HADWIGER'S CONJECTURE FOR ℓ-LINK GRAPHS

BIN JIA AND DAVID R. WOOD

Abstract

In this paper we define and study a new family of graphs that generalises the notions of line graphs and path graphs. Let G be a graph with no loops but possibly with parallel edges. An ℓ-link of G is a walk of G of length $\ell \geqslant 0$ in which consecutive edges are different. We identify an ℓ-link with its reverse sequence. The ℓ-link graph $\mathbb{L}_{\ell}(G)$ of G is the graph with vertices the ℓ-links of G, such that two vertices are joined by $\mu \geqslant 0$ edges in $\mathbb{L}_{\ell}(G)$ if they correspond to two subsequences of each of $\mu(\ell+1)$-links of G.

By revealing a recursive structure, we bound from above the chromatic number of ℓ-link graphs. As a corollary, for a given graph G and large enough $\ell, \mathbb{L}_{\ell}(G)$ is 3 -colourable. By investigating the shunting of ℓ-links in G, we show that the Hadwiger number of a nonempty $\mathbb{L}_{\ell}(G)$ is greater or equal to that of G. Hadwiger's conjecture states that the Hadwiger number of a graph is at least the chromatic number of that graph. The conjecture has been proved by Reed and Seymour (2004) for line graphs, and hence 1-link graphs. We prove the conjecture for a wide class of ℓ-link graphs.

Keywords. ℓ-link graph; path graph; chromatic number; graph minor; Hadwiger's conjecture.

1. Introduction and main results

We introduce a new family of graphs, called ℓ-link graphs, which generalises the notions of line graphs and path graphs. Such a graph is constructed from a certain kind of walk of length $\ell \geqslant 0$ in a given graph G. To ensure that the constructed graph is undirected, G is undirected, and we identify a walk with its reverse sequence. To avoid loops, G is loopless, and the consecutive edges in each walk are different. Such a walk is called an ℓ-link. For example, a 0 -link is a vertex, a 1-link is an edge, and a 2-link consists of two edges with an end vertex in common. An ℓ-path is an ℓ-link without repeated vertices. We use $\mathscr{L}_{\ell}(G)$ and $\mathscr{P}_{\ell}(G)$ to denote the sets of ℓ-links and ℓ-paths of G respectively. There have been a number of families of graphs constructed from ℓ-links. As one of the most commonly studied graphs, the line graph $\mathbb{L}(G)$, introduced by Whitney [22], is the simple graph with vertex set $E(G)$, in which two vertices are adjacent if their corresponding edges are incident to a common vertex. More generally,

[^0]the ℓ-path graph $\mathbb{P}_{\ell}(G)$ is the simple graph with vertex set $\mathscr{P}_{\ell}(G)$, where two vertices are adjacent if the union of their corresponding ℓ-paths forms a path or a cycle of length $\ell+1$. Note that $\mathbb{P}_{\ell}(G)$ is the $\mathbb{P}_{\ell+1^{-}}$graph of G introduced by Broersma and Hoede [4]. Inspired by these graphs, we define the ℓ-link graph $\mathbb{L}_{\ell}(G)$ of G to be the graph with vertex set $\mathscr{L}_{\ell}(G)$, in which two vertices are joined by $\mu \geqslant 0$ edges in $\mathbb{L}_{\ell}(G)$ if they correspond to two subsequences of each of $\mu(\ell+1)$-links of G. More strict definitions can be found in Section 2, together with some other related graphs.

This paper studies the structure, colouring and minors of ℓ-link graphs including a proof of Hadwiger's conjecture for a wide class of ℓ-link graphs. By default $\ell \geqslant 0$ is an integer. And all graphs are finite, undirected and loopless. Parallel edges are admitted unless we specify the graph to be simple.
1.1. Graph colouring. Let $t \geqslant 0$ be an integer. A t-colouring of G is a map $\lambda: V(G) \rightarrow[t]:=\{1,2, \ldots, t\}$ such that $\lambda(u) \neq \lambda(v)$ whenever $u, v \in V(G)$ are adjacent in G. A graph with a t-colouring is t-colourable. The chromatic number $\chi(G)$ is the minimum t such that G is t-colourable. Similarly, an t-edge-colouring of G is a map $\lambda: E(G) \rightarrow[t]$ such that $\lambda(e) \neq \lambda(f)$ whenever $e, f \in E(G)$ are incident to a common vertex in G. The edge-chromatic number $\chi^{\prime}(G)$ of G is the minimum t such that G admits a t-edge-colouring. Let $\chi_{\ell}(G):=\chi\left(\mathbb{L}_{\ell}(G)\right)$, and $\Delta(G)$ be the maximum degree of G. By [6, Proposition 5.2.2], $\chi_{0}(G)=$ $\chi(G) \leqslant \Delta(G)+1$. Shannon [17] proved that $\chi_{1}(G)=\chi^{\prime}(G) \leqslant \frac{3}{2} \Delta(G)$. We prove a recursive structure for ℓ-link graphs which leads to the following upper bounds for $\chi_{\ell}(G)$:

Theorem 1.1. Let G be a graph, $\chi:=\chi(G), \chi^{\prime}:=\chi^{\prime}(G)$, and $\Delta:=\Delta(G)$.
(1) If $\ell \geqslant 0$ is even, then $\chi_{\ell}(G) \leqslant \min \left\{\chi,\left\lfloor\left(\frac{2}{3}\right)^{\ell / 2}(\chi-3)\right\rfloor+3\right\}$.
(2) If $\ell \geqslant 1$ is odd, then $\chi_{\ell}(G) \leqslant \min \left\{\chi^{\prime},\left\lfloor\left(\frac{2}{3}\right)^{\frac{\ell-1}{2}}\left(\chi^{\prime}-3\right)\right\rfloor+3\right\}$.
(3) If $\ell \neq 1$, then $\chi_{\ell}(G) \leqslant \Delta+1$.
(4) If $\ell \geqslant 2$, then $\chi_{\ell}(G) \leqslant \chi_{\ell-2}(G)$.

Theorem 1.1 implies that $\mathbb{L}_{\ell}(G)$ is 3 -colourable for large enough ℓ.
Corollary 1.2. For each graph $G, \mathbb{L}_{\ell}(G)$ is 3-colourable in the following cases:
(1) $\ell \geqslant 0$ is even, and either $\chi(G) \leqslant 3$ or $\ell>2 \log _{1.5}(\chi(G)-3)$.
(2) $\ell \geqslant 1$ is odd, and either $\chi^{\prime}(G) \leqslant 3$ or $\ell>2 \log _{1.5}\left(\chi^{\prime}(G)-3\right)+1$.

As explained in Section 2, this corollary is related to and implies a result by Kawai and Shibata [14].
1.2. Graph minors. By contracting an edge we mean identifying its end vertices and deleting possible resulting loops. A graph H is a minor of G if H can be obtained from a subgraph of G by contracting edges. An H-minor is a minor of G that is isomorphic to H. The Hadwiger number $\eta(G)$ of G is the maximum
integer t such that G contains a K_{t}-minor. Denote by $\delta(G)$ the minimum degree of G. The degeneracy $\mathrm{d}(G)$ of G is the maximum $\delta(H)$ over the subgraphs H of G. We prove the following:

Theorem 1.3. Let $\ell \geqslant 1$, and G be a graph such that $\mathbb{L}_{\ell}(G)$ contains at least one edge. Then $\eta\left(\mathbb{L}_{\ell}(G)\right) \geqslant \max \{\eta(G), \mathrm{d}(G)\}$.

By definition $\mathbb{L}(G)$ is the underlying simple graph of $\mathbb{L}_{1}(G)$. And $\mathbb{L}_{\ell}(G)=$ $\mathbb{P}_{\ell}(G)$ if $\operatorname{girth}(G)>\{\ell, 2\}$. Thus Theorem 1.3 can be applied to path graphs.
Corollary 1.4. Let $\ell \geqslant 1$, and G be a graph of girth at least $\ell+1$ such that $\mathbb{P}_{\ell}(G)$ contains at least one edge. Then $\eta\left(\mathbb{P}_{\ell}(G)\right) \geqslant \max \{\eta(G), \mathrm{d}(G)\}$.

As a far-reaching generalisation of the four-colour theorem, in 1943, Hugo Hadwiger [9] conjectured the following:
Hadwiger's conjecture: $\eta(G) \geqslant \chi(G)$ for every graph G.
Hadwiger's conjecture was proved by Robertson, Seymour and Thomas [16] for $\chi(G) \leqslant 6$. The conjecture for line graphs, or equivalently for 1-link graphs, was proved by Reed and Seymour [15]. We prove the following:
Theorem 1.5. Hadwiger's conjecture is true for $\mathbb{L}_{\ell}(G)$ in the following cases:
(1) $\ell \geqslant 1$ and G is biconnected.
(2) $\ell \geqslant 2$ is an even integer.
(3) $\mathrm{d}(G) \geqslant 3$ and $\ell>2 \log _{1.5} \frac{\Delta(G)-2}{\mathrm{~d}(G)-2}+3$.
(4) $\Delta(G) \geqslant 3$ and $\ell>2 \log _{1.5}(\Delta(G)-2)-3.83$.
(5) $\Delta(G) \leqslant 5$.

The corresponding results for path graphs are listed below:
Corollary 1.6. Let G be a graph of girth at least $\ell+1$. Then Hadwiger's conjecture holds for $\mathbb{P}_{\ell}(G)$ in the cases of Theorem 1.5 (1) - (5).

2. Definitions and terminology

We now give some formal definitions. A graph G is null if $V(G)=\emptyset$, and nonnull otherwise. A nonnull graph G is empty if $E(G)=\emptyset$, and nonempty otherwise. A unit is a vertex or an edge. The subgraph of G induced by $V \subseteq V(G)$ is the maximal subgraph of G with vertex set V. And in this case, the subgraph is called an induced subgraph of G. For $\emptyset \neq E \subseteq E(G)$, the subgraph of G induced by $E \cup V$ is the minimal subgraph of G with edge set E, and vertex set including V.

For more accurate analysis, we need to define ℓ-arcs. An ℓ-arc (or $*$-arc if we ignore the length) of G is an alternating sequence $\vec{L}:=\left(v_{0}, e_{1}, \ldots, e_{\ell}, v_{\ell}\right)$ of units of G such that the end vertices of $e_{i} \in E(G)$ are v_{i-1} and v_{i} for $i \in[\ell]$, and that $e_{i} \neq e_{i+1}$ for $i \in[\ell-1]$. The direction of \vec{L} is its vertex sequence $\left(v_{0}, v_{1}, \ldots, v_{\ell}\right)$.

In algebraic graph theory, ℓ-arcs in simple graphs have been widely studied [18, 19, 21, 3]. Note that \vec{L} and its reverse $-\vec{L}:=\left(v_{\ell}, e_{\ell}, \ldots, e_{1}, v_{0}\right)$ are different unless $\ell=0$. The ℓ-link (or $*$-link if the length is ignored) $L:=\left[v_{0}, e_{1}, \ldots, e_{\ell}, v_{\ell}\right]$ is obtained by taking \vec{L} and $-\vec{L}$ as a single object. For $0 \leqslant i \leqslant j \leqslant \ell$, the $(j-i)$ $\operatorname{arc} \vec{L}(i, j):=\left(v_{i}, e_{i+1}, \ldots, e_{j}, v_{j}\right)$ and the $(j-i)-\operatorname{link} \vec{L}[i, j]:=\left[v_{i}, e_{i+1}, \ldots, e_{j}, v_{j}\right]$ are called segments of \vec{L} and L respectively. We may write $\vec{L}(j, i):=-\vec{L}(i, j)$, and $\vec{L}[j, i]:=\vec{L}[i, j]$. These segments are called middle segments if $i+j=\ell . L$ is called an ℓ-cycle if $\ell \geqslant 2, v_{0}=v_{\ell}$ and $\vec{L}[0, \ell-1]$ is an $(\ell-1)$-path. Denote by $\overrightarrow{\mathscr{L}}_{\ell}(G)$ and $\mathscr{C}_{\ell}(G)$ the sets of ℓ-arcs and ℓ-cycles of G respectively. Usually, $\vec{e}_{i}:=\left(v_{i-1}, e_{i}, v_{i}\right)$ is called an arc for short. In particular, $v_{0}, v_{\ell}, e_{1}, e_{\ell}, \vec{e}_{1}$ and \vec{e}_{ℓ} are called the tail vertex, head vertex, tail edge, head edge, tail arc, and head arc of \vec{L} respectively.

Godsil and Royle [8] defined the ℓ-arc graph $\mathbb{A}_{\ell}(G)$ to be the digraph with vertex set $\overrightarrow{\mathscr{L}}_{\ell}(G)$, such that there is an arc, labeled by \vec{Q}, from $\vec{Q}(0, \ell)$ to $\vec{Q}(1, \ell+1)$ in $\mathbb{A}_{\ell}(G)$ for every $\vec{Q} \in \vec{L}_{\ell+1}(G)$. The t-dipole graph D_{t} is the graph consists of two vertices and $t \geqslant 1$ edges between them. (See Figure 1(a) for D_{3}, and Figure (b) the 1-arc graph of D_{3}.) The $\ell^{\text {th }}$ iterated line digraph $\mathbb{A}^{\ell}(G)$ is $\mathbb{A}_{1}(G)$ if $\ell=1$, and $\mathbb{A}_{1}\left(\mathbb{A}^{\ell-1}(G)\right)$ if $\ell \geqslant 2$ (see [2]). Examples of undirected graphs constructed from ℓ-arcs can be found in [12, 11].

Figure 1. (a) $D_{3} \quad$ (b) $\mathbb{A}_{1}\left(D_{3}\right) \quad$ (c) $\mathbb{L}_{1}\left(D_{3}\right)$

Shunting of ℓ-arcs was introduced by Tutte [20]. We extend this motion to ℓ-links. For $\ell, s \geqslant 0$, and $\vec{Q} \in \overrightarrow{\mathscr{L}}_{\ell+s}(G)$, let $\vec{L}_{i}:=\vec{Q}(i, \ell+i)$ for $i \in[0, s]$, and $\vec{Q}_{i}:=\vec{L}(i-1, \ell+i)$ for $i \in[s]$. Let $Q^{[\ell]}:=\left[L_{0}, Q_{1}, L_{1}, \ldots, L_{s-1}, Q_{s}, L_{s}\right]$. We say L_{0} can be shunted to L_{s} through \vec{Q} or $Q . Q^{\{\ell\}}:=\left\{L_{0}, L_{1}, \ldots, L_{s}\right\}$ is the set of images during this shunting. For $L, R \in \mathscr{L}_{\ell}(G)$, we say L can be shunted to R if there are ℓ-links $L=L_{0}, L_{1}, \ldots, L_{s}=R$ such that L_{i-1} can be shunted to L_{i}
through some $*-\operatorname{arc} \vec{Q}_{i}$ for $i \in[s]$. In Figure 2, $\left[u_{0}, f_{0}, v_{0}, e_{0}, v_{1}\right]$ can be shunted to $\left[v_{1}, e_{0}, v_{0}, e_{1}, v_{1}\right]$ through $\left(u_{0}, f_{0}, v_{0}, e_{0}, v_{1}, f_{1}, u_{1}\right)$ and ($\left.u_{1}, f_{1}, v_{1}, e_{0}, v_{0}, e_{1}, v_{1}\right)$.

Figure 2. (a) G
(b) $H:=\mathbb{L}_{2}(G)$
(c) $H_{(\mathcal{V}, \mathcal{E})}$
(d) $\mathbb{P}_{2}(G)$

For $L, R \in \mathscr{L}_{\ell}(G)$ and $\mathscr{Q} \subseteq \mathscr{L}_{\ell+1}(G)$, denote by $\mathscr{Q}(L, R)$ the set of $Q \in \mathscr{Q}$ such that L can be shunted to R through Q. We show in Section 3 that $|\mathscr{Q}(L, R)|$ is 0 or 1 if G is simple, and can be up to 2 if $\ell \geqslant 1$ and G contains parallel edges. A more formal definition of ℓ-link graphs is given below:

Definition 2.1. Let $\mathscr{L} \subseteq \mathscr{L}_{\ell}(G)$, and $\mathscr{Q} \subseteq \mathscr{L}_{\ell+1}(G)$. The partial ℓ-link graph $\mathbb{L}(G, \mathscr{L}, \mathscr{Q})$ of G, with respect to \mathscr{L} and \mathscr{Q}, is the graph with vertex set \mathscr{L}, such that $L, R \in \mathscr{L}$ are joined by exactly $|\mathscr{Q}(L, R)|$ edges. In particular, $\mathbb{L}_{\ell}(G)=$ $\mathbb{L}\left(G, \mathscr{L}_{\ell}(G), \mathscr{L}_{\ell+1}(G)\right)$ is the ℓ-link graph of G.
Remark. We assign exclusively to each edge of $\mathbb{L}_{\ell}(G)$ between $L, R \in \mathscr{L}_{\ell}(G)$ a $Q \in \mathscr{L}_{\ell+1}(G)$ such that L can be shunted to R through Q, and refer to this edge simply as Q. In this sense, $Q^{[\ell]}:=[L, Q, R]$ is a 1 -link of $\mathbb{L}_{\ell}(G)$.

For example, the 1-link graph of D_{3} can be seen in Figure 1 (c). A 2-link graph is given in Figure 2(b), and a 2-path graph is depicted in Figure 2(d).

Reed and Seymour [15] pointed out that proving Hadwiger's conjecture for line graphs of multigraphs is more difficult than for that of simple graphs. This motivates us to work on the ℓ-link graphs of multigraphs. Diestel [6, page 28] explained that, in some situations, it is more natural to develop graph theory for multigraphs. The observation below follows from the definitions:
Observation 2.2. $\mathbb{L}_{0}(G)=G, \mathbb{P}_{1}(G)=\mathbb{L}(G)$, and $\mathbb{P}_{\ell}(G)$ is the underlying simple graph of $\mathbb{L}_{\ell}(G)$ for $\ell \in\{0,1\}$. For $\ell \geqslant 2, \mathbb{P}_{\ell}(G)=\mathbb{L}\left(G, \mathscr{P}_{\ell}(G), \mathscr{P}_{\ell+1}(G)\right.$ $\left.\cup \mathscr{C}_{\ell+1}(G)\right)$ is an induced subgraph of $\mathbb{L}_{\ell}(G)$. If G is simple, then $\mathbb{P}_{\ell}(G)=\mathbb{L}_{\ell}(G)$ for $\ell \in\{0,1,2\}$. Further, $\mathbb{P}_{\ell}(G)=\mathbb{L}_{\ell}(G)$ if $\operatorname{girth}(G)>\max \{\ell, 2\}$.

Let $\vec{Q} \in \overrightarrow{\mathscr{L}}_{\ell+s}(G)$, and $\left[L_{0}, Q_{1}, L_{1}, \ldots, L_{s-1}, Q_{s}, L_{s}\right]:=Q^{[\ell]}$. From Definition [2.1, for $i \in[s], Q_{i}$ is an edge of $H:=\mathbb{L}_{\ell}(G)$ between $L_{i-1}, L_{i} \in V(H)$. So $Q^{[\ell]}$ is an s-link of H. In Figure 2(b), $\left[u_{0}, f_{0}, v_{0}, e_{0}, v_{1}, e_{1}, v_{0}, e_{0}, v_{1}\right]^{[2]}=$ $\left[\left[u_{0}, f_{0}, v_{0}, e_{0}, v_{1}\right],\left[u_{0}, f_{0}, v_{0}, e_{0}, v_{1}, e_{1}, v_{0}\right],\left[v_{0}, e_{0}, v_{1}, e_{1}, v_{0}\right],\left[v_{0}, e_{0}, v_{1}, e_{1}, v_{0}, e_{0}, v_{1}\right]\right.$, [$\left.v_{1}, e_{1}, v_{0}, e_{0}, v_{1}\right]$ is a 2-path of H.

We say H is homomorphic to G, written $H \rightarrow G$, if there is an injection $\alpha: V(H) \cup E(H) \rightarrow V(G) \cup E(G)$ such that for $w \in V(H), f \in E(H)$ and $[u, e, v] \in \mathscr{L}_{1}(H)$, their images $w^{\alpha} \in V(G), f^{\alpha} \in E(G)$ and $\left[u^{\alpha}, e^{\alpha}, v^{\alpha}\right] \in \mathscr{L}_{1}(G)$. In this case, α is called a homomorphism from H to G. The definition here is a generalisation of the one for simple graphs by Godsil and Royle [8, Page 6]. A bijective homomorphism is an isomorphism. By Hell and Nešetřil 10], $\chi(H) \leqslant \chi(G)$ if $H \rightarrow G$. For instance, $\vec{L} \mapsto L$ for $\vec{L} \in \overrightarrow{\mathscr{L}}_{\ell}(G) \cup \overrightarrow{\mathscr{L}}_{\ell+1}(G)$ can be seen as a homomorphism from $\mathbb{A}_{\ell}(G)$ to $\mathbb{L}_{\ell}(G)$. By Bang-Jensen and Gutin [1], $\mathbb{A}_{\ell}(G) \cong \mathbb{A}^{\ell}(G)$. So $\chi\left(\mathbb{A}^{\ell}(G)\right)=\chi\left(\mathbb{A}_{\ell}(G)\right) \leqslant \chi\left(\mathbb{L}_{\ell}(G)\right) \leqslant \chi_{\ell}(G)$. We emphasize that $\chi\left(\mathbb{A}^{\ell}(G)\right)$ might be much less than $\chi_{\ell}(G)$. For example, as depicted in Figure 1, when $t \geqslant 3, \chi\left(\mathbb{A}^{\ell}\left(D_{t}\right)\right)=2<t=\chi_{\ell}\left(D_{t}\right)$. Kawai and Shibata proved that $\mathbb{A}^{\ell}(G)$ is 3 -colourable for large enough ℓ. By the analysis above, Corollary 1.2 implies this result.

A graph homomorphism from H is usually represented by a vertex partition \mathcal{V} and an edge partition \mathcal{E} of H such that: (a) each part of \mathcal{V} is an independent set of H, and (b) each part of \mathcal{E} is incident to exactly two parts of \mathcal{V}. In this situation, for different $U, V \in \mathcal{V}$, define $\mu(U, V)$ to be the number of parts of \mathcal{E} incident to both U and V. The quotient graph $H_{(\mathcal{V}, \mathcal{E})}$ of H is defined to be the graph with vertex set \mathcal{V}, and for every pair of different $U, V \in \mathcal{V}$, there are exactly $\mu(U, V)$ edges between them. To avoid ambiguity, for $V \in \mathcal{V}$ and $E \in \mathcal{E}$, we use $V_{\mathcal{V}}$ and $E_{\mathcal{E}}$ to denote the corresponding vertex and edge of $H_{(\mathcal{V}, \mathcal{E})}$, which defines a graph homomorphism from H to $H_{(\mathcal{V}, \mathcal{E})}$. Sometimes, we only need the underlying simple graph $H_{\mathcal{V}}$ of $H_{(\mathcal{V}, \mathcal{E})}$.

For $\ell \geqslant 2$, there is a natural partition in an ℓ-link graph. For each $R \in$ $\mathscr{L}_{\ell-2}(G)$, let $\mathscr{L}_{\ell}(R)$ be the set of ℓ-links of G with middle segment R. Clearly, $\mathcal{V}_{\ell}(G):=\left\{\mathscr{L}_{\ell}(R) \neq \emptyset \mid R \in \mathscr{L}_{\ell-2}(G)\right\}$ is a vertex partition of $\mathbb{L}_{\ell}(G)$. And $\mathcal{E}_{\ell}(G):=\left\{\mathscr{L}_{\ell+1}(P) \neq \emptyset \mid P \in \mathscr{L}_{\ell-1}(G)\right\}$ is an edge partition of $\mathbb{L}_{\ell}(G)$. Consider the 2-link graph H in Figure 2(b). The vertex and edge partitions of H are indicated by the dotted rectangles and ellipses respectively. The corresponding quotient graph is given in Figure 2(c).

Special partitions are required to describe the structure of ℓ-link graphs. Let H be a graph admitting partitions \mathcal{V} of $V(H)$ and \mathcal{E} of $E(H)$ that satisfy (a) and (b) above. $(\mathcal{V}, \mathcal{E})$ is called an almost standard partition of H if further:
(c) each part of \mathcal{E} induces a complete bipartite subgraph of H,
(d) each vertex of H is incident to at most two parts of \mathcal{E},
(e) for each $V \in \mathcal{V}$, and different $E, F \in \mathcal{E}, V$ contains at most one vertex incident to both E and F.

If $\ell \geqslant 2$ is an even integer, and G is a simple graph, then $\mathbb{L}_{\ell}(G)$ is isomorphic to the $(2, \ell / 2)$-double star graph of G introduced by Jia [11]. While this paper focuses on the combinatorial properties including connectedness, colouring and minors of $\mathbb{L}_{\ell}(G)$, a series of companion papers have been composed to contribute to the recognition and determination problems and algorithms. For example, a joint work by Ellingham and Jia [7] shows that, for a given graph H, there is at most one pair (G, ℓ), where $\ell \geqslant 2$, and G is a simple graph of minimum degree at least 3, such that $\mathbb{L}_{\ell}(G)$ is isomorphic to H. Moreover, such a pair can be determined from H in linear time.

3. General structure of ℓ-Link graphs

We begin by determining some basic properties of ℓ-link graphs, including their multiplicity and connectedness. The work in this section forms the basis for our main results on colouring and minors of ℓ-link graphs.

Let us first fix some concepts by two observations.
Observation 3.1. The number of edges of $\mathbb{L}_{\ell}(G)$ is equal to the number of vertices of $\mathbb{L}_{\ell+1}(G)$. In particular, if G is r-regular for some $r \geqslant 2$, then this number is $|E(G)|(r-1)^{\ell}$. If further $\ell \geqslant 1$, then $\mathbb{L}_{\ell}(G)$ is $2(r-1)$-regular.
Proof. Let G be r-regular, $n:=|V(G)|$ and $m:=|E(G)|$. We prove that $\left|\mathscr{L}_{\ell+1}(G)\right|=m(r-1)^{\ell}$ by induction on ℓ. It is trivial for $\ell=0$. For $\ell=1$, $\left|\mathscr{L}_{2}(v)\right|=\binom{r}{2}$, and hence $\left|\mathscr{L}_{2}(G)\right|=\binom{r}{2} n=m(r-1)$. Inductively assume $\left|\mathscr{L}_{\ell-1}(G)\right|=m(r-1)^{\ell-2}$ for some $\ell \geqslant 2$. For each $R \in \mathscr{L}_{\ell-1}(G)$, we have $\left|\mathscr{L}_{\ell+1}(R)\right|=(r-1)^{2}$ since $r \geqslant 2$. Thus $\left|\mathscr{L}_{\ell+1}(G)\right|=\left|\mathscr{L}_{\ell-1}(G)\right|(r-1)^{2}=$ $m(r-1)^{\ell}$ as desired. The other assertions follow from the definitions.

Observation 3.2. Let $n, m \geqslant 2$. If $\ell \geqslant 1$ is odd, then $\mathbb{L}_{\ell}\left(K_{n, m}\right)$ is $(n+m-2)$ regular with order $n m[(n-1)(m-1)]^{\frac{\ell-1}{2}}$. If $\ell \geqslant 2$ is even, then $\mathbb{L}_{\ell}\left(K_{n, m}\right)$ has average degree $\frac{4(n-1)(m-1)}{n+m-2}$, and order $\frac{1}{2} n m(n+m-2)[(n-1)(m-1)]^{\frac{\ell}{2}-1}$.
Proof. Let $\ell \geqslant 1$ be odd, and L be an ℓ-link of $K_{n, m}$ with middle edge incident to a vertex u of degree n in $K_{n, m}$. It is not difficult to see that L can be shunted in one step to $n-1 \ell$-links whose middle edge is incident to u. By symmetry, each vertex of $\mathbb{L}_{\ell}\left(K_{n, m}\right)$ is incident to $(n-1)+(m-1)=n+m-2$ edges. Now we prove $\left|\mathscr{L}_{\ell}\left(K_{n, m}\right)\right|=n m[(n-1)(m-1)]^{\frac{\ell-1}{2}}$ by induction on ℓ. Clearly, $\left|\mathscr{L}_{1}\left(K_{n, m}\right)\right|=$ $\left|E\left(K_{n, m}\right)\right|=n m$. Inductively assume $\left|\mathscr{L}_{\ell-2}\left(K_{n, m}\right)\right|=n m[(n-1)(m-1)]^{\frac{\ell-3}{2}}$ for some $\ell \geqslant 3$. For each $R \in \mathscr{L}_{\ell-2}\left(K_{n, m}\right)$, we have $\left|\mathscr{L}_{\ell}(R)\right|=(n-1)(m-1)$. So $\left|\mathscr{L}_{\ell}\left(K_{n, m}\right)\right|=\left|\mathscr{L}_{\ell-2}\left(K_{n, m}\right)\right|(n-1)(m-1)=n m[(n-1)(m-1)]^{\frac{\ell-1}{2}}$ as desired. The even ℓ case is similar.
3.1. Loops and multiplicity. Our next observation is a prerequisite for the study of the chromatic number since it indicates that ℓ-link graphs are loopless.

Observation 3.3. For each $(\ell+1)$-arc \vec{Q}, we have $\vec{Q}[0, \ell] \neq \vec{Q}[1, \ell+1]$.
Proof. Let G be a graph, and $\vec{Q}:=\left(v_{0}, e_{1}, \ldots, e_{\ell+1}, v_{\ell+1}\right) \in \overrightarrow{\mathscr{L}}_{\ell+1}(G)$. Since G is loopless, $v_{0} \neq v_{1}$ and hence $\vec{Q}(0, \ell) \neq \vec{Q}(1, \ell+1)$. So the statement holds for $\ell=0$. Now let $\ell \geqslant 1$. Suppose for a contradiction that $\vec{Q}(0, \ell)=-\vec{Q}(1, \ell+1)$. Then $v_{i}=v_{\ell+1-i}$ and $e_{i+1}=e_{\ell+1-i}$ for $i \in\{0,1, \ldots, \ell\}$. If $\ell=2 s$ for some integer $s \geqslant 1$, then $v_{s}=v_{s+1}$, contradicting that G is loopless. If $\ell=2 s+1$ for some $s \geqslant 0$, then $e_{s+1}=e_{s+2}$, contradicting the definition of a $*$-arc.

The following statement indicates that, for each $\ell \geqslant 1, \mathbb{L}_{\ell}(G)$ is simple if G is simple, and has multiplicity exactly 2 otherwise.

Observation 3.4. Let G be a graph, $\ell \geqslant 1$, and $L_{0}, L_{1} \in \mathscr{L}_{\ell}(G)$. Then L_{0} can be shunted to L_{1} through two $(\ell+1)$-links of G if and only if G contains a 2 -cycle $O:=\left[v_{0}, e_{0}, v_{1}, e_{1}, v_{0}\right]$, such that one of the following cases holds:
(1) $\ell \geqslant 1$ is odd, and $L_{i}=\left[v_{i}, e_{i}, v_{1-i}, e_{1-i}, \ldots, v_{i}, e_{i}, v_{1-i}\right] \in \mathscr{L}_{\ell}(O)$ for $i \in\{0,1\}$. In this case, $\left[v_{i}, e_{i}, v_{1-i}, e_{1-i}, \ldots, v_{1-i}, e_{1-i}, v_{i}\right] \in \mathscr{L}_{\ell+1}(O)$, for $i \in\{0,1\}$, are the only two $(\ell+1)$-links available for the shunting.
(2) $\ell \geqslant 2$ is even, and $L_{i}=\left[v_{i}, e_{i}, v_{1-i}, e_{1-i}, \ldots, v_{1-i}, e_{1-i}, v_{i}\right] \in \mathscr{L}_{\ell}(O)$ for $i \in\{0,1\}$. In this case, $\left[v_{i}, e_{i}, v_{1-i}, e_{1-i}, \ldots, v_{i}, e_{i}, v_{1-i}\right] \in \mathscr{L}_{\ell+1}(O)$, for $i \in\{0,1\}$, are the only two $(\ell+1)$-links available for the shunting.

Proof. (\Leftarrow) is trivial. For (\Rightarrow), since L_{0} can be shunted to L_{1}, there exists $\vec{L}:=\left(v_{0}, e_{0}, v_{1}, \ldots, v_{\ell}, e_{\ell}, v_{\ell+1}\right) \in \overrightarrow{\mathscr{L}}_{\ell+1}(G)$ such that $L_{i}=\vec{L}[i, \ell+i]$ for $i \in\{0,1\}$. Let $\vec{R} \in \overrightarrow{\mathscr{L}}_{\ell+1}(G) \backslash\{\vec{L}\}$ such that $L_{i}=\vec{R}[i, \ell+i]$. Then $\vec{L}(i, \ell+i)$ equals $\vec{R}(i, \ell+i)$ or $\vec{R}(\ell+i, i)$. Suppose for a contradiction that $\vec{L}(0, \ell)=\vec{R}(0, \ell)$. Then $\vec{L}(1, \ell)=$ $\vec{R}(1, \ell)$. Since $\vec{L} \neq \vec{R}$, we have $\vec{L}(1, \ell+1) \neq \vec{R}(1, \ell+1)$. Thus $\vec{L}(1, \ell+1)=$ $\vec{R}(\ell+1,1)$, and hence $\vec{L}(2, \ell+1)=\vec{R}(\ell, 1)=\vec{L}(\ell, 1)$, contradicting Observation 3.3. So $\vec{L}(0, \ell)=\vec{R}(\ell, 0)$. Similarly, $\vec{L}(1, \ell)=\vec{R}(\ell+1,1)$. Consequently, $\vec{L}(0, \ell-1)=\vec{R}(\ell, 1)=\vec{L}(2, \ell+1)$; that is, $v_{j}=v_{0}$ and $e_{j}=e_{0}$ if $j \in[0, \ell]$ is even, while $v_{j}=v_{1}$ and $e_{j}=e_{1}$ if $j \in[0, \ell+1]$ is odd.
3.2. Connectedness. This subsection characterises when $\mathbb{L}_{\ell}(G)$ is connected. A middle segment of $L \in \mathscr{L}_{\ell}(G)$ is a middle unit, written c_{L}, if it is a unit of G. Note that c_{L} is a vertex if ℓ is even, and is an edge otherwise. Denote by $G(\ell)$ the subgraph of G induced by the middle units of ℓ-links of G.

The lemma below is important in dealing with the connectedness of ℓ-link graphs. Before stating it, we define a conjunction operation, which is an extension of an operation by Biggs [3, Chapter 17]. Let $\vec{L}:=\left(v_{0}, e_{1}, v_{1}, \ldots, e_{\ell}, v_{\ell}\right) \in$ $\overrightarrow{\mathscr{L}}_{\ell}(G)$ and $\vec{R}:=\left(u_{0}, f_{1}, u_{1}, \ldots, f_{s}, u_{s}\right) \in \overrightarrow{\mathscr{L}}_{s}(G)$ such that $v_{\ell}=u_{0}$ and $e_{\ell} \neq f_{1}$.

The conjunction of \vec{L} and \vec{R} is $(\vec{L} \cdot \vec{R}):=\left(v_{0}, e_{1}, \ldots, e_{\ell}, v_{\ell}=u_{0}, f_{1}, \ldots, f_{s}, u_{s}\right) \in$ $\overrightarrow{\mathscr{L}}_{\ell+s}(G)$ or $[\vec{L} . \vec{R}]:=\left[v_{0}, e_{1}, \ldots, e_{\ell}, v_{\ell}=u_{0}, f_{1}, \ldots, f_{s}, u_{s}\right] \in \mathscr{L}_{\ell+s}(G)$.

Lemma 3.5. Let $\ell, s \geqslant 0$, and G be a connected graph. Then $G(\ell)$ is connected. And each s-link of $G(\ell)$ is a middle segment of a $\left(2\left\lfloor\frac{\ell}{2}\right\rfloor+s\right)$-link of G. Moreover, for ℓ-links L and R of G, there is an ℓ-link L^{\prime} with middle unit c_{L}, and an ℓ-link R^{\prime} with middle unit c_{R}, such that L^{\prime} can be shunted to R^{\prime}.

Proof. For $\ell \in\{0,1\}$, since G is connected, $G(\ell)=G$ and the lemma holds. Let $\ell:=2 m \geqslant 2$ be even. $u, v \in V(G(\ell))$ if and only if they are middle vertices of some $\vec{L}, \vec{R} \in \overrightarrow{\mathscr{L}}_{\ell}(G)$ respectively. Since G is connected, there exists some $\vec{P} \in \overrightarrow{\mathscr{L}}_{s}(G)$ from $\left(u, e, u_{1}\right)$ to $\left(v_{s-1}, f, v\right)$. By Observation 3.3, $\vec{L}[m-$ $1, m] \neq \vec{L}[m, m+1]$. For such an s-arc \vec{P}, without loss of generality, $e \neq$ $\vec{L}[m-1, m]$, and similarly, $f \neq \vec{R}[m, m+1]$. Then \vec{P} is a middle segment of $\vec{Q}:=(\vec{L}(0, m) \cdot \vec{P} \cdot \vec{R}(m, 2 m)) \in \overrightarrow{\mathscr{L}}_{\ell+s}(G)$. So $\vec{P} \in \overrightarrow{\mathscr{L}}_{s}(G(\ell))$. And $L^{\prime}:=\vec{Q}[0, \ell]$ can be shunted to $R^{\prime}:=\vec{Q}[s, \ell+s]$ through \vec{Q}. The odd ℓ case is similar.

Sufficient conditions for $\mathbb{A}_{\ell}(G)$ to be strongly connected can be found in [8, Page 76]. The following corollary of Lemma [3.5 reveals a strong relationship between the shunting of ℓ-links and the connectedness of ℓ-link graphs.

Corollary 3.6. For a connected graph $G, \mathbb{L}_{\ell}(G)$ is connected if and only if any two ℓ-links of G with the same middle unit can be shunted to each other.

We now present our main result of this section, which plays a key role in dealing with the graph minors of ℓ-link graphs in Section 5.

Lemma 3.7. Let G be a graph, and X be a connected subgraph of $G(\ell)$. Then for every pair of ℓ-links L and R of X, L can be shunted to R under the restriction that in each step, the middle unit of the image of L belongs to X.

Proof. First we consider the case that c_{L} is in R. Then there is a common segment Q of L and R of maximum length containing c_{L}. Without loss of generality, assign directions to L and R such that $\vec{L}=\left(\vec{L}_{0} \cdot \vec{Q} \cdot \vec{L}_{1}\right)$ and $\vec{R}=$ $\left(\vec{R}_{1} \cdot \vec{Q} \cdot \vec{R}_{0}\right)$, where $\vec{L}_{i} \in \overrightarrow{\mathscr{L}}_{\ell_{i}}(X)$ and $\vec{R}_{i} \in \overrightarrow{\mathscr{L}}_{s_{i}}(X)$ for $i \in\{0,1\}$ such that $s_{1} \geqslant s_{0}$. Then $\ell \geqslant \ell_{0}+\ell_{1}=s_{0}+s_{1} \geqslant s_{1}$. Let x be the head vertex and e be the head edge of \vec{L}. Since c_{L} is in $Q, \ell_{0} \leqslant \ell / 2$. Since X is a subgraph of $G(\ell)$, by Lemma [3.5, there exists $\vec{L}_{2} \in \overrightarrow{\mathscr{L}}_{\ell_{0}}(G)$ with tail vertex x and tail edge different from e. Let y be the tail vertex and f be the tail edge of \vec{R}. Then there exits $\vec{R}_{2} \in \overrightarrow{\mathscr{L}}_{s_{0}}(G)$ with head vertex y and head edge different from f. We can shunt L to R first through $\left(\vec{L} \cdot \vec{L}_{2}\right) \in \overrightarrow{\mathscr{L}}_{\ell+\ell_{0}}(G)$, then $-\left(\vec{R}_{2} \cdot \vec{R}_{1} \cdot \vec{Q} \cdot \vec{L}_{1} \cdot \vec{L}_{2}\right) \in \overrightarrow{\mathscr{L}}_{\ell+\ell_{0}+\ell_{1}}(G)$, and finally $\left(\vec{R}_{2} \cdot \vec{R}\right) \in \overrightarrow{\mathscr{L}}_{\ell+s_{0}}(G)$. Since $\ell_{0} \leqslant \ell / 2$ and $s_{0} \leqslant s_{1} \leqslant \ell / 2$, the middle unit of each image is inside L or R.

Secondly, we consider the case that c_{L} is not in R. Then there exists a segment Q of L of maximum length that contains c_{L}, and is edge-disjoint with R. Since X is connected, there exists a shortest $*$-arc \vec{P} from a vertex v of R to a vertex u of L. Then P is edge-disjoint with Q because of its minimality. Without loss of generality, assign directions to L and R such that u separates \vec{L} into $\left(\vec{L}_{0} \cdot \vec{L}_{1}\right)$ with c_{L} on L_{1}, and v separates \vec{R} into $\left(\vec{R}_{1} \cdot \vec{R}_{0}\right)$, where L_{i} is of length ℓ_{i} while R_{i} is of length s_{i} for $i \in\{0,1\}$, such that $s_{1} \geqslant s_{0}$. Then $\ell_{0}, s_{0} \leqslant \ell / 2$. Let x be the head vertex and e be the head edge of \vec{L}. Since $\ell_{0} \leqslant \ell / 2$ and X is a subgraph of $G(\ell)$, by Lemma 3.5, there exists an $\ell_{0}-\operatorname{arc} \vec{L}_{2}$ of G with tail vertex x and tail edge different from e. Let y be the tail vertex and f be the tail edge of \vec{R}. Then there exits an s_{0}-arc \vec{R}_{2} of G with head vertex y and head edge different from f. Now we can shunt L to R through $\left(\vec{L} \cdot \vec{L}_{2}\right),-\left(\vec{R}_{2} \cdot \vec{R}_{1} \cdot \vec{P} \cdot \vec{L}_{1} \cdot \vec{L}_{2}\right)$ and $\left(\vec{R}_{2} \cdot \vec{R}\right)$ consecutively. One can check that in this process the middle unit of each image belongs to L, P or R.

From Lemma 3.7, the set of ℓ-links of a connected $G(\ell)$ serves as a 'hub' in the shunting of ℓ-links of G. More explicitly, for $L, R \in \mathscr{L}_{\ell}(G)$, if we can shunt L to $L^{\prime} \in \mathscr{L}_{\ell}(G(\ell))$, and R to $R^{\prime} \in \mathscr{L}_{\ell}(G(\ell))$, then L can be shunted to R since L^{\prime} can be shunted to R^{\prime}. Thus we have the following corollary which provides a more efficient way to test the connectedness of ℓ-link graphs.

Corollary 3.8. Let G be a graph. Then $\mathbb{L}_{\ell}(G)$ is connected if and only if $G(\ell)$ is connected, and each ℓ-link of G can be shunted to an ℓ-link of $G(\ell)$.

4. Chromatic number of ℓ-Link graphs

In this section, we reveal a recursive structure of ℓ-link graphs, which leads to an upper bound for the chromatic number of ℓ-link graphs.

Lemma 4.1. Let G be a graph and $\ell \geqslant 2$ be an integer. Then $(\mathcal{V}, \mathcal{E}):=$ $\left(\mathcal{V}_{\ell}(G), \mathcal{E}_{\ell}(G)\right)$ is an almost standard partition of $H:=\mathbb{L}_{\ell}(G)$. Further, $H_{(\mathcal{V}, \mathcal{E})}$ is isomorphic to an induced subgraph of $\mathbb{L}_{\ell-2}(G)$.

Proof. First we verify that $(\mathcal{V}, \mathcal{E})$ is an almost standard partition of H.
(a) We prove that, for each $R \in \mathscr{L}_{\ell-2}(G), V:=\mathscr{L}_{\ell}(R) \in \mathcal{V}$ is an independent set of H. Suppose not. Then there are $\vec{L}, \vec{L}^{\prime} \in \overrightarrow{\mathscr{L}}_{\ell}(G)$ such that $L, L^{\prime} \in V$, and L can be shunted to L^{\prime} in one step. Then $R=\vec{L}[1, \ell-1]$ can be shunted to $R=\vec{L}^{\prime}[1, \ell-1]$ in one step, contradicting Observation 3.3,
(b) Here we show that each $E \in \mathcal{E}$ is incident to exactly two parts of \mathcal{V}. By definition there exists $P \in \mathscr{L}_{\ell-1}(G)$ with $\mathscr{L}_{\ell+1}(P)=E$. Let $\{L, R\}:=P^{\{\ell-2\}}$. Then $\mathscr{L}_{\ell}(L)$ and $\mathscr{L}_{\ell}(R)$ are the only two parts of \mathcal{V} incident to E.
(c) We explain that each $E \in \mathcal{E}$ is the edge set of a complete bipartite subgraph of H. By definition there exists $\vec{P} \in \overrightarrow{\mathscr{L}}_{\ell-1}(G)$ with $\mathscr{L}_{\ell+1}(P)=E$.

Let $A:=\left\{[\vec{e} . \vec{P}] \in \mathscr{L}_{\ell}(G)\right\}$ and $B:=\left\{[\vec{P} . \vec{f}] \in \mathscr{L}_{\ell}(G)\right\}$. One can check that E induces a complete bipartite subgraph of H with bipartition $A \cup B$.
(d) We prove that each $v \in V(H)$ is incident to at most two parts of \mathcal{E}. By definition there exists $Q \in \mathscr{L}_{\ell}(G)$ with $Q=v$. Then the set of edge parts of \mathcal{E} incident to v is $\left\{\mathscr{L}_{\ell+1}(L) \neq \emptyset \mid L \in Q^{\{\ell-1\}}\right\}$ with cardinality at most 2 .
(e) Let v be a vertex of $V \in \mathcal{V}$ incident to different $E, F \in \mathcal{E}$. We explain that v is uniquely determined by V, E and F. By definition there exists $\vec{P} \in$ $\overrightarrow{\mathscr{L}}_{\ell-2}(G)$ such that $V=\mathscr{L}_{\ell}(P)$. There also exists $Q:=\left[\vec{e}_{1} \cdot \vec{P} \cdot \vec{e}_{\ell}\right] \in \mathscr{L}_{\ell}(P)$ such that $v=Q$. Besides, there are $L, R \in \mathscr{L}_{\ell-1}(G)$ such that $E=\mathscr{L}_{\ell+1}(L)$ and $F=\mathscr{L}_{\ell+1}(R)$. Then $\{L, R\}=Q^{\{\ell-1\}}$ since $L \neq R$. Note that Q is uniquely determined by $Q^{\{\ell-1\}}$ and $c_{Q}=c_{P}$. Thus it is uniquely determined by $E=\mathscr{L}_{\ell+1}(L), F=\mathscr{L}_{\ell+1}(R)$ and $V=\mathscr{L}_{\ell}(P)$.

Now we show that $H_{(\mathcal{V}, \mathcal{E})}$ is isomorphic to an induced subgraph of $\mathbb{L}_{\ell-2}(G)$. Let X be the subgraph of $\mathbb{L}_{\ell-2}(G)$ of vertices $L \in \mathscr{L}_{\ell-2}(G)$ such that $\mathscr{L}_{\ell}(L) \neq \emptyset$, and edges $Q \in \mathscr{L}_{\ell-1}(G)$ such that $\mathscr{L}_{\ell+1}(Q) \neq \emptyset$. One can check that X is an induced subgraph of $\mathbb{L}_{\ell-2}(G)$. An isomorphism from $H_{(\mathcal{V}, \mathcal{E})}$ to X can be defined as the injection sending $\mathscr{L}_{\ell}(L) \neq \emptyset$ to L, and $\mathscr{L}_{\ell+1}(Q) \neq \emptyset$ to Q.

Below we give an interesting algorithm for colouring a class of graphs.
Lemma 4.2. Let H be a graph with a t-colouring such that each vertex of H is adjacent to at most $r \geqslant 0$ differently coloured vertices. Then $\chi(H) \leqslant\left\lfloor\frac{t r}{r+1}\right\rfloor+1$.

Proof. The result is trivial for $t=0$ since, in this case, $\chi(H)=0$. If $r+1 \geqslant$ $t \geqslant 1$, then $\left\lfloor\frac{t r}{r+1}\right\rfloor+1=t$, and the lemma holds since $t \geqslant \chi(H)$.

Now assume $t \geqslant r+2 \geqslant 2$. Let $U_{1}, U_{2}, \ldots, U_{t}$ be the colour classes of the given colouring. For $i \in[t]$, denote by i the colour assigned to vertices in U_{i}. Run the following algorithm: For $j=1, \ldots, t$, and for each $u \in U_{t-j+1}$, let $s \in[t]$ be the minimum integer that is not the colour of a neighbour of u in H; if $s<t-j+1$, then recolour u by s.

In the algorithm above, denote by C_{i} the set of colours used by the vertices in U_{i} for $i \in[t]$. Let $k:=\left\lfloor\frac{t-1}{r+1}\right\rfloor$. Then $t-1 \geqslant k(r+1) \geqslant k \geqslant 1$. We claim that after $j \in[0, k]$ steps, $C_{t-i+1} \subseteq[i r+1]$ for $i \in[j]$, and $C_{i}=\{i\}$ for $i \in[t-j]$. This is trivial for $j=0$. Inductively assume it holds for some $j \in[0, k-1]$. In the $(j+1)^{t h}$ step, we change the colour of each $u \in U_{t-j}$ from $t-j$ to the minimum $s \in[t]$ that is not used by the neighbourhood of u. It is enough to show that $s \leqslant(j+1) r+1$.

First suppose that all neighbours of u are in $\bigcup_{i \in[t-j-1]} U_{i}$. By the analysis above, $t-j-1 \geqslant t-k \geqslant k r+1 \geqslant r+1$. So at least one part of $\mathcal{S}:=$ $\left\{U_{i} \mid i \in[t-j-1]\right\}$ contains no neighbour of u. From the induction hypothesis, $C_{i}=\{i\}$ for $i \in[t-j-1]$. Hence at least one colour in $[r+1]$ is not used by the neighbourhood of u; that is, $s \leqslant r+1 \leqslant(j+1) r+1$.

Now suppose that u has at least one neighbour in $\bigcup_{i \in[t-j+1, t]} U_{i}$. By the induction hypothesis, $\bigcup_{i \in[t-j+1, t]} C_{i} \subseteq[j r+1]$. At the same time, u has neighbours in at most $r-1$ parts of \mathcal{S}. So the colours possessed by the neighbourhood of u are contained in $[j r+1+r-1]=[(j+1) r]$. Thus $s \leqslant(j+1) r+1$. This proves our claim.

The claim above indicates that, after the $k^{t h}$ step, $C_{t-i+1} \subseteq[i r+1]$ for $i \in[k]$, and $C_{i}=\{i\}$ for $i \in[t-k]$. Hence we have a $(t-k)$-colouring of H since $t-k \geqslant k r+1$. Therefore, $\chi(H) \leqslant t-k=\left\lceil\frac{t r+1}{r+1}\right\rceil=\left\lfloor\frac{t r}{r+1}\right\rfloor+1$.

Lemma 4.1 indicates that $\mathbb{L}_{\ell}(G)$ is homomorphic to $\mathbb{L}_{\ell-2}(G)$ for $\ell \geqslant 2$. So by [5, Proposition 1.1], $\chi_{\ell}(G) \leqslant \chi_{\ell-2}(G)$. By Lemma 4.1, every vertex of $\mathbb{L}_{\ell}(G)$ has neighbours in at most two parts of $\mathcal{V}_{\ell}(G)$, which enables us to improve the upper bound on $\chi_{\ell}(G)$.

Lemma 4.3. Let G be a graph, and $\ell \geqslant 2$. Then $\chi_{\ell}(G) \leqslant\left\lfloor\frac{2}{3} \chi_{\ell-2}(G)\right\rfloor+1$.
Proof. By Lemma 4.1, $(\mathcal{V}, \mathcal{E}):=\left(\mathcal{V}_{\ell}(G), \mathcal{E}_{\ell}(G)\right)$ is an almost standard partition of $H:=\mathbb{L}_{\ell}(G)$. So each vertex of H has neighbours in at most two parts of \mathcal{V}. Further, $H_{\mathcal{V}}$ is a subgraph of $\mathbb{L}_{\ell-2}(G)$. So $\chi_{\ell}(G) \leqslant \chi:=\chi\left(H_{\mathcal{V}}\right) \leqslant \chi_{\ell-2}(G)$.

We now construct a χ-colouring of H such that each vertex of H is adjacent to at most two differently coloured vertices. By definition $H_{\mathcal{V}}$ admits a χ colouring with colour classes K_{1}, \ldots, K_{χ}. For $i \in[\chi]$, assign the colour i to each vertex of H in $U_{i}:=\bigcup_{V_{\nu} \in K_{i}} V$. One can check that this is a desired colouring. In Lemma 4.3, letting $t=\chi$ and $r=2$ yields that $\chi_{\ell}(G) \leqslant\left\lfloor\frac{2}{3} \chi\right\rfloor+1$. Recall that $\chi \leqslant \chi_{\ell-2}(G)$. Thus the lemma follows.

As shown below, Lemma 4.3 can be applied recursively to produce an upper bound for $\chi_{\ell}(G)$ in terms of $\chi(G)$ or $\chi^{\prime}(G)$.

Proof of Theorem 1.1. When $\ell \in\{0,1\}$, it is trivial for (1)(2) and (4). By [6, Proposition 5.2.2], $\chi_{0}=\chi \leqslant \Delta+1$. So (3) holds. Now let $\ell \geqslant 2$. By Lemma 4.1, $H:=\mathbb{L}_{\ell}(G)$ admits an almost standard partition $(\mathcal{V}, \mathcal{E}):=\left(\mathcal{V}_{\ell}(G), \mathcal{E}_{\ell}(G)\right)$, such that $H_{(\mathcal{V}, \mathcal{E})}$ is an induced subgraph of $\mathbb{L}_{\ell-2}(G)$. By definition each part of \mathcal{V} is an independent set of H. So $H \rightarrow \mathbb{L}_{\ell-2}(G)$, and $\chi_{\ell} \leqslant \chi_{\ell-2}$. This proves (4). Moreover, each vertex of H has neighbours in at most two parts of \mathcal{V}. By Lemma4.3, $\chi_{\ell}:=\chi_{\ell}(G) \leqslant \frac{2 \chi_{\ell-2}}{3}+1$. Continue the analysis, we have $\chi_{\ell} \leqslant \chi_{\ell-2 i}$, and $\chi_{\ell}-3 \leqslant\left(\frac{2}{3}\right)^{i}\left(\chi_{\ell-2 i}-3\right)$ for $1 \leqslant i \leqslant\lfloor\ell / 2\rfloor$. Therefore, if ℓ is even, then $\chi_{\ell} \leqslant \chi_{0}=\chi \leqslant \Delta+1$, and $\chi_{\ell}-3 \leqslant\left(\frac{2}{3}\right)^{\ell / 2}(\chi-3)$. Thus (1) holds. Now let $\ell \geqslant 3$ be odd. Then $\chi_{\ell} \leqslant \chi_{1}=\chi^{\prime}$, and $\chi_{\ell}-3 \leqslant\left(\frac{2}{3}\right)^{\frac{\ell-1}{2}}\left(\chi^{\prime}-3\right)$. This verifies (2). As a consequence, $\chi_{\ell} \leqslant \chi_{3} \leqslant \frac{2}{3}\left(\chi^{\prime}-3\right)+3=\frac{2}{3} \chi^{\prime}+1$. By Shannon [17, $\chi^{\prime} \leqslant \frac{3}{2} \Delta$. So $\chi_{\ell} \leqslant \Delta+1$, and hence (3) holds.

The following corollary of Theorem 1.1 implies that Hadwiger's conjecture is true for $\mathbb{L}_{\ell}(G)$ if G is regular and $\ell \geqslant 4$.

Corollary 4.4. Let G be a graph with $\Delta:=\Delta(G) \geqslant 3$. Then $\chi_{\ell}(G) \leqslant 3$ for all $\ell>2 \log _{1.5}(\Delta-2)+3$. Further, Hadwiger's conjecture holds for $\mathbb{L}_{\ell}(G)$ if $\ell>2 \log _{1.5}(\Delta-2)-3.83$, or $\mathrm{d}:=\mathrm{d}(G) \geqslant 3$ and $\ell>2 \log _{1.5} \frac{\Delta-2}{\mathrm{~d}-2}+3$.

Proof. By Theorem 1.1, for each $t \geqslant 3$, $\chi_{\ell}:=\chi_{\ell}(G) \leqslant t$ if $\left(\frac{2}{3}\right)^{\ell / 2}(\Delta-2)<t-2$ and $\left(\frac{2}{3}\right)^{\frac{\ell-1}{2}}\left(\frac{3}{2} \Delta-3\right)<t-2$. Solving these inequalities gives $\ell>2 \log _{1.5}(\Delta-2)-$ $2 \log _{1.5}(t-2)+3$. Thus $\chi_{\ell} \leqslant 3$ if $\ell>2 \log _{1.5}(\Delta-2)+3$. So the first statement holds. By Robertson et al. [16] and Theorem [1.3, Hadwiger's conjecture holds for $\mathbb{L}_{\ell}(G)$ if $\ell \geqslant 1$ and $\chi_{\ell} \leqslant \max \{6, \mathrm{~d}\}$. Letting $t=6$ gives that $\ell>2 \log _{1.5}(\Delta-$ 2) $-4 \log _{1.5} 2+3$. Letting $t=\mathrm{d} \geqslant 3$ gives that $\ell>2 \log _{1.5} \frac{\Delta-2}{\mathrm{~d}-2}+3$. So the corollary holds since $4 \log _{1.5} 2-3>3.83$.
Proof of Theorem 1.5(3)(4)(5). (3) and (4) follow from Corollary 4.4. Now consider (5). By Reed and Seymour [15], Hadwiger's conjecture holds for $\mathbb{L}_{1}(G)$. If $\ell \geqslant 2$ and $\Delta \leqslant 5$, by Theorem 1.1(3$)$, $\chi_{\ell}(G) \leqslant 6$. In this case, Hadwiger's conjecture holds for $\mathbb{L}_{\ell}(G)$ by Robertson et al. [16].

5. Complete minors of ℓ-LInk graphs

It has been proved in the last section that Hadwiger's conjecture is true for $\mathbb{L}_{\ell}(G)$ if ℓ is large enough. In this section, we further investigate the minors, especially the complete minors, of ℓ-link graphs. To see the intuition of our method, let v be a vertex of degree t in G. Then $\mathbb{L}_{1}(G)$ contains a K_{t}-subgraph whose vertices correspond to the edges of G incident to v. For $\ell \geqslant 2$, roughly speaking, we extend v to a subgraph X of diameter less than ℓ, and extend each edge incident to v to an ℓ-link of G starting from a vertex of X. By studying the shunting of these ℓ-links, we find a K_{t}-minor in $\mathbb{L}_{\ell}(G)$.

For subgraphs X, Y of G, let $\vec{E}(X, Y)$ be the set of arcs of G from $V(X)$ to $V(Y)$, and $E(X, Y)$ be the set of edges of G between $V(X)$ and $V(Y)$.
Lemma 5.1. Let $\ell \geqslant 1$ be an integer, G be a graph, and X be a subgraph of G with $\operatorname{diam}(X)<\ell$ such that $Y:=G-V(X)$ is connected. If $t:=|E(X, Y)| \geqslant 2$, then $\mathbb{L}_{\ell}(G)$ contains a K_{t}-minor.
Proof. Let $\vec{e}_{1}, \ldots, \vec{e}_{t}$ be distinct arcs in $\vec{E}(Y, X)$. Say $\vec{e}_{i}=\left(y_{i}, e_{i}, x_{i}\right)$ for $i \in[t]$. Since $\operatorname{diam}(X)<\ell$, there is a dipath $\vec{P}_{i j}$ of X from x_{i} to x_{j} of length $\ell_{i j} \leqslant \ell-1$ such that $P_{i j}=P_{j i}$. Since Y is connected, it contains a dipath $\vec{Q}_{i j}$ from y_{i} to y_{j}. Since $t \geqslant 2, O_{i}:=\left[\vec{P}_{i i^{\prime}} \cdot-\vec{e}_{i^{\prime}} \cdot \vec{Q}_{i^{\prime} i} \cdot \vec{e}_{i}\right]$ is a cycle of G, where $i^{\prime}:=(i$ $\bmod t)+1$. Thus $H:=\mathbb{L}_{\ell}(G)$ contains a cycle $\mathbb{L}_{\ell}\left(O_{1}\right)$, and hence a K_{2}-minor. Now let $t \geqslant 3$, and $\vec{L}_{i} \in \overrightarrow{\mathscr{L}}_{\ell}\left(O_{i}\right)$ with head arc \vec{e}_{i}. Then $\left[\vec{L}_{i} \cdot \vec{P}_{i j}\right]^{[\ell]} \in \mathscr{L}_{\ell i j}(H)$. And the union of the units of $\left[\vec{L}_{i} \cdot \vec{P}_{i j}\right]^{[\ell]}$ over $j \in[t]$ is a connected subgraph X_{i} of H. In the remainder of the proof, for distinct $i, j \in[t]$, we show that X_{i} and X_{j} are disjoint. Further, we construct a path in H between X_{i} and X_{j} that
is internally disjoint with its counterparts, and has no inner vertex in any of $V\left(X_{1}\right), \ldots, V\left(X_{t}\right)$. Then by contracting each X_{i} into a vertex, and each path into an edge, we obtain a K_{t}-minor of H.

First of all, assume for a contradiction that there are different $i, j \in[t]$ such that X_{i} and X_{j} share a common vertex that corresponds to an ℓ-link R of G. Then by definition, there exists some $p \in[t]$ such that R can be obtained by shunting L_{i} along $\left(\vec{L}_{i} \cdot \vec{P}_{i p}\right)$ by some $s_{i} \leqslant \ell_{i p}$ steps. So $R=\left[\vec{L}_{i}\left(s_{i}, \ell\right) \cdot \vec{P}_{i p}\left(0, s_{i}\right)\right]$. Similarly, there are $q \in[t]$ and $s_{j} \leqslant \ell_{j q}$ such that $R=\left[\vec{L}_{j}\left(s_{j}, \ell\right) \cdot \vec{P}_{j q}\left(0, s_{j}\right)\right]$. Recall that $E(X) \cap E(X, Y)=E(Y) \cap E(X, Y)=\emptyset$. So $e_{i}=\vec{L}_{i}[\ell-1, \ell]$ and $e_{j}=\vec{L}_{j}[\ell-1, \ell]$ belong to both L_{i} and L_{j}. By the definition of O_{i}, this happens if and only if $i=j^{\prime}$ and $j=i^{\prime}$, which is impossible since $t \geqslant 3$.

Secondly, for different $i, j \in[t]$, we define a path of H between X_{i} and X_{j}. Clearly, L_{i} can be shunted to L_{j} through $\vec{R}_{i j}^{\prime}:=\left(\vec{L}_{i} \cdot \vec{P}_{i j} \cdot-\vec{L}_{j}\right)$ in G. In this shunting, $L_{i}^{\prime}:=\left[\vec{L}_{i}\left(\ell_{i j}, \ell\right) \cdot \vec{P}_{i j}\right]$ is the last image corresponding to a vertex of X_{i}, while $L_{j}^{\prime}:=\left[\vec{P}_{i j} \cdot \vec{L}_{j}\left(\ell, \ell_{i j}\right)\right]$ is the first image corresponding to a vertex of X_{j}. Further, L_{i}^{\prime} can be shunted to L_{j}^{\prime} through $\vec{R}_{i j}:=\left(\vec{L}_{i}\left(\ell_{i j}, \ell\right) \cdot \vec{P}_{i j} \cdot \vec{L}_{j}\left(\ell, \ell_{i j}\right)\right) \in$ $\overrightarrow{\mathscr{L}}_{2 \ell-\ell_{i j}}(G)$, which is a subsequence of $\vec{R}_{i j}^{\prime}$. Then $R_{i j}^{[\ell]}$ is an $\left(\ell-\ell_{i j}\right)$-path of H between X_{i} and X_{j}. We show that for each $p \in[t], X_{p}$ contains no inner vertex of $R_{i j}^{[\ell]}$. When $\ell-\ell_{i j}=1, R_{i j}^{[\ell]}$ contains no inner vertex. Now assume $\ell-\ell_{i j} \geqslant 2$. Each inner vertex of $R_{i j}^{[\ell]}$ corresponds to some $Q_{i j}:=\left[\vec{L}_{i}\left(s_{i}, \ell\right) \cdot \vec{P}_{i j} \cdot \vec{L}_{j}\left(\ell, \ell+\ell_{i j}-\right.\right.$ $\left.\left.s_{i}\right)\right] \in \mathscr{L}_{\ell}(G)$, where $\ell_{i j}+1 \leqslant s_{i} \leqslant \ell-1$. Assume for a contradiction that for some $p \in[t], X_{p}$ contains a vertex corresponding to $Q_{i j}$. By definition there exists $q \in[t]$ such that $Q_{i j}=\left[\vec{L}_{p}\left(s_{p}, \ell\right) \cdot \vec{P}_{p q}\left(0, s_{p}\right)\right]$, where $0 \leqslant s_{p} \leqslant \ell_{p q}$. Without loss of generality, $\left(\vec{L}_{i}\left(s_{i}, \ell\right) \cdot \vec{P}_{i j} \cdot \vec{L}_{j}\left(\ell, \ell+\ell_{i j}-s_{i}\right)\right)=\left(\vec{L}_{p}\left(s_{p}, \ell\right) \cdot \vec{P}_{p q}\left(0, s_{p}\right)\right)$. Since e_{j} and e_{p} are not in $P_{p q}$, hence \vec{e}_{j} belongs to $-\vec{L}_{p}$ and \vec{e}_{p} belongs to $-\vec{L}_{j}$. By the definition of \vec{L}_{i}, this happens only when $j=p^{\prime}$ and $p=j^{\prime}$, contradicting $t \geqslant 3$.

We now show that $R_{i j}^{[\ell]}$ and $R_{p q}^{[\ell]}$ are internally disjoint, where $i \neq j, p \neq q$ and $\{i, j\} \neq\{p, q\}$. Suppose not. Then by the analysis above, there are s_{i} and s_{p} with $\ell_{i j}+1 \leqslant s_{i} \leqslant \ell-1$ and $\ell_{p q}+1 \leqslant s_{p} \leqslant \ell-1$ such that $Q_{i j}=Q_{p q}$. Without loss of generality, $\left(\vec{L}_{i}\left(s_{i}, \ell\right) \cdot \vec{P}_{i j} \cdot \vec{L}_{j}\left(\ell, \ell+\ell_{i j}-s_{i}\right)\right)=\left(\vec{L}_{p}\left(s_{p}, \ell\right) \cdot \vec{P}_{p q} \cdot \vec{L}_{q}\left(\ell, \ell+\ell_{p q}-s_{p}\right)\right)$. If $s_{i}=s_{p}$, then $\vec{e}_{i}=\vec{e}_{p}$ and $\vec{e}_{j}=\vec{e}_{q}$ since $E(X) \cap E(X, Y)=\emptyset$; that is, $i=p$ and $j=q$, contradicting $\{i, j\} \neq\{p, q\}$. Otherwise, with no loss of generality, $s_{i}>s_{p}$. Then \vec{e}_{q} and \vec{e}_{i} belong to \vec{L}_{j} and \vec{L}_{p} respectively; that is, $i=p$ and $j=q$, again contradicting $\{i, j\} \neq\{p, q\}$.

In summary, X_{1}, \ldots, X_{t} are vertex-disjoint connected subgraphs, which are pairwise connected by internally disjoint *-links $R_{i j}^{[\ell]}$ of H, such that no inner
vertex of $R_{i j}^{[\ell]}$ is in $V\left(X_{1}\right) \cup \ldots \cup V\left(X_{t}\right)$. So by contracting each X_{i} to a vertex, and $R_{i j}^{[\ell]}$ to an edge, we obtain a K_{t}-minor of H.

Lemma 5.2. Let $\ell \geqslant 1, G$ be a graph, and X be a subgraph of G with $\operatorname{diam}(X)<$ ℓ such that $Y:=G-V(X)$ is connected and contains a cycle. Let $t:=|E(X, Y)|$. Then $\mathbb{L}_{\ell}(G)$ contains a K_{t+1}-minor.
Proof. Let O be a cycle of Y. Then $H:=\mathbb{L}_{\ell}(G)$ contains a cycle $\mathbb{L}_{\ell}(O)$ and hence a K_{2}-minor. Now assume $t \geqslant 2$. Let $\vec{e}_{1}, \ldots, \vec{e}_{t}$ be distinct arcs in $\vec{E}(Y, X)$. Say $\vec{e}_{i}=\left(y_{i}, e_{i}, x_{i}\right)$ for $i \in[t]$. Since Y is connected, there is a dipath \vec{P}_{i} of Y of minimum length $s_{i} \geqslant 0$ from some vertex z_{i} of O to y_{i}. Let \vec{Q}_{i} be an ℓ-arc of O with head vertex z_{i}. Then $\vec{L}_{i}:=\left(\vec{Q}_{i} \cdot \vec{P}_{i} \cdot \vec{e}_{i}\right)\left(s_{i}+1, \ell+s_{i}+1\right) \in \overrightarrow{\mathscr{L}}_{\ell}(G)$. Since $\operatorname{diam}(X) \leqslant \ell-1$, there is a dipath $\vec{P}_{i j}$ of X of length $\ell_{i j} \leqslant \ell-1$ from x_{i} to x_{j} such that $P_{i j}=P_{j i}$.

Clearly, $\left[\vec{L}_{i} \cdot \vec{P}_{i j}\right]^{[\ell]}$ is an $\ell_{i j}$-link of H. And the union of the units of $\left[\vec{L}_{i} \cdot \vec{P}_{i j}\right]^{[\ell]}$ over $j \in[t]$ induces a connected subgraph X_{i} of H. For different $i, j \in[t]$, let $R_{i j}:=\left[\vec{L}_{i}\left(\ell_{i j}, \ell\right) \cdot \vec{P}_{i j} \cdot \vec{L}_{j}\left(\ell, \ell_{i j}\right)\right]=R_{j i} \in \mathscr{L}_{2 \ell-\ell_{i j}}(G)$. Then $R_{i j}^{[\ell]}$ is an $\left(\ell-\ell_{i j}\right)$-path of H between X_{i} and X_{j}. As in the proof of Lemma 5.1, it is easy to check that X_{1}, \ldots, X_{t} are vertex-disjoint connected subgraphs of H, which are pairwise connected by internally disjoint paths $R_{i j}^{[\ell]}$. Further, no inner vertex of $R_{i j}^{[\ell]}$ is in $V\left(X_{1}\right) \cup \ldots \cup V\left(X_{t}\right)$. So a K_{t}-minor of H is obtained accordingly.

Finally, let Z be the connected subgraph of H induced by the units of $\mathbb{L}_{\ell}(O)$ and $\left[\vec{Q}_{i} . \vec{P}_{i}\right]^{[\ell]}$ over $i \in[t]$. Then Z is vertex-disjoint with X_{i} and with the paths $R_{i j}^{[\ell]}$. Moreover, Z sends an edge $\left(\vec{Q}_{i} . \vec{P}_{i} \cdot \vec{e}_{i}\right)\left(s_{i}, \ell+s_{i}+1\right)^{[\ell]}$ to each X_{i}. Thus H contains a K_{t+1}-minor.

In the following, we use the 'hub' (described after Lemma 3.7) to construct certain minors in ℓ-link graphs.
Corollary 5.3. Let $\ell \geqslant 0, G$ be a graph, M be a minor of $G(\ell)$ such that each branch set contains an ℓ-link. Then $\mathbb{L}_{\ell}(G)$ contains an M-minor.

Proof. Let X_{1}, \ldots, X_{t} be the branch sets of an M-minor of $G(\ell)$ such that X_{i} contains an ℓ-link for each $i \in[t]$. For any connected subgraph Y of $G(\ell)$ contains at least one ℓ-link, let $\mathbb{L}_{\ell}(G, Y)$ be the subgraph of $H:=\mathbb{L}_{\ell}(G)$ induced by the ℓ-links of G of which the middle units are in Y. Let $H(Y)$ be the union of the components of $\mathbb{L}_{\ell}(G, Y)$ which contains at least one vertex corresponding to an ℓ-link of Y. By Lemma 3.7, $H(Y)$ is connected.

By definition each edge of M corresponds to an edge e of $G(\ell)$ between two different branch sets, say X_{i} and X_{j}. Let Y be the graph consisting of X_{i}, X_{j} and e. Then $H\left(X_{i}\right)$ and $H\left(X_{j}\right)$ are vertex-disjoint since X_{i} and X_{j} are vertexdisjoint. By the analysis above, $H\left(X_{i}\right)$ and $H\left(X_{j}\right)$ are connected subgraphs of the connected graph $H(Y)$. Thus there is a path Q of $H(Y)$ joining $H\left(X_{i}\right)$ and
$H\left(X_{j}\right)$ only at end vertices. Further, if ℓ is even, then Q is an edge; otherwise, Q is a 2-path whose middle vertex corresponds to an ℓ-link L of Y such that $c_{L}=e$. This implies that Q is internally disjoint with its counterparts and has no inner vertex in any branch set. Then, by contracting each $H\left(X_{i}\right)$ to a vertex, and Q to an edge, we obtain an M-minor of H.

Now we are ready to give a lower bound for the Hadwiger number of $\mathbb{L}_{\ell}(G)$.
Proof of Theorem 1.3. Since $H:=\mathbb{L}_{\ell}(G)$ contains an edge, $t:=\eta(H) \geqslant 2$. We first show that $t \geqslant \mathrm{~d}:=\mathrm{d}(G)$. By definition there exists a subgraph X of G of $\delta(X)=\mathrm{d}$. We may assume that $\mathrm{d} \geqslant 3$. Then X contains an $(\ell-1)$-link P such that $\mathscr{L}(P) \neq \emptyset$. By Lemma 4.1, $\mathscr{L}^{[\ell]}(P)$ is the edge set of a complete bipartite subgraph of H with a $K_{\mathrm{d}-1, \mathrm{~d}-1}$-subgraph. By Zelinka [24], $K_{\mathrm{d}-1, \mathrm{~d}-1}$ contains a K_{d}-minor. Thus $t \geqslant \mathrm{~d}$ as desired.

We now show that $t \geqslant \eta:=\eta(G)$. If $\eta=3$, then G contains a cycle O of length at least 3 , and H contains a K_{3}-minor contracted from $\mathbb{L}_{\ell}(O)$. Now assume that G is connected with $\eta \geqslant 4$. Repeatedly delete vertices of degree 1 in G until $\delta(G) \geqslant 2$. Then $G=G(\ell)$. Clearly, this process does not reduce the Hadwiger number of G. So G contains branch sets of a K_{η}-minor covering $V(G)$ (see [23]). If every branch set contains an ℓ-link, then the statement follows from Corollary 5.3. Otherwise, there exists some branch set X with $\operatorname{diam}(X)<\ell$. Since $\eta \geqslant 4, Y:=G-V(X)$ is connected and contains a cycle. Thus by Lemma 5.2. H contains a K_{η}-minor since $|E(X, Y)| \geqslant \eta-1$.

Here we prove Hadwiger's conjecture for $\mathbb{L}_{\ell}(G)$ for even $\ell \geqslant 2$.
Proof of Theorem 1.5(2). Let $\mathrm{d}:=\mathrm{d}(G), \ell \geqslant 2$ be an even integer, and $H:=\mathbb{L}_{\ell}(G)$. By [6, Proposition 5.2.2], $\chi:=\chi(G) \leqslant \mathrm{d}+1$. So by Theorem 1.1, $\chi(H) \leqslant \min \left\{\mathrm{d}+1, \frac{2}{3} \mathrm{~d}+\frac{5}{3}\right\}$. If $\mathrm{d} \leqslant 4$, then $\chi(H) \leqslant 5$. By Robertson et al. [16], Hadwiger's conjecture holds for H in this case. Otherwise, $\mathrm{d} \geqslant 5$. By Theorem 1.3, $\eta(H) \geqslant \mathrm{d} \geqslant \frac{2}{3} \mathrm{~d}+\frac{5}{3} \geqslant \chi(H)$ and the statement follows.

We end this paper by proving Hadwiger's conjecture for ℓ-link graphs of biconnected graphs for $\ell \geqslant 1$.

Proof of Theorem 1.5(1). By Reed and Seymour [15], Hadwiger's conjecture holds for $H:=\mathbb{L}_{\ell}(G)$ for $\ell=1$. By Theorem 1.5)(2), the conjecture is true if $\ell \geqslant 2$ is even. So we only need to consider the situation that $\ell \geqslant 3$ is odd. If G is a cycle, then H is a cycle and the conjecture holds [9]. Now let v be a vertex of G with degree $\Delta:=\Delta(G) \geqslant 3$. By Theorem 1.1, $\chi(H) \leqslant \Delta+1$. Since G is biconnected, $Y:=G-v$ is connected. By Lemma 5.2, if Y contains a cycle, then $\eta(H) \geqslant \Delta+1 \geqslant \chi(H)$. Now assume that Y is a tree, which implies that G is K_{4}-minor free. By Lemma 5.1, $\eta(H) \geqslant \Delta$. By Theorem 1.1, $\chi(H) \leqslant \chi^{\prime}:=\chi^{\prime}(G)$. So it is enough to show that $\chi^{\prime}=\Delta$.

Let $U:=\left\{u \in V(Y) \mid \operatorname{deg}_{Y}(u) \leqslant 1\right\}$. Then $|U| \geqslant \Delta(Y)$. Let \hat{G} be the underlying simple graph of $G, t:=\operatorname{deg}_{\hat{G}}(v) \geqslant 1$ and $\hat{\Delta}:=\Delta(\hat{G}) \geqslant t$. Since G is biconnected, $U \subseteq N_{G}(v)$. So $t \geqslant|U| \geqslant \Delta(Y)$. Let $u \in U$. When $|U|=1$, $t=\operatorname{deg}_{\hat{G}}(u)=1$. When $|U| \geqslant 2, \operatorname{deg}_{\hat{G}}(u)=2 \leqslant|U| \leqslant t$. Thus $t=\hat{\Delta}$. Juvan et al. 13 proved that the edge-chromatic number of a K_{4}-minor free simple graph equals the maximum degree of this graph. So $\hat{\chi}^{\prime}:=\chi^{\prime}(\hat{G})=\hat{\Delta}$ since \hat{G} is simple and K_{4}-minor free. Note that all parallel edges of G are incident to v. So $\chi^{\prime}=\hat{\chi}^{\prime}+\operatorname{deg}_{G}(v)-t=\hat{\Delta}+\Delta-\hat{\Delta}=\Delta$ as desired.

References

[1] Jørgen Bang-Jensen and Gregory Gutin. Digraphs. Springer Monographs in Mathematics. Springer-Verlag London Ltd., London, second edition, 2009. Theory, algorithms and applications.
[2] Lowell W. Beineke and Robin J. Wilson, editors. Selected topics in graph theory. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], 1978.
[3] Norman Biggs. Algebraic graph theory. Cambridge University Press, second edition, 1993.
[4] Hajo Broersma and Cornelis Hoede. Path graphs. J. Graph Theory, 13(4):427-444, 1989.
[5] Peter J. Cameron. Combinatorics study group notes, September 2006.
[6] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, fourth edition, 2010.
[7] Mark Ellingham and Bin Jia. Link graphs and an unexpected application of topological graph theory. In preparation.
[8] Chris Godsil and Gordon Royle. Algebraic graph theory, volume 207 of Graduate Texts in Mathematics. Springer-Verlag, 2001.
[9] Hugo Hadwiger. Über eine klassifikation der streckenkomplexe. Vierteljahrsschrift der Naturf. Gesellschaft in Zürich, 88:133-142, 1943.
[10] Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms, volume 28 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004.
[11] Bin Jia. A construction of imprimitive symmetric graphs which are not multicovers of their quotients. Discrete Math., 311(22):2623-2629, 2011.
[12] Bin Jia, Zai Ping Lu, and Gai Xia Wang. A class of symmetric graphs with 2-arc transitive quotients. J. Graph Theory, 65(3):232-245, 2010.
[13] Martin Juvan, Bojan Mohar, and Robin Thomas. List edge-colorings of series-parallel graphs. Electron. J. Combin., 6:R42, 1999.
[14] Hiroyuki Kawai and Yukio Shibata. The chromatic number and the chromatic index of de Bruijn and Kautz digraphs. In IEICE Trans. Fundamentals, volume E85 of Circuits/systems, computers and communications, pages 1352-1358, 2002.
[15] Bruce Reed and Paul Seymour. Hadwiger's conjecture for line graphs. European J. Combin., 25(6):873-876, 2004.
[16] Neil Robertson, Paul Seymour, and Robin Thomas. Hadwiger's conjecture for K_{6}-free graphs. Combinatorica, 13(3):279-361, 1993.
[17] Claude E. Shannon. A theorem on coloring the lines of a network. J. Math. Physics, 28:148-151, 1949.
[18] William T. Tutte. A family of cubical graphs. Proc. Cambridge Philos. Soc., 43:459-474, 1947.
[19] William T. Tutte. On the symmetry of cubic graphs. Canad. J. Math., 11:621-624, 1959.
[20] William T. Tutte. Connectivity in graphs. Mathematical Expositions, No. 15. University of Toronto Press, 1966.
[21] Richard Weiss. The nonexistence of 8-transitive graphs. Combinatorica, 1(3):309-311, 1981.
[22] Hassler Whitney. Congruent graphs and the connectivity of graphs. Amer. J. Math., 54(1):150-168, 1932.
[23] David R. Wood. Clique minors in Cartesian products of graphs. New York J. Math., 17:627-682, 2011.
[24] Bohdan Zelinka. Hadwiger numbers of finite graphs. Math. Slovaca, 26(1):23-30, 1976.
Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia.

E-mail address: jiabinqq@gmail.com
School of Mathematical Sciences, Monash University, Melbourne, AusTRALIA.

E-mail address: david.wood@monash.edu

[^0]: Bin Jia gratefully acknowledges scholarships provided by The University of Melbourne. Research of David Wood is supported by the Australian Research Council.

