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On the Rigidity of Sparse Random Graphs

Nati Linial ∗ Jonathan Mosheiff†

Abstract

A graph with a trivial automorphism group is said to berigid. Wright
proved [11] that forlognn + ω( 1n) ≤ p ≤ 1

2 a random graphG ∈ G(n, p)
is rigid whp. It is not hard to see that this lower bound is sharp and for
p <

(1−ǫ) logn
n with positive probability aut(G) is nontrivial. We show that

in the sparser caseω( 1n) ≤ p ≤ logn
n + ω( 1n), it holds whp thatG’s 2-core

is rigid. We conclude that for allp, a graph inG(n, p) is reconstrutible whp.
In addition this yields forω( 1n) ≤ p ≤ 1

2 a canonical labeling algorithm that
almost surely runs in polynomial time witho(1) error rate. This extends the
range for which such an algorithm is currently known [5].

1 Introduction

It is a truth universally acknowledged, that random objectsare asymmetric. It was
shown by Wright [11] that for1

2
≥ p ≥ logn

n
+ ω( 1

n
) a randomG(n, p) graph has,

whp, a trivial automorphism group. He actually worked with theG(n,M) model,
but the reduction toG(n, p) is well-known and follows easily from the Chernoff
bound. Also, a graph and its complement clearly have the sameautomorphism
group, so we can restrict ourselves to the range1

2
≥ p. Wright’s bound is tight,

since a graphG of slightly smaller density is likely to have isolated vertices, which
can be swapped by aG-automorphism. This paper concerns the range of smaller
p by showing that forω( 1

n
) ≤ p ≤ n− 1

2
−ǫ whp all of G’s automorphisms are

essentially trivial. Here is our main result:

Theorem 1. LetG = (V,E) be aG(n, p) graph withω( 1
n
) ≤ p ≤ n− 1

2
−ǫ. Then

whp its2-core has a trivial automorphism group.
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This shows that for this range ofp, whp aut(G) is generated by:

• Automorphisms of rooted trees that are attached to the2-core.

• Automrophisms of the tree components and swaps of such components.

The most interesting range of this statement isp ≤ logn+(1+ǫ) log logn
n

. For
largerp the2-core is the whole graph, in which range ours is just a new proof for
the rigidity of sufficiently dense random graphs.

General strategy of the proof: We denote the vertex set ofG’s 2-core by
R(G). It is easy to see that aut(G) fixesR(G) setwise and our proof shows first
that aut(G) actually fixesR(G) pointwise. In order to prove the theorem in full
we show that this rigidity does not result from boundary effects of vertices near
V \R(G). The neighbor set ofv ∈ V and its degree are denoted byN(v) andd(v).
If x1, . . . , xk are the neighbors ofv, we denote by∇(v) the multiset{d(xi)}k1.
Clearly∇ is preserved by automorphisms. We fix somek ≤ log n and consider
two directed rooted cyclesv1, . . . vk andu1 . . . uk in G. We show that whp every
two such cycles have manyincompatiblepairs(vi, ui) for which∇(vi) 6= ∇(ui).
This already implies thatR(G) is fixed pointwise. In the full proof of the theorem
we find, for every two such cycles, an incompatible pair(vi, ui), where bothvi
andui are at distance≥ 3 from V \R(G). Such a pair is not only incompatible in
G, but also inR(G), proving the theorem.

It turns out that Theorem 1 yields some interesting insightson the well-known
graph reconstruction conjecture which we now recall. LetG be ann-vertex graph.
When we delete a vertex ofG we obtain an(n − 1)-vertex graph. By doing
this separately for each vertex inG we obtain then graphs that make upG’s
deck. Thegraph reconstruction conjecture([7], [10]) posits that every two graphs
of 3 or more vertices that have identical decks must be isomorphic. A graph
G is said to bereconstructibleif every graph with the same deck is isomorphic
to G. Bollobás proved [2] that whpG(n, p) graphs are reconstructible for all
(5/2+ǫ) logn

n
≤ p ≤ 1 − (5/2+ǫ) logn

n
. We show that this is in fact true for every

0 ≤ p ≤ 1. One reason why this extension of range is of interest has to do
with theedge reconstruction conjecture[6] which states that every graph can be
reconstructed from its deck of edge-deleted subgraphs. This leads to the notion
of edge-reconstructiblegraphs. We recall two facts from this theory: (i) Every
reconstructible graph with no isolated vertices is edge-reconstructible (e.g., [3])
(ii) Every n-vertex graph with at leastlog2(n!) + 1 = n log2 n + O(n) edges is
edge reconstructible. Our result applies to the range|E| ≤ O(n logn) where the
edge reconstruction problem is still open.

We turn to discuss thecanonical labeling problem[1]. Let L be a class of
graphs. A canonical labeling ofG ∈ L assigns distinct labels to the vertices of
G, where the labeling is uniquely determined byG’s isomorphism class. In the
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probabilistic version of this problem,L is a probability space of graphs and we
seek to efficiently find a canonical labeling for almost all graphs inL. Such a
canonical labeling algorithm clearly solves in particularthe random graph iso-
morphism problemfor L. Specifically we ask for which values ofp there is a
polynomial time canonical labeling inG(n, p). By considering the complemen-
tary graph it suffices to consider the rangep ≤ 1/2. Such an algorithm is known
[5] for p ∈ [Θ( lnn

n
), 1/2]. Our proof of Theorem 1 yields a polynomial time al-

gorithm forω( 1
n
) ≤ p ≤ n−(0.5+ǫ), whence a polynomial time solution exists for

p ∈ [ω( 1
n
), 1

2
].

2 Technical Preliminaries

Graph theory: Graphs are denotedG = (V,E) and usuallyn := |V |. The
neighbor set ofu ∈ V is denoted byN(u). ForU ⊆ V , we denoteN(U) :=
(
⋃

u∈U N(u)) \ U andÑ(U) :=
⋃

u∈U Ñ(u).
The set of cross edges between two subsetsU,W ⊆ V is denotedE(U,W ) :=

{uv ∈ E | u ∈ U, v ∈ V }, andd(U,W ) = |E(U,W )| (to wit: even ifU∩W 6= ∅,
we consider every relevant edge exactly once). For a singletonU = {u}, we use
the shorthandd(u,W ) = d(U,W ). Also,E(U) = E(U, U).

ForU ⊆ V we denoteσ(U) := {v ∈ V \ U | d(v, U) = 1}, the set of those
vertices not inU that have exactly one neighbor inU .

We denote byGU the subgraph ofG induced byU ⊆ V .
Let∇(u) denote themultiset of integers{d(v, V \ Ñ(u)) | v ∈ N(u)}.
We denote the vertex set ofG’s 2-core byR(G).

Asymptotics: A property ofG(n, p) graphs is said to holdwhp(with high prob-
ability) if its probability tends to1 asn→ ∞.

Probability: For a discrete random variableX, let

Π(X) = sup
x∈range(X)

(Pr(X = x)).

If X is multinomial with parameters(m, (p1, . . . , pk)), we denoteΠ(X) by
Π(m, (p1, . . . , pk)). The following lemmas provide a description ofΠ(m, (p1, . . . , pk)).

Lemma 2. LetX be a multinomial random variable with parameters(m, (p1, . . . , pk))
and suppose thatΠ(X) = Pr(X = (a1, . . . ak)). Then,at > mpt − 1 for everyt,
or, in other wordsat ≥ ⌊mpt⌋.
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Proof. Without loss of generality, assume by contradiction thata1 ≤ m · p1 − 1.
Then, since

∑

i ai = m =
∑

im · pi, there exists some indexs, says = 2 such
thatas > m · ps.

Pr(X = (a1 + 1, a2 − 1, a3, . . . , ak))

Pr(X = (a1, . . . , ak))
=

a2
a1 + 1

· p1
p2

>
m · p2
m · p1

· p1
p2

= 1

contrary to the assumed maximality ofPr(X = (a1, . . . , ak)).

Lemma 3. For an integerm, a constantc > 0 and a probability vectorp =
(p1, . . . , pk), such thatpi ≤ c√

m
for eachi, it holds that

Π(m,p) ≤ m
−Ω

(√
m

c

)

.

Proof. We first show how to reduce the proof to the case wherepi ≥ c
3
√
m

for each
i. Assume that the lemma holds in this case. For a real vectoru and two coordinate
indicesi 6= j, letui,j be the vector obtained by eliminating the coordinatesui, uj
and introducing a new coordinate ofui + uj. Let X andXi,j be multinomial
random variables with parameters(m,p), (m,pi,j), respectively. Note that for
everya ∈ range(X) there holds

Pr(X = a) ≤ Pr(Xi,j = ai,j).

Thus,Π(m,p) ≤ Π(pi,j).
We generate a sequence of probability vectors that start fromp and proceed as

follows. At each step we replace, as described, the two smallest coordinates in the
present probability vector by one coordinate that is their sum. We continue with
this process until the first time at which this vectorq has at most one coordinate
that is smaller than c

2
√
m

. If the smallest coordinate inq is≥ c
3
√
m

, then, since each
of the above steps can only increaseΠ, the reduction is complete. Otherwise,q

has exactly one coordinate, sayq1 that is< c
2
√
m

. But then inq1,2 all coordinates

vary between c
2
√
m

and 3c
2
√
m

. The reduction is again complete.
We now turn to proving the lemma for the case wherec√

m
≥ pi ≥ c

3
√
m

for

i = 1, . . . , k. Clearlyk ≥
√
m
c

. Setµi = pi ·m and suppose thatΠ(X) = Pr(X =
(a1, . . . , ak)). By Lemma 2,ai

µi
≥ 1− 1

µi
≥ 1− 3

c
√
m

for all i. Now

Π(X) = Pr(X = (a1, . . . , ak)) =

(

m

a1, . . . , ak

)

·
∏

i

paii .

By Stirling’s bound, n!

(n
e )

n√
2πn

= 1 +O( 1
n
). Thus,

Π(X) ≤ O





(

m
e

)m√
2πm

∏

i

(

ai
e·pi

)ai
· √2πai



 ,
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which can be stated as

Π(X) ≤ O





(

m
e

)m√
2πm

∏

i

(

µi

e·pi

)ai
· √2πai

·
∏

i

(

µi

ai

)ai



 = O

( √
2πm

∏

i

√
2πai

·
∏

i

(

µi

ai

)ai
)

.

But
∏

i

(

µi

ai

)ai

≤
(

1 +
4

c
√
m

)m

≤ e
4
√

m

c

and

1
∏

i

√
ai

≤
(c

3

√
m− 1

)− k
2 ≤

( c

3

√
m− 1

)−
√

m

2c ≤ O





(

c2m

9

)−
√

m

4c



 .

Therefore,

Π(X) ≤ O



(2π)−k/2
√
m · e 4

√
m

c ·
(

c2m

9

)− 4
√

m

c



 ≤ m
−Ω

(√
m

c

)

.

Lemma 4. Letk be an integer,1
2
≥ p > 0 and letpi =

(

k
i

)

piqk−i (i = 0, 1 . . . , k),
whereq = 1− p. Then, for everym ≤ O(kp) there holds

Π(m, (p0, . . . , pk)) ≤ m−Ω(
√
m).

Proof. It is well known that

Π(k, (p, q)) ≤ O

(

(

1

pk − 1

)1/2
)

≤ O

(

1√
m

)

.

Therefore, by Lemma 3,

Π(m, (p0, . . . , pk)) ≤ m−Ω(
√
m).

3 The Main Theorem

We recall thatR(G) stands forG’s 2-core. We also denotẽR := V \R(G).
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Lemma 5. LetG be aG(n, p) graph wherep > ω( 1
n
). For every n

10
> x > n

enp

there holds
Pr(|R̃| ≥ x) < e−Ω(npx).

Proof. LetS ⊆ V be the set of those vertices inGwith degree at most3. We claim

that |S| ≥ |R̃|
4

. Clearly |E(R̃)| < |R̃|, sinceR̃ is acyclic. Also,d(R̃, R) ≤ |R̃|
since a vertex iñR can have at most one neighbor inR. Hence,

4|R̃| − 4|S| ≤ 4|R̃ \ S| ≤
∑

v∈R̃

d(v) = 2|E(R̃)|+ d(R̃, R) < 3|R̃|,

as claimed. Thus, it is enough to bound the probability that|S| ≥ 1
4
x. We fix a set

A of x
4

vertices and note that a vertexv ∈ A hasd(v) < 4 only if d(v, V \A) < 4,
which holds with probability≤ e−Ω(np). Thus, the probability that all vertices in
A have degree≤ 4 is at moste−Ω(npx). Therefore, the probability that such a set
A exists is at most

(

n
1
4
x

)

e−Ω(npx) = e−Ω(npx)

finishing the proof.

Definition 6. LetG = (V,E) be ann-vertex graph, andk ≥ 3 an integer. An
orderk configurationofG is a pair of functions(φ, ψ) : [k] → V . If φ(i) = ψ(i)
we say thati is a confluenceof (φ, ψ).

• A confluence-free configuration(φ, ψ) is said to havetype Iwhenk ≤ log n
and(φ(1), . . . , φ(k), φ(1)) and(ψ(1), . . . , ψ(k), ψ(1)) are simple cycles (in
this order).

• We say that(φ, ψ) is a type II configuration when(φ(1), . . . , φ(k)) and
(ψ(1), . . . , ψ(k)) are each a simple path or a simple cycle. Also,k ≤ log n,
and1, k are the only confluences.

Lemma 7. LetG = (V,E) be a randomG(n, p) graph and letk ≤ logn. Pick
the functionsφ, ψ : [k] → V uniformly at random. Consider the events

• C1 that (φ, ψ) is a type I configuration.

• C2 that (φ, ψ) is a type II configuration.

Then:

1. Pr(C1) ≤ pk · ( 2
n
+ p)k

2. Pr(C2) ≤ pk · ( 2
n
+ p)k−2 · n−2

6



Proof. We only prove the first claim. The same argument applies as well to the
second case.
Denoteφ(k + 1) = φ(1) andψ(k + 1) = ψ(1). For i = 0, . . . , k, we esti-
mate the probability of the eventsAi that ψ(j)ψ(j + 1) ∈ E for every 1 ≤
j ≤ i and (φ(1), . . . , φ(k + 1)) is a simple cycle inG. Clearly, Pr(A0) =
Pr (φ(1), . . . , φ(k + 1) is a simple cycle) ≤ pk.

We complete the proof by showing thatPr(Ai+1|Ai) ≤ 2
n
+p. Indeed, suppose

thatψ(i) = φ(j) for somej. In this case it is possible thatψ(i), ψ(i + 1) are
neighbors sinceψ(i+ 1) coincides with eitherφ(j − 1) or with φ(j + 1), but that
happens with probability≤ 2

n
. Otherwise, they are neighbors with probability

p.

Lemma 8. Letω( 1
n
) ≤ p = p(n) ≤ O(n−0.5−ǫ) for someǫ > 0. Pick a random

G(n, p) graphG = (V,E) and two random mapsφ, ψ : [k] → V wherek ≤ log n.
Let s denote the number of indicesi ∈ {1, . . . , k} such that∇(φ(i)) = ∇(ψ(i)).
Then:

Pr

(

s >
1

4
k | C1

)

≤ (pn)−Ω(
√
pn·k)

Pr

(

s >
1

4
(k − 2) | C2

)

≤ (pn)−Ω(
√
pn·k)

Proof. We only prove the type I case. The same argument applies to type II con-
figurations as well. The argument below and all relevant calculations take place
in the spaceconditioned onC1.

Let T = Image(φ) ∪ Image(ψ) andt = |T |. For each indexi letUi be the set
of those neighbors ofφ(i) that have no other neighbor iñN(T ). We expose the
subgraph induced oñN(T ), thus revealing the setsUi. The following proposition
comes in handy:

Proposition 9. With probability1− e−Ω(npt) there holds:

• |Ñ(T )| < 2npt

• There are at least7k
8

indicesk ≥ i ≥ 1 for which np
4
≤ |Ui| ≤ 4np.

We proceed under the conditioning that the conclusion of this Proposition
holds. We next reveal the edges connectingÑ(T ) \⋃i Ui andV \ Ñ(T ). This de-
termines∇(ψ(j)) for all j. On the other hand,∇(φ(i)) is completely determined
by the neighbor sets of vertices fromUi in V \ Ñ(T ). Consequently the family of
multisets{∇(φ(i))}i is independent.

We are concerned with the event that∇(φ(i)) = ∇(ψ(i)). At this stage this
may already be impossible, and if possible, this uniquely determines the multiset

7



of degreesd(x, V \ Ñ(T )) overx ∈ Ui. The elements of this multiset are drawn
from a binomial distribution, so by Lemma 4, ifnp

4
≤ |Ui| ≤ 4np, then

Pr(∇(φ(i)) = ∇(ψ(i))) ≤ (np)−Ω(
√
np).

Note that fors > 1
4
k to hold, the equality∇(φ(i)) = ∇(ψ(i)) must hold for

at leastk
8

of the indicesi for which |Ui| ≥ np
4

. Hence,

Pr(s >
1

4
k) ≤

( 7
8
k

1
8
k

)

(np)−Ω(k
√
np) ≤ (np)−Ω(k

√
np),

as stated.
Proof of Proposition 9:The first claim follows from Chernoff’s bound, as we

observe that

|Ñ(T )| ∼ t+ Bin(n− t, 1− qt), whereq = 1− p.

so that
|E(|Ñ(T )|)| ≤ npt(1 + o(1)).

For the second claim
|σ(T )| ∼ Bin(n− t, tpqt−1)

and so
E(|σ(T )|) ≥ npt(1− o(1)).

Let A denote the event that|Ñ(T )| ≤ 2npt and |σ(T )| ≥ npt
2

. By Chernoff’s
bound,

Pr(A) ≥ 1− e−Ω(npt).

Now,

d(σ(T ), N(T )) ∼ Bin

(

|σ(T )| ·
(

|Ñ(T )| − t− |σ(T )|+ 1

2

)

, p

)

Let B denote the event thatA holds, and, in addition,d(σ(T ), N(T )) < npt
8

.
Note thatA implies

|σ(T )| ·
(

|Ñ(T )| − t− |σ(T )|+ 1

2

)

≤ |Ñ(T )|2 ≤ (2npt)2.

Hence,

Pr(B|A) ≥ 1−
(

(2npt)2

npt
8

)

p
npt

8 ≥ 1− e−Ω(npt)

8



and so
Pr(B) = Pr(B|A) · Pr(A) ≥ 1− e−Ω(npt).

Let U =
⋃

i Ui. Note thatB implies that at leastnpt
4

vertices inσ(T ) have no
neighbor inN(T ), and thus,|U | ≥ npt

4
. Clearly, |Ui| ∼ Bin(|U |, 1

t
). Let Di

denote the event that|Ui| < np
4

. Forx ≥ npt
4

, Chernoff’s bound implies

Pr(Di | |U | = x) ≤ e−Ω(np).

Note that given|U | = x, the eventDi is negatively correlated with every event of
the form

⋂

j∈J Dj where∅ 6= J ⊆ [k] \ i. Thus, for everyI ⊆ [k],

Pr

(

⋂

i∈I
Di | |U | = x

)

≤
∏

i∈I
Pr(Di | |U | = x) ≤ e−Ω(np|I|).

In particular, the event̃D that at mostk
16

of theDi hold satisfies

Pr(D̃ | |U | = x) ≥ 1−
(

k

k/16

)

· e−Ω(npt) ≥ 1− e−Ω(npt)

which implies
Pr(B ∩ D̃) ≥ 1− e−Ω(npt).

Let F be the event that at mostk
16

of theUi’s satisfy |Ui| < 4npt. A similar
argument shows that given

Pr(B ∩ F̃ ) ≥ 1− e−Ω(npt)

and we conclude that

Pr(B ∩ D̃ ∩ F̃ ) ≥ 1− e−Ω(npt).

At this stage we have already established the following whp:For ω( 1
n
) ≤

p(n) ≤ O(n−0.5−ǫ) every automorphism of aG(n, p) graph pointwise fixes its
2-core. However, we seek to prove the stronger statement thatthe2-core has no
nontrivial symmetries. As before consider two random mapsφ, ψ : [k] → V
where3 ≤ k ≤ logn. Let T = Image(φ) ∪ Image(ψ) and define the events
C1, C2 as above. ClearlyT ⊆ R, sinceT is a union of cycles, and now we need
to control the effect of non-2-core vertices on aut(G). This effect is mediated
by the setP ⊆ T of T ’s peripheralvertices, namely those within distance2 of
R̃ = V \R. As we show, the above-mentioned effect is not large, since|P | tends
to be small. We prove

9



Lemma 10.

Pr

(

|P | > k

8
| C1

)

≤ (np)−ωn(k)

Pr

(

|P | > k

8
| C2

)

≤ (np)−ωn(k)

Proof. We only prove case I. The same argument applies as well to caseII. All
our arguments below are madeconditioned onC1. Let q = 1 − p andt = |T |.
Clearly,k ≤ t ≤ 2k.

Reveal the subgraphH of G, induced byV \ T . DenoteW = V (H) \R(H).
Let x = n

(np)log(np) . By Lemma 5,

Pr(|W | ≤ x) ≥ 1− e−Ω(npx) ≥ 1− (np)−ω(k).

We henceforth condition on this event. Note thatR̃ ⊆ W , and thus, it is enough
to bound the number of vertices inT at distance≤ 2 fromW . We denoteNH(W )
by Q. We claim that|Q| ≤ |W |, since every vertex inQ has a neighbor inW ,
whereas every vertex inW has at most one neighbor inQ. (Note thatQ ⊆ R(H)
and a vertex with more than one neighbor inQ is inR(H) as well).

To understand the setP of peripheral vertices, we define three setsP1, P2, P3

with P ⊆ P1 ∪ P2 ∪ P3 and show that whp all|Pi| are small. LetP1 be the set of
those vertices inT with a neighbor inW . LetP2 be the set of those vertices inT
with a neighbor inP1. Finally,P3 is the set of those vertices inT with a neighbor
in Q.

Now reveal the set of cross edgesE(T, V \T ). Forv ∈ T , the probability that
v has a neighbor inW is at mostxp. Thus,

Pr

(

|P1| ≥
k

400

)

≤
(

t
k

400

)

(xp)
k

400 ≤ (np)−Ω(k log(np))

and similarly,Pr
(

|P3| ≥ k
400

)

≤ (np)−Ω(k log(np)). In what follows we condition
on the event that|P1|, |P3| ≤ k

400
.

We finish by bounding|P2|. Reveal the edge setE(P1, T ). By assumption,
T is the image of a type I configuration, namely two simple cycles, possibly with
some overlaps. This implies the existence of certain edges in E(P1, T ), at most
4|P1| in number. In addition, the random variabled(P1, T ) is a sum of at most
|P1||T | independent Bernoulli-p random variables. By assumption4|P1| ≤ k

100
, so

thatd(P1, T ) >
k
50

only if at least k
100

of these Bernoulli trials succeed. Therefore

Pr

(

d(P1, T ) >
k

50

)

≤
( kt

400
k

100

)

· p k
100 ≤ (kp)Ω(k) ≤ (np)−ωn(k)

Clearly,|P2| ≤ d(P1, T ), and so,|P2| ≤ k
50

with probability at least1−(np)−ωn(k).
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Definition 11. A configuration(φ, ψ) ofG is said to becompatibleif there exists
an automorphismπ ofR(G) such thatπ(φ(i)) = ψ(i) for eachi.

Lemma 12. LetG be a randomG(n, p) graph withω( 1
n
) ≤ p ≤ O( logn

n
). Then

whpG contains no compatible configuration of type I or II.

Proof. We prove the claim for type I configurations. The proof for type II follows
the same argument.

In the coming paragraph we denote∇(v) by Y (v). We also consider the 2-
neighborhood ofv ∈ R(G) in the subgraph induced byR(G) and denote∇(v) in
that graph byZ(v). Clearly, a configurationφ, ψ : [k] → V can be compatible
only if Z(φ(i)) = Z(ψ(i)) for each1 ≤ i ≤ k.

Let 3 ≤ k ≤ logn and pick two functionsφ, ψ : [k] → V uniformly at
random. By Lemma 7, the probability that(φ, ψ) is a configuration is at most
pk+on(1). Conditioned on this event, let

A = {i ∈ [k] | Y (φ(i)) 6= Y (ψ(i))}.

By Lemma 8,Pr(|A| < 3
4
k) ≤ (np)−ωn(k). Let

B = {i ∈ [k] | Y (φ(i)) = Z(φ(i)) andY (ψ(i)) = Z(ψ(i))}.

Note thati ∈ B when bothφ(i) andψ(i) are non-peripherial. Hence, by Lemma 10,
Pr(|B| < 3

4
k) ≤ (np)−ωn(k). But |A|, |B| ≥ 3

4
k, so they must intersect, say

i ∈ A ∩ B. ThenZ(φ(i)) 6= Z(ψ(i)), which makes(φ, ψ) incompatible. Clearly
this holds with probability1− (np)−ωn(k).

If ak is the number of compatible type I configurations we can now estimate
its expectation:

E(ak) = n2k · p2k+on(1) · (np)−ωn(k) ≤ (np)−ωn(k)

and so
logn
∑

k=3

E(ak) ≤ (np)−ωn(1)

which completes the proof.

We can now finish up the proof of our main theorem.

Theorem 1. LetG = (V,E) be aG(n, p) graph withω( 1
n
) ≤ p ≤ n− 1

2
−ǫ. Then

whp its2-core has a trivial automorphism group.
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Proof. LetH denote the2-core ofG. It is known ([4]) that whp diam(G) < logn
2

,
which we henceforth assume.

Suppose thatπ(v) 6= v for someπ ∈ aut(H), and a vertexv ∈ R(G). By
Lemma 12, it is enough to show that this assumption implies thatG has a com-
patible configuration. It is easy to see that ifπ fixes all vertices ofH contained
in cycles, thenπ is trivial, so letC be a cycle that containsv. The bound onG’s
diameter implies that such aC exists of length at mostlogn.

The argument splits now according to whetherπ fixes some vertex inC. If
it does not, thenφ andψ that map[k] to C and toπ(C) respectively form a
compatible type I configuration, and we are done. Otherwise,consider an arc
Γ = u u′ (possiblyu′ = u) of C so that:v ∈ Γ, and the onlyπ-fixed points in
Γ areu, u′. We obtain a compatible type II configuration by lettingφ map[k] toΓ
andψ map[k] to π(Γ).

4 Connections with the Reconstruction Problem

The purpose of this section is to prove:

Theorem 13. For every0 ≤ p ≤ 1 whp aG(n, p) graph is reconstructible.

We may clearly restrict ourselves to the range0 ≤ p ≤ 1
2
, since a graph is

reconstructible iff its complement is reconstructible. Wemay further restrict our
attention to the range(1−ǫ) logn

n
≤ p ≤ (5/2+ǫ) logn

n
since the theorem is known for

the two complementary ranges. Forp ≥ (5/2+ǫ) logn
n

this was done by Bollobás
[2]. Also, disconnected graphs are reconstructible [3], which takes care of the
rangep ≤ (1−ǫ) logn

n
. One further simplification is that forp in the above range,G

almost surely has noK3,2 subgraph. So we can and will be assuming this below.
Our line of argument resembles the first part of the proof of Theorem 1. However,
we need to adapt Lemma 8, a key step in that proof. This lemma gives an upper
bound onPr(∇(φ(i)) = ∇(ψ(i))), while here this equality gets replaced by an
approximateequality as we now define.

For two multisets of integers we say thatA ≈ B if they can be made equal
by applying some of the following operations to each of them.(HereX refers to
eitherA orB).

• Decrease some elements ofX by 1 or 2. The total subtracted sum must be
≤ 4.

• Delete one or two elements ofX.

12



Definition 14. A configuration(φ, ψ) isacceptableif there exist vertex setsU,W ⊆
V of sizen−2 such that im(φ) ⊆ U , im(ψ) ⊆W , andGU andGW are isomorphic
through a graph isomorphismπ that mapsφ(i) toψ(i) for everyi.

Lemma 15. Whp,G contains no acceptable configurations of type I or II.

Proof. We first claim that∇G(u) ≈ ∇G(π(u)), for everyu ∈ U for U , W and
π as above. This is so, since the property ofπ implies∇GU

(u) = ∇GW
(π(u)).

These are subgraphs ofn− 2 vertices and the effect of the two missing vertices is
limited due toK2,3-freeness. SinceG isK3,2 free, |N(u) ∩ N(v)| ≤ 2 for every
v ∈ V \ U . Hence, by removingv from G the possible changes in∇(u) are:
(i) Decreasing one or two elements of∇(u) by 1: Each vertex inN(u) ∩ N(v)
(of which there are at most two) may lose one neighbor, (ii) Removal of a single
element from∇(u) (the element corresponding tov itself, if uv ∈ E).

To prove the Lemma, we first strengthen Lemma 8, and replace the condition
∇(φ(i)) = ∇(ψ(i)) by ∇(φ(i)) ≈ ∇(ψ(i)). The proof is essentially the same,
with one change: Clearly the multiset{d(x, V \ Ñ(T )) | x ∈ Ui} is uniquely de-
termined by the condition∇(φ(i)) = ∇(ψ(i)). Now we operate under the weaker
condition∇(φ(i)) ≈ ∇(ψ(i)). Rather than the above multiset, we consider a
multiset where at most two of the entries are” ∗ ” which stand for the possibly
deleted vertices. This multiset can take on only poly(np) possible values. Lemma
4 and a union bound argument yield:

Pr(∇(φ(i)) ≈ ∇(ψ(i))) ≤ (np)−Ω(
√
np) · (np)O(1) = (np)−Ω(

√
np).

By Lemma 7 and the stronger version of Lemma 8 proved here, theexpected
number of acceptable type I or type II configurations inG is at most

∑

k=3

log n(np)−ωn(k) ≤ (np)−ωn(1).

Definition 16. We say that a vertex pairu, v ∈ R(G) is interior if R(G\{u, v}) =
R(G) \ {u, v}.

Lemma 17. Whp, for every interior vertex pair{u, v} it holds that (i) every au-
tomorphism ofGV \{x,y} fixesR(G) \ {u, v} and (ii) For every interior vertex pair
{x, y} 6= {u, v}, the graphsGV \{u,v} andGV \{x,y} are non-isomorphic.

Proof. We may assume that diam(G) < logn
8

, as this holds whp [4]. Also,
diam(GV \{u,v}) <

logn
2

(likewise for{x, y}) since the removal of a vertex at most
doubles the diameter. By Lemma 15, we may also assume thatG has no accept-
able type I or II configurations.
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We prove both parts of the Lemma together by considering as well the case
{x, y} = {u, v}. Assume that there exists an isomorphismπ betweenGV \{u,v}
andGV \{x,y} that does not pointwise fix the2-core. To prove the Lemma, it is
enough to show that there exists an acceptable type I or II configuration inG. We
consider two cases, first whereπ moves some vertex inR(GV \{u,v}) that resides in
a cycle. Since diam(GV \{u,v}) <

logn
2

, we may assume that this cycle has length
< log n. The existence of an acceptable type I or II configuration follows from
the same argument as that in Theorem 1. In the second case,π fixes pointwise
every cycle ofR(GV \{u,v}). Thus, it must map some path between two vertices in
cycles, fixed byπ, to a different path between these two vertices. Due to the bound
on the diameter ofGV \{u,v}, the length of these paths must be< logn

2
, which yields

a type II acceptable configuration.

Proof of Theorem 13.We may and will assume thatG satisfies the conclusion of
Lemma 17. Foru ∈ U , we denoteG̃u := GV \{u}.

We claim that the cardinality|R(G)| is reconstructible. Indeed, it is known [3]
that the degree sequence ofG is reconstructible, and thus, the propertyR(G) = V
is recognizable. Now, assume thatR(G) 6= V . It is clearly possible to determine
d(u) from G̃u. Also R(G) = R(G̃u) when d(u) = 1. Sinceu ∈ R(G) iff
|R(G̃u)| < |R(G)|, we can determine whetheru ∈ R(G) by observingG̃u.

We also note that the degree sequence ofG’s 2-core is reconstructible. Indeed,
if V = R(G) this follows from the reconstructibility ofG’s degree sequence.
Otherwise, the2-core itself is reconstructible, as above.

Let A = {u ∈ R(G) | d(v, R(G)) ≥ 4 for all v ∈ N(u)}. Note that every
vertex pair inA is interior. It is not hard to determine whetheru ∈ A givenG̃u,
based on the reconstructibility of the2-core’s degree sequence. We claim thatA
contains almost all vertices. By Lemma 5, there holds whp|R(G)| ≥ n − o(n).
Forv ∈ V

Pr(d(v, R(G)) ≤ 3) ≤ O(np3e−np)

and by the union bound

Pr(∃v v ∈ N(u) ∧ d(v, R(G)) ≤ 3) ≤ O(np4e−np) ≤ o(1).

So, letv′ ∈ V \ {u} andu′ ∈ V \ {v} be such that{u, v′} and{v, u′} are interior
pairs, and there exists an isomorphismπ betweenGV \{u,v′} andGV \{u′,v}. By
Lemma 17, this holds only whenu = u′, v = v′ andπ fixes the2-core pointwise.
Using this property, we can identify the verticesv andu respectively in the graphs
G̃u andG̃v and identify each vertex in the2-core of one graph with its counterpart
in the other. This allows us to reconstructG up to the question of whetheruv ∈ E.
Since|E| is reconstructible, this last question can be answered as well.
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5 Connections with the Canonical Graph Labeling
Problem

In this section we describe a polynomial time random graph canonical labeling
algorithm for graphs inG(n, p) whereω( 1

n
) ≤ p ≤ n−(0.5+ǫ).

Let C be the collection of allrooted, orientedcycles of length3 ≤ k ≤ log n
in ann-vertex graphG = (V,E). We useA ≤ B to denote the lexicographic
ordering between multisets of integers, where the elementsin A and inB appear
in increasing order. We equipC with the semi-order≺ where short cycles precede
longer ones. For two cyclesX = (x1, . . . , xk), Y = (y1, . . . , yk) ∈ C we say that
X ≺ Y if for somei there holds∇(xi) < ∇(yi) and∇(xj) = ∇(yj) for every
1 ≤ j < i.

We claim that for the relevant range ofp, aG(n, p) graph satisfies the follow-
ing conditions whp:

1. Each connected component ofGV \R(G) is a tree of size≤ logn.

2. diam(G) < logn
2

.

3. C(G) is totally ordered by≺.

Property (1) is easy to derive by a first-moment argument. Forproperty (2), see
[4]. A proof of Property (3) follows from property (2) by a simple variation of the
proof of Theorem 1.

We now explain how to canonically label a graphG = (V,E) with these three
properties. To a vertexv that is contained in a cycle we assign the≺-smallest
labelX = (x1, . . . , xk) ∈ C over all cycles for whichv = x1. This label can be
found in polynomial time. Ifk is the length of the shortest cycle throughv = x1,
then it is easy to show that there are at mostn3 such cycles. We scan all of them
and pick the≺-smallest one.

Note next, that a vertexv ∈ R(G) that is not contained in a cycle must reside
on the unique path between two verticesu, w ∈ V , each contained in a cycle.
Thereforev is uniquely defined by its distances fromu and fromw. This, and the
labels ofu andw, give us a unique label forv.

Finally we find labels for vertices inV \ (R(G)). By property (1), such a
vertex belongs either to (i) a tree of size≤ log n rooted at some vertex ofR(G)
or (ii) an acyclic connected component of size≤ log n. Let v be a vertex of type
(i), belonging to a treeT rooted atu ∈ R(G). There are only poly(n) rooted
trees of size≤ logn [8], so we can list them and give a unique polynomial-length
label to each vertex of each such class. We labelv by a pair(x, y), wherex is the
label of the vertex corresponding tov in T ’s isomorphism class in the list, andy
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is u’s label. That is,v is labeled as ”The vertex of typex in the tree rooted atu”.
Type (ii) vertices are likewise handled, using a list of all isomorphism classes of
non-rooted trees. To deal with vertices on acyclic connected components, collect
all connected components of the same isomorphism class and give each of them
a unique number. The label ofv consists of the type of tree that contains it, that
tree’s ordinal number in its isomorphism class, andv’s location in that tree.

6 Discussion and Open Problems

For smaller values ofp the structure of aut(G) may become somewhat more com-
plicated. Forp = Θ( 1

n
), aG(n, p) graph has, with probability bounded away from

zero and one, some small symmetric components, e.g., an isolated triangle. More-
over, with probability∈ (0, 1) even the2-core of the graph’s giant component, has
a nontrivial symmetry. This may result e.g., from a trianglethat ”hangs off” the
2-core. However, as shown in [9], whp this2-core has a unique biconnected com-
ponent ofΩ(n) vertices. We suspect that this giant biconnected componentis rigid
whp.

For (5/2+ǫ) logn
n

≤ p ≤ 1
2

it was shown by Bollobás [2] that not only isG
reconstructible whp, such graphs have reconstruction number three. We do not
know whether this holds as well for smaller and substantially smaller values ofp.

References
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