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Abstract

Equistable graphs are graphs admitting positive weights on vertices such that
a subset of vertices is a maximal stable set if and only if it is of total weight 1.
In 1994, Mahadev et al. introduced a subclass of equistable graphs, called strongly
equistable graphs, as graphs such that for every c ≤ 1 and every non-empty subset
T of vertices that is not a maximal stable set, there exist positive vertex weights
such that every maximal stable set is of total weight 1 and the total weight of T
does not equal c. Mahadev et al. conjectured that every equistable graph is strongly
equistable. General partition graphs are the intersection graphs of set systems over
a finite ground set U such that every maximal stable set of the graph corresponds
to a partition of U . In 2009, Orlin proved that every general partition graph is
equistable, and conjectured that the converse holds as well.

Orlin’s conjecture, if true, would imply the conjecture due to Mahadev, Peled,
and Sun. An intermediate conjecture, one that would follow from Orlin’s conjecture
and would imply the conjecture by Mahadev, Peled, and Sun, was posed by Miklavič
and Milanič in 2011, and states that every equistable graph has a clique intersecting
all maximal stable sets. The above conjectures have been verified for several graph
classes. We introduce the notion of equistarable graphs and based on it construct
counterexamples to all three conjectures within the class of complements of line
graphs of triangle-free graphs.

∗M.M. is supported in part by “Agencija za raziskovalno dejavnost Republike Slovenije”, research
program P1–0285 and research projects J1–4010, J1–4021, J1–5433, and N1–0011: GReGAS, supported
in part by the European Science Foundation. N.T. is partially supported by ANR project Stint under
reference ANR-13-BS02-0007. Part of this research was carried out during the visit of M.M. to N.T. at
ENS Lyon; their support is gratefully acknowledged.

1

ar
X

iv
:1

40
7.

16
70

v1
  [

m
at

h.
C

O
] 

 7
 J

ul
 2

01
4



Keywords: equistable graph, strongly equistable graph, general partition graph, line
graph, graph complement, conjecture
MSC (2010): 05C22, 05C50, 05C69, 05C76

1 Introduction

We consider finite simple undirected graphs. A stable (or independent) set in a graph is a
set of pairwise non-adjacent vertices; a stable set is said to be maximal if it is not contained
in any other stable set. In 1980, Payan introduced equistable graphs as a generalization of
threshold graphs. A graph G = (V,E) is said to be equistable if and only if there exists a
mapping ϕ : V → R+ such that for all S ⊆ V , S is a maximal stable set of G if and only
if ϕ(S) :=

∑
v∈S ϕ(v) = 1 . [17]. The mapping ϕ is called an equistable weight function

of G. Equistable graphs were studied in a series of papers [1, 3, 10–13, 15–18], however,
the complexity status of recognizing equistable graphs is open, and no combinatorial
characterization of equistable graphs is known.

In 1994, Mahadev et al. introduced a subclass of equistable graphs, the so-called
strongly equistable graphs [13]. For a graph G, we denote by S(G) the set of all maximal
stable sets of G, and by T (G) the set of all other nonempty subsets of V (G). A graph
G = (V,E) is said to be strongly equistable if for each T ∈ T (G) and each γ ≤ 1
there exists a function ϕ : V → R+ such that ϕ(S) = 1 for all S ∈ S(G), and ϕ(T ) 6= γ.
Mahadev et al. showed that every strongly equistable graph is equistable, and conjectured
that the converse assertion is valid. Partial results on the conjecture are known. The
conjecture is known to hold for a class of graphs containing all perfect graphs [13], for
series-parallel graphs [10], for line graphs [12] and more generally for EPT graphs [1], for
AT-free graphs [15], and for various product graphs [15].

A combinatorially defined graph class closely related to equistable graphs is the class
of general partition graphs. A graph G = (V,E) is a general partition graph if there exists
a set U and an assignment of non-empty subsets Ux ⊆ U to the vertices of G such that
two vertices x and y are adjacent if and only if Ux∩Uy 6= ∅, and for every maximal stable
set S of G, the set {Ux : x ∈ S} is a partition of U . General partition graphs arise in
the geometric setting of lattice polygon triangulations [6] and were studied in a series of
papers [2, 4, 5, 7, 9, 15,22].

A strong clique in a graph G is a clique (that is, a set of pairwise adjacent vertices) that
meets all maximal stable sets. McAvaney, Robertson and DeTemple proved in [14] that a
graph G is general partition if and only if every edge of G is contained in a strong clique.
Together with some results from [13, 15], this result implies that every general partition
graph is strongly equistable. As a possible attempt to settle the conjecture of Mahadev
et al., Jim Orlin (personal communication, 2009) proposed a stronger conjecture stating
that all equistable graphs are general partition graphs (cf. [15]). The results of Peled and
Rotics [18] and of Korach and Peled [10], respectively, imply that Orlin’s conjecture holds
within the classes of chordal graphs and of series-parallel graphs. The conjecture has also
been verified for simplicial graphs [12], very well-covered graphs [12], line graphs [12],
EPT graphs [1], AT-free graphs [15], and various product graphs [15].

As an intermediate conjecture, one that would follow from Orlin’s conjecture and
would imply the conjecture of Mahadev et al., Miklavič and Milanič proposed in [15] a
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conjecture stating that every equistable graph has a strong clique.
To summarize, the classes of general partition graphs, strongly equistable graphs, and

equistable graphs are related as follows:

general partition graphs ⊆ strongly equistable graphs ⊆ equistable graphs .

The conjecture of Mahadev et al. states that the last inclusion is in fact an equality (which
would also follow from the conjecture due to Miklavič and Milanič); the conjecture of Orlin
states that both inclusions are equalities.

In this paper, we prove that in fact all these three classes are pairwise distinct, thus
disproving the conjectures of Mahadev et al., of Orlin, and of Miklavič and Milanič. Our
proofs rely on linear algebra, and all the separating examples are complements of line
graphs of triangle-free graphs. We present a sufficient condition for a graph G such that
the complement of its line graph is equistable but not general partition, and construct
several graphs satisfying this condition: an infinite family based on circulant graphs, and
a particular 14-vertex graph, which is not strongly equistable. We can thus refine the
relations between the above mentioned graph classes as follows:

general partition graphs ( strongly equistable graphs ( equistable graphs .

We also give an alternative proof to that of Mahadev et al. [13] of the fact that every
strongly equistable graph is equistable.

The paper is structured as follows. In Section 2 we define and study the class of
equistarable graphs, the complements of line graphs of which will form the basis for our
constructions. In Section 3, we state and prove a sufficient condition for a graph to be
equistarable. Section 4 contains our constructions. In Section 5, we give an alternative,
more constructive proof than that given by Mahadev et al. [13], of the fact that every
strongly equistable graph is equistable.

Basic definitions and notation. The complement of a graph G is the graph G with vertex
set V (G) in which two distinct vertices are adjacent if and only if they are non-adjacent
in G. Given two graphs G and H, we say that a graph G is H-free if no induced subgraph
of G is isomorphic to H. The degree of a vertex v in a graph G is the number of edges
incident with v, denote by dG(v). By δ(G) we denote the minimum degree of a vertex in
G. By Kn we denote the complete graph with n vertices. For a positive integer n, we
write [n] for {1, . . . , n}.

We say that a graph G is a line graph if there exists a graph H such that there is
a bijective mapping ϕ : V (G) → E(H) such that two distinct vertices u, v ∈ V (G) are
adjacent in G if and only if the edges ϕ(u) and ϕ(v) of H have a common endpoint. If
this is the case, then graph H is called the root graph of G, while G = L(H) is the line
graph of H. Except for G = K3, the root of a connected line graph G is unique (up to
isomorphism), and can be computed in linear time [21].

2 Equistarable graphs

Given a graph G and a vertex v ∈ V (G), the star rooted at v is the set E(v) of all edges
incident with v. A star of G is a star rooted at some vertex of v, and a star is said to be
maximal if it is not properly contained in another star of G.
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Lemma 1. Let G be a graph and let v ∈ V (G). Then, the following are equivalent:

1. E(v) is a maximal star.

2. Either dG(v) ≥ 2, or dG(v) = dG(w) = 1 where w is the unique neighbor of v, or
dG(v) = 0 and E(G) = ∅.

Proof. Suppose that dG(v) ≥ 2, and let x and y be two distinct neighbors of v. Then
clearly {vx, vy} ⊆ E(w) if and only if w = v, which implies that E(v) is a maximal star.
Suppose now that dG(v) = 1. Then, E(v) is properly contained in E(w) where w is the
unique neighbor of v if and only if dG(w) > 1. Clearly, if x ∈ V (G) \ {v, w}, then E(v)
cannot be properly contained in E(x). This shows that E(v) is a maximal star if and
only if dG(w) = 1. Finally, if v is an isolated vertex, then E(v) = ∅ is properly contained
in another star if and only if G is edgeless.

We now introduce a class of graphs that will form the basis for our counterexamples.

Definition 1. A graph G = (V,E) without isolated vertices is said to be equistarable if
there exists a mapping ϕ : E → R+ on the edges of G such that a subset F ⊆ E is a
maximal star in G if and only if ϕ(F ) :=

∑
e∈F ϕ(e) = 1. The mapping ϕ is called an

equistarable weight function of G.

Observe that for every graph G, a subset of edges F ⊆ E(G) forms a clique in L(G) if
and only if F is either contained in a star of G, or F is a triangle (the edge set of a K3 in
G). Consequently, F is a maximal clique in L(G) if and only if it is a maximal element
in the collection of all triangles and maximal stars in G.

Lemma 2. Let G be a triangle-free graph. Then G is equistarable if and only if L(G) is
equistable.

Proof. Let G = (V,E) be a triangle-free graph. Since G is triangle-free, a subset C ⊆ E
is a maximal clique in L(G) if and only if C is a maximal star in G. Consequently, S ⊆ E
is a maximal stable set in L(G), if and only if S is a maximal star in G. Thus, G is
equistarable if and only if L(G) is equistable.

Given a graph G, a (maximal) clique in the complement of its line graph L(G) corre-
sponds to a (maximal) stable set in L(G), and hence to a (maximal) matching in G. (A
matching is a subset of pairwise disjoint edges, and it is maximal if it is not contained in a
larger matching.) A matching in a graph G is said to be perfect if it consists of |V (G)|/2
edges.

Lemma 3. Let G be a triangle-free graph with δ(G) ≥ 2, and let M ⊆ E(G). Then M
is a strong clique in L(G) if and only if M is a perfect matching in G.

Proof. Let G = (V,E) be a triangle-free graph with δ(G) ≥ 2, and let M ⊆ E.
As observed above, M is a clique in L(G) if only if it is a matching in G. Moreover,

the condition that M is a strong clique in L(G) is equivalent to the condition that M is
a clique in L(G) intersecting all maximal stable sets in L(G), which is in turn equivalent
to the condition that M is a stable set in L(G) intersecting all maximal cliques in L(G).
Since G is triangle-free, M is a stable set in L(G) intersecting all maximal cliques in
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L(G), if and only if M is a matching in G intersecting all maximal stars in G. Since
δ(G) ≥ 2, Lemma 1 implies that every star in G is maximal. Therefore, M is a matching
in G intersecting all maximal stars in G, if and only if M is a matching in G intersecting
all stars in G, which is equivalent to M being a perfect matching.

As we show next, the condition that L(G) is a general partition graph can be expressed
in terms of 2-extendability of G. Recall that a graph G is said to be k-extendable if it
has a k-matching (that is, a matching of size k), and every k-matching is contained in a
perfect matching (see, e.g., [19, 20]).

Lemma 4. Let G be a triangle-free graph with δ(G) ≥ 2 and containing a 2-matching.
Then, L(G) is a general partition graph if and only if G is 2-extendable.

Proof. Notice that two distinct vertices e, f of L(G), that is, e, f ∈ V (L(G)) = E(G),
are adjacent, if and only if e and f are non-adjacent in L(G), if and only if e and f form
a matching of size 2 in G. Thus, edges of L(G) are in a natural bijective correspondence
with 2-matchings in G.

It is known that a graph is a general partition graph if and only if every edge in it is
contained in a strong clique [14]. By Lemma 3, a subset M ⊆ E(G) is a strong clique in
L(G) if and only if M is a perfect matching in G.

Therefore, the condition that L(G) is a general partition graph is equivalent to the
condition that every edge of L(G), which is equivalent to the condition that every 2-
matching of G is contained in a perfect matching. Since G is assumed to contain a
2-matching, this latter condition is equivalent to the condition that G is 2-extendable.

Lemmas 3 and 4 imply that to disprove Orlin’s conjecture, it suffices to construct a
graph G having the following properties:

• G is triangle-free, of minimum degree at least 2, and containing a 2-matching.

• G is equistarable,

• G is not 2-extendable.

In the following section, we will describe a general sufficient condition for a graph on at
least 5 vertices to have all the stated properties, except perhaps the triangle-freeness. We
will also provide an infinite family of triangle-free graphs satisfying the condition.

3 A sufficient condition for equistarability

Given a cycle C in a graph G, a chord of C is a pair of adjacent vertices that appear
non-consecutively on C. Given a graph G, an odd cycle C in G, and two disjoint edges
e, e′ ∈ E(C), the graph C − {e, e′} consists of two paths, say P0 and P1, exactly one of
which, say P0, is of even length. An (e, e′)-non-crossing even chord of C is a chord of
C such that its two endpoints belong to P0 and are at even distance on P0. An (e, e′)-
crossing odd chord of C is a chord of C such that exactly one of its endpoints, say v,
belongs to P0, and dP0(v, e) ≡ dP0(v, e

′) ≡ 1 (mod 2).
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Definition 2. We say that a graph G of odd order n is bad if G has a Hamiltonian cycle
Cn such that for every two disjoint edges e, e′ ∈ E(Cn), G contains either an (e, e′)-non-
crossing even chord of Cn, or an (e, e′)-crossing odd chord of Cn.

For instance, every complete graph of odd order n ≥ 3 is bad (with respect to any of
its Hamiltonian cycles). For our constructions, we will be interested in triangle-free bad
graphs. For every odd n ≥ 9, there exists a triangle-free bad graph of order n. We leave
it as an exercise for the reader to verify that the 4-regular circulant graphs obtained by
taking an n-cycle Cn with odd n ≥ 11, and adding an edge between two vertices if and
only if they are at distance 3 on the cycle, are bad (in fact, for every two disjoint edges
e, e′ ∈ E(Cn), G contains a (e, e′)-crossing odd chord of Cn; see Fig. 1 for examples of
orders 11, 13, 15). A triangle-free bad graph of order 9 will be analyzed in Section 4.1.

n = 11 n = 13 n = 15

Figure 1: Examples of bad graphs.

Theorem 1. Every bad graph is equistarable.

Proof. Let G be a bad graph. By construction, the edge set of G is partitioned into two
disjoint sets, E(G) = E(Cn) ∪ F , where Cn is a Hamiltonian cycle in G satisfying the
condition from Definition 2.

We will now construct an equistarable weight function ϕ of G in two steps, as follows.
Let F = {f1, . . . , fr}, let ε ∈ (0, 1/(3r)) (the precise value of ε will be determined later)
and let α1, . . . , αr ∈ (0, ε) be positive real numbers algebraically independent over Q,
that is,

if
r∑

i=1

qiαi = 0 where qi ∈ Q for all i ∈ [r], then q1 = . . . = qr = 0 . (1)

For all i ∈ [r], let ϕ(fi) = αi. It remains to assign the values to the n edges in E(Cn). The
function ϕ should satisfy the constraints of the form

∑
e∈E(v) ϕ(e) = 1, for every vertex

v ∈ V (G). Substituting into this system of equations the already fixed values ϕ(fi) = αi

for fi ∈ F yields the following linear system with n variables and n equations. Denoting
by (v1, . . . , vn) the cyclic order of vertices on Cn, the edges of Cn by ej = vj−1vj (indices
modulo n), the equation corresponding to vj is

xj + xj+1 = bj , (2)
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where
bj = 1−

∑
i : vj∈fi

αi . (3)

It can be seen that the system’s coefficient matrix has determinant 2, and hence the
system has a unique solution β = (βj , 1 ≤ j ≤ n). In fact, the solution can be explicitly
computed: the j-th component of β is given by

βj =
1

2

n−1∑
k=0

(−1)kbj+k (4)

(indices modulo n). We complete the definition of the mapping ϕ : E(G) → R+, by
setting ϕ(ej) = βj for all j ∈ [n].

It remains to prove that ϕ is an equistarable weight function of G. First, we argue
that with an appropriate choice of ε, we can achieve ϕ(e) ≥ 0 for all e ∈ E(G). By
construction, we have ϕ(fi) > 0 for all i ∈ [r]. Notice that in the limit when ε → 0, we
have αi → 0 for all i. Consequently, by (3) and (4), also βj → 1/2 for all j, as ε → 0.
Therefore, for a small enough ε ∈ (0, 1/(3r)), we will have βj ∈ (1/3, 2/3) for all j ∈ [n].
In particular, we have ϕ(ej) > 0 for all j ∈ [n].

By construction, for every maximal star E ′ ⊆ E(G), we have ϕ(E ′) = 1. We still
need to show that if E ′ ⊆ E(G) such that ϕ(E ′) = 1, then E ′ is a star. Let ϕ(E ′) = 1,
and let p = |E ′ ∩ E(Cn)|. Recall that 1/3 < ϕ(e) < 2/3 for all e ∈ E ′ ∩ E(Cn). Thus, if
p ≤ 1 then

ϕ(E ′) = ϕ(E ′ ∩ E(Cn)) + ϕ(E ′ ∩ F ) < 2/3 +
r∑

i=1

αi < 2/3 + rε < 1 ,

a contradiction. Also, if p ≥ 3 then

ϕ(E ′) ≥ ϕ(E ′ ∩ E(Cn)) > p/3 ≥ 1 ,

a contradiction. So we have p = 2. Let E ′ ∩E(Cn) = {e, e′}. If e and e′ share a common
endpoint, say vj, then we may assume e = ej and e′ = ej+1, and

ϕ(ej) + ϕ(ej+1) + ϕ(E ′ ∩ F ) = ϕ(E ′) = 1 = ϕ(E(vj)) = ϕ(ej) + ϕ(ej+1) + ϕ(E(vj) ∩ F ) ,

implying ϕ(E ′ ∩ F ) = ϕ(E(vj)∩ F ) and hence, due to the algebraic independence of the
αi’s, we have E ′∩F = E(vj)∩F , and consequently E ′ = (E(vj)∩F )∪{ej, ej+1} = E(vj)
is a (maximal) star. Suppose now that e and e′ are disjoint. Without loss of generality,
we may assume that e = ej and e′ = ek such that j < k and k − j ≥ 3 is odd (the other
case is similar). We have

βj+βk =
1

2

(
n−1∑
`=0

(−1)`bj+` +
n−1∑
`=0

(−1)`bk+`

)
=

1

2

(
(−1)j

n+j−1∑
`=j

(−1)`b` + (−1)k
n+k−1∑
`=k

(−1)`b`

)

and consequently

2(−1)j(βj + βk) =

n+j−1∑
`=j

(−1)`b` −
n+k−1∑
`=k

(−1)`b`
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=
k−1∑
`=j

(−1)`b` −
n+k−1∑
`=n+j

(−1)`b` =
k−1∑
`=j

(−1)`b` +
k−1∑
`=j

(−1)`b` = 2
k−1∑
`=j

(−1)`b` .

Therefore

βj + βk = (−1)j
k−1∑
`=j

(−1)`b` =

k−j−1∑
`=0

(−1)`bj+` . (5)

Substituting equations (3) and (5) into

βj + βk + ϕ(E ′ ∩ F ) = 1 ,

observing that
∑k−j−1

`=0 (−1)` = 1 and simplifying, we obtain

k−j−1∑
`=0

∑
i : vj+`∈fi

(−1)`αi =
∑

fi∈E′∩F

αi .

Equivalently:
r∑

`=1

(
k−j−1∑
`=0

(−1)`1{vj+`∈fi}

)
αi =

r∑
`=1

1{fi∈E′∩F}αi ,

where 1{X} is 1 if X is true and 0 otherwise. By the algebraic independence of the αi’s,
we have

k−j−1∑
`=0

(−1)`1{vj+`∈fi} = 1{fi∈E′∩F}

for all i ∈ [r], which implies:

(i) for every fi ∈ E ′∩F , exactly one endpoint of fi is in the set {vj, . . . , vk−1}, moreover
this endpoint is of the form vj+` such that ` is even;

(ii) for every fi ∈ F \E ′, either both endpoints of fi are outside the set {vj, . . . , vk−1},
or they are both in, say fi = vj+`1vj+`2 , and `1 6≡ `2 (mod 2).

Since the edges ej and ek are disjoint, we can apply the fact that Cn satisfies the condition
from Definition 2. We consider two cases.

Case 1. There exists an (ej, ek)-non-crossing even chord of Cn. Then such a chord
is of the form fi = vj+`1vj+`2 where i ∈ [r], `1, `2 ∈ {0, . . . , k − j − 1} and `1 ≡ `2

(mod 2). By (i), we have fi 6∈ E ′. But now fi ∈ F \ E ′, with both endpoints in the set
{vj, . . . , vk−1}, contrary to (ii).

Case 2. There exists an (ej, ek)-crossing odd chord of Cn. Let P denote the path
(vj, vj+1, . . . , vk−1). In this case, there exists a vertex v ∈ V (P ) such that dP (v, ej) ≡
dP (v, ek) ≡ 1 (mod 2), and there exists an edge fi ∈ F connecting v to a vertex in the
component of Cn−{ej, ek} not containing v. It can be seen that this implies that v = vj+`

for some ` ∈ {0, . . . , k− j− 1} with ` ≡ 1 (mod 2), and that fi has exactly one endpoint
in the set {vj, . . . , vk−1}. By (ii), we have fi 6∈ F \ E ′, and therefore fi ∈ F ∩ E ′. But
now, we have the contradiction with the assumption that ` is odd.

This completes the proof that ϕ is an equistarable weight function of G.
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4 Counterexamples

The following is an easy consequence of Theorem 1.

Proposition 1. Let G be a triangle-free bad graph. Then, L(G) is an equistable graph
without a strong clique. In particular, L(G) is not a general partition graph.

Proof. By construction, G is triangle-free, of minimum degree at least 2, and contains a
matching of size 2. Since G is of odd order, it does not have a perfect matching. Note that
since G has a Hamiltonian cycle, it satisfies the condition δ(G) ≥ 2. By Lemma 3, L(G)
does not have a strong clique. By Lemma 2, it remains to show that G is equistarable.
But this follows from Theorem 1.

Since there exist triangle-free bad graphs (for example, the circulants mentioned in
Section 3), Proposition 1 disproves the conjectures of Orlin and of Miklavič and Milanič.
In the next two subsections, we will refine the fact that not every equistable graph is
a general partition graph by showing that there exist equistable graphs that are not
strongly equistable, as well as strongly equistable graphs that are not general partition
graphs.

4.1 Not all equistable graphs are strongly equistable

The definition of strongly equistable graphs motivates the following definition.

Definition 3. For a graph G, we denote by S∗(G) the set of all maximal stars of G, and
by T ∗(G) the set of all other nonempty subsets of E(G). A graph G = (V,E) without
isolated vertices is said to be strongly equistarable if for each T ∈ T ∗(G) and each γ ≤ 1
there exists a function ϕ : E → R+ such that ϕ(S) = 1 for all S ∈ S∗(G), and ϕ(T ) 6= γ.

The following observation can be proved similarly as Lemma 2.

Lemma 5. Let G be a triangle-free graph. Then G is strongly equistarable if and only if
L(G) is strongly equistable.

Let G∗ be the graph depicted in Fig. 2.

G∗1

2

3

4

5

6

7

8

9

Figure 2: A 9-vertex, 14-edge bad graph.

Proposition 2. Graph G∗ is equistarable but not strongly equistarable.
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Proof. Let G∗ = (V,E) where the vertices are V = {1, . . . , 9} (see Fig. 2). Clearly, G∗ is
a triangle-free graph.

We claim that G∗ is a bad graph. To see this, consider the Hamiltonian cycle C =
(1, 2, . . . , 9, 1) in G∗. For two disjoint edges e, e′ ∈ E(C), we say that an edge f ∈
E(G∗) \ E(C) is a witness for e and e′ if f is either an (e, e′)-non-crossing even chord of
C, or an (e, e′)-crossing odd chord of C. In Table 1, we give witnesses for certain pairs
of disjoint edges of C. Each of the remaining pairs is easily checked to be symmetric to
one of the pairs in the table. This shows that G∗ is bad.

{e, e′} witness {e, e′} witness {e, e′} witness
{19, 23} 16 {12, 78} 49 {34, 56} 25
{19, 34} 25 {12, 89} 37 {34, 67} 25
{19, 45} 16 {23, 45} 25 {34, 78} 25
{12, 34} 25 {23, 56} 49 {34, 89} 25
{12, 45} 37 {23, 67} 16 {45, 67} 16
{12, 56} 37 {23, 78} 49 {45, 78} 16
{12, 67} 37 {23, 89} 16 {45, 89} 16

Table 1: Checking badness of G∗

By Theorem 1, G∗ is equistarable. We assume the notation from the proof of The-
orem 1 (when specified to G∗), in particular, C = C9 denotes the Hamiltonian cycle
(1, . . . , 9, 1), and F = {f1, . . . , f5} denotes the set of edges of G∗ not in C.

Let T = {{1, 9}, {3, 7}} ∈ T ∗(G∗). To show that G∗ is not strongly equistarable, we
will prove that for every ϕ : E → R+ such that ϕ(S) = 1 for all S ∈ S∗(G∗), we have
ϕ(T ) = 1/2.

Every mapping ϕ : E → R+ such that ϕ(S) = 1 for all S ∈ S∗(G∗) naturally corre-
sponds to a solution x ∈ RE of the linear system Ax = 1, where A ∈ {0, 1}V×E is the
incidence matrix of G∗ (having av,e = 1 if and only if v is an endpoint of e), and 1 ∈ RV

is the all-one vector of length 9. Since G∗ is equistarable, the system has a solution.
It is known that the kernel of the incidence matrix of a connected non-bipartite graph

G is of dimension |E(G)| − |V (G)| (see, e.g., [8, Corollary 5.3]). In the case of G∗, this
implies that the kernel of A is of dimension 5. A basis for the kernel of A can be obtained
as follows. Each of the 5 edges fi ∈ F forms a unique even cycle Ci together with a
subpath of C (in particular, E(Ci) ∩ F = {fi}). Fixing a cyclic ordering ei1, . . . , e

i
2ni

of
the edges of Ci, let the vector xi ∈ RE be defined as

xie =

{
(−1)j, if e = eij for some j ∈ {1, . . . , 2ni}
0, otherwise.

It can be seen that the vectors x1, . . . , x5 are linearly independent and that Axi = 0 for
all i ∈ {1, . . . , 5}. Therefore, {x1, . . . , x5} is a basis of the kernel of A. (In fact, this is a
special case of a more general construction, see [8, p. 302].)

It follows that every solution x ∈ RE of the system Ax = 1 is of the form

x = x0 +
5∑

i=1

λix
i for some λ1, . . . , λ5 ∈ R ,

10



where x0 is any particular solution to Ax = 1. Let us take for x0 the vector in RE defined
by

x0
e =

{
1/2, if e ∈ C
0, otherwise.

Now, let ϕ : E → R+ be an arbitrary mapping with ϕ(S) = 1 for all S ∈ S∗(G∗).
Identifying ϕ with a vector in RE, we can write

ϕ = x0 +
5∑

i=1

λix
i

for some λ1, . . . , λ5 ∈ R. We will now show that for the set T = {e, f} ∈ T ∗(G∗), where
e = {1, 9} and f = {3, 7}, we have ϕ(T ) = 1/2. Without loss of generality, we can assume
that f = f5. Observe that the edge e belongs to C5 but not to any of C1, . . . , C4. The
same of course holds for the edge f . This implies that xie = xif = 0 for all i ∈ {1, . . . , 4}.
Moreover, edges e and f are at distance 2 on C5, which implies x5

e + x5
f = 0. By the

definition of x0, we have x0
e = 1/2 and x0

f = 0. Putting it all together, we have

ϕ({e, f}) = x0
e +

5∑
i=1

λix
i
e + x0

f +
5∑

i=1

λix
i
f

=
1

2
+ λ5(x5

e + x5
f ) =

1

2
.

Corollary 1. The graph L(G∗) is equistable but not strongly equistable. In particular, it
disproves the conjecture of Mahadev et al.

The line graph of G∗ is depicted in Fig. 3.

19

12

23

34455667

78

89

37

4916

58 25

L(G∗)

Figure 3: A 14-vertex graph whose complement is equistable but not strongly equistable.

4.2 Not all strongly equistable graphs are general partition graphs

Proposition 3. The circulant G = C11({1, 3}) is strongly equistarable.
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Proof. We proceed similarly as in the proof of Proposition 2. Let G = C11({1, 3}). We
assume that V = V (G) = {0, 1, . . . , 10} and E = E(G) = {{i, j} : 0 ≤ i < j ≤
10, j − i ∈ {1, 3} or 11 + i− j ∈ {1, 3}}. Recall that G is a triangle-free bad graph. By
Theorem 1, G is equistarable.

We will verify that G is strongly equistarable by definition. Let T ∈ T ∗(G) and
γ ≤ 1. We would like to show that G admits a mapping ϕ : E → R+ such that
ϕ(S) = 1 for all S ∈ S∗(G) and ϕ(T ) 6= γ. We will refer to such a mapping as a good
weighting of G.

If T contains a star (equivalently: a maximal star) of G, then taking any equistarable
weight function ϕ of G (for example, one constructed as in the proof of Theorem 1), we
have ϕ(T ) > 1 and hence ϕ(T ) 6= γ. So we may assume that T does not contain any star
of G.

Let ϕ be an equistarable weight function ofG as constructed in the proof of Theorem 1.
We may assume that ϕ(T ) = γ (otherwise we are done). Denoting by C the Hamiltonian
cycle (0, 1, . . . , 10, 0), and proceeding as in the proof of Proposition 2, we infer that ϕ is
of the form

ϕ = x0 +
11∑
i=1

λix
i

for some λ1, . . . , λ11 ∈ R, where x0 ∈ RE
+ is the vector taking value 1/2 on the edges C

(and 0 on all other edges), and xi ∈ {0, 1,−1}E are the vectors taking values 1 and −1
alternatingly on the edges of an even cycle containing a unique chord of C (and 0 on all
other edges).

Suppose first that T ∩ E(C) = ∅. By the rotational symmetry of G, we can assume
that {0, 3} ∈ T . But now, for small enough ε > 0, the function ϕ′ : E → R, defined by

ϕ′(e) =


ϕ(e) + ε, if e ∈ {{0, 1}, {2, 3}};
ϕ(e)− ε, if e ∈ {{0, 3}, {1, 2}};
ϕ′(e), otherwise.

is a good weighting of G. The function ϕ′ was obtained from ϕ by adding a small nonzero
multiple of one of the xi’s (namely, of the one corresponding to the cycle (0, 1, 2, 3, 0)).
Any such modification of ϕ will be called an e-perturbation where e is the unique chord
of C such that xie 6= 0.

From now on, assume that T ∩ E(C) 6= ∅. If E(C) ⊆ T , then, since T contains no
star, there exists a chord e of C such that e 6∈ T , and an e-perturbation of ϕ will result
in a good weighting of G. Suppose now that E(C) * T . Let P be a longest subpath of
C all of whose edges are in T . Due to the symmetry of G, we may assume that 0 is an
endpoint of P and that {0, 10} 6∈ E(P ). If {2, 10} ∈ T , then a {2, 10}-perturbation of ϕ
will result in a good weighting of G. So we may assume that {2, 10} 6∈ T . Using the same
perturbation, we can see that {1, 2} ∈ T . Now, to avoid a good weighting of G obtained
from applying a {1, 9}-perturbation to ϕ, we infer that {1, 9} ∈ T . Recall that by the
construction of ϕ, we have ϕ(e) > 1/3 for all e ∈ E(C). Therefore,

ϕ(T ) ≥ ϕ({0, 1}) + ϕ({1, 2}) + ϕ({1, 9}) > 1 ,

which implies that ϕ(T ) 6= γ.

12



Propositions 1 and 3 imply the following.

Corollary 2. The graph L(C11({1, 3})) is a strongly equistable graph that is not a general
partition graph.

5 An alternative proof of the fact that every strongly

equistable graph is equistable

The fact that every strongly equistable graph is equistable was proved in [13] using a
dimension argument. Here we give an alternative, more constructive proof of this fact.

Theorem 2 (Mahadev et al. [13]). Every strongly equistable graph is equistable.

Proof. Let G be a strongly equistable graph on n vertices, and for each set T ∈ T (G),
fix a function ϕT : V (G)→ R+ such that ϕT (S) = 1 for all S ∈ S(G), and ϕT (T ) 6= 1.

Let ϕ : V (G) → R+ be a function satisfying ϕ(S) = 1 for all S ∈ S(G) and mini-
mizing the number, denoted by t(ϕ), of sets T ∈ T (G) with ϕ(T ) = 1. We claim that
t(ϕ) = 0, that is, that ϕ is an equistable weight function of G.

Suppose this is not the case, and let T ∗ ∈ T (G) be a set such that ϕ(T ∗) = 1. Note
that ϕT ∗(T

∗) ≤ |T ∗| ≤ n. Fix any ε ∈ (0, 1) such that if ϕ(T ) 6= 1 for some T ∈ T (G),
then |ϕ(T ) − 1| > ε and ϕT ∗(T ) > ε. (Note that such an ε exists.) Define a function
ϕ′ : V (G)→ R+ by the rule ϕ′(x) = (1− ε/n)ϕ(x) + (ε/n)ϕT ∗(x) for all x ∈ V (G).

If S ∈ S(G), then

ϕ′(S) = (1− ε/n)ϕ(S) + (ε/n)ϕT ∗(S) = 1 .

If T ∈ T (G) such that ϕ(T ) < 1, then ϕ(T ) < 1− ε and therefore

ϕ′(T ) = (1− ε/n)ϕ(T ) + (ε/n)ϕT ∗(T ) < (1− ε/n)(1− ε) + ε = 1− (ε/n)(1− ε) < 1 .

If T ∈ T (G) such that ϕ(T ) > 1, then ϕ(T ) > 1 + ε and therefore

ϕ′(T ) = (1− ε/n)ϕ(T ) + (ε/n)ϕT ∗(T ) > (1− ε/n)((1 + ε) + ε2/n = 1 + ε(1− 1/n) ≥ 1 .

Moreover,
ϕ′(T ∗) = (1− ε)ϕ(T ∗) + εϕT ∗(T

∗) = 1− ε+ εϕT ∗(T
∗) 6= 1 .

Hence, ϕ′ satisfies ϕ(S) = 1 for all S ∈ S(G) and ϕ(T ) 6= 1 for all T ∈ T (G) such that
ϕ(T ) 6= 1 or T = T ∗. This implies t(ϕ′) < t(ϕ), contrary to the definition of ϕ.

From the above proof, an equistable weight function of a given strongly equistable
graph G can be easily derived, assuming that for each set T ∈ T (G) we have a function
ϕT : V (G)→ R+ such that ϕT (S) = 1 for all S ∈ S(G), and ϕT (T ) 6= 1.

13



6 Open problems

Since bipartite graphs are triangle-free and Orlin’s conjecture fails for complements of line
graphs of triangle-free graphs, the following question and its generalization seem natural.

Problem 1. Does Orlin’s conjecture hold within the class of complements of line graphs
of bipartite graphs?

Problem 2. Does Orlin’s conjecture hold within the class of perfect graphs?

Note that the weaker conjecture by Mahadev et al. (stating that every equistable
graph is strongly equistable) holds for the class of perfect graphs, as shown in [13].

Finally, let us remark that, to the best of our knowledge, the other conjecture posed
by Mahadev et al. in [13], stating that the strongly equistable graphs are closed under
substitution, is still open.
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