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ON (4, 2)-CHOOSABLE GRAPHS

JIXIAN MENG, GREGORY J. PULEO, AND XUDING ZHU

Abstract. A graph G is called (a, b)-choosable if for any list assignment L

which assigns to each vertex v a set L(v) of a permissible colours, there is a b-
tuple L-colouring of G. An (a, 1)-choosable graph is also called a-choosable. In
the pioneering paper on list colouring of graphs by Erdős, Rubin and Taylor [2],
2-choosable graphs are characterized. Confirming a special case of a conjecture
in [2], Tuza and Voigt [3] proved that 2-choosable graphs are (2m,m)-choosable
for any positive integer m. On the other hand, Voigt [6] proved that if m is
an odd integer, then these are the only (2m,m)-choosable graphs; however,
when m is even, there are (2m,m)-choosable graphs that are not 2-choosable.

A graph is called 3-choosable-critical if it is not 2-choosable, but all its proper
subgraphs are 2-choosable. Voigt conjectured that for every positive integer m,
all bipartite 3-choosable-critical graphs are (4m, 2m)-choosable. In this paper,
we determine which 3-choosable-critical graphs are (4, 2)-choosable, refuting
Voigt’s conjecture in the process. Nevertheless, a weaker version of the conjec-
ture is true: we prove that there is an even integer k such that for any positive
integer m, every bipartite 3-choosable-critical graph is (2km, km)-choosable.
Moving beyond 3-choosable-critical graphs, we present an infinite family of
non-3-choosable-critical graphs which have been shown by computer analysis
to be (4, 2)-choosable. This shows that the family of all (4, 2)-choosable graphs
has rich structure.

1. Introduction

Multiple list colouring of graphs was introduced in the 1970s by Erdős, Rubin
and Taylor [2]. A list assignment is a function L which assigns to each vertex v
a set of permissible colours L(v). A b-tuple colouring of a graph G is a function
f that assigns to each vertex v a set f(v) of b colours so that f(u) ∩ f(v) = ∅ for
any edge uv of G. Given a list assignment L of G, a b-tuple L-colouring of G, also
called an (L, b)-colouring of G, is a b-tuple colouring f of G with f(v) ⊆ L(v) for
all v ∈ V (G). We say G is (L, b)-colourable if there is a b-tuple L-colouring of G,
and say G is (a, b)-choosable if G is (L, b)-colourable for any list assignment L with
|L(v)| = a for all v. A (a, 1)-choosable graph is also called a-choosable. The choice
number ch(G) of a graph G is the smallest integer a such that G is a-choosable.
List colouring of graphs has been studied extensively in the literature; see [4] for a
survey.

The family of 2-choosable graphs was characterized by Erdős, Rubin and Tay-
lor [2]. These graphs have very simple structure. We define the core of a graph
G to be the graph obtained by iteratively deleting vertices of degree 1. It is easy
to see that a graph is 2-choosable if and only if its core is 2-choosable. It was
proved in [2] that a graph G is 2-choosable if and only if its core is K1 or an even
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cycle or Θ2,2,2p for some positive integer p, where Θr,s,t is the graph consisting of
two end vertices u and v joined by three internally vertex-disjoint paths containing
r, s, and t edges respectively. Erdős, Rubin, and Taylor [2] conjectured that if a
graph is (a, b)-choosable, then it is (am, bm)-choosable for every positive integer m;
Tuza and Voigt [3] confirmed a special case of this conjecture by proving that all
2-choosable graphs are (2m,m)-choosable for all m, but the conjecture is otherwise
open. Moreover, Voigt [6] proved that if m is an odd integer, then these are the
only (2m,m)-choosable graphs.

When m is even, the family of (2m,m)-choosable graphs has much richer struc-
ture. A b-tuple a-colouring of a graph G is a b-tuple colouring f of G with
f(v) ⊆ {1, 2, . . . , a} for each v. We say G is (a, b)-colourable if such a colour-
ing exists. Alon, Tuza, and Voigt [1] showed that if a graph G is (a, b)-colourable,
then there is a positive integer kG such that G is (akGm, bkGm)-choosable for all
m. In particular, for any bipartite graph G, there is a positive integer mG such
that G is (2mG,mG)-choosable.

This paper is devoted to the study of (4m, 2m)-choosability. In particular, we
are interested in the question of which graphs are (4, 2)-choosable.

A graph G is called 3-choosable-critical if G is not 2-choosable, but any proper
subgraph is 2-choosable. The family of 3-choosable-critical graphs is characterized
by Voigt [6]:

Theorem 1.1 (Voigt [6]). A graph is 3-choosable-critical if and only if it is one of
the following:

(a) two vertex-disjoint even cycles joined by a path,
(b) two even cycles with exactly one vertex in common,
(c) a Θ2r,2s,2t-graph or Θ2r−1,2s−1,2t−1-graph with r ≥ 1 and s, t > 1,
(d) a Θ2,2,2,2t-graph with t ≥ 1,
(e) an odd cycle.

Voigt conjectured that for any positive integer m, all bipartite 3-choosable-
critical graphs are (4m, 2m)-choosable. In this paper, we prove the following char-
acterization of the (4, 2)-choosable 3-choosable-critical graphs, which refutes Voigt’s
conjecture:

Theorem 1.2. A 3-choosable-critical graph is (4, 2)-choosable if and only if it is
one of the following:

(a) two vertex-disjoint even cycles joined by a path,
(b) two even cycles with exactly one vertex in common,
(c) a Θ2,2s,2t-graph or Θ1,2s−1,2t−1-graph with s, t > 1,
(d) Θ2,2,2,2.

(Note that Θ2,2,2,2
∼= K2,4.) In particular, among the bipartite 3-choosable-

critical graphs, when r, s, t have the same parity and min{r, s, t} ≥ 3, the graph
Θr,s,t fails to be (4, 2)-choosable, and when t > 1, the graph Θ2,2,2,2t fails to be
(4, 2)-choosable.

Nevertheless, a weaker version of Voigt’s conjecture is true:

Theorem 1.3. There is a fixed integer k such that for every positive integer m,
every bipartite 3-choosable-critical graph is (4km, 2km)-choosable.
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v1 v2 v3

L(vi) abcd abef adeg
Xi abcd ef adg

X̂i cd dg

Figure 1. Example computations of Xi and X̂i. Here A = {a}.

The paper is structured as follows. In Section 2 we introduce the main lemmas
and definitions needed for the proof of Theorem 1.2. In Section 3 we collect some
more useful lemmas of a more technical nature.

In Section 4 we prove that theta graphs of the form Θ2,2s,2t and Θ1,2s−1,2t−1

are (4, 2)-choosable. In Section 5 we apply these results to show that if G consists
of two vertex-disjoint even cycles joined by a path or two even cycles sharing a
vertex, then G is (4, 2)-choosable. Tuza and Voigt have already shown [5] that
K2,4 is (4m, 2m)-choosable for all m, so this completes the positive direction of
Theorem 1.2.

In Section 6 we present list assignments showing that Θ3,3,3, Θ4,4,4, and Θ2,2,2,4

are not (4, 2)-choosable; a quick argument given in that section shows that the larger
theta graphs also fail to be (4, 2)-choosable. This completes the characterization of
the (4, 2)-choosable 3-choosable-critical graphs.

In Section 7, we prove Theorem 1.3. In Section 8, we present some non-3-
choosable-critical graphs and briefly discuss the computer analysis that demon-
strates that these graphs are (4, 2)-choosable. We close with a conjectured charac-
terization of the (4, 2)-choosable graphs.

2. Paths and Damage

Definition 2.1. When P is an n-vertex path with vertices v1, . . . , vn in order, and
L is a list assignment on P , we define sets X1, . . . , Xn by

X1 = L(v1),

Xi = L(vi)−Xi−1 (i ∈ {2, . . . , n}).

We also define the quantity SL(P ) by

SL(P ) =

n
∑

i=1

|Xi|.

Lemma 2.2. Let P be an n-vertex path and let L be a list assignment on P such
that |L(v1)|, |L(vn)| ≥ 2m and |L(vi)| = 4m for i ∈ {2, . . . , n− 1}. The path P is
(L, 2m)-colourable if and only if SL(P ) ≥ 2mn.

Proof. We use induction on n. The claim is trivial for n = 1. Assume that n ≥ 2
and the claim holds for n′ < n. Let P ′ = P − vn, and observe that if X ′

1, . . .X
′
n−1

are computed as above for P ′, then X ′
i = Xi for all i ∈ {1, . . . , n − 1}. Since

|X1| ≥ 2m and |Xi| + |Xi−1| ≥ |L(vi)| ≥ 4m for i ∈ {2, . . . , n − 1}, we have
∑n−1

i=1 |X
′
i| ≥ 2(n− 1)m.

First assume SL(P ) ≥ 2nm. We shall prove that P is (L, 2m)-colourable. We
determine a 2m-set of colours φ(vn) to be assigned to vn as follows: when |Xn| ≥
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2m, let φ(vn) be any 2m-subset contained in Xn; when |Xn| < 2m, let φ(vn) be
any 2m-subset of L(vn) containing Xn.

Let L∗ be the restriction of L to P ′, except that L∗(vn−1) = L(vn−1) − φ(vn).

When |Xn| ≥ 2m, we have SL∗(P ′) =
∑n−1

i=1 |Xi| ≥ 2(n−1)m, since φ(vn)∩Xn−1 =
∅; when |Xn| < 2m, we have SL∗(P ′) ≥

∑n

i=1|Xi| − |φ(vn)| ≥ 2(n − 1)m, since
φ(vn) ⊇ Xn. Either way, by the induction hypothesis, P ′ has an (L∗, 2m)-colouring,
which extends to an (L, 2m)-colouring of P by assigning φ(vn) to vn.

For the other direction, let φ be an (L, 2m)-colouring of P . Let L∗ be the
restriction of L to P ′, except that L∗(vn−1) = L(vn−1)−φ(vn), and let X∗

1 , . . .X
∗
n−1

be computed for L∗. Since φ is an (L∗, 2m)-colouring of P ′, the induction hypothesis
implies that

n−1
∑

i=1

|X∗

i | = SL∗(P ′) ≥ 2(n− 1)m.

It is easy to verify that Xi = X∗
i for i = 1, 2, . . . , n − 2, and |Xn−1| + |Xn| ≥

|X∗
n−1|+ |φ(vn)| ≥ |X∗

n−1|+ 2m. Hence SL(P ) ≥ 2nm. �

Our typical strategy for showing that a graph G is (4m, 2m)-choosable is as
follows: identify a set of vertices X such that G − X is a linear forest (disjoint
union of paths), and find a precolouring of X such that each path P in G − X
satisfies SL∗(P ) ≥ 2m|V (P )|, where L∗ is obtained from L by removing from each
vertex of G−X the colours used on its neighbors in X . Provided that the degree-2
vertices of G−X have no neighbors in X , Lemma 2.2 then guarantees that we can
extend the precolouring of X to the rest of the graph, as desired.

In order to carry out this strategy, we need to know how SL(P ) changes when
colours are removed from the endpoints of P . We will be particularly interested in
the case where P has an odd number of vertices. Before stating the results, we set
up some more notation.

Definition 2.3. If L is a list assignment on an n-vertex path P and S, T are sets of
colours, we define L⊖ (S, T ) to be the list assignment obtained from L by deleting
all colours in S from L(v1), all colours in T from L(vn), and leaving all other lists
unchanged.

Definition 2.4. Let L be a list assignment on an n-vertex path P , where n is odd.
Define

A =
⋂

x∈V (P )

L(x).

Let

X̂1 = {c ∈ L(v1)−A : the smallest index i for which c /∈ L(vi) is even}.

X̂n = {c ∈ L(vn)−A : the largest index i for which c /∈ L(vi) is even}.

See Figure 1 for an example of X̂1 and X̂n.

Observation 2.5. If P is an n-vertex path, where n is odd, then for any list
assignment on P , we have X̂n = Xn −A.

Lemma 2.6. Let L be a list assignment on an n-vertex path P , where n is odd.
For any sets of colours S, T , we have

SL⊖(S,T )(P ) = SL(P )−
(∣

∣

∣(A ∪ X̂1) ∩ S
∣

∣

∣+
∣

∣

∣(A ∪ X̂n) ∩ T
∣

∣

∣− |A ∩ S ∩ T |
)

.
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v1 v2 v3

L abcd abef adeg
Xi abcd ef adg

X̂i cd dg

v1 v2 v3

L⊖ (S, T ) cd abef de
Xi cd abef d

Figure 2. Example computations for L⊖ (S, T ) when (S, T ) = (ab, ag).

Proof. It suffices to consider the effect of deleting just one colour c. First we consider
deleting the colours in T from L(vn). Clearly, if c /∈ Xn then deleting the colour c
from L(vn) has no effect on SL(P ), since it does not change any Xi. On the other

hand, if c ∈ Xn = A ∪ X̂n, then deleting the colour c from L(vn) decreases SL(P )
by exactly 1.

Next we consider deleting a colour c from L(v1). Here, unlike with L(vn), the
changes in X1 can “ripple” through later Xi, as shown in Figure 2. If c /∈ X1 =
L(v1), then deleting c from L(v1) clearly does not change any Xi, hence does not
change SL(P ).

Now suppose c ∈ X1 − A. Deleting c from L(v1) causes c to be removed from
X1. However, if c ∈ L(v2), we gain c in X2. Now this may cause us to lose c in
X3, gain c in X4, and so forth. The process continues until we reach an index i for
which c /∈ L(vi). If i is odd, then we lose c from the sets X1, X3, . . . , Xi−2 and gain
c in the sets X2, X4, . . . , Xi−1. So there is no net change in SL(P ). If i is even, then
we lose c from the sets X1, X3, . . . , Xi−1 and gain c in the sets X2, X4, . . . , Xi−2.
So SL(P ) has decreased by 1.

Finally, suppose c ∈ X1 ∩ A. Deleting c from L(v1) causes the same ripple
process described above, terminating when we try to delete c from Xn (since n is
odd). If c /∈ T , then as before, this causes SL(P ) to decrease by 1. However, if
c ∈ T , then we have already deleted c from Xn, so in this step we really gain and
lose c an equal number of times. Thus, when c ∈ A ∩ S ∩ T , deleting c from both
endpoints of L decreases SL(P ) by exactly 1, but such colours are double-counted

in the sum |(A ∪ X̂1) ∩ S|+ |(A ∪ X̂n) ∩ T |. The final term |A ∩ S ∩ T | corrects for
this overcount. �

Together, Lemma 2.2 and Lemma 2.6 allow us to ignore the details of the list
assignment and focus on the sets X̂1, X̂n, A, as described below.

Definition 2.7. For a pair of colour sets S, T , the damage of (S, T ) with respect
to L and P is written damL,P (S, T ) and defined by

damL,P (S, T ) = SL(P )− SL⊖(S,T )(P ).

Lemma 2.6 shows that if P has an odd number of vertices, then given a pair
S, T of colour sets, the damage damL,P (S, T ) just depends on X̂1, X̂n and A, and
in particular

damL,P (S, T ) = |(A ∪ X̂1) ∩ S|+ |(A ∪ X̂n) ∩ T | − |A ∩ S ∩ T |(1)

= |X̂1 ∩ S|+ |X̂n ∩ T |+ |A ∩ (S ∪ T )|.

In the example of Figure 2, we have damL,P (S, T ) = 2.

Lemma 2.8. Let G be a graph, and let X ⊆ V (G) be a set of vertices such that
every component of G−X is a path with an odd number of vertices. Assume that
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for each component P of G −X, only the two end vertices of P have neighbors in
X. Let L be a list assignment on G with |L(v)| = 4m for all v ∈ V (G). The graph
G is (L, 2m)-colourable if and only if G[X ] has an (L, 2m)-colouring φ such that
for every path P in G−X with vertices v1, . . . , vn in order, the following conditions
hold:

(i) |L(v1) ∩ φ(NX(v1))| ≤ 2m,

(ii) |L(vn) ∩ φ(NX(vn))| ≤ 2m, and

(iii) damL,P (φ(NX(v1)), φ(NX(vn))) ≤ SL(P )− 2mn.

Proof. Clearly, G is (L, 2m)-colourable if and only if G[X ] has an (L, 2m)-colouring
φ that extends to G, i.e., extends to each of the paths P in G−X . For each path
P of G −X , we show that φ extends to P if and only if φ satisfies conditions (i)–
(iii). Conditions (i) and (ii) are clearly necessary, so it suffices to show that when
Conditions (i) and (ii) hold, φ extends to P if and only if Condition (iii) holds.
This follows from Lemma 2.2 and Lemma 2.6. �

3. Technical Lemmas

To apply Lemma 2.8, we need to find lower bounds for SL(P ) and upper bounds
for damL,P (S, T ). In this section, we collect some technical lemmas regarding such
bounds.

Lemma 3.1. If L is a list assignment on an n-vertex path P , where n is odd and
|L(vi)| = 4m for all i, then

SL(P ) = 2nm− 2m+
∑

k even

k<n

|Xk−1 − L(vk)|+ |Xn|.

Proof. We use induction on n. When n = 1, the sum is empty and 2nm− 2m = 0,
so the claim is just SL(P ) = |X1|, which is clearly true. Assume that n > 1 and the
claim holds for smaller odd n. Let P ′ = P −{vn−1, vn} and let L′ be the restriction
of L to P ′, so that SL(P ) = SL′(P ′) + |Xn−1| + |Xn|. Applying the induction
hypothesis to P ′ yields

SL(P ) =






2nm− 6m+

∑

k even
k<n−2

|Xk−1 − L(vk)|+ |Xn−2|






+ |Xn−1|+ |Xn|

Observe that

|Xn−1| = |L(vn−1)−Xn−2|

= |L(vn−1)| − |Xn−2|+ |Xn−2 − L(vn−1)|

= 4m− |Xn−2|+ |Xn−2 − L(vn−1)|

Combining these terms with the terms from SL′(P ′) gives the desired expression
for SL(P ). �

Lemma 3.2. If L is a list assignment on an n-vertex path P , where n is odd and
|L(vi)| = 4m for all i, then

SL(P ) ≥ 2nm− 2m+ |X̂1|+ |X̂n|+ |A|.
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Proof. By the definition of X̂1, every element of X̂1 appears in a set of the form
Xk−1 − L(vk) where k is even. Thus, the claim follows from Lemma 3.1, since

|Xn| = |X̂n|+ |A|. �

Lemma 3.3. If L is a list assignment on an n-vertex path P , where n is odd and
|L(vi)| = 4m for all i, then SL(P ) ≥ 2nm+ 2m.

Proof. This follows immediately from the definition SL(P ) =
∑n

i=1|Xi| and the
observations that |X1| = |L(v1)| = 4m and that |Xi|+ |Xi+1| ≥ 4m for i > 1. �

4. (4, 2)-choosable Theta Graphs

In this section, we show that Θr,s,t is (4, 2)-choosable if r, s, t have the same parity
and min{r, s, t} ≤ 2. In Section 6, we will show that min{r, s, t} ≥ 3 implies that
Θr,s,t is not (4, 2)-choosable. As we are only concerned with (4, 2)-choosability, we
will tacitly assume that all list assignments considered in this section have |L(v)| = 4
for all v ∈ V (G).

We first use an observation of Voigt to restrict to the case where r, s, t are even.

Lemma 4.1 (Lemma 4.3 of Voigt [6]). Let G be a graph, let v ∈ V (G), and let
G′ be obtained from G by deleting v and merging its neighbors. If G is (4m, 2m)-
choosable, then G′ is (4m, 2m)-choosable.

The transformation used in Lemma 4.1 was first used in [2], which observed
that if G is 2-choosable, then G′ is also 2-choosable. Voigt [6] made the stronger
observation that ifG is (2m,m)-choosable, thenG′ is also (2m,m)-choosable. While
Voigt imposed the additional assumption that d(v) = 2, this assumption is not
necessary.

Proof of Lemma 4.1. We may assume that d(v) ≥ 2, as otherwise G′ is just a
subgraph of G. Let v′ be the merged vertex in G′, and let L′ be a list assignment
on G′ such that |L′(w)| = 4m for all w ∈ V (G′). Define a list assignment L on G
as follows:

L(w) =

{

L′(v′), if w = v or w ∈ N(v),

L′(w), otherwise.

Since G is (4m, 2m)-choosable, it has some proper L-colouring φ. For all w ∈ N(v),
we have φ(w) ∩ φ(v) = ∅. Since L(w) = L(v) and since φ(w), φ(v) ⊆ L(v) with
|φ(w)| + |φ(v)| = |L(v)|, this implies that φ(w) = L(v) − φ(v) for all w ∈ N(v).
We define an L′-colouring φ′ of G′ by putting φ′(v′) = L(v) − φ(v) and putting
φ′(w) = φ(w) for all w ∈ V (G′)− v′. Since φ was a proper L-colouring, we see that
φ′ is a proper L′-colouring. As L′ was arbitrary, we conclude that G′ is (4m, 2m)-
choosable. �

Corollary 4.2. If Θ2,2r,2s is (4, 2)-choosable, then Θ1,2r−1,2s−1 is (4, 2)-choosable.

Proof. Applying the operation of Lemma 4.1 to a vertex v of degree 3 transforms
Θ2,2r,2s into Θ1,2r−1,2s−1. �

It therefore suffices to show that Θ2,2r,2s is (4, 2)-choosable for all r, s ≥ 1.
Similar techniques will allow us to deal with cycles sharing a vertex or joined by a
path.

We now introduce some notation for various parts of theta graphs; Figure 3
shows Θ2,4,4, as a reference.
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abcd ebcd

acdf dfgh cdgh

bcdf cdfg bcdg

aebd
j cj c′j
0 a e
1 b b
2 c c
3 d d

Figure 3. The graph Θ2,4,4, with a list assignment and an asso-
ciated coupling. From top to bottom, the internal paths are P 0,
P 1, and P 2.

Definition 4.3. The vertices of degree 3 in a theta graph are called u and v. The
internal paths of a theta graph are the paths in G − {u, v}; the endpoints of the
internal paths are the neighbors of u and v.

Fix a list assignment L, and let L(u) = {c0, c1, c2, c3} and L(v) = {c′0, c
′
1, c

′
2, c

′
3},

where the colours are indexed so that c′j = cj whenever cj ∈ L(u) ∩ L(v). Note

that this indexing implies that {ci, c′i} ∩ {cj, c′j} = ∅ whenever i 6= j.

Definition 4.4. For a fixed indexing of L(u) and L(v), a couple is a tuple of
the form (cj , c

′
j) for j ∈ {0, 1, 2, 3}. When we write a couple, we suppress the

parentheses and simply write cjc
′
j . A pair is a tuple (S, T ) with S ⊆ L(u), T ⊆ L(v),

and |S| = |T | = 2. A simple pair is a pair (S, T ) such that for all cj ∈ S, we also
have c′j ∈ T . A simple solution is a simple pair (S, T ) such that damL,P (S, T ) ≤
SL(P )− 2|V (P )| for all internal paths P .

Observe that the definition of a couple and a simple pair depends on the indexing
of the colours of L(u) and colours in L(v). A simple solution can be interpreted
as a precolouring of {u, v} which extends (via Lemma 2.8) to all internal paths of
the theta graph. With any fixed indexing of L(u) and L(v), we first try to find a
simple solution. We show that a simple solution exists unless L has a very specific
form. Then we address this form as a special case.

Equation (1) implies that if S, T is a simple pair, then

damL,P (S, T ) =
∑

cj∈S

damL,P ({cj}, {c
′

j}).

In other words, when (S, T ) is a simple pair, we can simply calculate the damage of
each couple in (S, T ) independently, and add them together to obtain damL,P (S, T ).
Moreover, for each j, we have damL,P ({cj}, {c

′
j}) ∈ {0, 1, 2}.

Definition 4.5. When L is a list assignment on a theta graph,

• The couple cjc
′
j is heavy for the internal path P if damL,P ({cj}, {c′j}) = 2;

• The couple cjc
′
j is light for the internal path P if damL,P ({cj}, {c′j}) = 1;

• The couple cjc
′
j is safe for the internal path P if damL,P ({cj}, {c′j}) = 0.

Definition 4.6. When L is a list assignment on a theta graph, we say that an
internal path P blocks a pair (S, T ) if damL,P (S, T ) > SL(P )− 2|V (P )|, i.e., if we
cannot extend the partial colouring φ(u) = S, φ(v) = T to all vertices of P .

Example 4.7. For the list assignment shown in Figure 3, the couple ae is heavy
for P 0, safe for P 1, and light for P 2. The path P 2 blocks the simple pair (ac, ec).
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Now we count how many simple pairs are blocked by each internal path. It will
be helpful to prove this lemma for more general theta graphs than Θr,s,t.

Lemma 4.8. Let r1, . . . , rk be positive integers, and let L be a list assignment on
Θ2r1,...,2rk . Each internal path P blocks at most 2 simple pairs, and if P blocks 2
simple pairs, then SL(P ) = 2|V (P )|+ 2, and P has one heavy couple and two light
couples.

Proof. Let P be any internal path, and let n = |V (P )|. By the m = 1 case of
Lemma 3.3, SL(P ) ≥ 2n+2. If SL(P ) ≥ 2n+4, then P does not block any simple
pairs, since for any pair (S, T ), we have damL,P (S, T ) ≤ 4. Hence it suffices to
consider SL(P ) ∈ {2n+ 2, 2n+ 3}.

We first argue that in both cases, P has at most 2 heavy couples. If cjc
′
j is a

heavy couple, then by Equation (1) we have

|X̂1 ∩ {cj}|+ |X̂n ∩ {c′j}|+ |A ∩ {cj, c
′

j}| = 2.

In particular, since {ci, c′i} ∩ {cj , c′j} = ∅ whenever i 6= j, we see that if P has 3

heavy couples, then |X̂1|+ |X̂n|+ |A| ≥ 6. By the m = 1 case of Lemma 3.2, this
implies that SL(P ) ≥ 2n+ 4.

If SL(P ) = 2n+3, then P blocks the simple pair (S, T ) only if damL,P (S, T ) = 4,
i.e., if both couples used in (S, T ) are heavy. Since P has at most 2 heavy couples,
this implies that P blocks at most 1 simple pair.

If SL(P ) = 2n+2, then P blocks the simple pair (S, T ) if and only if damL,P (S, T ) ≥
3, i.e., if one of the couples in (S, T ) is heavy and the other is not safe. Lemma 3.2
implies that if P has 2 heavy couples, then P has no light couple, since that would

imply that |X̂1| + |X̂n| + |A| ≥ 5. In particular, if P has 2 heavy couples, then it
blocks at most 1 simple pair. Likewise, if P has 1 heavy couple, then P has at most
2 light couples. The desired conclusion follows. �

Now we specialize to the Θr,s,t case.

Corollary 4.9. Let r, s, t be positive integers, and let L be a list assignment on
Θ2r,2s,2t. If L has no simple solution, then each simple pair (S, T ) is blocked by
exactly one internal path. In particular, each couple cjc

′
j is heavy for at most one

internal path.

Proof. There are 6 simple pairs, and each of the three internal paths blocks at most
2 of them; this proves the first part. If the couple cjc

′
j is heavy for two different

internal paths P and Q, then since P and Q each have two light couples, there is
some couple ckc

′

k that is light for both P and Q. Now the pair ({cj, ck}, {c′j, c
′

k})
is blocked by both P and Q, contradicting the first part of the corollary. �

We now must handle the case where L has no simple solution. First we refine
our notation. By Corollary 4.9, we may reindex L(u) and L(v) so that for all j ∈
{0, 1, 2}, the couple cjc

′
j is heavy for P j . (By simultaneously permuting the labels

in L(u) and L(v), this maintains the original property that c′j = cj whenever cj ∈
L(u) ∩ L(v).) With this new notation, we have the following further consequence
of Corollary 4.9:

Corollary 4.10. Let r, s, t be positive integers, and let L be a list assignment on
Θ2r,2s,2t. If L has no simple solution, then c3c

′
3 is light for all internal paths P i,

and one of the two following situations must hold:
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(a) c1c
′
1 is light for P 0, c2c

′
2 is light for P 1, and c0c

′
0 is light for P 2, or

(b) c2c
′
2 is light for P 0, c0c

′
0 is light for P 1, and c1c

′
1 is light for P 2.

Proof. As in Corollary 4.9, since there is no simple solution, each internal path
blocks 2 simple pairs. Thus, by Lemma 4.8, each internal path has one heavy
couple and two light couples, and therefore has exactly one safe couple. For each
j ∈ {0, 1, 2}, let π(j) be the unique index in {0, 1, 2, 3} such that cπ(j)c

′

π(j) is safe

for P j . We will show that π is a permutation of {0, 1, 2} having no fixed points. It
is clear that π(j) 6= j for all j ∈ {0, 1, 2}, since cjc

′
j is heavy for P j.

First we argue that π is an injection. Suppose that π(i) = π(j) for some i 6= j.
Since cjc

′
j is heavy for P

j and since P j has one heavy couple and two light couples, it

follows that cic
′
i is light for P

j. Likewise, cjc
′
j is light for P

i. By Lemma 4.8, we have

SL(P
i) − 2|V (P i)| = SL(P

j) − 2|V (P j)| = 2, so the simple pair ({ci, cj}, {c′i, c
′
j})

is blocked by both P i and P j , contradicting Corollary 4.9.
Next we argue that π(j) 6= 3 for all j. If π(j) = 3, then for both i ∈ {0, 1, 2}− j,

the couple cic
′
i is light for P

j . Since π is an injection, there is some i ∈ {0, 1, 2}− j
with π(i) 6= j, so that cjc

′
j is light for P i. Now the simple pair ({ci, cj}, {c′i, c

′
j}) is

blocked by both P i and P j , again contradicting Corollary 4.9.
Thus π is a permutation of {0, 1, 2} with no fixed points. This implies that π is a

3-cycle. If π = (0 2 1) then situation (a) holds, and if π = (0 1 2) then situation (b)
holds. �

Corollary 4.11. If r, s are positive integers, then Θ2,2r,2s is (4, 2)-choosable.

Proof. Let G = Θ2,2r,2s, and let L be any list assignment on G. We must show
that G is (L, 2)-colourable. If L has a simple solution, then there is nothing more
to show, so we may assume that L does not have a simple solution. Let P 0, P 1,
and P 2 be the internal paths of G, with |V (P 0)| = 1. We may choose the indexing
of P 1 and P 2 so that situation (a) of Corollary 4.10 holds (this is the case, for

example, in Figure 3). For each i ∈ {0, 1, 2}, we write X̂ i
1, X̂

i
n, and Ai to refer to

the sets X̂1, X̂n, and A calculated for P i.
Since |V (P 0)| = 1, we know that X̂0

1 = X̂0
n = ∅. Hence, since c0c

′
0 is heavy for

P0, we must have c0 6= c′0. Hence c0 /∈ L(u) ∩ L(v) and c′0 /∈ L(u) ∩ L(v).
Now consider P 2. Since c0 6= c′0 and c0c

′
0 is light for P 2, we must have either

c0 /∈ A2 ∪ X̂2
1 or c′0 /∈ A2 ∪ X̂2

n. By symmetry, we may assume that c0 /∈ A2 ∪ X̂2
1 .

Let S = {c0, c3} and let T = {c′2, c
′
3}.

We check that damL,P (S, T ) ≤ 2 for each internal path P . By Equation (1), for
each i we have

damL,P i(S, T ) = |(Ai ∪ X̂ i
1) ∩ S|+ |(Ai ∪ X̂ i

n) ∩ T | − |Ai ∩ S ∩ T |

≤ |(Ai ∪ X̂ i
1) ∩ {c0}|+ |(Ai ∪ X̂ i

n) ∩ {c′2}|+

|(Ai ∪ X̂ i
1) ∩ {c3}|+ |(Ai ∪ X̂ i

n) ∩ {c′3}| − |Ai ∩ {c3} ∩ {c′3}|

= |(Ai ∪ X̂ i
1) ∩ {c0}|+ |(Ai ∪ X̂ i

n) ∩ {c′2}|+ damL,P i({c3}, {c
′

3}).

Since the couple c3c
′
3 is light for all internal paths, we have damL,P i({c3}, {c′3}) = 1

for all P i, so that

damL,P i(S, T ) ≤ |(Ai ∪ X̂ i
1) ∩ {c0}|+ |(Ai ∪ X̂ i

n) ∩ {c′2}|+ 1.
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Each term of this sum is clearly at most 1, so to show that damL,P i(S, T ) ≤ 2, it
suffices to show that one of the terms is 0 for each i.

Since c2c
′
2 is safe for P 0, we have c′2 /∈ A0 ∪ X̂0

n, so damL,P 0(S, T ) ≤ 2. Like-

wise, since c0c
′
0 is safe for P 1, we have c0 /∈ A1 ∪ X̂1

1 , so damL,P 1(S, T ) ≤ 2. By

assumption, c0 /∈ A2 ∪ X̂2
1 , so we also have damL,P 2(S, T ) ≤ 2. �

5. Even Cycles Sharing a Vertex or Joined by a Path

In this section, we show that if G consists of two cycles sharing a single vertex
or two vertex-disjoint cycles joined by a path, then G is (4, 2)-choosable. In fact,
one can show that these graphs are (4m, 2m)-choosable for all m; in the interest of
brevity, we prove only the (4, 2)-choosability case, which allows us to reuse some
tools from the previous section. As before, whenever L is a list assignment, we
tacitly assume |L(v)| = 4 for all v ∈ V (G).

Definition 5.1. Let P be a path with an odd number of vertices, let L be a list
assignment on P , and let W be a set of 4 colours. An L-bad W -set for P is a
set S ⊆ W of 2 colours such that damL,P (S, S) > SL(P ) − 2|V (P )|. When L is
understood, we abbreviate “L-bad W -set” to “bad W -set”.

Lemma 5.2. If P is a path with an odd number of vertices, L is a list assignment
on P , and W is any set of 4 colours, then P has at most 2 L-bad W -sets.

Proof. Consider the graph H obtained by adding new vertices u and v on the ends
of P , and extend L to V (H) by putting L(u) = L(v) = W . Considering H as a
theta graph with P as its only internal path (as in Section 4), we see that S is
a bad set for P if and only if P blocks the simple pair (S, S). By Lemma 4.8, it
follows that P has at most 2 bad sets. �

Lemma 5.3. Let Q be a path with endpoints u and v. For every list assignment L

on Q, there is an injective function h :
(

L(u)
2

)

→
(

L(v)
2

)

such that for all S ∈
(

L(u)
2

)

,
the precolouring φ(u) = S, φ(v) = h(S) extends to all of Q.

Proof. We use induction on |V (Q)|. When |V (Q)| = 1 or |V (Q)| = 2, the claim
clearly holds: when |V (Q)| = 1 we may take h to be the identity function, and when
|V (Q)| = 2 it suffices that S ∩ h(S) = ∅ for all S; such an h is easy to construct.

Hence we may assume that |V (Q)| > 2 and the claim holds for smaller paths.
Let v′ be the unique neighbor of v. We split Q into the u, v′-subpath Q1 and the
v′, v-subpath Q2, overlapping only at v′. Let h1 and h2 be the functions for Q1 and
Q2 respectively, as guaranteed by the induction hypothesis. Composing h2 and h1,
we see that h2 ◦h1 has the desired properties. �

We handle “two cycles sharing a vertex” as a special case of “two cycles joined
by a path”, considering the shared vertex as a path on 1 vertex.

Corollary 5.4. If G is a graph consisting of two even cycles joined by a (possibly-
trivial) path, then G is (4, 2)-choosable.

Proof. Let C and D be the cycles in G, and let u ∈ V (C) and v ∈ V (D) be the
endpoints of the path joining C and D. Let P = C − u, let R = D − v, and let Q
be the path joining u and v, so that P,Q,R are disjoint paths with V (P )∪ V (Q)∪
V (R) = V (G). The situation is illustrated in Figure 4. By Lemma 5.2, the path P
has at most two bad L(u)-sets, and the path R has at most two bad L(v)-sets. Let
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u v
Q

P R

Figure 4. Decomposing G into P,Q,R.

(a) Θ2,2,2,4 (b) Θ3,3,3

abcf

abce adef abcd

abef

acde

abcd

abde

acde

acde

abce

abde

abde

abcd

abcd

abce

Figure 5. Noncolourable list assignments for Θ2,2,2,4 and Θ3,3,3.

h :
(

L(u)
2

)

→
(

L(v)
2

)

be the injection guaranteed by Lemma 5.3. Since there are 6

ways to choose a set S ∈
(

L(u)
2

)

, we see that there is some S such that S is not bad
for P and h(S) is not bad for Q. It follows that we may extend the precolouring
φ(u) = S, φ(v) = h(S) to all of P , Q, and R. �

Tuza and Voigt have already shown [5] that K2,4 is (4m, 2m)-choosable for all
m, so this completes the positive direction of Theorem 1.2.

6. Non-(4, 2)-Choosable Theta Graphs

In this section, we argue that if min{r, s, t} ≥ 3, then Θr,s,t is not (4, 2)-choosable,
and that if t ≥ 2, then Θ2,2,2,2t is not (4, 2)-choosable. Figure 5 shows noncolourable
list assignments for Θ2,2,2,4 and Θ3,3,3.

To show that larger theta graphs are not (4, 2)-choosable, we again apply Lemma 4.1.
In particular, the contrapositive of Lemma 4.1 states that if G′ is not (4, 2)-
choosable, then G is not (4, 2) choosable either. Hence Θ4,4,4 is not (4, 2)-choosable,
since Θ3,3,3 is obtained from Θ4,4,4 by applying this reduction to a vertex of degree
3.

Likewise, Θ2,2,2,2t is obtained from Θ2,2,2,2t+2 by applying this reduction to
an interior vertex of the path of length 2t + 1; hence, since Θ2,2,2,4 is not (4, 2)-
choosable, it follows by induction on t that when t ≥ 2, the graph Θ2,2,2,2t is
not (4, 2)-choosable. Similarly, since Θ3,3,3 is not (4, 2)-choosable, no graph of
the form Θ2r+1,2s+1,2t+1 for r, s, t ≥ 1 is (4, 2)-choosable, and since Θ4,4,4 is not
(4, 2)-choosable, no graph of the form Θ2r,2s,2t for r, s, t ≥ 2 is (4, 2)-choosable.
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7. A Conjecture of Voigt

Voigt [6] conjectured that every bipartite 3-choosable-critical graph is (4m, 2m)-
choosable for all m. We have seen that this conjecture fails for m = 1: there are
bipartite 3-choosable-critical graphs which are not (4, 2)-choosable. In this section,
we prove the following weaker version of Voigt’s conjecture:

Theorem 7.1. There is a fixed integer k such that for every positive integer m,
every bipartite 3-choosable-critical graph is (4km, 2km)-choosable.

Our proof is based on the following theorem of Alon, Tuza, and Voigt [1].

Theorem 7.2 (Alon–Tuza–Voigt [1]). For every integer n there exists a number
f(n) ≤ (n+1)2n+2 such that the following holds. For every graph G with n vertices
and with fractional chromatic number χ∗, and for every integer M which is divisible
by all integers from 1 to f(n), G is (M,M/χ∗)-choosable.

Lemma 3.2 and Lemma 3.3 suggest that when n is odd, the “worst case” tuples
(A, X̂1, X̂n) are those satisfying |A|+|X̂1|+|X̂n| = 4m. The following lemma shows
that any such sets can be “realized” on a path of length 3:

Lemma 7.3. Let P be a path on 3 vertices, and let B, Y , Z be sets such that
B ∩ Y = ∅, B ∩Z = ∅, and |B|+ |Y |+ |Z| = 4m. There exists a list assignment L
on P such that:

• |L(v)| = 4m for all v ∈ V (P3), and

• (A, X̂1, X̂3) = (B, Y, Z), and
• SL(P ) = 8m.

Proof. Let J1 and J2 be sets disjoint from each other and disjoint from B ∪ Y ∪ Z
such that

|J1| = 4m− |B| − |Y |,

|J2| = 4m− |B| − |Z|.

Observe that

|B|+ |J1|+ |J2| = 8m− |B| − |Y | − |Z| = 4m.

Let v1, v2, v3 be the vertices of P written in order, and consider the following list
assignment:

L(v1) = B ∪ Y ∪ J1,

L(v2) = B ∪ J1 ∪ J2,

L(v3) = B ∪ Z ∪ J2.

It is easy to verify that L has the desired properties. �

Lemma 7.3 allows us to obtain a partial converse of Lemma 4.1, subject to certain
restrictions on the choice of the vertex v.

Lemma 7.4. Let G be a graph containing a path P on 5 vertices which all have
degree 2 in G, and let G′ be the graph obtained by deleting the middle vertex of P
and merging its neighbors. The original graph G is (4m, 2m)-choosable if and only
if the merged graph G′ is (4m, 2m)-choosable.
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Proof. By Lemma 4.1, it suffices to show that if G′ is (4m, 2m)-choosable, then G
is (4m, 2m)-choosable. Let v1, . . . , v5 be the vertices of P , written in order. Let P ′

be the 3-vertex path in G′ corresponding to P , and let v′1, v
′
2, v

′
3 be the vertices of

G′, so that v′1 = v1 and v′3 = v5.
Let L be any list assignment for G such that |L(v)| = 4m for all v ∈ V (G),

and let A, X̂1, X̂5 be computed relative to P . We will define sets B, Y, Z based on
A, X̂1, X̂5 and apply Lemma 7.3 to obtain a list assignment L′ on the shorter path
P ′. The definition is slightly different depending on whether |A|+|X̂1|+|X̂5| ≤ 4m:
we either arbitrarily add elements or arbitrarily remove elements in order to reach
the desired sum.

• When |A|+|X̂1|+|X̂5| ≤ 4m, let B, Y, Z be arbitrary supersets of A, X̂1, X̂n

respectively such that B ∩ Y = ∅, B ∩ Z = ∅, and |B|+ |Y |+ |Z| = 4m.

• When |A|+ |X̂1|+ |X̂5| > 4m, let B, Y, Z be arbitrary subsets of A, X̂1, X̂5

respectively, such that |B|+ |Y |+ |Z| = 4m.

In either case, we may apply Lemma 7.3 to obtain a list assignment L′ on the
shorter path P ′ such that:

• |L′(v)| = 4m for all v ∈ V (P ′), and

• (A′, X̂ ′
1, X̂

′
3) = (B, Y, Z), and

• SL′(P ′) = 8m.

We extend L′ to all of G′ by defining L′(v) = L(v) for v /∈ V (P ′).
Let G0 = G′ − V (P ′) = G − V (P ), and let w, z be the neighbors of v′1, v

′
3 in

G0, respectively. Since G′ is (4m, 2m)-choosable, Lemma 2.8 says there is a proper
(L′ : 2m)-colouring φ of G0 such that damL′,P ′(φ(w), φ(z)) ≤ 2m.

If |A|+ |X̂1|+ |X̂n| ≤ 4m, then Equation (1) yields

damL,P (φ(w), φ(z)) ≤ damL′,P ′(φ(w), φ(z)) ≤ 2m,

while if |A|+ |X̂1|+ |X̂n| = 4m+ c for some c > 0, then Equation (1) yields

damL,P (φ(w), φ(z)) ≤ damL′,P ′(φ(w), φ(z)) + c ≤ 2m+ c.

Applying Lemma 3.3 in the first case and Lemma 3.2 in the second, we obtain

damL,P (φ(w), φ(z)) ≤ SL(P )− 10m.

Applying Lemma 2.8 in the other direction, we see that G is (L, 2m)-colourable.
Since L was arbitrary, G is (4m, 2m)-choosable. �

Proof of Theorem 7.1. There are only finitely many bipartite 3-choosable-critical
graphs which are minimal with respect to the reduction of Lemma 7.4. In particular,
all such graphs have at most 14 vertices, the largest such graph being Θ5,5,5. Let
f be the function given by Theorem 7.2, and let fmax = max{f(n) : n ≤ 14}.

By Theorem 7.2, if k/4 is divisible by all numbers up to fmax, then all minimal
bipartite 3-choosable-critical graphs are (4k, 2k) choosable. In particular, fixing
the smallest such k and applying Lemma 7.4, we see that all bipartite 3-choosable-
critical graphs are (4km, 2km)-choosable for all m. �

8. Characterizing the (4, 2)-Choosable Graphs: A Conjecture

Having determined which 3-choosable-critical graphs are (4, 2)-choosable, the
next natural step in investigating (4, 2)-choosability is to characterize all (4, 2)-
choosable graphs, mirroring Rubin’s characterization of the 2-choosable graphs [2].
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Figure 6. Exceptional graphs in Conjecture 8.1. Wavy lines rep-
resent paths with an arbitrary odd number of vertices. Dotted lines
represent paths with an arbitrary number (any parity) of vertices,
possibly 1.

Figure 7. One possible realization of the lower-left graph in Figure 6.

As Theorem 1.2 shows, the (4, 2)-choosable graphs have considerably more variety
than the 2-choosable graphs, so the proof of any such characterization is likely to
be much more involved than Rubin’s proof.

Rubin observed that G is 2-choosable if and only if its core is 2-choosable, and the
same observation holds for (4, 2)-choosability. It clearly also suffices to consider only
connected graphs, so we restrict to the case where G is connected with minimum
degree at least 2.

Conjecture 8.1. If G is a connected graph with δ(G) ≥ 2, then G is (4, 2)-
choosable if and only if one of the following holds:

• G is 2-choosable, or
• G is one of the 3-choosable-critical graphs listed in Theorem 1.2, or
• G is one of the exceptional graphs shown in Figure 6.

Figure 6 contains some complex visual notation used to represent parameterized
families of graphs; Figure 7 shows an example of how to interpret this notation.

Conjecture 8.1 is supported by substantial evidence. Through computer search,
we determined that among all graphs with at most 9 vertices, only the graphs
given by Conjecture 8.1 are (4, 2)-choosable. It appears that all graphs with a
larger number of vertices are either one of the (4, 2)-choosable graphs listed in
Conjecture 8.1, or contain some subgraph already known to be non-(4, 2)-choosable.

A list of “small” minimal non-(4, 2)-choosable graphs, each with a nonchoosable
list assignment, is given in Figure 8. Each of the list assignments was found by
computer search. The variety of these graphs represents a significant obstruction
to any proof of Conjecture 8.1, which would seem to require a correspondingly



16 JIXIAN MENG, GREGORY J. PULEO, AND XUDING ZHU

complex structure theorem. While we believe that such a proof could be found, it
would likely be quite long and beyond the scope of this paper.

The computer analysis for the positive direction of Conjecture 8.1 is based on
Lemma 2.8. Each of the graphs in Figure 6 has a small set of vertices X such that
G −X is a linear forest, with only the endpoints of its paths having neighbors in
X . Rather than generating all list assignments for the entire graph G, it suffices
to generate all list assignments for X , and for each list assignment, to generate the
possible tuples (A, X̂1, X̂n) for each of the paths in G − X . For each such tuple,
we then search for a partial colouring φ of G[X ] that satisfies the hypothesis of
Lemma 2.8.

However, we have not been able to find a human-readable proof that the excep-
tional graphs in Conjecture 8.1 are indeed (4, 2)-choosable, nor have we been able
to prove the structure theorem alluded to above.
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6. M. Voigt, On list colourings and choosability of graphs, 1998.

(Jixian Meng, Xuding Zhu) Department of Mathematics, Zhejiang Normal University

(Gregory J. Puleo) Department of Mathematics, University of Illinois at Urbana–

Champaign



ON (4, 2)-CHOOSABLE GRAPHS 17

adef

abcf

abde

acdeabcd

abce

abcd

abce

abcf

abcdabde

bcde
abce adef

abcd

abcd

abdeabcf

cdef

abce

abcd

abce

adef

abcd

abcd

abde

abce

abceabde

acde

abcd

acde abcd

abcdacde

abceabde

abdeacde

abce

abcd

abcd

acdf

abde abcd

abdf

acde

abce

abce

abef

abcd

abde

abce

abcd

abce

abcf

cdef

adef

abcd

abcd

abceabcf

bcde abde

adef abcd

abce abcd

abcd

acfgabde

abce abfg abcd adeg adef

abce abef acde

acdf abdf abcd

abcf

abdf

abcd

abce

adef

adeg

abfg

acfg

Figure 8. Some non-(4, 2)-choosable graphs.



18 JIXIAN MENG, GREGORY J. PULEO, AND XUDING ZHU

acde

abef

abdf

cdef

bcef

abde

abcd

abcf

abce abcd

abde
abcd

acde

adef abcf abef

abde acef abcf abcd

abcd abce abef adef

acde

abce

abcd acde

abce

abcd

abde abde

Figure 8. Some non-(4, 2)-choosable graphs.


	1. Introduction
	2. Paths and Damage
	3. Technical Lemmas
	4. (4, 2)-choosable Theta Graphs
	5. Even Cycles Sharing a Vertex or Joined by a Path
	6. Non-(4, 2)-Choosable Theta Graphs
	7. A Conjecture of Voigt
	8. Characterizing the (4, 2)-Choosable Graphs: A Conjecture
	References

