceGn ∈ P
with Gn → Γ. We will also, slightly abusing the notation, let P̂ denote the set

of all graphons that represent such a graph limit. Furthermore, let P̂∗ denote

the set of graph limits (or graphons) in P̂ with maximal entropy. (This set is
nonempty, except in the trivial case when the graph class P is finite, see [14].) For

the importance of the set P̂∗ of maximum-entropy graph limits, see [14].
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We define some special graphons and sets of graphons, see further [14]. For
convenience, we define them on [0, 1)2 instead of [0, 1]2; this is clearly immaterial.

Definition 1.2. Fix k ≥ 1. For each i ∈ [k], let Ii = [(i− 1)/k, i/k).

(i) Let Rk be the set of all graphons W such that W (x, y) = 1/2 on
⋃

i6=j Ii× Ij
and W (x, y) ∈ {0, 1} on each Ii × Ii. We also let R∞ consist of the constant
graphon W = 1/2.

(ii) For s ∈ {0, . . . , k}, let W ∗
k,s be the graphon that is 1/2 on

⋃
i6=j Ii × Ij , 1 on

each Ii × Ii, i ≤ s, and 0 on each Ii × Ii, i > s.
(iii) For a ∈ [0, 1], let W k

a denote the graphon obtained from W ∗
k,k by changing

it on I1 × I1 such that W k
a = 1 on [0, a/k)2 ∪ [a/k, 1)2 and W k

a = 0 on
[0, a/k)× [a/k, 1) ∪ [a/k, 1)× [0, a/k).

Note that W ∗
k,s ∈ Rk for s = 0, . . . , k, and W k

a ∈ Rk. Furthermore, Ent(W ) =

1− 1/k for every W ∈ Rk; in particular, Ent(W ∗
k,s) = Ent(W k

a ) = 1− 1/k.

We note thatW k
0 = W k

1 = W ∗
k,k and thatW k

a
∼= W k

1−a. However, if b /∈ {a, 1−a},

then W k
a ≇ W k

b , because the two graphons have different edge densities. Indeed,
for any a ∈ [0, 1], we have

(1.1)

∫ 1

0

∫ 1

0

W k
a =

a2 + (1− a)2

k2
+

k − 1

k2
+

k(k − 1)

2k2
.

Given t ≥ 1 and 0 ≤ s ≤ t, we define C(t, s) to be the set of graphs whose vertex
sets can be partitioned into s (possibly empty) cliques and t− s (possibly empty)
independent sets. In particular, C(t, 0) is the class of t-colorable graphs. If P is a
hereditary property, the coloring number of P , denoted col(P), is the largest t for
which C(t, s) ⊆ P for some s ≤ t, see e.g. the survey [2]. (We define col(P) = ∞ if
P is the class of all unlabeled finite graphs; otherwise, col(P) is finite.)

Let U denote the set of unlabeled finite graphs and let Un denote the set of
unlabeled graphs on n vertices. Given a graph property P , let Pn = P ∩Un and let
PL
n denote the set of labeled graphs in P with vertex set [n]. The function n 7→ |Pn|

is called the (unlabeled) speed of P . (The labeled speed is defined similarly. For
our purposes, it does not matter whether we consider labeled or unlabeled graphs,

since the difference is at most a factor n! = 2o(n
2), which will be negligible.) The

speed of graph properties has been studied in many papers, see e.g. [1, 3, 2, 25].
Hatami, Janson, and Szegedy [14, Theorem 1.9] proved the following result that

relates the maximum-entropy graph limits of a hereditary property P , the speed
of P , and the coloring number of P .

Theorem 1.3 ([14]). If P is a hereditary class of graphs, there exists r ∈ N∪{∞}

such that maxΓ∈P̂ Ent(Γ) = 1−1/r and every graph limit Γ ∈ P̂∗ can be represented

by a graphon W ∈ Rr; hence P̂∗ = P̂ ∩Rr. Moreover,

r = sup{t : W ∗
t,s ∈ P̂ for some s ≤ t}

= sup{t : C(t, s) ⊆ P for some s ≤ t}

= col(P).

Moreover,

(1.2) |Pn| = 2

(
1− 1

r
+o(1)

)
(n2).

We note that (1.2) was originally proved independently by Alekseev [1] and by
Bollobás and Thomason [3].
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1.2. Main Results. One of our aims is to classify maximum-entropy graph limits
of string graphs and of related families of graphs. In order to do so, we prove a
somewhat more general result about the maximum-entropy graph limits of certain
hereditary properties. Before we can state this result, we need to define a few
special graphs.

Let k ≥ 3. We define three graphs, each with vertex set consisting of the k+
(
k
2

)

subsets of [k] of size either one or two. We denote the vertex corresponding to a
subset S by vS . First, let Gk be the intersection graph of this family of subsets, that
is, the graph in which two vertices are adjacent if and only if their corresponding
subsets have non-empty intersection. Second, we define Bk in the same way, except
that we do not allow edges between two vertices that correspond to subsets of
size two. Hence, Bk is bipartite. Finally, for k ≥ 4, we define Hk be the subgraph
of Gk with E(Hk) = E(Gk) \ {v{1,2}v{1,3}, v{1,2}v{2,3}, v{1,3}v{2,3}}. (Equivalently,
Hk is such that v{s} ∼ v{t,u} if and only if s = t or s = u, while v{s1,s2} ∼ v{t1,t2}
if and only if {s1, s2} ∩ {t1, t2} 6= ∅ and max{s1, s2, t1, t2} ≥ 4.)

Given a family of graphs H, we define Forb∗(H) to be the class of graphs that
do not contain a copy of any H ∈ H as an induced subgraph. It is easy to see that
Forb∗(H) is a hereditary class.

Theorem 1.4. Let P be a hereditary class of graphs and let r = col(P). If 3 ≤
r < ∞ and P ⊆ Forb∗({Gr+1, Br+1, Hr+1}), then

P̂∗ ⊆
{
W r

a : a ∈ [0, 1]
}

up to equivalence of graphons.
If r = 2 and P ⊆ Forb∗({G3, B3}), then

P̂∗ ⊆
{
W 2

a : a ∈ [0, 1]
}

up to equivalence of graphons.

Note that the assumption P ⊆ Forb∗({Gr+1, Br+1, Hr+1}) is equivalent to Gr+1,
Br+1, Hr+1 /∈ P .

Using Theorem 1.4, we can characterize maximum-entropy limits of string graphs,
outer-string graphs, and incomparability graphs as follows. See also Theorem 3.3
for another related result.

Theorem 1.5. Up to equivalence of graphons,

ŜG
∗
=
{
W 4

a : a ∈ [0, 1]
}
.

We note that the inclusion ⊇ in Theorem 1.5 was shown in [14, Example 2.4],
but the question of equality was left open there.

Theorem 1.6. Up to equivalence of graphons,

ÔSG
∗
=
{
W 3

a : a ∈ [0, 1]
}
.

Theorem 1.7. Up to equivalence of graphons,

ÎCG
∗
=
{
W 2

a : a ∈ [0, 1]
}
.

Theorem 1.8. Up to equivalence of graphons,

T̂ CG
∗
=
{
W 1

a : a ∈ [0, 1]
}
.

The proof of Theorem 1.8 is trivial, so we omit it. (The other theorems are

proved later.) In fact, it is easy to see that T̂ CG = T̂ CG
∗
=
{
W 1

a : a ∈ [0, 1]
}
. For

the graph classes P in Theorems 1.5–1.7, P̂ ) P̂∗, i.e., these classes have graph
limits that do not have maximum entropy. We leave it as an open problem to
classify all graph limits for these classes.
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1.3. Results from Graph Limit Theory. Now we assemble the tools from graph
limit theory that we will need in order to prove the results in Section 1.2.

Let W : [0, 1]2 → [0, 1] be a graphon and let G be a graph with vertex set [n].
We define

(1.3) Ψ∗
G,W (x1, . . . , xn) =

∏

ij∈E(G)

W (xi, xj)
∏

ij 6∈E(G)

(
1−W (xi, xj)

)

and recall that the induced subgraph density of G in W is defined as

(1.4) p(G,W ) =

∫

[0,1]n
Ψ∗

G,W .

We further say that the graph G is W -constructible if there exist (not necessarily
distinct) points x1, . . . , xn ∈ [0, 1] such that Ψ∗

G,W (x1, . . . , xn) > 0, i.e., more
explicitly,

W (xi, xj) = 0 =⇒ ij /∈ E(G)(1.5)

and

W (xi, xj) = 1 =⇒ ij ∈ E(G).(1.6)

(If 0 < W (xi, xj) < 1, then there is no restriction on ij.) If x = (x1, . . . , xn) is
such that (1.5) and (1.6) hold, i.e. Ψ∗

G,W (x) > 0, then we say that x is a witnessing
vector for G.

Given a graphonW , there is a standard definition of aW -random graphG(n,W ):
let X1, X2, . . . be an i.i.d. sequence of uniform random variables in [0, 1]. For
each n, G(n,W ) is a graph with vertex set [n] in which the edge ij is present with
probabilityW (Xi, Xj), independently of all other edges. By [22, Proposition 11.32],
G(n,W ) → W almost surely.

Remark 1.9. It follows from (1.4) that for every graph G with vertex set [n],

P(G(n,W ) = G) = p(G;W ).

Hence,

(1.7) P(G(n,W ) = G) = 0 ⇐⇒ p(G,W ) = 0 ⇐⇒ Ψ∗
G,W (x) = 0 for a.e. x.

This is thus a condition for a.e. x, while we have definedG to be notW -constructible
if Ψ∗

G,W (x) = 0 for every x. This looks like a minor technical difference, and indeed

it is (although this turns out to be non-trivial to prove). Petrov’s general removal
lemma [26, Theorem 1] shows that if the properties in (1.7) hold, then W can be
modified on a null set such that then Ψ∗

G,W = 0 everywhere, i.e., G is not W -

constructible. (Note that the properties in (1.7) are preserved if W is modified on
a null set, and more generally if W is replaced by an equivalent graphon, but the
property that G is (not) W -constructible is not.)

Let P be a hereditary class. It is easily seen, see [15, Theorem 3.3], that if W

is a graphon, then W ∈ P̂ if and only if p(G;W ) = 0 for every graph G /∈ P .
In particular, see Diaconis, Holmes, and Janson [7, Theorem 3.2], if H is a set of

graphs and P = Forb∗(H), then Γ ∈ P̂ if and only if p(H ; Γ) = 0 for all H ∈ H. We
will need the following extension of this, which is a consequence of Petrov’s removal
lemma [26, Theorem 1], see Section 7.

Lemma 1.10. Let P be a hereditary class of graphs. If Γ ∈ P̂, then there exists a
graphon W representing Γ such that if a graph G is W -constructible, then G ∈ P.

Moreover, if Γ ∈ P̂∗ and r = col(P), then there exists W ∈ Rr such that if G is
W -constructible, then G ∈ P.



6 SVANTE JANSON AND ANDREW J. UZZELL

We conclude this section with a special class of graphons that will be needed in
the proof of Theorem 1.4. A disjoint clique graphon is a graphon of the form W =∑

α∈A 1Aα×Aα
for a family (Aα)α∈A of non-empty pairwise disjoint subsets of [0, 1].

Here the index set A may be finite, countably infinite or uncountable. We say that
W has parts Aα, α ∈ A.

Since a graphon is assumed to be (Lebesgue) measurable, the section {y :
W (x, y) = 1} is measurable for a.e. x ∈ [0, 1]. In particular, if W is a disjoint
clique graphon and Aα one of its parts, then either Aα is a null set, and thus mea-
surable, or there exists x ∈ Aα such that {y : W (x, y) = 1} is measurable. Since the
latter set equals Aα, we see that in both cases Aα is measurable. In other words,
the parts of a disjoint clique graphon are all measurable.

Remark 1.11. It is easy to see that up to equivalence, we may eliminate all parts
with measure 0, leaving only a countable number of parts An. Moreover, up to
equivalence, a disjoint clique graphon is uniquely determined by the sequence |An|
of measures of these parts, arranged in (weakly) decreasing order. It is also easy
to see that if DC is the family of disjoint clique graphs, i.e. graphs that are disjoint

unions of cliques, then the set of all disjoint clique graphons equals D̂C. See further
Janson [15, Section 7].

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.4.
In Sections 3, 4, and 5, we prove Theorems 1.5, 1.6, and 1.7, respectively. In
Section 6, we derive one more result each about the structure of typical string graphs
and the structure of typical outer-string graphs, and make several conjectures.
Finally, in Section 7, we prove Lemma 1.10.

2. Proof of Theorem 1.4

The plan of the proof of Theorem 1.4 is straightforward. We want to show that
if P is as in the statement of the theorem, then any maximum-entropy element Γ

of P̂ can be represented by a graphon W that has a number of desirable properties,
eventually leading to the conclusion that W ∼= W r

a for some a. We use Lemma 1.10
to find a “nice” version of W ; then, in each case, we will show that if W does not
have the desired property, then this implies that P contains at least one of the
graphs Gr+1, Br+1, and Hr+1, which is a contradiction.

Proof of Theorem 1.4. Suppose that Γ ∈ P̂∗ has entropy 1−1/r and let W ∈ Rr be
the graphon representing Γ whose existence is guaranteed by Lemma 1.10. Thus,
every graph that is W -constructible belongs to P . In particular, our assumption on
P implies that Gr+1, Br+1, and Hr+1 are not W -constructible. For (notational)
convenience, we let all graphons be defined on [0, 1) in this section.

Let Wi denote the restriction ofW to Ii×Ii. By rescaling the interval Ii to [0, 1),
we may regard Wi as a graphon. Recall that by the definition of Rr, Wi takes only
the values 0 and 1.

Claim 1: At most one of the sets Ii can contain some point x such that W (x, x) = 0.
If not, then without loss of generality there exist x ∈ I1 and y ∈ I2 such that
W (x, x) = W (y, y) = 0. Let F be a bipartite graph. If (A,B) is a bipartition
of V (F ) with |A| = n1 and |B| = n2, then we can construct a witnessing vector for
F by choosing n1 copies of x and n2 copies of y. Thus, we may conclude that F is
W -constructible. In particular, Br+1 is W -constructible, which is a contradiction.

Claim 2: W = 1 along the diagonal. If not, then without loss of generality there
exists z ∈ I1 such that W (z, z) = 0. We then partition the vertex set of Gr+1 as
follows: let V1 = {1, 2, 3}, let V2 = {{1, 2}, {1, 3}, {2, 3}}, and for ℓ = 3, . . . , r, let
Vℓ = {{ℓ+1, j} : 1 ≤ j ≤ ℓ+1}. (Here, we write {i, i} for {i}.) Observe that each of
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V2, . . . , Vr induces a complete graph, while V1 induces an empty graph. For j = 2,
. . . , r, let vj ∈ Ij be arbitrary. By Claim 1, for each j, we have W (vj , vj) = 1.
Then we can construct a witnessing vector for Gr+1 by choosing three copies of z
and j + 1 copies of the point vj for j = 2, . . . , r. Thus, Gr+1 is W -constructible,
which is a contradiction.

Claim 3: If x, y, z ∈ I1 and W (x, y) = W (y, z) = 1, then W (x, z) = 1. We
partition the vertex set of Gr+1 in a different way. Let U1 = {1, 2, {1, 2}} and for
ℓ = 2, . . . , r, let Uℓ = {{ℓ+ 1, j} : 1 ≤ j ≤ ℓ+ 1}. Observe that U1 induces a copy
of P3 and that each of U2, . . . , Ur induces a complete graph. Suppose that there
exist x, y, z ∈ I1 such that W (x, y) = W (y, z) = 1 but W (x, z) = 0. For ℓ = 2,
. . . , r, let uℓ ∈ Iℓ be arbitrary and note that, by Claim 2, W (uℓ, uℓ) = 1. Then the
vector consisting of x, y, z, and ℓ+ 1 copies of each point uℓ is a witnessing vector
for Gr+1, which implies that Gr+1 is W -constructible. This contradiction proves
the claim.

Claim 4: Each Wi is a disjoint clique graphon
∑

α∈Ai
1Ai,α×Ai,α

, rescaled to Ii.

It suffices to consider i = 1. The relation on I1 defined by x ≡ y if W (x, y) = 1
is symmetric since W is, reflexive by Claim 2, and transitive by Claim 3; hence
it is an equivalence relation. Denote the equivalence classes by (Aα)α∈A; then
W1 =

∑
α∈A 1Aα×Aα

.

Claim 5: Each Wi has at most two parts Ai,α. If not, then without loss of generality
W1 has at least three parts A1, A2, A3. We partition the vertex set of Gr+1 using
the partition (V1, . . . , Vr) defined in the proof of Claim 2 above. Let ai ∈ Ai for
i = 1, 2, 3 and observe that W (ai, aj) = δij . For j = 2, . . . , r, let vj ∈ Ij be
arbitrary. Observe that the vector consisting of a1, a2, a3, and j +1 copies of each
point vj is a witnessing vector for Gr+1. Thus Gr+1 is W -constructible, which is a
contradiction.

Claim 6: W = 1 on at least r−1 of the squares Ii×Ii. If not, there are at least two
restrictions Wi such that the partitions (Ai,α) in Claim 4 have at least two parts,
i.e., |Ai| ≥ 2. Suppose without loss of generality that |A1|, |A2| ≥ 2, and let A1, A2

be parts of W1 and B1, B2 be parts of W2. First, suppose that r ≥ 3. We claim
that Hr+1 is W -constructible. To show this, we partition V (Hr+1) as follows. Let
X ′

1 = {1, {1, 3}}, let X ′′
1 = {{2, 3}}, let X ′

2 = {2, {1, 2}}, and let X ′′
2 = {3}. For

ℓ = 3, . . . , r, let Xℓ = {{ℓ + 1, j} : 1 ≤ j ≤ ℓ + 1}. Observe that the sets X ′
1,

X ′′
1 , X

′
2, X

′′
2 , X3, . . . , Xr all induce complete subgraphs, that there are no edges

between X ′
1 and X ′′

1 , and that there are no edges between X ′
2 and X ′′

2 . Let x
′
1 ∈ A1,

let x′′
1 ∈ A2, let x′

2 ∈ B1, let x′′
2 ∈ B2, and, for ℓ = 3, . . . , r, let xℓ ∈ Iℓ. Let x

denote the vector consisting of two copies of x′
1, one copy of x′′

1 , two copies of x′
2,

one copy of x′′
2 , and ℓ+1 copies of xℓ for ℓ = 3, . . . , r. Observe that x is a witnessing

vector for Hr+1. Thus Hr+1 is W -constructible, which is a contradiction. If r = 2,
we may repeat the argument above to show that B3 is W -constructible, which is
again a contradiction. This proves the claim.

To summarize, we have shown that if Γ ∈ P̂∗, then Γ may be represented by a
graphon W ∈ Rr such that there exists a measurable set A1 ⊆ I1 such that W = 1
on (A1 ×A1)∪ ((I1 \A1)× (I1 \A1)), W = 0 on the rest of I1 × I1, and W = 1 on
∪r
j=2Ij × Ij . That is, W ∼= W r

a for some a ∈ [0, 1], as claimed. �

3. Proof of Theorem 1.5

We begin by showing that the class of string graphs satisfies the hypotheses of
Theorem 1.4.

Lemma 3.1. The graphs G5, B5, and H5 are not string graphs.
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Proof. The result for B5 has been discovered several times [27, 9, 19], while the
result for G5 was shown in [25, Lemma 3.2]. The argument that we give is a slight
modification of the proof used in [25]. (It actually works for any graph F with
B5 ⊆ F ⊆ G5.)

Suppose that any of G5, B5, and H5 had a string representation {Ai, Aij}. Then,
we could select points vi ∈ Ai for each i and points vij ∈ Ai ∩Aij , for each i and j
with i 6= j, Then, for each i and j, we could let eij be a curve consisting of the
portion of Ai between vi and vij , the portion of Aij between vij and vji, and the
portion of Aj between vji and vj . Because eij ⊆ Ai∪Aj ∪Aij , we have eij∩ekℓ = ∅
if i, j, k, and ℓ are all distinct. Hence, the points vi and the curves eij define
a drawing of K5 in which no two independent edges cross, which contradicts the
Hanani–Tutte theorem [13, 29]. �

Let G be a graph and let C = {V1, . . . , Vk} be a clique covering of G. We can
define a graph GC with V (GC) = [k] and E(GC) = {ij : E(Vi, Vj) 6= ∅}. We say that
a graph G admits a planar clique covering if there is a clique covering C of G such
that GC is planar. Similarly, we say that G admits an outerplanar clique covering
if there is a clique covering C of G such that GC is outerplanar.

Proof of Theorem 1.5. It is shown in [25] that col(SG) = 4 (see also Lemma 4.2).

This, Lemma 3.1, and Theorem 1.4 imply that ŜG
∗
⊆ {W 4

a : a ∈ [0, 1]} up to
equivalence of graphons.

In the opposite direction, it is shown in [14, Example 2.4] that W 4
a ∈ ŜG

∗
for

every a ∈ [0, 1]. For later use, we repeat the argument.
It is shown in [19, Corollary 2.7] that C(4, 4) ⊆ SG and more generally in [19,

Theorem 2.3] that every graph that admits a planar clique covering is a string graph.
(See also [14, Example 2.4].) Let a ∈ [0, 1] and, for each n, let Gn = G(n,W 4

a ),
where G(n,W 4

a ) is the W
4
a -random graph defined in Section 1.3. Let V ′

1 = {i : Xi ∈
[0, a/4)}, let V ′′

1 = {i : Xi ∈ [a/4, 1/4)}, and, for j = 2, 3, 4, let Vj = {i : Xi ∈ Ij}.
Observe that with probability one, V ′

1 , V
′′
1 , V2, V3, and V4 are all cliques and there

are no edges between V ′
1 and V ′′

1 . This means that each Gn almost surely admits a
planar clique covering C with GC = K5 − e, which means that each Gn is a string

graph. Because Gn → W 4
a almost surely, it follows that W 4

a ∈ ŜG ∩ R4, which, by

Theorem 1.3, implies that W 4
a ∈ ŜG

∗
, as claimed. This completes the proof. �

Remark 3.2. Because col(SG) = 4, it follows from Theorem 1.3 that

(3.1) |SGn| = 2(
3

4
+o(1))(n2),

as proved by Pach and Tóth [25].

A graph G is a convex intersection graph if it has an intersection representation
consisting of convex sets in the plane. Let CVX denote the class of convex inter-
section graphs. It is easy to see that CVX is hereditary and that CVX ⊆ SG. It
is shown in [19, Proposition 8.3.1] that CVX is in fact a proper subclass of SG.
However, the next result shows that CVX has the same asymptotic speed as the
larger class SG and furthermore shows that CVX has the same maximum-entropy

graph limits as SG, i.e. ĈVX
∗
= ŜG

∗
. (The sets of all graph limits for these classes

differ, i.e., ĈVX ( ŜG. For example, if G ∈ SG \ CVX , then the adjacency matrix
of G defines a graphon, and thus a graph limit, that easily is seen to belong to

ŜG \ ĈVX , cf. [15, Section 3] and [24, Proposition 4.10].)

Theorem 3.3. We have

(3.2) col(CVX ) = 4
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and

(3.3) |CVXn| = 2(
3

4
+o(1))(n2).

Furthermore, up to equivalence of graphons,

(3.4) ĈVX
∗
= {W 4

a : a ∈ [0, 1]}.

Proof. It is shown in [20] that C(4, 4) ⊆ CVX and, more generally, that every graph
that admits a planar clique covering is a convex intersection graph. Hence, we have
col(CVX ) ≥ 4, and since CVX ⊆ SG, we have col(CVX ) ≤ col(SG) = 4. This
proves (3.2) and (3.3) follows by (1.2). Finally, (3.4) follows by the same argument
as in the proof of Theorem 1.5. �

4. Proof of Theorem 1.6

Lemma 4.1. The graphs G4, B4, and H4 are not outer-string graphs.

Proof. Suppose to the contrary that G4, B4, or H4 has an outer-string represen-
tation. If necessary, we may assume (possibly by extending the outer-string repre-
sentation to a slightly larger disk) that all curves meet the disk at distinct points.
Then we may extend this representation to a string representation of G5, B5, or H5

by adding curves A{5}, A{1,5}, . . . , A{4,5} outside of the disk with the appropriate
intersection pattern. (See also Theorem 1.1.) However, this contradicts Lemma 3.1,
and the claimed result follows. �

We will also need the following result of Pach and Tóth [25, Lemma 3.1].

Lemma 4.2 ([25]). If r ≥ 1, then Gr+1 ∈ C(r + 1, s) for s = 0, . . . , r + 1. In
particular, if P is a hereditary property and P ⊆ Forb∗({Gr+1}), then col(P) ≤
r. �

Lemma 4.3. Every graph in the class C(3, 3) is an outer-string graph. Moreover,
every graph that admits an outerplanar clique covering is an outer-string graph.

Proof. As stated above, the corresponding results for string graphs were proved in
[19, Theorem 2.3] and in [14, Example 2.4]. We modify the construction given in
the latter.

Let G be a graph whose vertex set can be covered by three cliques V1, V2, and V3.
Place distinct points v1, v2, and v3 on the boundary of a disk D. For each x ∈ Vi

and y ∈ Vj with i 6= j, add a curve Ãxy ⊂ D between vi and vj . We may place the
curves in such a way that different curves do not meet apart from their endpoints.
For each x ∈ Vi and y ∈ Vj with i 6= j, choose a point axy ∈ Ãxy that is different

from both vi and vj . Let Ã∗
xy denote the portion of Ãxy between vi and axy and

let Ã∗
yx denote the portion of Ãxy between vj and axy. Let, for x ∈ Vi,

Ax =

( ⋃

xy∈E(G),
y /∈Vi

Ã∗
xy

)
.

It is easy to see that the collection of curves {Av : v ∈ V (G)} gives an outer-string
representation of G. (We can regard each Ax as a curve starting and ending at vi,

traversing each Ã∗
xy in both directions, with these parts in arbitrary order.)

In general, if G admits an outerplanar clique covering with C = {V1, . . . , Vk}, we
may place k distinct points on the boundary of the disk and repeat the construction
described above to define an outer-string representation of G. �
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Lemma 4.4. We have
col(OSG) = 3

and

(4.1) |OSGn| = 2(
2

3
+o(1))(n2).

Proof. The fact that col(OSG) = 3 is immediate from Lemmas 4.1, 4.2, and 4.3.
This and (1.2) imply (4.1). �

Remark 4.5. Because G4 ∈ C(4, 4) ⊆ SG, G4 is an example of a string graph that
is not an outer-string graph. There are many others: (3.1) and (4.1) imply that
almost every string graph is not an outer-string graph.

Proof of Theorem 1.6. One inclusion is immediate from Lemma 4.1, Lemma 4.4,
and Theorem 1.4. For the other, let a ∈ [0, 1]. As in the proof of Theorem 1.5,
one can define a sequence of graphs Gn = G(n,W 3

a ) such that for each n, with
probability one, Gn admits a clique covering C such that GC = K4 − e, and such
that Gn → W 3

a almost surely as n → ∞. Because K4 − e is outerplanar, it follows
from Lemma 4.3 that each Gn is an outer-string graph. Theorem 1.3 then implies

that W 3
a ∈ ÔSG ∩R3 = ÔSG

∗
, as claimed. �

5. Proof of Theorem 1.7

Lemma 5.1. The graphs G3 and B3 are not incomparability graphs.

Proof. Observe that B3 = C6 and that G3 is the complement of a triangle with a
pendant edge attached to each vertex. It is a well-known result of Gallai [11] (see
also [28]) that neither of these graphs is an incomparability graph.

Alternatively, suppose that G3 or B3 had an intersection representation con-
sisting of strings between two parallel segments. By arguing as in the proof of
Lemma 4.1, we could extend this representation to an outer-string representation
of G4 or B4, a contradiction. �

Lemma 5.2. We have
col(ICG) = 2

and

(5.1) |ICGn| = 2(
1

2
+o(1))(n2).

Remark 5.3. The asymptotic speed of the class of incomparability graphs (equa-
tion (5.1)) was first determined by Kleitman and Rothschild [16, 17].

Proof of Lemma 5.2. It is easy to see that every bipartite graph is a comparability
graph, which is equivalent to the statement that C(2, 2) ⊆ ICG. It follows that
col(ICG) ≥ 2. Lemmas 5.1 and 4.2 then imply that col(ICG) = 2. Finally, (5.1)
follows from (1.2). �

In the proof of Theorem 1.7, instead of directly proving our results about incom-
parability graphs, we will find it convenient to prove the corresponding results for
comparability graphs. We let CG denote the class of comparability graphs.

Proof of Theorem 1.7. One inclusion is immediate from Lemma 5.1, Lemma 5.2,
and Theorem 1.4. In order to show that

ÎCG
∗
⊇
{
W 2

a : a ∈ [0, 1]
}
,

it is enough to prove that 1−W 2
a ∈ ĈG

∗
for every a ∈ [0, 1].

For a ∈ {0, 1}, the result follows from the fact that every bipartite graph is a
comparability graph. Hence, we may suppose that a ∈ (0, 1). For each n, we let
Gn = G(n, 1 − W 2

a ). Let An = {i : Xi ∈ [0, a/2)}, Cn = {i : Xi ∈ [a/2, 1/2)},
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and Bn = {i : Xi ∈ [1/2, 1)}. Observe that with probability one, each of An, Bn,
and Cn is an incomparable set, and An ∪Cn is a complete bipartite graph. Hence,
if we orient edges from An to Bn, from An to Cn and from Bn to Cn, then if ab
and bc are directed eges, then ac is almost surely a directed edge. Thus, each Gn

is almost surely a comparability graph. Because Gn → 1 −W 2
a almost surely and

col(CG) = col(ICG) = 2, it follows from Theorem 1.3 that 1−W 2
a ∈ ĈG∩R2 = ĈG

∗
,

as claimed. �

6. Random string graphs

Let P be any graph class. The next result says that if the maximum entropy of

an element of P̂ determines the speed of P , then the maximum-entropy elements

of P̂ also determine the asymptotic structure of a typical element of P . This was

proved in [14, Theorem 1.6] in the special case when P̂∗ consists of a single element.
Since the proof of the general case is nearly identical to the argument given in [14],
we omit it.

Given δ > 0, let Aδ(P) = {Γ ∈ Û : δ�(Γ, P̂
∗) < δ}, where δ� is the standard

metric on the space of graph limits, see e.g. [22].

Theorem 6.1. Let P be a class of graphs and suppose that

(6.1) lim
n→∞

log2|Pn|(
n
2

) = max
Γ∈P̂

Ent(Γ).

For each n, let Gn be a uniformly random unlabeled element of Pn. For any δ > 0,

lim
n→∞

P
(
Gn ∈ Aδ(P)

)
= 1.

Moreover, the same conclusion holds if we let each Gn be a uniformly random labeled
element of Pn. �

Remark 6.2. By Theorem 1.3, equation (6.1) holds whenever P is a hereditary
property.

It is immediate from Theorem 6.1 and Theorems 1.5 and 1.6, respectively, that if
Gn is a uniformly random (unlabeled or labeled) string graph, then Gn converges in
probability as n → ∞ to the set {W 4

a : a ∈ [0, 1]}, and similarly that a sequence of
uniformly random outer-string graphs converges in probability to the set {W 3

a : a ∈
[0, 1]}. In principle, it is possible that the sequenceGn converges in distribution to a
limit that is a non-degenerate random graph limit in {W 4

a }, or that the distributions
oscillate and do not converge at all, but it seems very probable that there exists

some a ∈ [0, 1/2] such that Gn
p

−→ W 4
a . However, assuming that this really holds,

what is the limiting a? We believe that a = 1/2, and thus that the following
stronger results should also hold.

Conjecture 6.3. If, for each n, Gn is a uniformly random unlabeled element

of SGn, then Gn
p

−→ W 4
1/2. Moreover, the same conclusion holds if each Gn is a

uniformly random labeled element of SGL
n .

Conjecture 6.4. If, for each n, Gn is a uniformly random unlabeled element

of OSGn, then Gn
p

−→ W 3
1/2. Moreover, the same conclusion holds if each Gn is a

uniformly random labeled element of OSGL
n .

We believe that these results should hold for two reasons. First, in the proof of
Theorem 1.5, the value a = 1/2 gives the largest number of partitions of the vertex
set. (And similarly for outer-string graphs, see the proof of Theorem 1.6.) Second,
the corresponding results for incomparability graphs (at least in the labeled case)
and for two-clique graphs are known to hold. The result for labeled incomparability
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graphs follows from the corresponding result for partial orders, which was proved
in [17] (see also [5]). We believe that the same result should hold for unlabeled
incomparability graphs; it is a folklore result that almost every partial order has
trivial automorphism group, and we believe that the same is true of incomparability
graphs, but we do not know a proof of this statement. The result for two-clique
graphs is trivial; for a sketch of a nearly identical argument, see [15, Example 7.9].

Theorem 6.5. If, for each n, Gn is a uniformly random labeled element of ICGL
n ,

then Gn
p

−→ W 2
1/2. �

Theorem 6.6. If, for each n, Gn is a uniformly random unlabeled element of T CGn,

then Gn
p

−→ W 1
1/2. If each Gn is a uniformly random labeled element of T CGL

n , then

Gn converges in probability to the random graphon W 1
T , where T ∼ U(0, 1/2). �

It is easy to see that the limiting distribution of a uniformly random string graph,
if it exists, determines the limiting distribution of the edge density of a uniformly
random string graph (and similarly for outer-string graphs). It also determines the
limiting distribution of the proportion of vertices of degree approximately cn, where
c ∈ [0, 1] is a constant; it is convenient to state this using the distribution of the
degree of a uniformly random vertex. (See e.g. [7, Section 4].) Thus, Conjectures 6.3
and 6.4 imply the following conjectures, including the somewhat suprising statement
that the degree distribution of a typical string graph (and of a typical outer-string
graph) is bimodal.

Given a graph G on n vertices, let Xn denote the degree of a uniformly random
vertex of G.

Conjecture 6.7. If, for each n, Gn is a uniformly random unlabeled element
of SGn, then

(6.2)
e(Gn)(

n
2

) p
−→

19

32
.

Furthermore, Xn/n converges in distribution to a random variable Y such that
y ∈ {1/2, 5/8} almost surely and such that

P(Y = 1/2) =
1

4
and P(Y = 5/8) =

3

4
.

Moreover, the same conclusions hold if each Gn is a uniformly random labeled
element of SGL

n .

Conjecture 6.8. If, for each n, Gn is a uniformly random unlabeled element
of OSGn, then

(6.3)
e(Gn)(

n
2

) p
−→

11

18
.

Furthermore, Xn/n converges in distribution to a random variable Y such that
y ∈ {1/2, 2/3} almost surely and such that

P(Y = 1/2) =
1

3
and P(Y = 2/3) =

2

3
.

Moreover, the same conclusions hold if each Gn is a uniformly random labeled
element of OSGL

n .

Let us also remark that becauseW 4
1/2 has minimum edge density in the set {W 4

a :

a ∈ [0, 1]} (cf. (1.1)), the assertion (6.2) is actually equivalent to Conjecture 6.3;
moreover, (6.2) is also equivalent to saying that the edge density of a random
string graph converges in expectation to 19/32. Similarly, (6.3) is equivalent to the
analogous statements about outer-string graphs.
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7. Proof of Lemma 1.10

We find it convenient to make two new definitions, closely related to concepts in
Section 1.3 but from a slightly different point of view. Recall (1.3)–(1.4).

Definition 7.1. Let W be a graphon and G a graph with vertex set [n].

(i) W is G-free if p(G;W ) = 0. By (1.4), this is equivalent to

(7.1) Ψ∗
G,W (x1, . . . , xn) = 0 for a.e. x1, . . . , xn ∈ [0, 1].

(ii) W is completely G-free if

(7.2) Ψ∗
G,W (x1, . . . , xn) = 0 for all x1, . . . , xn ∈ [0, 1].

In other words, G is not W -constructible.

We emphasize that in (ii), the sequence x1, . . . , xn is completely arbitrary, and
may contain repetitions. In particular, we require Ψ∗

G,W (x, . . . , x) = 0 for every

x ∈ [0, 1], which by (1.3) implies W (x, x) ∈ {0, 1} for every x ∈ [0, 1].
As said in the introduction, by [15, Theorem 3.3], if P is hereditary, then a

graphon W ∈ P̂ if and only if p(G;W ) = 0 for every graph G /∈ P ; in other words,
if and only if W is G-free for every G /∈ P . The following theorem says that this
can be strengthened to completely G-free.

Theorem 7.2. Let P be a hereditary graph property and Γ a graph limit. Then
the following are equivalent.

(i) Γ ∈ P̂.
(ii) Every graphon representing Γ is G-free for every G /∈ P.
(iii) There exists a graphon representing Γ that is G-free for every G /∈ P.
(iv) There exists a graphon representing Γ that is completely G-free for every

G /∈ P.

Moreover, suppose that [0, 1] =
⋃r

k=1 Ak is a partition into finitely many mea-
surable sets with positive measures, and that we are given a subset E ⊆ [r]× [r] and
real numbers akl ∈ [0, 1] for (k, l) ∈ E. Suppose further that the properties above
hold and that there is a graphon W representing Γ such that

(7.3) W (x, y) = akl for all (k, l) ∈ E and all (x, y) ∈ Ak ×Al.

Then there exists a graphon W representing Γ that is completely G-free for every
G /∈ P and is such that (7.3) holds.

Obviously, it suffices to assume that (7.3) holds for a.e. (x, y) ∈ Ak × Al, since
we can begin by redefining W on a set of measure 0 so that (7.3) holds for all
(x, y) ∈ Ak ×Al.

Proof. The equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) follow, as said above, from [15, Theo-
rem 3.3] and Definition 7.1. The implication (iv) =⇒ (iii) is trivial. It thus suffices
to prove (iii) =⇒ (iv), and the final statement.

For this, suppose that Γ is represented by a graphon W that is G-free for every
G /∈ P . Let I be the set of all pairs ij = (i, j) of distinct positive integers, and for
every labeled graph G, define MG ⊂ [0, 1]I by

(7.4) MG =
{
(wij) ∈ [0, 1]I : wij = wji for all i, j ∈ N (i 6= j)

and
∏

ij∈E(G)

wij

∏

ij 6∈E(G)

(1− wij) = 0.
}

Furthermore, define

(7.5) M =
⋂

G/∈P

MG.
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If G /∈ P , then W is assumed to be G-free, which by (1.3) and (7.4) means that
the infinite vector (W (xi, xj))ij ∈ MG for a.e. sequence x1, x2, · · · ∈ [0, 1] (with the
product measure). Since the number of labeled graphs is countable, it follows that
(W (xi, xj))ij ∈ M for a.e. x1, x2, · · · ∈ [0, 1].

By the general removal lemma of Petrov [26, Theorem 1(2)] (taking K = X =
[0, 1] and k = 2 there), there exists a graphon W ′ such that W ′(x, y) = W (x, y) a.e.
(so W ′ also represents Γ) and moreover (W ′(xi, xj))ij ∈ M for all x1, x2, · · · ∈ [0, 1].
By (7.4)–(7.5) and (1.3), it follows that W ′ is completely G-free for every G /∈ P ,
which proves (iv).

For the final statement, we may, by a suitable measure-preserving bijection
[0, 1] → [0, 1), assume that the graphons are defined on [0, 1) and that the sets Ak

are half-open intervals [ak, bk). We look into the proof by Petrov [26]; there is de-
fined a set Y ⊆ [0, 1)2 consisting of all pairs (x1, x2) ∈ [0, 1)2 such that if U is any
open set containing f(x1, x2), Ix,m = {y : ⌊my⌋ = ⌊mx⌋} (an interval of length 1/m
containing x), and µ is Lebesgue measure in the plane, then

(7.6) lim
m→∞

m2µ
{
(y1, y2) ∈ Ix1,m × Ix2,m : f(y1, y2) ∈ U

}
= 1.

The construction of W ′ is such that W ′ = W on Y . It follows immediately
from (7.3) that if (k, l) ∈ E, then A◦

k × A◦
l ⊆ Y , where A◦

k = (ak, bk), and thus
W ′ = W = akl on A◦

k ×A◦
l . Finally, pick a′k ∈ (ak, bk), and define φ : [0, 1) → [0, 1)

by φ(ak) = a′k and φ(x) = x for x /∈ {a1, . . . , ar}. Then W ′′(x, y) := W ′(φ(x), φ(y))
equals W a.e., is completely G-free for every G /∈ P , and satisfies (7.3). �

Remark 7.3. We derived the last statement in Theorem 7.2 by using the proof by
Petrov [26]. It is also possible to use only the statement together with a more com-
plicated construction, which we sketch here: Consider the finite set B =

{
{i, j} :

i, j ∈ [r]
}
of unordered pairs or singletons and the function g : [0, 1]2 → B defined

by g = {i, j} on Ai×Aj . (We consider unordered pairs {i, j} since we need g to be
symmetric.) We apply Petrov’s theorem to the function

(
W (x, y), g(x, y)

)
mapping

[0, 1]2 into the compact set K = [0, 1]× B, and define M ⊂ KI = [0, 1]I × BI by
the conditions in (7.4) for all G /∈ P together with conditions corresponding to

(i) g(x, y) ∩ g(x, z) 6= ∅;
(ii) g(x, y) = {i, j} and g(y, z) = {i, k} with j 6= k =⇒ g(x, z) = {j, k};
(iii) g(x, y) = {k, l} and (k, l) ∈ E =⇒ W (x, y) = akl.

Petrov’s theorem yields W ′ and g′ satisfying corresponding conditions everywhere,
and it can be seen that (at least if r ≥ 3, as we may assume by splitting some Ak)
there exists a partition [0, 1] =

⋃
k A

′
k such that g′(x, y) = {k, l} and thusW ′(x, y) =

akl on A′
k ×A′

l, and furthermore Ak \A′
k has measure 0 for each k. Finally we re-

define W ′(x, y) when x or y ∈ Ak \ A′
k for some k. We omit the details. This

argument can also be used when the condition W (x, y) = akl in (7.3) is replaced
by W (x, y) ∈ A∗

kl for some compact sets A∗
kl.

Proof of Lemma 1.10. By Theorem 7.2, there exists a graphon W representing Γ
that is completely G-free for every G /∈ P . If G is W -constructible, then W is not
completely G-free, so G ∈ P .

Moreover, if Γ ∈ P̂∗ and r = col(P), then Theorem 1.3 shows that there exists
a representing graphon W ∈ Rr. If r = ∞, i.e., P = U , then it is easy to see
that the constant graphon W = 1/2 possesses the required properties. Otherwise,
we can apply the last statement in Theorem 7.2 with Ak = Ik = [(k − 1)/r, k/r),
E = {(k, ℓ) : k 6= ℓ} and akℓ = 1/2 for (k, ℓ) ∈ E. This shows that there exists a
representing graphon W ′ that is completely G-free for every G /∈ P with W ′ = 1/2
on
⋃

i6=j Ii × Ij . Furthermore, W ′ = W ∈ {0, 1} a.e. on each Ii × Ii. Define W ′′ as

the modification of W ′ obtained by letting W ′′(x, y) = 0 if x, y ∈ Ii for some i, and
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0 < W ′(x, y) < 1, and otherwise W ′′ = W ′. Then W ′′ = W ′ a.e., so W ′′ represents
Γ, W ′′ ∈ Rr and W ′′ is still completely G-free for every G /∈ P . This completes the
proof. �
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Appendix A. String Representations and Arcwise-Connected Sets

We have defined string graphs as graphs having an intersection representation
using curves in the plane. It is well-known that the string graphs can also be defined
in terms of intersection representations of other types of planar sets. We collect
some of these equivalences, and for completeness give a proof.

Lemma A.1. The following families of subsets of the plane R2 define the same
class of intersection graphs, i.e., the string graphs:

(i) curves (continuous images of [0, 1]),
(ii) simple curves (homeomorphic images of [0, 1]),
(iii) simple closed curves (homeomorphic images of S1),
(iv) piecewise-linear simple closed curves,
(v) pathwise-connected sets,
(vi) arcwise-connected sets,
(vii) open connected sets,
(viii) open simply connected sets.

Furthermore, in (i)–(iv) we may assume that the intersection representation is such
that such that every pair of strings intersects finitely many times, such that no three
curves cross at a single point, and such that if two strings cross, then they cross
properly.

Recall that a topological space is pathwise-connected if any two points in it can
be connected by a curve, and arcwise-connected if any two points can be connected
by a simple curve. These notions are actually equivalent for Hausdorff spaces (and
thus for subsets of the plane), see [10, Problem 6.3.12]. Any open connected set in
the plane is pathwise-connected.

Proof. The implications (iv) =⇒ (iii) =⇒ (i) =⇒ (v), (ii) =⇒ (i), (ii) =⇒ (vi) =⇒
(v), and (viii) =⇒ (vii) =⇒ (v) are trivial. To complete the proof it thus suffices
to show that (v) =⇒ (ii),(iv) and (iv) =⇒ (viii).

(v) =⇒ (i),(ii),(iii),(iv). Suppose that G has an intersection representation con-
sisting of pathwise-connected sets {Av : v ∈ V (G)}. For convenience, we may
assume that G has no isolated vertices, since these can be added at the end (or by
trivial modifications in the argument below). For each i, choose a point pi ∈ Ai.
For each j 6= i such that Ai ∩Aj 6= ∅, choose a point pij ∈ Ai ∩Aj . By hypothesis,

for each i and for each j 6= i such that Ai∩Aj 6= ∅, we may choose a curve Cj
i ⊆ Ai

with endpoints pi and pij . (Note that this notation is not symmetric: in general,

Cj
i 6= Ci

j .) Define A′
i =

⋃
j C

j
i . Then A′

i ⊆ Ai, each A′
i is pathwise-connected and

compact, and {A′
i} yields an intersection representation of G. Hence, by replacing

Ai by A′
i, we may assume that each set Ai is compact, which implies that there

exists ε > 0 such that if Ai ∩Aj = ∅, then d(Ai, Aj) ≥ 3ε. Furthermore, we may at
each point pij add a small line segment (of length less than ε and with pij as one
endpoint) to both Ai and Aj without creating any new intersecting pairs of sets;
this guarantees that any pair of sets that intersects will intersect in infinitely many
points.

We now start again with these modified sets Ai and choose new points pi ∈ Ai

and pij ∈ Ai∩Aj , for each j 6= i such that Ai∩Aj 6= ∅. We choose these points such
that pij = pji when these points are defined. However, we require that pij 6= pkl

http://arxiv.org/abs/1309.3795
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otherwise; that pi 6= pjk for all i, j, and k; and that pi 6= pj for i 6= j. (Note that

this is possible by the modifications above.) Once again, choose a curve Cj
i ⊆ Ai

with endpoints pi and pij . Since C
j
i ⊆ Ai, d(Ci, Cj) ≥ ε whenever Ai∩Aj = ∅, but

Ci ∩ Cj ⊇ {pij} if Ai ∩Aj 6= ∅.

For each i and for each j 6= i such that Ai ∩Aj 6= ∅, let C̃j
i be a piecewise-linear

approximation of Cj
i (with the same endpoints pi and pij , and at least two linear

segments) to within distance ε/3. (That is, for all x ∈ C̃j
i , there exists y ∈ Cj

i

such that d(x, y) < ε/3.) Furthermore, if necessary, we may randomly perturb

the endpoints of the segments in each C̃j
i (except pi and pij) such that every such

endpoint is contained in only one curve C̃j
i , pi is not contained in any C̃ℓ

k with

k 6= i, pij is contained only in C̃j
i and C̃i

j , no point outside of {pi} lies on three

curves C̃ℓ
k, and all segments have pairwise different directions. Note that our choice

of ε means that if Ai ∩ Aj = ∅, then for any k and ℓ, we have C̃k
i ∩ C̃ℓ

j = ∅.

For each i and for each j such that C̃j
i is defined, let N = N j

i denote the

number of segments in the curve C̃j
i . Let s

j
i (m) denote the mth segment in order of

increasing distance from pi. Furthermore, let pi = xj
i (0), . . . , x

j
i (N) = pij denote

the sequence of endpoints of segments in the curve C̃j
i , so that xj

i (m−1) and xj
i (m)

are the endpoints of sji (m).

For each i, for each j such that C̃j
i is defined, and for m ∈ {0, . . . , N}, let

uj
i (m) be a segment of length η centered at xj

i (m), where η < ε/6 is a small

number. If m ∈ {1, . . . , N − 1}, then we define uj
i (m) to lie on the angle-bisector

of sji (m) and sji (m + 1). We define uj
i (0) to be perpendicular to sji (1) and uj

i (N)

to be perpendicular to sji (N). For each m, let xj
i (m)+ be the right-hand endpoint

of uj
i (m) as C̃j

i is oriented from pi to pij , and let xj
i (m)− denote the left-hand

endpoint. Let T j
i (m) denote the trapezoid with vertices xj

i (m− 1)+, xj
i (m − 1)−,

xj
i (m)−, and xj

i (m)+.

For each i and for each j such that C̃j
i is defined, let Bj

i = ∪N
m=1T

j
i (m). Note

that the choices of ε and η still ensure that if Ai ∩ Aj = ∅, then for any k and ℓ,

we have Bk
i ∩ Bℓ

j = ∅. If η is small enough, then the boundary Dj
i = ∂Bj

i is a
piecewise-linear simple closed curve, and no point lies on three of these curves,
except that pi lies on Dj

i for each j such that this curve is defined; making a small
random perturbation of the segments through pi, we may assume that no point at
all lies on three of these curves, while Dj

i still intersects Dk
i for any j and k such

that these curves are defined. Note also that pij ∈ Dj
i . Furthermore, if necessary

after another random perturbation of the segments through pij , all segments have
pairwise different directions and since each string consists of finitely many segments,
all pairs of curves Dj

i have finitely many intersection points. This and the fact that
every endpoint is contained in only one such curve (if η is small enough) means
that if two curves cross, then they cross properly.

For each i, let Di =
⋃

j D
j
i , where once again the union is taken over all j for

which Bj
i is defined. Once again, Di ∩Dj 6= ∅ if and only if Ai ∩Aj 6= ∅. Each Di

is a union of polygonal curves, and Di is connected. Furthermore, viewing Di as a
graph, each vertex has degree 2 or 4, so the graph is Eulerian. Moreover, viewing an
Eulerian circuit as a directed curve, it is easy to see that the graph has an Eulerian
circuit that does not properly cross itself. Hence, making a small modification at
each point where Di intersects itself, we may replaceDi by a piecewise-linear simple
closed curve γi, without creating or destroying any other intersections.

This yields an intersection representation {γi} of G consisting of piecewise-linear
simple closed curves (as in (iv)), which furthermore satisfies the properties in the
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final part of the statement. By choosing a point qi on each γi, not on any other
of the curves, and deleting a small open interval about qi, we can replace the
closed curves γi by simple curves γ′

i as in (ii). This completes the proof that
(v) =⇒ (i),(ii),(iii),(iv).

(iv) =⇒ (viii): Let {Ai} be an intersection representation of G consisting of
piecewise-linear simple curves. Extend the first and last segments a tiny bit η past
the original endpoints. Then, similarly to the proof above, define a region Bi ⊃ Ai

as the union of small trapezoids of width at most η surrounding the segments in
Ai. Then, if η is small enough, the interiors B◦

i form an intersection representation
of G consisting of open simply connected sets. �

A similar result holds for outer-string graphs. We give one version, leaving
further variations to the reader.

Lemma A.2. Let D be a closed disk in the plane R2. The following families
of subsets of D define the same class of intersection graphs, i.e., the outer-string
graphs:

(i) curves with one endpoint in ∂D,
(ii) simple curves with one endpoint in ∂D,
(iii) piecewise-linear simple curves with one endpoint in ∂D,
(iv) pathwise-connected sets A with A ∩ ∂D 6= ∅,

Furthermore, in (i)–(iii) we may assume that both endpoints of the strings are on
the boundary ∂D, but that otherwise the strings lie in the interior D◦, and that
the intersection representation is such that such that every pair of strings intersects
finitely many times, such that no three curves cross at a single point, and such that
if two strings cross, then they cross properly.

Proof. The implications (iii) =⇒ (ii) =⇒ (i) =⇒ (iv) are trivial.
(iv) =⇒ (iii): Suppose that G has an intersection representation {Ai} with

pathwise-connected sets as in (iv), and argue as in the proof of Lemma A.1, now
choosing pi ∈ ∂D. (If necessary we may add small arcs of ∂D to the Ai in order to
get all pi distinct.) The construction above yields piecewise-linear closed curves γi
lying in the interior of a slightly larger disk D′. Let qi be the point furthest from
the center of D where the radius through pi intersects γi (such a point exists, and is
close to pi); we may then remove a small interval about qi from γi and replace it by
two line segments to the boundary ∂D′. This yields an intersection representation
as in (iii), which further satisfies the conditions in the final statement. �
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