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Abstract

We study the class of 1-perfectly orientable graphs, that is, graphs having an orientation
in which every out-neighborhood induces a tournament. 1-perfectly orientable graphs form a
common generalization of chordal graphs and circular arc graphs. Even though they can be
recognized in polynomial time, little is known about their structure. In this paper, we develop
several results on 1-perfectly orientable graphs. In particular, we: (i) give a characterization
of 1-perfectly orientable graphs in terms of edge clique covers, (ii) identify several graph trans-
formations preserving the class of 1-perfectly orientable graphs, (iii) exhibit an infinite family
of minimal forbidden induced minors for the class of 1-perfectly orientable graphs, and (iv)
characterize the class of 1-perfectly orientable graphs within the classes of cographs and of co-
bipartite graphs. The class of 1-perfectly orientable co-bipartite graphs coincides with the class
of co-bipartite circular arc graphs.

Keywords: 1-perfectly orientable graph, fraternally orientable graph, in-tournament digraph,
structural characterization of families of graphs, cograph, co-bipartite graph, circular arc graph
MSC (2010): 05C20, 05C75, 05C05, 05C62, 05C69

1 Introduction

Many graph classes studied in the literature can be defined with the existence of orientations
satisfying certain properties. In this paper we study graphs having an orientation that is an
out-tournament, that is, a digraph in which in the out-neighborhood of every vertex induces an ori-
entation of a complete graph. (An in-tournament is defined similarly.) Following the terminology of
Kammer and Tholey [17], we say that an orientation of a graph is 1-perfect if the out-neighborhood
of every vertex induces a tournament, and that a graph is 1-perfectly orientable (1-p.o. for short) if
it has a 1-perfect orientation.1 In [17], the authors introduced a hierarchy of graph classes, with 1-
p.o. graphs being the smallest member of the family. Namely, they defined a graph to be k-perfectly

1This notion is not to be confused with the notion of perfectly orientable graphs, defined as graphs that admit a
linear vertex ordering (called a perfect order) < such that G contains no P4 a, b, c, d with a < b and d < c.
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orientable if in some orientation of it every out-neighborhood induces a disjoint union of at most
k tournaments. In [17], several approximation algorithms were given for optimization problems
on k-perfectly orientable graphs and related classes, and it is shown that recognizing k-perfectly
orientable graphs is NP-complete for all k ≥ 3. While the recognition complexity of 2-perfectly
orientable graphs seems to be unknown, 1-p.o. graphs can be recognized in polynomial time via a
reduction to 2-SAT [2, Theorem 5.1]. A polynomial time algorithm for recognizing 1-p.o. graphs
that works directly on the graph was given by Urrutia and Gavril [32].

The notion of 1-p.o. graphs was introduced in 1982 by Skrien [29] (under the name {B2}-graphs),
where the problem of characterizing 1-p.o. graphs was posed. By definition, 1-p.o. graphs are exactly
the graphs that admit an orientation that is an out-tournament. A simple arc reversal argument
shows that that 1-p.o. graphs are exactly the graphs that admit an orientation that is an in-
tournament. Such orientations were called fraternal orientations in several papers [8–11,24,25,32].
1-p.o. graphs are also exactly the underlying graphs of the so-called locally in-semicomplete digraphs
(which are defined similarly as in-tournaments, except that pairs of oppositely oriented arcs are
allowed), see [1].

While a structural understanding of 1-p.o. graphs is still an open question, partial results
are known. Bang-Jensen et al. [2] (see also [27]) proved a topological property of 1-p.o. graphs
(stating that every 1-p.o. graph is 1-homotopic), gave characterizations of 1-p.o. line graphs and
of 1-p.o. triangle-free graphs, and showed that every graph representable as the intersection graph
of connected subgraphs of unicyclic graphs is 1-p.o. This implies that all chordal graphs and all
circular arc graphs are 1-p.o., as observed already in [32] and in [29, 32], respectively. Moreover,
Bang-Jensen et al. showed in [2] that every graph having a unique induced cycle of order at least
4 is 1-p.o., and conjectured that every 1-p.o. graph can be represented as the intersection graph
of connected subgraphs of a cactus graph. The subclass of 1-p.o. graphs consisting of graphs that
admit an orientation that is both an in-tournament and an out-tournament was characterized in [29]
(see also [14]) as exactly the class of proper circular arc graphs.

We now briefly discuss the characterizations of 1-p.o. graphs as intersection graphs and with
forbidden substructures given by Urrutia and Gavril in [32]. The characterizations state that a
graph is 1-p.o. if and only if it is the vertex-intersection graph of a family of mutually graftable
subtrees in a graph (where two rooted subtrees of a graph are said to be graftable if their intersection
is empty or contains one of their roots), if and only if it does not contain an induced bicycle, where
a bicycle is a graph that can be written as a union of two monocycles satisfying a certain condition.
A monocycle is a graph G having a closed walk C = (x0, x1, . . . , xk) with xk = x0, k ≥ 4, and a walk
P = (y1, . . . , y`) with ` ≥ 2 such that V (G) = {x0, x1, . . . , xk} ∪ {y1, . . . , y`}, for all i ∈ {1, . . . , k}
(indices modulo k) vertex xi is neither equal nor adjacent to vertex xi+2, and for all j ∈ {1, . . . , `−2}
vertex yj is neither equal nor adjacent to vertex yj+2; moreover, vertex y` is either adjacent to two
consecutive vertices s, t of C, or it is in C and its immediate neighbours in C are denoted s, t, and,
finally, y`−1 is distinct from and not adjacent to s, t. Unfortunately, the above characterization
is not constructive and does not lead to an explicit list of minimal forbidden induced subgraphs
for the class of 1-p.o. graphs. Bicycles can be recognized in polynomial time using the polynomial
time recognition algorithm for 1-p.o. graphs, but are not structurally understood. It is also not
clear how to detect an induced bicycle in a given non-1-perfectly orientable graph, except by
running the algorithm by Urrutia and Gavril and then applying the arguments given in the proof
of [32, Theorem 5].

2



In this paper, we prove several further results regarding 1-perfectly orientable graphs. Our
results can be summarized as follows:

• We give a characterization of 1-p.o. graphs in terms of edge clique covers similar to a known
characterization of squared graphs due to Mukhopadhyay (Theorem 3).

• We identify several graph transformations preserving the class of 1-p.o. graphs (Theorem 6).
In particular, we show that the class of 1-p.o. graphs is closed under taking induced minors.
We also study the behavior of 1-p.o. graphs under the join operation (Theorem 7), which
motivates the study of 1-p.o. co-bipartite graphs.

• We show that within the class of co-bipartite graphs, 1-p.o. graphs coincide with circular
arc graphs (Theorem 10). This adds to the list of the many characterizations of co-bipartite
circular arc graphs.

• We identify several minimal forbidden induced minors for the class of 1-p.o. graphs, including
ten small specific graphs and two infinite families: the complements of even cycles of length at
least six and the complements of the graphs obtained from odd cycles by adding a component
consisting of a single edge (Theorem 13).

• Finally, we characterize 1-p.o. cographs, obtaining characterizations both in terms of forbid-
den induced subgraphs and in terms of structural properties (Theorem 14).

The paper is structured as follows. In Section 2 we fix the notation. In Section 3 we give a char-
acterization of 1-p.o. graphs in terms of edge clique covers. In Section 4, we identify several graph
transformations preserving the class of 1-p.o. graphs. In Section 5 we characterize 1-p.o. graphs
within the class of complements of bipartite graphs. Minimal forbidden induced minors for the
class of 1-p.o. graphs are discussed in Section 6. We conclude the paper with characterizations of
1-p.o. cographs in Section 7.

2 Preliminaries

In this section, we recall the definitions of some of the most used notions in this paper. All graphs
in this paper are simple and finite, but may be either directed (in which case we will refer to them
as digraphs) or undirected (in which case we will refer to them as graphs). We use standard graph
and digraph terminology. In particular, the vertex and edge sets of a graph G will be denoted by
V (G) and E(G), respectively, and the vertex and arc sets of a digraph D will be denoted by V (D)
and A(D). An edge in a graph connecting vertices u and v will be denoted by {u, v} or simply
uv. An arc in a graph connecting vertices u and v will be denoted by (u, v). We will also use the
notation u → v to denote the fact that an edge uv of a graph G is oriented from u to v in an
orientation of G. The set of all vertices adjacent to a vertex v in a graph G will be denoted by
NG(v), and its cardinality, the degree of v in G, by dG(v). The closed neighborhood of v in G is the
set NG(v) ∪ {v}, denoted by NG[v]. An orientation of a graph G = (V,E) is a digraph D = (V,A)
obtained by assigning a direction to each edge of G. A tournament is an orientation of a complete
graph. Given a digraph D, the in-neighborhood of a vertex v in D, denoted by N−D (v), is the set
of all vertices w such that (w, v) ∈ A. Similarly, the out-neighborhood of v in D is the set of all
vertices w such that (v, w) ∈ A. The cardinalities of the in- and the out-neighborhood of v are the
in-degree and the out-degree of v and are denoted by d−D(v) and d+D(v), respectively.
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Given two graphs G and H, their disjoint union is the graph G+H with vertex set V (G)∪V (H)
(disjoint union) and edge set E(G)∪E(H). We write 2G for G+G. The join of two graphs G and
H is the graph denoted by G ∗H and obtained from the disjoint union of G and H by adding to
it all edges joining vertex of G with a vertex of H. Given a graph G and a subset S of its vertices,
we denote by G[S] the subgraph of G induced by S, that is, the graph with vertex set S and edge
set {uv ∈ E(G) | u, v ∈ S}. By G − S we denote the subgraph of G induced by V (G) \ S, and
when S = {v} for a vertex v, we also write G− v. The graph G/e obtained from G by contracting
an edge e = uv is defined as G/e = (V,E) where V = (V (G) \ {u, v}) ∪ {w} with w a new vertex
and E = E(G− {u, v}) ∪ {wx | x ∈ NG(u) ∩NG(v)}. A clique (resp., independent set) in a graph
G is a set of pairwise adjacent (resp., non-adjacent) vertices of G. The complement of a graph G is
the graph G with the same vertex set as G in which two distinct vertices are adjacent if and only
if they are not adjacent in G. The fact that two graphs G and H are isomorphic to each other will
be denoted by G ∼= H. In this paper we will often not distinguish between isomorphic graphs. The
path, the cycle, and complete graph on n vertices will be denoted by Pn, Cn, and Kn, respectively,
and the complete bipartite graph with parts of size m and n by Km,n. Given two graphs G and H,
we say that G is H-free if no induced subgraph of G is isomorphic to H. For further background
on graphs, we refer to [5], on graph classes, to [3, 12], and on digraphs, to [1].

A connected graph is said to be unicyclic if it has exactly one cycle. The following consequence
of [2, Corollary 5.7] will be used in some of our proofs.

Proposition 1. Every unicyclic graph is 1-perfectly orientable.

3 A characterization in terms of edge clique covers

A graph G is said to have a square root if there exists a graph H with V (H) = V (G) such that
for all u, v ∈ V (G), we have uv ∈ E(G) if and only if the distance in H between u and v is either
1 or 2. An edge clique cover in a graph G is a collection of cliques {C1, . . . , Ck} in G such that
every edge of G belongs to some clique Ci. In this section, we characterize 1-p.o. graphs in terms of
edge clique covers, in a spirit similar to the well known Mukhopadhyay’s characterization of graphs
admitting a square root, which we now recall.

Theorem 2 (Mukhopadhyay [23]). A graph G with V (G) = {v1, . . . , vn} has a square root if and
only if G has an edge clique cover {C1, . . . , Cn} such that the following two conditions hold:

(a) vi ∈ Ci for all i,

(b) for every edge vivj ∈ E(G), we have vi ∈ Cj if and only if vj ∈ Ci.

In the original statement of the theorem, the second condition is required for all i 6= j, but since
vivj 6∈ E(G) clearly implies vi 6∈ Cj and vj 6∈ Ci, the equivalence in condition 2 automatically holds
for all non-adjacent vertex pairs.

Theorem 3. For every graph G with V (G) = {v1, . . . , vn}, the following conditions are equivalent:

1. G is 1-perfectly orientable.

2. G has an edge clique cover {C1, . . . , Cn} such that the following two conditions hold:

(a) vi ∈ Ci for all i,
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(b) for every edge vivj ∈ E(G), we have vi ∈ Cj or vj ∈ Ci, but not both.

3. G has an edge clique cover {C1, . . . , Cn} such that the following two conditions hold:

(a) vi ∈ Ci for all i,

(b) for every edge vivj ∈ E(G), we have vi ∈ Cj or vj ∈ Ci.

Before proving Theorem 3, we give two remarks. First, note that the difference between Theo-
rem 2 and the equivalence of conditions 1 and 3 in Theorem 3 consists in replacing the equivalence
in condition (b) of Theorem 2 with disjunction. This seemingly minor difference is in sharp con-
trast with the fact that recognizing graphs admitting a square root is NP-complete [22], while
1-p.o. graphs can be recognized in polynomial time. Second, recall that a pointed set is a pair (S, v)
where S is a nonempty set and v ∈ S. To every family S = {(S1, v1), . . . , (Sn, vn)} of pointed
sets, one can associate a graph, the so called catch graph of S by setting V (G) = {v1, . . . , vn}
and joining two distinct vertices vi and vj if and only if vi ∈ Sj or vj ∈ Si (see, e.g. [21]). The
equivalence between conditions 1 and 3 in the above theorem gives another proof of the fact that
every 1-p.o. graph is the catch graph of a family of pointed sets, which also follows from the char-
acterization of 1-p.o. graphs due to Urrutia and Gavril (stating that a graph is 1-p.o. if and only if
it is the vertex-intersection graph of a family of mutually graftable subtrees in a graph) [32].

Proof of Theorem 3. First, we show the implication 1 ⇒ 2. Given a 1-perfect orientation D of a
1-p.o. graph G with V (G) = {v1, . . . , vn}, we define an edge clique cover {C1, . . . , Cn} of G by
setting Ci = {vi}∪N+

D (vi). By definition, each Ci contains vi, and, since D is 1-perfect, is a clique
in G. Note that for all i 6= j, we have vj ∈ Ci if and only if (vi, vj) ∈ A(D). In particular vj ∈ Ci

and vi ∈ Cj cannot happen simultaneously. Since for every edge vivj ∈ E(G), we have either
(vi, vj) ∈ A(D) or (vj , vi) ∈ A(D) but not both, condition 2(b) follows.

The implication 2⇒ 3 is trivial.
Finally, we show the implication 3⇒ 1. Suppose that G has an edge clique cover {C1, . . . , Cn}

such that vi ∈ Ci for all i, and for every edge vivj ∈ E(G), vi ∈ Cj or vj ∈ Ci. Define an orientation
D of G as follows: for 1 ≤ i < j ≤ n such that vivj ∈ E(G), set (vi, vj) ∈ A(D) if vj ∈ Ci, and
(vj , vi) ∈ A(D), otherwise. By definition, for every vertex vi ∈ V (G) we have

N+
D (vi) = {vj | j < i ∧ vi 6∈ Cj} ∪ {vj | j > i ∧ vj ∈ Ci}

⊆ {vj | j < i ∧ vj ∈ Ci} ∪ {vj | j > i ∧ vj ∈ Ci} ⊆ Ci ,

where the first inclusion relation holds due to condition 3(b). Hence, D is a 1-perfect orientation
of G, and G is 1-p.o.

For later use, we also record the following immediate consequences of Theorem 3.

Corollary 4. For every graph G with V (G) = {v1, . . . , vn}, the following conditions are equivalent:

1. G is 1-perfectly orientable.

2. G has a collection of independent sets {I1, . . . , In} such that the following two conditions hold:

(a) vi ∈ Ii for all i,

(b) for every non-adjacent vertex pair vivj ∈ E(G), we have vi ∈ Ij or vj ∈ Ii.
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Corollary 5. The edges of every 1-perfectly orientable graph with n vertices can be covered by n
cliques.

Note that the converse of Corollary 5 does not hold. For example, the complement of the
10-vertex graph G1 (see Fig. 1 on p. 12) is not 1-p.o. (see Theorem 13), but can be edge-covered
with (at most) 9 cliques. (Determining if the edges of a given n-vertex graph can be covered by n
cliques is NP-complete [26]; see also [7].)

4 Operations preserving 1-perfectly orientable graphs

In this section, we identify several operations preserving 1-p.o. graphs and characterize when the
join of two graphs is 1-p.o. Two distinct vertices u and v in a graph G are said to be true twins
if NG[u] = NG[v], and false twins if NG(u) = NG(v). A vertex v is simplicial if its neighborhood
forms a clique, and universal if it is adjacent to every other vertex of the graph. The operations
of adding a true twin, a simplicial vertex or a universal vertex to a given graph are defined in the
obvious way. The operation of duplicating a 2-branch in the complement of a graph G is defined
as follows. A 2-branch in a graph G is a path (a, b, c) such that dG(b) = 2 and dG(c) = 1. We say
that such a 2-branch is rooted at a. Duplicating a 2-branch G results in a graph H where (a, b, c)
is a 2-branch in G, V (H) = V (G) ∪ {b′, c′}, where b′ and c′ are new vertices, H − {b′, c′} = G, and
(a, b′, c′) is a 2-branch in H. Finally, the result of duplicating a 2-branch in the complement of a
graph G is the complement of a graph obtained by duplicating a 2-branch in G.

Theorem 6. The class of 1-perfectly orientable graphs is closed under each of the following oper-
ations:

1. Disjoint union.

2. Adding a universal vertex (that is, join with K1).

3. Adding a true twin.

4. Adding a simplicial vertex.

5. Duplicating a 2-branch in the complement.

6. Vertex deletion.

7. Edge contraction.

Proof. For a 1-p.o. graph G, let us denote by D(G) an arbitrary (but fixed) 1-perfect orientation
of G.

1. If G = G1 + G2 is the disjoint union of two 1-p.o. graphs G1 and G2, then the disjoint union of
D(G1) and D(G2) is a 1-perfect orientation of G.

2. Suppose we have a 1-p.o. graph G with orientation D(G) and we add a universal vertex v to G,
thus obtaining a graph G′. A 1-perfect orientation D′ of G′ can be obtained by orienting an edge
xy ∈ E(G) from x to y if the edge is oriented from x to y in D(G), and orienting the edges of the
form uv from u to v. It is easy to see that D′ is indeed 1-perfect.
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3. Let w be a vertex in a 1-p.o. graph G, and let G′ be the graph obtained from G by adding to
it a true twin of w, say v. We obtain a 1-perfect orientation D′ of G′ by maintaining the same
orientation as in D(G) for the edges in G and orienting the new edges (incident with v) as v → u
if u ∈ N+

D(G)(w), and u→ v if u ∈ N−D(G)(w). We also orient the edge between w and v as w → v.

It is a matter of routine verification to check that the so obtained orientation of G′ is 1-perfect.

4. If we add a simplicial vertex v to a 1-p.o. graph G, then extending D(G) by orienting all edges
incident with v away from v results in an orientation D′ of the new graph, say G′, such that N+

D′(v)
is a clique in G′. The other out-neighborhoods were not changed, so they are cliques in G′ as well.

5. Let V (G) = {v1, . . . , vn}. If G is 1-p.o., then Corollary 4 applies to G. Hence, G has a collection
of independent sets {I1, . . . , In} such that vi ∈ Ii for all i, and for every edge vivj ∈ E(G), we have
vi ∈ Ij or vj ∈ Ii. Let H be the graph resulting from duplicating a 2-branch (a, b, c) in G; without
loss of generality, we may assume that (a, b, c) = (v1, v2, v3); furthermore, let the two new vertices
b′ and c′ be labeled as vn+1 and vn+2, respectively. It suffices to prove that H has a collection of
independent sets {J1, . . . , Jn+2} such that vk ∈ Jk for all k, and for every edge vivk ∈ E(H), we
have vi ∈ Jk or vk ∈ Ji. We may assume without loss of generality that the sets Ij are maximal
independent sets in G, which in particular implies that each Ij contains exactly one of the vertices
b and c. We define the sets Jk for k ∈ {1, . . . , n + 2} with the following rule:

• For all vk ∈ V (G), set

Jk =

{
Ik ∪ {b′}, if b ∈ Ik;
Ik ∪ {c′}, if c ∈ Ik.

• For k = n + 1 (that is, vk = b′), set Jk = (I2 \ {b}) ∪ {b′, c}.

• For k = n + 2 (that is, vk = c′), set Jk = (I3 \ {a, c}) ∪ {b, c′}.

Clearly, each Jk is an independent set in H. Let vivk ∈ E(H). Since b′c′ 6∈ E(H), we may assume
that vi ∈ V (G). We analyze three cases according to where is vk.

If vk ∈ V (G), then vivk ∈ E(G) and hence vi ∈ Ik or vk ∈ Ii, implying vi ∈ Jk or vk ∈ Ji.
If vk = b′, then either vi ∈ Jk (in which case we are done), or vi 6∈ Jk = (I2 \ {b}) ∪ {b′, c}, in

which case either vi = b or vi 6∈ I2. In the former case, we have i = 2 and vk = b′ ∈ J2, while in the
latter case, we have b = v2 ∈ Ii, which implies vk = b′ ∈ Ji.

If vk = c′, then either vi ∈ Jk (in which case we are done), or vi 6∈ Jk = (I3 \ {a, c}) ∪ {b, c′}, in
which case either vi ∈ {a, c} or vi 6∈ I3. In the former case, we have c ∈ Ii (if vi = a this follows
from the maximality of Ii) and consequently vk = c′ ∈ Ji. In the latter case, we have c = v3 ∈ Ii,
which implies vk = c′ ∈ Ji.

We have shown that vk ∈ Jk for all k, and for every edge vivk ∈ E(H), we have vi ∈ Jk or
vk ∈ Ji. By Corollary 4, H is the complement of a 1-p.o. graph, which establishes item 5.

6. Closure under vertex deletions follows immediately from the fact that the class of complete
graphs is closed under vertex deletions.

7. Let e = uv be an edge of a 1-p.o. graph G, and let D be a 1-perfect orientation of G, with
(without loss of generality) u→ v. Let G′ = G/e be the graph obtained by contracting the edge e,
and let w be the vertex replacing u and v.
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Set

X = NG(u) \NG(v) ,

Y = {x ∈ NG(u) ∩NG(v) | (x, v) ∈ A(D)} ,
U = {x ∈ NG(u) ∩NG(v) | (v, x) ∈ A(D)} ,
W = {x ∈ NG(v) \NG(u) | (x, v) ∈ A(D)} ,
Z = {x ∈ NG(v) \NG(u) | (v, x) ∈ A(D)} ,
R = V (G) \ (X ∪ Y ∪ U ∪W ∪ Z ∪ {u, v}) .

Let D′ be an orientation of G′ defined as follows:

(i) For all edges e ∈ E(G′) whose endpoints are not incident with w, orient e the same way as it
is oriented in D.

(ii) For all x ∈ X, orient the edge xw as x→ w.

(iii) For all x ∈ Y , orient the edge xw as x→ w.

(iv) For all x ∈ U , orient the edge xw as w → x.

(v) For all x ∈W , orient the edge xw as x→ w.

(vi) For all x ∈ Z, orient the edge xw as w → x.

We complete the proof by showing that D′ is a 1-perfect orientation of G′. We do this by
directly verifying the defining condition that for every vertex x of V (G′), the set N+

D′(x) is a clique
in G′. Note that X ∪ Y ∪ U ∪W ∪ Z ∪ {w} ∪ R is a partition of V (G′). We consider seven cases
depending on to which part of this partition x belongs.

(1) x ∈ X. In this case, N+
D′(x) = (N+

D (x) \ {u}) ∪ {w}. Note that since (u, v) ∈ A(D) and D
is a 1-perfect orientation of G, we have u ∈ N+

D (x). Consequently, since N+
D (x) is a clique in G

containing u, it contains no vertex from R∪Z, and thus N+
D′(x) = (N+

D (x) \ {u})∪ {w} is a clique
in G′.

(2) x ∈ W . In this case, v ∈ N+
D (x), and a similar reasoning as above shows that N+

D′(x) =
(N+

D (x) \ {v}) ∪ {w} is a clique in G′.

(3) x ∈ Z. In this case, N+
D′(x) = N+

D (x) and this set is a clique in G and hence in G′.

(4) x ∈ Y . In this case, we have two possibilities, either u ∈ N+
D (x) or not. In the former case,

we have N+
D′(x) = (N+

D (x) \ {u, v}) ∪ {w} which is a clique in G′, since N+
D (x) is a clique in G

containing u and v, and every neighbor of w in G′ is a neighbor of either u or of v in G. In the latter
case, we have N+

D′(x) = (N+
D (x) \ {v}) ∪ {w}, which is again a clique in G′ by a similar argument.

(5) x ∈ U . Now, N+
D′(x) = N+

D (x) \ {u}, which is a clique in G not containing u or v, and hence a
clique in G′.

(6) x ∈ R. Since the edges with endpoints in R have no endpoint in {u, v}, the edges which have x
as an endpoint will maintain the same orientation as in D. Therefore, N+

D′(x) = N+
D (x) is a clique

in G′.

(7) x = w. In this case, we have N+
D′(x) = N+

D (v), therefore N+
D′(x) forms a clique in G′.
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In the study of 1-p.o. graphs we may restrict our attention to connected graphs. It is a natural
question whether we may also assume that G is co-connected, that is, that its complement is
connected, or, equivalently, that G is not the join of two smaller graphs. The join operation does
not generally preserve the class of 1-p.o. graphs: the graphs 2K1 and 3K1 are trivially 1-p.o., but
their join, K2,3, is not (as can be easily verified; see also Theorem 13). In the next theorem we
characterize when the join of two graphs is 1-p.o. A graph is said to be co-bipartite of its complement
is bipartite.

Theorem 7. Suppose that a graph G is the join of two graphs G1 and G2. Then, G is 1-perfectly
orientable if and only if one of the following conditions hold:

1. G1 is complete and G2 is 1-p.o., or vice versa.

2. Each of G1 and G2 is a co-bipartite 1-p.o. graph.

In particular, the class of co-bipartite 1-p.o. graphs is closed under join.

Proof. Suppose first that G is 1-p.o. Clearly, both G1 and G2 are 1-p.o. graphs. If one of G1 or G2 is
complete or both are co-bipartite, we are done. So suppose that neither of them is complete and G1,
say, is not co-bipartite. Then, G1 contains the complement of an odd cycle, C2k+1 for some k ≥ 1,
as induced subgraph. Since G2 is not complete, it contains 2K1 as induced subgraph. Consequently,
G contains the join of C2k+1 and 2K1 as induced subgraph. As this graph is isomorphic to the
complement of C2k+1+K2, it is not 1-p.o. (see Theorem 13), and hence neither is G, a contradiction.

For the converse direction, suppose first that G1 is complete and G2 is 1-p.o., or vice versa. In
this case G is 1-p.o., since it can be obtained from a 1-p.o. graph by a sequence of universal vertex
additions, and Theorem 6 applies. Suppose now that G1 and G2 are two co-bipartite 1-p.o. graphs
with bipartitions of their respective vertex sets into cliques {A1, B1} and {A2, B2}, respectively
(one of the two cliques in each graph can be empty). Fixing a 1-perfect orientation Di of each
Gi (for i = 1, 2), we can construct a 1-perfect orientation, say D, of G = G1 ∗ G2, as follows.
Every edge of G that is an edge of some Gi is oriented as in Di. Orient the remaining edges of
the join from A1 to A2, from B1 to B2, from A2 to B1 and from B2 to A1. Let us verify that the
out-neighborhood of a vertex x ∈ A1 with respect to D forms a clique in G (the other cases follow
by symmetry). We have N+

D (x) = N+
D1

(x) ∪ A2, and since N+
D1

(x) is a clique in G1, A2 is a clique

in G and there are all edges between G1 and A2, the set N+
D (x) is indeed a clique in G. This shows

that G is 1-p.o.
Since the class of bipartite graphs is closed under disjoint union, the class of co-bipartite graphs

is closed under join. Consequently, the set of co-bipartite 1-p.o. graphs is closed under join.

5 1-perfectly orientable co-bipartite graphs

The behavior of 1-p.o. graphs under the join operation motivates the study of 1-p.o. co-bipartite
graphs. In this section we show that a co-bipartite graph is 1-p.o. if and only if it is circular arc.
A graph is circular arc if it is the intersection graph of a set of closed arcs on a circle. The class of
circular arc graphs forms an important and well studied subclass of 1-p.o. graphs; see, e.g., [6, 20].
The equivalence of the classes of 1-p.o. graphs and circular arc graphs within co-bipartite graphs
will be derived using two ingredients: a necessary condition for the 1-p.o. property, which holds in
general, and a characterization of co-bipartite circular arc graphs due to Hell and Huang.
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We say that a chordless cycle C in a graph G is oriented cyclically in an orientation D of G
if every vertex of the cycle has exactly one out-neighbor on the cycle (see [13, 33] for results on
orientations defined in terms of this property).

Lemma 8. In every 1-perfect orientation D of a 1-p.o. graph G, every chordless cycle of length at
least four is oriented cyclically.

Proof. Suppose that a chordless cycle C in G is not oriented cyclically in some 1-perfect orientation
D of G. Let C ′ be the orientation of C induced by D. By assumption, C contains a vertex v with
d+C′(v) 6= 1. Since

∑
u∈V (C) d

+
C′(u) = |A(C ′)| = |E(C)| = |V (C)|, it is not possible that d+C′(u) ≤ 1

for all u ∈ V (C), as this would imply d+C′(v) = 0 and consequently
∑

u∈V (C) d
+
C′(u) < |V (C)|.

Thus, C contains a vertex v with d+C′(v) = 2. Since C is of length at least 4 and chordless, the
out-neighborhood of v in C ′, and hence in D, is not a clique in G, contradicting the fact that D is
a 1-perfect orientation of G.

We now describe the characterization of co-bipartite circular arc graphs due to Hell and Huang.
Let G be a co-bipartite graph with a bipartition {U,U ′} of its vertex set into two cliques. An edge
of G connecting a vertex from U with a vertex of U ′ is said to be a crossing edge of G. A coloring
of the crossing edges of G with colors red and blue is said to be good (with respect to {U,U ′}) if
for every induced 4-cycle in G, the two crossing edges in it are of the opposite color. The following
characterization of co-bipartite circular arc graphs is a reformulation of [15, Corollary 2.3].

Theorem 9. Let G be a co-bipartite graph with a bipartition {U,U ′} of its vertex set into two
cliques. Then G is a circular arc graph if and only if it has a good coloring with respect to {U,U ′}.

Theorem 10. For every co-bipartite G graph, the following properties are equivalent:

1. G is 1-perfectly orientable.

2. G has an orientation in which every induced 4-cycle is oriented cyclically.

3. G is circular arc.

Proof. As shown by Skrien [29], implication 3 ⇒ 1 holds for general (not necessarily co-bipartite)
graphs. Similarly, the implication 1⇒ 2 holds in general as follows from Lemma 8.

It remains to prove that if G is co-bipartite, then condition 2 implies condition 3. Let D be an
orientation of G in which every induced 4-cycle of G is oriented cyclically. Fix a partition {U,U ′} of
V (G) into two cliques. We will now show that G admits a good coloring (with respect to {U,U ′}),
and Theorem 9 will imply that G is circular arc. We obtain a good coloring of G as follows: for
every crossing edge e of G, we color e red if the arc of D corresponding to e goes from U to U ′,
and blue if it goes from U ′ to U . To see that this is indeed a good coloring, let C be an arbitrary
induced 4-cycle of G. Since C is oriented cyclically in D, out of the two crossing edges of C exactly
one is oriented from U to U ′ in D. This implies that the two crossing edges of C will have different
colors in the above coloring. It follows that the obtained coloring is a good coloring, as claimed.

Many characterizations of circular arc co-bipartite graphs are known, including a characteriza-
tion in terms of forbidden induced subgraphs due to Trotter and Moore [30] and several (at least
five) others, see, e.g., [6, 20]. By Theorem 10, each of these yields a characterization of 1-p.o. co-
bipartite graphs. Theorem 10 can also be seen as providing further characterizations of co-bipartite
circular arc graphs.
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6 A family of minimal forbidden induced minors

Theorem 6 implies that the class of 1-p.o. graphs is closed under vertex deletions and edge con-
tractions. Hence, it is also closed under taking induced minors. Recall that a graph H is said to
be an induced minor of a graph G if H can be obtained from G by a series of vertex deletions or
edge contractions. Graph classes closed under induced minors include all the minor-closed graph
classes, as well as many others (see, e.g., [4,16,18,19,31]). Since the class of 1-p.o. graphs is closed
under induced minors, it can be characterized in terms of minimal forbidden induced minors. That
is, there exists a unique minimal set of graphs F̃ such that (i) a graph G is 1-p.o. if and only if
G is F̃-induced-minor-free (that is, no induced minor of G is isomorphic to a member of F̃), and
(ii) every proper induced minor of every graph in F̃ is 1-p.o. In this section we identify an infinite
subfamily F ⊆ F̃ of minimal forbidden induced minors for the class of 1-p.o. graphs.

We start with two preliminary observations. The fact that every circular arc graph is 1-p.o.
implies the following.

Proposition 11. The complement of every odd cycle is 1-perfectly orientable.

Proof. Recall that the k-th power of a graph G is the graph with the same vertex set as G in which
two distinct vertices are adjacent if and only if their distance in G is at most k. It is easy to see (and
also follows from the fact that the class of circular arc graphs is closed under taking powers [28])
that all powers of cycles are circular arc graphs. Therefore, the fact that the complement of every
odd cycle is 1-p.o. follows from two facts: (i) that the complement of C3 is 1-p.o., and (ii) for
every k ≥ 2, the complement of the odd cycle C2k+1 is isomorphic to a power of a cycle, namely to
Ck−1
2k+1.

Since every disjoint union of paths is an induced subgraph of a sufficiently large odd cycle,
Proposition 11 and Theorem 6 yield the following.

Corollary 12. The complement of every disjoint union of paths is 1-perfectly orientable.

The following theorem describes a set of minimal forbidden induced minors for the class of
1-p.o. graphs.

Theorem 13. Let F = {F1, F2, F5, . . . , F12} ∪ F3 ∪ F4, where:

• graphs F1, F2 are depicted in Fig. 1, and

• F3 = {C2k | k ≥ 3}, the set of complements of even cycles of length at least 6,

• F4 = {K2 + C2k+1 | k ≥ 1}, the set of complements of the graphs obtained as the disjoint
union of K2 and an odd cycle,

• for i ∈ {5, . . . , 12}, graph Fi is the complement of the graph Gi−4, depicted in Fig. 1.

Then, every graph in set F is a minimal forbidden induced minor for the class of 1-perfectly
orientable graphs.
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F1 F2

G1 = F5

F4 = K2 + C3F3 = C6

G2 = F6 G3 = F7 G4 = F8

G5 = F9 G6 = F10 G7 = F11 G8 = F12

Figure 1: Four non-1-p.o. graphs and 8 complements of non-1-p.o. graphs. Graphs F3 and F4 are
the smallest members of families F3 and F4, respectively.

Proof. We need to show that each F ∈ F is not 1-p.o., but every proper induced minor of F is.
We first show that no graph in F is 1-p.o., and will argue minimality for all F ∈ F in the second
part of the proof.

No graph is in F is 1-p.o.
First consider the graphs F1 and F2. Since they are both triangle-free, every edge clique cover

of Fi (for i ∈ {1, 2}) contains all edges of Fi and hence has at least |E(Fi)| > |V (Fi)| members.
Hence, Corollary 5 implies that F1 and F2 are not 1-p.o.

The family F3 consists precisely of complements of even cycles of length at least 6. In particular,
every F ∈ F3 is co-bipartite. By Theorem 10, F is 1-p.o. if and only if F is circular arc. Since the
family F3 is one of the six infinite families of minimal forbidden induced subgraphs for the class of
circular arc co-bipartite graphs [30], we infer that F is not 1-p.o.

Now let F ∈ F4, that is, F = K2 + C2k+1 for some k ≥ 1. We will prove that F is not 1-p.o. using
Lemma 8. Let the vertices of the cycle component of F be named u1, . . . , u2k+1, according to a
cyclic order of C2k+1. Also, let the two vertices of the K2 component of F be named v1 and v2.
Suppose that F admits a 1-perfect orientation D. For every two consecutive vertices from the cycle
we have an induced C4 given by these two vertices together with v1 and v2. By Lemma 8, every
such C4 must be oriented cyclically. Consider the C4 induced by vertices {u1, u2, v1, v2}. Without
loss of generality we may assume that it is oriented as v1 → u1 → v2 → u2 → v1. This determines
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the orientation of the C4 induced by {u2, u3, v1, v2}. Since the edge {v1, u2} is oriented as u2 → v1,
the edge {v1, u3} must be oriented as v1 → u3. Proceeding along the cycle, we infer that v1 → ui
for odd i and ui → v1 for even i. However, this implies that v1 → u1 and v1 → u2k+1, contrary to
the fact that D is a 1-perfect orientation of F . Therefore, F is not 1-p.o.

Each of the remaining graphs, F5–F12, belongs to the list of minimal forbidden induced sub-
graphs for the class of circular arc co-bipartite graphs [30]. By Theorem 10, none of these graphs
is 1-p.o.

It remains to show minimality, that is, that every proper induced minor of every graph in F
is 1-p.o.

First consider the graphs F1 and F2. Deleting any vertex of either F1 or F2 results in either a
chordal graph or in a unicyclic graph, hence in a 1-p.o. graph (cf. Proposition 1). Contracting any
edge of F1 results in a graph that is either chordal, or is obtained from a cycle by adding to it a
simplicial vertex, hence in either case a 1-p.o. graph. Contracting any edge of F2 results in a graph
that can be reduced to a cycle by removing true twins and simplicial vertices, hence this graph is
also 1-p.o.

We are left with graphs that are defined in terms of their complements. To argue minimality for
them, it will be convenient to understand the effect of performing the operation of edge contraction
on a given graph on its complement. It can be seen that if G is the graph obtained from a graph H
by contracting an edge uv, then G is the graph obtained from H identifying a pair of non-adjacent
vertices (namely, u and v) and making the new vertex adjacent exactly to the common neighbors
in H of u and v. We will refer to this operation as co-contracting a non-edge.

Let F ∈ F3, that is, F = C2k for some k ≥ 3. Deleting a vertex from F results in the complement
of a path, which is 1-p.o. by Corollary 12. Similarly, one can verify that co-contracting a non-edge
of F results in a disjoint union of paths. Thus, every proper induced minor of F is 1-p.o.

Let F ∈ F4, that is, F = C2k+1 + K2 for some k ≥ 1. Deleting a vertex in the cycle component
of F from F results in the complement of a disjoint union of path, which is 1-p.o. by Corollary 12.
Deleting a vertex in the K2 component of F from F results in the graph that consists of the join
of K1 and the complement of an odd cycle, which is 1-p.o. by Theorem 6 and Proposition 11.
Furthermore, co-contracting a non-edge of F results in a disjoint union of paths, and Corollary 12
applies again. Thus, every proper induced minor of F is 1-p.o.

We recall that each of the remaining graphs, F5–F12, is a minimal forbidden induced subgraph for
the class of circular arc co-bipartite graphs. Deleting a vertex from any of them results in a circular
arc co-bipartite graph, hence in a 1-p.o. graph. Note that F9 has 9 vertices, each of F5, F6, F7, F8, F10

has 10 vertices, and F11 and F12 have 12 vertices. Also note that since co-bipartite graphs are closed
under edge contractions, in order to show that every graph obtained from one of the graphs F5–
F12 by contracting an edge is 1-p.o., it suffices to argue that it is circular arc, which (since it
is co-bipartite) is equivalent to verifying that it does not contain any of the minimal forbidden
induced subgraphs for the class of circular arc co-bipartite graphs [30]. The only graphs with at
most 10 vertices on this list are C6, C8, C10, and graphs F5–F10. The list also contains a unique
graph of order 11; let G9 denote its complement. Let G ∈ {F5, . . . , F12} = {G1, . . . , G8}. A direct
inspection of the possible graphs resulting from co-contracting a non-edge of G shows that every
such graph has either at most 10 vertices, in which case its complement is {C6, C8, C10, G1, . . . , G6}-
free, or it has 11 vertices, in which case its complement either has an isolated vertex and the rest is
{C6, C8, C10, G1, . . . , G6}-free, or it is connected, of order 11, and {C6, C8, C10, G1, . . . , G6, G9}-free.
Thus, in all cases contracting an edge of a graph in {F5, . . . , F12} results in a circular arc graph,
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hence in a 1-p.o. graph. This completes the proof.

Theorem 13 implies that F ⊆ F̃ , where F̃ is the set of minimal forbidden induced minors for
the class of 1-p.o. graphs. However, the complete set F̃ is unknown. It is conceivable that one
can obtain further graphs in F̃ by computing the minimal elements with respect to the induced
minor relation of the list of forbidden induced subgraphs for the class of circular arc co-bipartite
graphs due to Trotter and Moore [30]. Besides the three small graphs F5, F6, F7 and the family
F3 of complements of even cycles of length at least 6, the list contains five other infinite families,
the smallest members of which are graphs F8, . . . , F12, respectively. (In [30], the lists represent the
complementary property and are denoted by Ti, Wi, Di, Mi, and Ni, respectively.)

Open problem. Determine the set of minimal forbidden induced minors for the class of 1-perfectly
orientable graphs.

7 1-perfectly orientable cographs

Bang-Jensen et al. [2] characterized 1-p.o. line graphs and 1-p.o. triangle-free graphs, and in Sec-
tion 5 we characterized 1-p.o. co-bipartite graphs. We conclude the paper by characterizing 1-
p.o. cographs, obtaining characterizations both in terms of forbidden induced subgraphs and in
terms of structural properties. The class of cographs is defined recursively by stating that K1 is a
cograph, the disjoint union of two cographs is a cograph, the join of two cographs is a cograph, and
there are no other cographs. It is well known (see, e.g., [3]) that cographs can be characterized in
terms of forbidden induced subgraphs by a single obstruction, namely the 4-vertex path P4.

Theorem 14. For every cograph G, the following conditions are equivalent:

1. G is 1-perfectly orientable.

2. G is K2,3-free.

3. One of the following conditions holds:

• G ∼= K1.

• G ∼= mK2 for some m ≥ 2.

• G is the disjoint union of two smaller 1-p.o. cographs.

• G is obtained from a 1-p.o. cograph by adding to it a universal vertex.

• G is obtained from a 1-p.o. cograph by adding to it a true twin.

Proof. The implication 1⇒ 2 follows from Theorems 6 and 13.
To show the implication 2 ⇒ 3, suppose that G is a K2,3-free cograph on at least two vertices

that is not disconnected and does not have a universal vertex or a pair of true twins. We want to
show that G = mK2. Since G is not disconnected and G 6= K1, its complement G is disconnected.
Let m ≥ 2 denote the number of co-components of G (subgraphs of G induced by the vertex sets
of components of G). If one of the co-components has exactly one vertex, then that vertex is
universal in G, which is a contradiction. Therefore, each co-components has at least two vertices.
The recursive structure of cographs implies that each co-component of G is disconnected. In
particular, it has independence number at least 2. On the other hand, since G is K2,3-free, each
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co-component of G has independence number at most 2. This implies that each co-component
is the disjoint union of two complete graphs. Since G has no true twins, each co-component is
isomorphic to 2K1, that is, G ∼= mK2 for some m ≥ 2, as claimed.

Finally, we show the implication 3⇒ 1. Suppose that G is a cograph such that one of the five
conditions in item 3 holds. An inductive argument shows that G is 1-p.o., using Theorem 6 and the
fact that K1 and all graphs of the form mK2 are 1-p.o. (which follows, e.g., from Corollary 12).
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