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Uniquely cycle-saturated graphs
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Abstract

Given a graph F , a graph G is uniquely F -saturated if F is not a subgraph of G
and adding any edge of the complement to G completes exactly one copy of F . In this
paper we study uniquely Ct-saturated graphs. We prove the following: (1) a graph is
uniquely C5-saturated if and only if it is a friendship graph. (2) There are no uniquely
C6-saturated graphs or uniquely C7-saturated graphs. (3) For t ≥ 6, there are only
finitely many uniquely Ct-saturated graphs (we conjecture that in fact there are none).
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1 Introduction

Given a graph F , a graph G is F -saturated if F is not a subgraph of G but is a subgraph

of G + e for every edge e in the complement G of G. In 1907, Mantel [7] proved that the

n-vertex K3-saturated graph with the most edges is K⌈n/2⌉,⌊n/2⌋. Turán [8] generalized this

result, proving that the n-vertex Kt-saturated graph with the most edges is the complete

(t− 1)-partite graph with partite sets as balanced as possible. Erdős, Hajnal, and Moon [4]

proved that the n-vertex Kt-saturated graph with the fewest edges is Kt−2 Kn−t+2, where

the join G H of graphs G and H consists of the disjoint union of G and H plus edges

connecting all vertices of G to all vertices of H .

There is an important distinction between Kt-saturated graphs with the most and the

fewest edges. When an edge is added to a largest n-vertex Kt-saturated graph, roughly
(

n
t−1

)t−2
copies of Kt are formed. In contrast, when an edge is added to a smallest n-vertex

Kt-saturated graph, exactly one copy of Kt is formed. Given a graph F and an F -saturated
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graph G, we say that G is uniquely F -saturated if the addition of any edge to G completes

exactly one copy of F .

Questions about uniquely F -saturated graphs focus on their existence. Cooper, LeSaulnier,

Lenz, Wenger, and West [3] initiated the study of uniquely F -saturated graphs by determin-

ing all uniquely C4-saturated graphs, where Ct denotes the t-vertex cycle; there are exactly

10 such graphs. They also observed that a graph is uniquely C3-saturated if and only if it is

a star or a Moore graph of diameter 2.

Stars have a dominating vertex, but Moore graphs of diameter 2 do not. If G is

uniquely Kt-saturated, then Km G is uniquely Km+t-saturated and has dominating ver-

tices. Cooper [2] conjectured that for t ≥ 2, only finitely many Kt-saturated graphs have

no dominating vertices. Hartke and Stolee [6] computationally found new examples for

small t of Kt-saturated graphs without dominating vertices and found two constructions

of Kt-saturated graphs without dominating vertices based on Cayley graphs, each valid for

infinitely many t.

Berman, Chappell, Faudree, Gimble, and Hartman [1] studied uniquely tree-saturated

graphs. They proved if T is a tree, then there exist infinitely many uniquely T -saturated

graphs if and only if T is a balanced double star.

When F has t vertices, every complete graph with fewer than t vertices trivially is

uniquely F -saturated, since there are no edges to consider adding. Let a uniquely Ct-

saturated graph be nontrivial if it has at least t vertices. In Section 2 we establish structural

lemmas about such graphs. In Section 3 we prove that the nontrivial uniquely C5-saturated

graphs are precisely the graphs consisting of edge-disjoint triangles with one common vertex

(adjacent to all others). Such graphs are also called friendship graphs, because they are the

graphs in which every two vertices have exactly one common neighbor (proved initially by

Erdős, Rényi, and Sós [5] and later reproved by others). In Section 4 we prove that there

are no nontrivial uniquely C6-saturated graphs or uniquely C7-saturated graphs. Finally, in

Section 5 we prove the following theorem.

Theorem 1.1. For t ≥ 6, there are finitely many uniquely Ct-saturated graphs.

In light of our results, we make the following conjecture.

Conjecture 1.2. For t ≥ 6 there are no nontrivial uniquely Ct-saturated graphs.

We have verified Conjecture 1.2 for t = 8, but the proof is quite long and does not

contain any new ideas beyond those used in the proofs of Theorems 4.1 and 4.2; thus we do

not include the proof here.
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2 Structural lemmas

In keeping with the convention of using k-cycle for a copy of Ck, we refer to a path with k

vertices as a k-path. We use 〈v1, . . . , vk〉 to denote the k-path with vertices v1, . . . , vk indexed

in order. We use [v1, . . . , vk] to denote the k-cycle with vertices v1, . . . , vk indexed in order.

For vertices x and y in a graph G, we use dG(x, y) to denote the distance between x and y

and dG(x) for the degree of x.

We begin with an elementary observation about uniquely Ct-saturated graphs.

Observation 2.1. Any two vertices in a uniquely Ct-saturated graph are the endpoints of

at most one t-path, and such a path exists if and only if they are not adjacent.

A block in a graph is a maximal subgraph not having a cut-vertex. Thus it is a maximal

2-connected subgraph or has a single edge that is a cut-edge.

Lemma 2.2. Every block in a uniquely Ct-saturated graph is uniquely Ct-saturated. In

particular, blocks with fewer than t vertices are complete graphs.

Proof. Let x and y be nonadjacent vertices in a non-complete block B of such a graph G.

Since B is a maximal 2-connected subgraph, the unique t-path in G with endpoints x and y

is contained in B. Thus |V (B)| ≥ t, and B is uniquely Ct-saturated.

We next bound the size of complete blocks in nontrivial uniquely Ct-saturated graphs.

Lemma 2.3. Every complete block in a nontrivial uniquely Ct-saturated graph has at most

three vertices.

Proof. The claim is trivial for t = 3, so assume t ≥ 4. Let G be a non-complete graph. Let

B and B′ be blocks in G, with a common vertex v, such that B is a complete graph and has

at least four vertices. Let u and x be vertices other than v in B and B′, respectively. The

vertices u and x are nonadjacent, and every t-path P with endpoints u and x contains v.

If P is unique, then the portion of P in B must have length 1, since B has at least four

vertices. Since t ≥ 4, this implies that P has at least two edges in B′. Hence the neighbor

x′ of x on P is not v. Now x′ and u are not adjacent, but there are multiple 3-paths in B

with endpoints u and v, so G is not uniquely Ct-saturated.

Using Lemma 2.3, we can restrict our attention to 2-connected graphs when t ≥ 6.

Lemma 2.4. If t ≥ 6, then every nontrivial uniquely Ct-saturated graph contains a block

that is not a complete graph. In fact, no two blocks with a common vertex are complete.
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Proof. Let G be a nontrivial uniquely Ct-saturated graph. By Lemma 2.3, the union of two

complete blocks with a common vertex v has at most five vertices. Hence if u and x are

vertices of these blocks other than v, then u and x are nonadjacent but are not the endpoints

of a t-path. The contradiction implies that no two neighboring blocks can be complete.

For t ≥ 6, Lemma 2.4 reduces Conjecture 1.2 to the consideration of 2-connected graphs.

Corollary 2.5. For t ≥ 6, if there are no 2-connected nontrivial uniquely Ct-saturated

graphs, then there are no nontrivial uniquely Ct-saturated graphs.

We next forbid certain subgraphs, aiming to forbid certain cycle lengths. Let Hm,ℓ be

the graph that consists of a 2m-cycle with a pendant path of length ℓ (see Figure 1).

H2,4 H3,3 H4,2

Figure 1: Forbidden subgraphs for uniquely C7-saturated graphs.

Lemma 2.6. If k < t with t ≥ 3, then no uniquely Ct-saturated graph contains Hk,t−k−1.

Proof. The diameter of Hk,t−k−1 is t− 1, and there are two t-paths connecting two vertices

at distance t− 1.

Lemma 2.7. For t ≥ 5, a uniquely Ct-saturated graph G cannot contain C2t−2 or C2t−4.

Proof. Note that C2t−2 = Ht−1,0, so Lemma 2.6 applies. If G contains C2t−4, then avoiding

Ht−2,1 requires |V (G)| = 2t − 4. Let C be a spanning cycle in G, with C = [v0, . . . , v2t−5]

(indices taken modulo 2t− 4). If G contains a chord of G, then it creates cycles of lengths l

and 2t− 2− l, for some l. If l = 2k, then Hk,t−k−1 ⊆ G.

If l = 2k + 1 is odd, then we may assume by symmetry that the chord is vkv−k. Now G

contains two t-paths with endpoints v0 and vt−2, using the chord in opposite directions.

Hence G = C2t−4, but now opposite vertices are not connected by any t-path.

The girth of a graph is the minimum length of a cycle in it.

Lemma 2.8. For t ≥ 5, a uniquely Ct-saturated graph G has girth at most t+ 1.
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Proof. Let x and y be two vertices in G such that dG(x, y) = 2, and let z be a common

neighbor of x and y. Let P be the unique t-path with endpoints x and y. If P does not

contain z, then the union of P and the path 〈x, z, y〉 is a (t+ 1)-cycle. If P contains z, then

the union of P and 〈x, z, y〉 contains a cycle with length at most t.

Two vertices having the same neighborhood are twins.

Lemma 2.9. For t ≥ 4, a uniquely Ct-saturated graph cannot contain twins.

Proof. Let x and y be twins in a graph G; note that twins are nonadjacent. If d(x) =

d(y) = 1, then the only cycle completed by added xy is a 3-cycle, so G is not uniquely

Ct-saturated. If d(x) = d(y) ≥ 2 and there is a t-path P with endpoints x and y, then

let x′ and y′ be the neighbors of x and y on P , respectively. Because x and y are twins,

x′y, xy′ ∈ E(G). Reversing the central (t−2)-path of P yields a second t-path with endpoints

x and y containing the edges xy′ and x′y. Thus G is not uniquely Ct-saturated.

A chordal path of a cycle C is a path of length at least 2 whose endpoints are in C and

whose internal vertices are not in C.

Lemma 2.10. For t ≥ 6, every nontrivial uniquely Ct-saturated graph G contains an even

cycle of length at most 2t− 6.

Proof. By Lemma 2.8, G has girth at most t+ 1. By Lemma 2.7, G does not contain C2t−2

or C2t−4. Since t+ 2 ≤ 2t− 2, we may assume that the girth of G is odd and that G has no

even cycle of length at most 2t− 2.

First suppose that G contains a cycle C of length 2k + 1 such that 2 ≤ k ≤ ⌊t/2⌋. The

prohibition of short even cycles implies that C has no chord. Let x and y be nonconsecutive

vertices in C such that dC(x, y) 6= t − 1; thus x and y are not adjacent. A t-path with

endpoints x and y contains a chordal path of C with length at most t− 1. Combining this

chordal path with a path from x to y along C yields an even cycle with length at most 2t−2

in G, a contradiction.

Now suppose that G contains a 3-cycle but no cycle of length 2k+1 with 2 ≤ k ≤ ⌊t/2⌋.

Let [x, y, z] be a 3-cycle C, and let x be a vertex of C having a neighbor x′ /∈ V (C). Since by

assumption G has no 4-cycle, x′y /∈ E(G). Hence G has a t-path P with endpoints x′ and y.

Now P contains one of the following: a subpath of length at least 3 with endpoints x′ and x,

a chordal path of length at least 2 connecting two vertices in V (C), or a path connecting x′

and a vertex in {y, z} with all internal vertices outside C. In all cases, G contains an even

cycle of length at most t+ 2 or an odd cycle of length 2k + 1 with 2 ≤ k ≤ ⌊t/2⌋.
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In light of Lemma 2.10 guaranteeing an even cycle of length at most 2t−6, an approach to

proving Conjecture 1.2 that there is no uniquely Ct-saturated graph for t ≥ 6 is to prove that

such a graph has no such even cycle. Although we cannot completely exclude (2t− 6)-cycles

for all t, we can greatly restrict the graphs that contain them. We state a general lemma

without proof, because we present the proof of Conjecture 1.2 only through t = 7. The ad

hoc proof excluding 8-cycles when t = 7 is shorter than the general proof of this lemma.

Lemma 2.11. For t ≥ 7, if a nontrivial uniquely Ct-saturated graph G contains a (2t− 6)-

cycle C and R = V (G)−V (C), then (1) G[R] has no edges, (2) every vertex of R has exactly

two neighbors on C, separated by odd distance (at least 3) along C, and (3) all vertices of

R have the same distance along C between their neighbors on C. Also, (4) all chords of C

join vertices at even distance along C.

3 Uniquely C5-saturated graphs

As mentioned in the introduction, the Friendship Theorem of Erdős, Rényi, and Sós [5] states

that if every two vertices in a graph have exactly one common neighbor, then some vertex

is adjacent to all others. As they noted, this immediately implies that the graph consists of

edge-disjoint triangle with one common vertex.

In such a graph, there is only one type of missing edge, joining two of the triangles.

Adding this to two edges from each of the two triangles completes a unique 5-cycle. Hence

friendship graphs are uniquely C5-saturated.

Theorem 3.1. A graph is a nontrivial uniquely C5-saturated graph if and only if it is a

friendship graph with at least five vertices.

Proof. We have noted that the condition is sufficient. For the converse, let G be a nontrivial

uniquely C5-saturated graph. Our proof depends on five graphs that cannot be subgraphs of

G. Already H2,2 and H3,1 are excluded by Lemma 2.6. Let F consist of K4 plus a pendant

edge at one vertex, and let F ′ consist of the 5-vertex friendship graph plus a pendant edge

at a vertex of degree 2. Figure 2 illustrates that F , F ′, and the complete bipartite graph

K2,3 are all forbidden as subgraphs of G, since each has a nonadjacent vertex pair that when

added completes at least two 5-cycles.

By Lemma 2.8, G has girth at most 6; by Lemma 2.7, G has no 6-cycle. By definition,

G has no 5-cycle.

Suppose first that G has a 4-cycle; let S be its vertex set. Let R = V (G)−S. Because G

is connected and H2,2 6⊆ G, each vertex in R has a neighbor in S, and R is an independent

6



K2,3 F F ′

Figure 2: Three graphs forbidden as subgraphs of uniquely C5-saturated graphs.

set. Because C5, K2,3 6⊆ G, each vertex in R has exactly one neighbor in S. Therefore S is

the vertex set of a block in G, and by Lemma 2.2 S is a clique. Since F 6⊆ G, we conclude

that R = ∅ and G = K4. Thus no nontrivial uniquely C5-saturated graph has a 4-cycle.

We conclude that G has no 4-cycle but has a 3-cycle, say [x, y, z]. Since G is nontrivial

and connected, we may assume by symmetry that x has a neighbor x′ not in {y, z}. Since

G has no 4-cycle, y and z are not adjacent to x′. Since G has no 4-cycle or 6-cycle, the

unique 5-path P with endpoints x′ and y contains x. It must be 〈x′, w, x, z, y〉, where w is a

common neighbor of x′ and x. Since F ′ 6⊆ G, we conclude that y, z, x′, and w have no other

neighbors in G. Repeating the argument shows that x is a dominating vertex and G− x is

a disjoint union of copies of K2, so G is a friendship graph with at least five vertices.

The case in Theorem 3.1 where G has no 4-cycle shows why the proof of Lemma 2.10 is

not valid for t = 5. The common neighbor of x′ and x yields the 5-path with endpoints x′

and y without creating a 4-cycle.

4 Uniquely C6- and C7-saturated graphs

In this section, we prove that there are no nontrivial uniquely C6-saturated or uniquely

C7-saturated graphs. Our proofs depend on successively forbidding cycles of various lengths.

Theorem 4.1. There are no nontrivial uniquely C6-saturated graphs.

Proof. Let G be a uniquely C6-saturated graph. By Corollary 2.5, we may assume that G is

2-connected. By Lemma 2.7, G does not contain C10 or C8. By Lemma 2.10, G contains an

even cycle of length at most 6. By definition, G does not contain C6. Hence G contains C4.

Let S be the vertex set of a 4-cycle in G, and let R = V (G)− S.

First suppose that G[R] contains a 3-path 〈u, z, v〉. Since G is 2-connected, two disjoint

paths connect {u, z, v} to S. Choosing shortest such paths, one has u or v as an endpoint,

yielding H2,3 ⊆ G. This contradicts Lemma 2.6; we conclude ∆(G[R]) ≤ 1.
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F ′′

Figure 3: A forbidden subgraph for uniquely C6-saturated graphs.

Suppose uv ∈ E(G[R]). Since G is 2-connected and the only edges leaving {u, v} go to S,

there are distinct vertices x, y ∈ S such that 〈x, u, v, y〉 is a 4-path. Since G cannot contain

C6, it contains the graph F ′′ in Figure 3. Since F ′′ has two nonadjacent vertices connected

by more than one 6-path, G is not uniquely C6-saturated.

We may therefore assume that R is an independent set. Since G is 2-connected, each

vertex in R has at least two neighbors in S. If |V (G)| ≥ 6, then let u and v be vertices in R.

If two neighbors of each can be chosen in S that are not the same pair, then G[S ∪ {u, v}]

contains a 6-cycle or two 6-paths with endpoints u and v, as shown in Figure 4. Hence u

and v have degree 2 and have the same two neighbors in S. This makes them twins, which

is forbidden by Lemma 2.9. We conclude that G contains at most five vertices, which yields

G ∈ {K4, K5}. We conclude that there are no nontrivial uniquely C6-saturated graphs.

Figure 4: Forbidden subgraphs for uniquely C6-saturated graphs.

The method for C7 is similar.

Theorem 4.2. There are no nontrivial uniquely C7-saturated graphs.

Proof. Let G be a nontrivial uniquely C7-saturated graph. By Corollary 2.5 we may assume

that G is 2-connected. By Lemma 2.7, G does not contain C12 or C10. By Lemma 2.10, G

contains C8, C6, or C4. Let C be a longest cycle among the even cycles in G with length at

most 8, and let R = V (G)− V (C). In each of several cases, we obtain a contradiction.

Case 1: C has length 8. If C has a chord joining vertices separated by distance 2 or 3

along C, then G contains C7 or H2,4 and is not uniquely C7-saturated. Hence any chord of

C joins opposite vertices on C.
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By Lemma 2.6, H4,2 6⊆ G, so R is an independent set. Because G is 2-connected, each

vertex in R has at least two neighbors in V (C). Consider x ∈ R. If x has neighbors on C

that are not consecutive, then G contains H2,4, C7, or H3,3 and is not uniquely C7-saturated.

Hence every vertex of R has exactly two neighbors on C, and they are consecutive on C.

Since twins are forbidden, two vertices of R cannot be adjacent to the same consecutive

pair. However, two vertices of R adjacent to distinct consecutive pairs yield C10 in G,

which is forbidden. We conclude |R| ≤ 1. If |R| = 1 and C has a (diametric) chord, then

H3,3 ⊆ G, which is forbidden. If |R| = 1 and C has no chord, then adding any diametric

chord completes no 7-cycle.

Hence we may assume that V (G) = V (C) and C has only diametric chords. Three

diametric chords of an 8-cycle yield two 7-cycles (each omits one of the vertices not incident

to a chord). Hence G has at most one chord e. However, now no 7-path connects two vertices

not adjacent to either endpoint of e.

Case 2: C has length 6. By Lemma 2.6, H3,3 is not a subgraph of G. Because G is

2-connected, it follows that G[R] has no component with at least three vertices. If R is not

independent, then there is a chordal path P of length 3 connecting two vertices on C. If

those vertices are consecutive or separated by distance 2 along C, then G contains C8 or C7,

which is forbidden. If P joins opposite vertices on C, then two 7-paths join the neighbors

on C of one of the endpoints of P .

Hence R is independent. Since G is 2-connected, each vertex of R has at least two

neighbors in V (C). Consecutive neighbors on C yield C7. Neighbors at distance 2 along C

yield two 7-paths with the same endpoints. Hence every vertex of R is adjacent precisely to

two opposite vertices on C. Now any two vertices of R are twins or yield C8, both forbidden.

If R = ∅, then G = K6, so we may let R = {x}. The neighbors of x are opposite vertices

y and z on C. If C has any non-diametric chord, then two 7-paths connect x to some vertex

on C. A diametric chord other than yz creates C7. Hence the only possible chord is yz. Now

{y, z} is a separating set in G such that G− {y, z} has three components, and the addition

of a chord of C incident to y or z cannot complete a spanning cycle in G.

Case 3: C has length 4. Since G is 2-connected, there is a chordal path joining two

vertices of C. If V (C) is a clique, then a chordal path of length 3, 4, or at least 5 creates

copies of C6, C7, or H2,4, respectively, all forbidden. Hence every chordal path has length

2. Since |V (G)| ≥ 7, we conclude that G contains C6 or twins, both forbidden. We may

therefore assume that C is a 4-cycle whose chords are not both present. Let u and v be

nonconsecutive on C such that uv /∈ E(G), and let x and y be the other vertices of C.
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The 7-path P with endpoints u and v also visits x and y, since otherwise C8 ⊆ G, which

was forbidden in Case 1. Let V (C) occur in the order u, x, y, v along C. The path P uses

exactly three vertices of R. No matter how the three extra vertices are allocated to the three

subpaths connecting vertices of C, a 6-cycle is created in G, excluded by Case 2.

We have also proved there are no uniquely C8-saturated graphs. The proof uses the

approach above, but more cases and details are needed to exclude the shorter even cycles.

Hence we omit the proof.

5 Finitely Many Uniquely Ct-saturated graphs

In this section, we present the proof of Theorem 1.1 that for any t ≥ 6 there are only

finitely many uniquely Ct-saturated graphs. The main idea is to reduce the problem to the

2-connected case, showing that if there are finitely many uniquely Ct-saturated graphs that

are 2-connected, then there are finitely many uniquely Ct-saturated graphs. For the first

step, we restrict the ways that 2-connected uniquely Ct-saturated graphs can be combined.

Lemma 5.1. If t ≥ 6 and G is a 2-connected uniquely Ct-saturated graph, then no uniquely

Ct-saturated graph F has blocks G′ and G′′ isomorphic to G such that G′ and G′′ share a

cut-vertex of F that can be viewed as the same vertex of G in G′ and G′′.

Proof. Let x be the vertex of G in both G′ and G′′, no edge of F joins V (G′ − x) and

V (G′′−x). For y ∈ V (G−x), let y′ and y′′ be the corresponding vertices in G′ and G′′. If G

has distinct paths from y to x with lengths summing to t− 1, then F has two t-paths with

endpoints y′ and y′′. Hence the unique t-path with endpoints y′ and y′′ consists of copies

in G′ and G′′ of a unique (t + 1)/2-path Py in G with endpoints y and x. This uniqueness

implies that G is not complete (also t is odd). We consider two cases.

Case 1: x is adjacent to all of V (G− x). Let t̂ = (t− 1)/2, so each Py is a (t̂+ 1)-path.

Since Py is unique and x dominates V (G− x), each y ∈ V (G− x) starts exactly one t̂-path

in G−x; it is Py−x. Let z be the other endpoint of Py−x. Vertex y cannot have a neighbor

in G− x outside Py, since G would then have distinct paths from z to x with lengths t̂ + 1

and t̂− 1 having sum t− 1. Also y cannot have a neighbor on Py other than its neighbor in

Py, since distinct t̂-paths in G−x would then start at z. Hence dG−x(y) = 1. With y chosen

arbitrarily, G− x is 1-regular. Hence 2 = t̂ = (t− 1)/2, so this case requires t = 5.

Case 2: x has a nonneighbor y in G. Since G is not complete, by Lemma 2.10 G has

an even cycle C of length at most 2t − 6. Since G is connected, there is a shortest path Q
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connecting x to the copy of C in G′. Since x has a nonneighbor y in G, there is a unique

t-path P in G′′ with endpoints x and y′′. Letting 2k be the length of C, the subgraph

C ∪Q ∪ P of F contains Hk,t−k−1, which is forbidden by Lemma 2.6.

Lemma 5.2. If there are finitely many 2-connected uniquely Ct-saturated graphs, then there

are finitely many uniquely Ct-saturated graphs.

Proof. The diameter of a Ct-saturated graph is at most t − 1. Hence the diameter of the

block-cutpoint trees of Ct-saturated graphs is also bounded; that is, a Ct-saturated graph

cannot contain a path that contains edges from more than t− 1 blocks.

Every block of a uniquely Ct-saturated graph is uniquely Ct-saturated. With finitely

many 2-connected uniquely Ct-saturated graphs, the number of vertices in any single block of

a uniquely Ct-saturated graph is bounded. If there are infinitely many uniquely Ct-saturated

graphs, then they must exist with arbitrarily many blocks. With bounded diameter in the

block-cutpoint tree, they must have block-cutpoint trees with arbitrarily many leaves.

Since the distance between leaves is bounded, there must be arbitrarily many leaf blocks

having a common cutvertex. Since the number of possible leaf blocks is bounded, there must

exist instances with arbitrarily many isomorphic leaf blocks having a common cut-vertex.

Since the number of vertices in the blocks are bounded, there must be instance with two

isomorphic leaf blocks sharing a cut-vertex that has the same identity in each of the two

blocks. This contradicts Lemma 5.1.

To complete the proof of the theorem, we need to show that there are finitely many

2-connected uniquely Ct-saturated graphs. We do this by bounding the number of vertices

in such a graph. Two lemmas are needed.

The first extends Lemma 2.9. When G has twins, it has an automorphism exchanging

the twins but leaving all other vertices fixed. The twins are components of G− S, where S

is their common neighborhood. We next consider a situation in which G− S contains four

isomorphic components. Given a set S ⊆ V (G) and v ∈ V (G)− S, let a v, S-path be a path

connecting v to a vertex in S with no internal vertices in S ∪ {v}.

Lemma 5.3. Given t ≥ 8, let G be a 2-connected graph with S ⊂ V (G). Suppose that G−S

has distinct isomorphic components F1, F2, F3 and F4 such that for all i ∈ {2, 3, 4} there is

an automorphism ϕi of G such that (1) ϕ2
i is the identity, (2) ϕi(F1) = Fi, and (3) ϕi fixes

all vertices outside F1 ∪Fi. If G is uniquely Ct-saturated, then every vertex of F1 that has a

neighbor in S starts some path in F1 with length t− 2.
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Proof. Let t̂ = (t − 1)/2. We first prove that for every x1 ∈ V (F1) there is an x1, S-path

of length t̂. If this fails for some x1 ∈ V (F1), then let x2 = ϕ2(x1). Since G is uniquely

Ct-saturated, it contains a unique t-path P with endpoints x1 and x2. For i ∈ {1, 2}, let

P i be the xi, S-path contained in P . If P 1 and P 2 have the same endpoint in S, then they

have different lengths, since G has no x1, S-path of length t̂. Otherwise, they have different

endpoints in S. In both cases, a second t-path with endpoints x1 and x2 consists of P with

each P i replaced by ϕ2(P
3−i). This contradiction proves the claim.

Hence for all x ∈ F1 there is an x, S-path of length t̂. Let x be a vertex of F1 having a

neighbor y ∈ S. Suppose that x starts no path in F1 with length t − 2. Since G contains

an x, S-path P of length t̂, we may choose z ∈ V (F1) at distance t̂− 1 from x along P . Let

P ′ be the t̂-path from x to z along P . Because G is 2-connected, G− y has a shortest path

connecting V (P ′) and S; call it Q′, with endpoints x′ ∈ V (P ′) and y′ ∈ S. Let Q be the path

from y to y′ consisting of the edge yx, the subpath of P ′ from x to x′, and Q′ (see Figure 5).

Let k be the length of Q. Since x starts no path of length t− 2 in F1, we have k ≤ t− 1.

x z

y y′

S

x′

w

Q Q′

P ′

Figure 5: Paths in F1. The bold path is Q, which overlaps with a portion of P ′.

Note that ϕ2(Q) ∪ ϕ3(Q) is a cycle C of length 2k in G, and the union of 〈y, x〉 with P ′

is a path of length t̂. If k ≥ t̂, then C ∪ 〈y, x〉 ∪ P ′ contains Hk,t−k−1.

Hence we may assume k < t̂. The portion of Q along P ′ has length at most k− 2. Hence

the path from y′ to z in Q′ ∪P ′ has length at least t̂− k+2. Let P̂ be its subpath of length

t̂−k starting from y′, and let w be the other endpoint of P̂ . For i ∈ {2, 3}, the concatenation

of P ′, xy, ϕi(Q), and ϕ4(P̂ ) has t̂+1+ k+ t̂− k vertices; hence it is a t-path with endpoints

z and ϕ4(w). Again this contradicts G being uniquely Ct-saturated, so x must start a path

in F1 with length t− 2.

Lemma 5.4. There are finitely many 2-connected uniquely Ct-saturated graphs.
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Proof. By Theorems 4.1 and 4.2, there are no uniquely C6-saturated or C7-saturated graphs.

Hence we may assume t ≥ 8. It suffices to prove that the number of vertices in a 2-

connected uniquely Ct-saturated graph G is bounded. In order to prove this, we prove

that the maximum degree in such a graph is bounded. Since the diameter of a uniquely

Ct-saturated graph is less than t, this bounds the number of vertices.

By Lemma 2.10, G contains an even cycle C of length at most 2t− 6. Let C have length

2k, and let S = V (C). By Lemma 2.6, G does not contain Hk,t−k−1, and hence all paths

leaving S have length at most t− k − 2.

Let Rt−k−i be the set of vertices v outside S such that longest v, S-paths have length

i. Because G is connected and Hk,t−k−1 6⊆ G, it follows that every vertex of G − S lies in

Rt−k−i for some i with 2 ≤ i ≤ t− k − 1. Also set R0 = S; this is Rt−k−i for i = t− k. We

proceed by induction on i to prove the existence of ci such that dG(v) ≤ ci when v ∈ Rt−k−i

and 2 ≤ i ≤ t− k.

For v ∈ Rt−k−2, the neighbors of v lie in S or on a v, S-path of length t − k − 2, since

Hk,t−k−1 /∈ G. Thus dG(v) ≤ t+ k − 3 ≤ 2t− 6, and we can set c2 = 2t− 6.

Now consider v ∈ Rt−k−i, where 3 ≤ i ≤ t−k. Let P be a v, S-path of length t−k−i, and

let S ′ = S ∪ V (P ). Let N ′(v) = N(v)− S ′. By Lemma 2.9, G does not contain twins, so at

most 2t+k−i−1 vertices in N ′(v) have neighborhoods contained in S ′. Let N ′′(v) be the set of

vertices in N ′(v) having a neighbor outside S ′, so |N ′′(v)| ≥ dG(v)− (t+k− i−1)−2t+k−i−1.

If any component of G− S ′ contains an (i− 1)-path starting at a vertex of N ′′(v), then

G contains Hk,t−k−1 and is not uniquely Ct-saturated. Let F be the subgraph of G−S ′ that

consists of the components of G − S ′ that contain vertices in N ′′(v). Hence each vertex of

F lies in Rt−k−j for some j with 2 ≤ j < i. By the induction hypothesis, F has maximum

degree bounded by maxj<i cj. With also bounded diameter, the number of vertices in a

component of F is bounded by some value h(t).

Let F ′ be a possible component of F . For each component of F isomorphic to F ′, we

can list the neighborhood in it of each vertex of S ′; there are (2|V (F ′)|)|S
′| possible such lists.

If F has more than 3 · 2|V (F ′)|·|S′| components isomorphic to F ′, then some four of them yield

the same list. Each vertex of S ′ has the same neighborhood in these four components, so

together with S ′ they satisfy the conditions of Lemma 5.3. The resulting path with length

t− 2 from a vertex of N ′′(v) would contradict G being uniquely Ct-saturated.

Since |S ′| = t + k − i < 2t, we have at most 3 · 22t·h(t) components of F isomorphic to

F ′, and there are fewer than 2(
h(t)
2 ) isomorphism classes of graphs with at most h(t) vertices.

Hence we have a bound (in terms of t) on |N ′′(v)| and hence also a bound ci on dG(v).

13



Since every vertex of G lies in Rt−k−i for some i with 2 ≤ i ≤ t− k, we have established

max2≤i≤t−k ci as a bound on the degrees of all vertices in G.

Lemmas 5.2 and 5.4 complete the proof of Theorem 1.1: there are finitely many uniquely

Ct-saturated graphs.
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