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Abstract

A graph with a trivial automorphism group is said to tigid. Wright
proved [11] that forlo% + w(%) < p < } arandom grapl&@ € G(n,p)
is rigid whp. It is not hard to see that this lower bound is phand for
p < u*’% with positive probability aui=) is nontrivial. We show that
in the sparser case(X) < p < k’% + w(2), it holds whp thatG’s 2-core
is rigid. We conclude that for aff, a graph inG(n, p) is reconstrutible whp.
In addition this yields fow(%) <p< % a canonical labeling algorithm that
almost surely runs in polynomial time witi{1) error rate. This extends the

range for which such an algorithm is currently knowh [5].

1 Introduction

It is a truth universally acknowledged, that random objectsasymmetric. It was
shown by Wright[[11] that fod > p > 10% + w(%) arandomG(n, p) graph has,
whp, a trivial automorphism group. He actually worked whike & (n, M) model,

but the reduction t@(n, p) is well-known and follows easily from the Chernoff
bound. Also, a graph and its complement clearly have the sart@morphism
group, SO we can restrict ourselves to the raﬁ-lg?g p. Wright’s bound is tight,
since a graplé- of slightly smaller density is likely to have isolated veds, which

can be swapped by@-automorphism. This paper concerns the range of smaller
p by showing that forw(%) <p<nic whp all of G’s automorphisms are
essentially trivial. Here is our main result:
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Theorem 1. LetG = (V, E) be aG(n,p) graph withw(+) < p < n 2. Then
whp its2-core has a trivial automorphism group.
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This shows that for this range pf whp aufG) is generated by:
e Automorphisms of rooted trees that are attached t@ibere.

e Automrophisms of the tree components and swaps of such coenps

The most interesting range of this statemenp isc ‘&rtdloelosn — pop

largerp the2-core is the whole graph, in which range ours is just a newfdmo
the rigidity of sufficiently dense random graphs.

General strategy of the proof: We denote the vertex set 6f's 2-core by
R(G). Itis easy to see that gut) fixes R(G) setwise and our proof shows first
that autG) actually fixesR(G) pointwise. In order to prove the theorem in full
we show that this rigidity does not result from boundary efeof vertices near
V\R(G). The neighbor set af € V and its degree are denoted Nyv) andd(v).

If 1,...,2; are the neighbors of, we denote byV (v) the multiset{d(z;)}*.
Clearly V is preserved by automorphisms. We fix some& logn and consider
two directed rooted cycles, . .. v; andu; ... ug in G. We show that whp every
two such cycles have marycompatiblepairs(v;, u;) for which V(v;) # V(u;).
This already implies thak(G) is fixed pointwise. In the full proof of the theorem
we find, for every two such cycles, an incompatible gaijr «;), where bothy;
andu; are at distance: 3 from V' \ R(G). Such a pair is not only incompatible in
G, but also inR(G), proving the theorem.

It turns out that Theoref 1 yields some interesting insightthe well-known
graph reconstruction conjecture which we now recall. &é&te ann-vertex graph.
When we delete a vertex @f we obtain an(n — 1)-vertex graph. By doing
this separately for each vertex (# we obtain then graphs that make ugp’s
deck Thegraph reconstruction conjectul§/], [10]) posits that every two graphs
of 3 or more vertices that have identical decks must be isomorphi graph
G is said to beeconstructiblef every graph with the same deck is isomorphic
to G. Bollobas proved[[2] that whpg-(n, p) graphs are reconstructible for all
BRrdlgn <y < 1 . B2TIlsn - \we show that this is in fact true for every
0 < p < 1. One reason why this extension of range is of interest haoto d
with the edge reconstruction conjectuf@] which states that every graph can be
reconstructed from its deck of edge-deleted subgraphss [€hds to the notion
of edge-reconstructiblgraphs. We recall two facts from this theory: (i) Every
reconstructible graph with no isolated vertices is edgemstructible (e.g., [3])
(i) Every n-vertex graph with at leadbg,(n!) + 1 = nlog,n + O(n) edges is
edge reconstructible. Our result applies to the rdige< O(nlogn) where the
edge reconstruction problem is still open.

We turn to discuss theanonical labeling problenfl]. Let £ be a class of
graphs. A canonical labeling @f € £ assigns distinct labels to the vertices of
G, where the labeling is uniquely determined &3s isomorphism class. In the
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probabilistic version of this problent; is a probability space of graphs and we
seek to efficiently find a canonical labeling for almost akygis in£. Such a
canonical labeling algorithm clearly solves in particullae random graph iso-
morphism problenior £. Specifically we ask for which values pfthere is a
polynomial time canonical labeling i&'(n, p). By considering the complemen-
tary graph it suffices to consider the range&l 1/2. Such an algorithm is known
[5] for p € [@(1“7"), 1/2]. Our proof of Theorer]1 yields a polynomial time al-
gorithm forw(2) < p < n=5+9, whence a polynomial time solution exists for
pe )i

2 Technical Preliminaries

Graph theory: Graphs are denote@ = (V, E) and usuallyn := |V|. The
neighbor set ot € V' is denoted byV(u). ForU C V, we denoteN(U) :=
(Uver Nw) \ U and N (U) = U, N (u).

The set of cross edges between two subiSelE C V' is denoted (U, W) :=
{uv € E|u e U,veV}andd(U, W) = |E(U,W)| (to wit: even ifU "W # 0,
we consider every relevant edge exactly once). For a smglét= {u}, we use
the shorthand(u, W) = d(U, W). Also, E(U) = E(U,U).

ForU C V we denoter(U) := {v € V\ U | d(v,U) = 1}, the set of those
vertices not inJ that have exactly one neighborin

We denote by, the subgraph off induced byU C V.

Let V(u) denote thenultiset of integergd(v, V \ N(u)) | v € N(u)}.

We denote the vertex set 6fs 2-core byR(G).

Asymptotics: A property ofG(n, p) graphs is said to holathp (with high prob-
ability) if its probability tends tal asn — oo.

Probability:  For a discrete random variahlé, let

II(X)= sup (Pr(X =ux)).

xerange X)

If X is multinomial with parameter&mn, (p1, ..., px)), we denotdl(X) by
II(m, (p1, ..., px)). The following lemmas provide a descriptionldfr, (p1, . .., pr))-

Lemma 2. Let X be a multinomial random variable with parametérs, (p1, ..., px))
and suppose thdl(X) = Pr(X = (ay,...ax)). Thena, > mp, — 1 for everyt,
or, in other wordsa; > [mp;|.



Proof. Without loss of generality, assume by contradiction tha m - p; — 1.
Then, since) . a;, = m = > . m - p;, there exists some index says = 2 such
thata, > m - p;.

Pr(X = (a1 +1,a0 —1,a3,...,ax))  az p1 _ m-py p1
= L= > = =1
Pr(X = (a1,...,ax)) ar+1 pas m-p1 po
contrary to the assumed maximalitylf(X = (aq,...,ax)). O

Lemma 3. For an integerm, a constantc > 0 and a probability vectop =
(p1,---,pr), Such thap; < \/—% for eachi, it holds that

[I(m,p) < mfg(\/cm),

Proof. We first show how to reduce the proof to the case whete - \;m for each
i. Assume that the lemma holds in this case. For areal vaaad two coordinate
indices: # j, letu, ; be the vector obtained by eliminating the coordinates:;
and introducing a new coordinate of + u;. Let X and X;; be multinomial
random variables with parametes, p), (m, p; ), respectively. Note that for

everya € rangé€ X)) there holds
PI"(X = a) S PI"(XZ‘J = ai,j).

Thus,II(m, p) < II(p; ;).

We generate a sequence of probability vectors that stamtfrand proceed as
follows. At each step we replace, as described, the two sstalbordinates in the
present probability vector by one coordinate that is themsWe continue with
this process until the first time at which this vectphas at most one coordinate
that is smaller tha%. If the smallest coordinate iqis > ﬁ then, since each
of the above steps can only incred$ethe reduction is complete. Otherwisg,
has exactly one coordinate, saythat is< 2\%. But then inq; » all coordinates
vary betweenﬁm andz3¢. The reduction is again complete.

2/m"

We now turn to proving the lemma for the case Wh%e > pi > ﬁ for

i=1,..., k. Clearlyk > \/—f Setu; = p; - m and suppose that(X) = Pr(X =
(a1,...,a)). By Lemma2,% > 1 — Mi >1— % for all i. Now

(X) = Pr(X = (a1, ...,a)) = <a1’ mak) -Hpgi.

ivli ’ n! _ 1
By Stirling’s bound,W =1+0(;). Thus,
m\™ /9
nx) < O (e) m




which can be stated as

and

c -3 c -y m -5
e = () = ) o ((5)F).

Therefore,

Lemma 4. Letk be aninteger; > p > 0andletp; = (")pi¢"~ (i =0,1...,k),
whereq = 1 — p. Then, for everyn < O(kp) there holds

H(m7 (p07 s 7pk)) S miﬂ(\/m)

Proof. It is well known that

Ik, (p,q)) <O <(pk1_ 1)1/2> <0 (%) .

Therefore, by Lemmal 3,

H(m7 (p07 s 7pk)) S miﬂ(\/m)

3 The Main Theorem

We recall thatR(G) stands foiG’s 2-core. We also denot& := V \ R(G).



Lemma 5. Let G be aG(n,p) graph wherep > w(1). For everyZ > z >
there holds )
Pr(|R| > z) < e~ w2,

Proof. Let.S C V be the set of those verticesGhwith degree at most We claim
that|S| > . Clearly|E(R)| < |R|, sinceR is acyclic. Also,d(R, R) < |R)|
since a vertex ik can have at most one neighborfn Hence,

4|R| = 4S| < 4[R\ S| <y d(v) = 2|B(R)| + d(R, R) < 3|R|,

vER

as claimed. Thus, it is enough to bound the probability tHat- >z. We fix a set

A of 7 vertices and note that a vertexc A hasd(v) < 4 onlyif d(v,V'\ A) < 4,
which holds with probability< e=%"?), Thus, the probability that all vertices in
A have degreec 4 is at moste—("»#), Therefore, the probability that such a set

A exists is at most
(71)e-stm ot
ZI‘

finishing the proof. O

Definition 6. Let G = (V, E') be ann-vertex graph, and: > 3 an integer. An
order k configurationof G is a pair of functiong¢, ¢) : [k] — V. If ¢(i) = ¥ (i)
we say that is aconfluenceof (¢, v).

¢ A confluence-free configurati@n, ) is said to haveype lwhenk < logn

and(o(1),...,¢(k),o(1))and((1),...,1%(k), (1)) are simple cycles (in

this order).

e We say that(¢, ) is atype Il configuration when¢(1),...,¢(k)) and
(¥(1),...,9(k)) are each a simple path or a simple cycle. Algas log n,
and1, k are the only confluences.

Lemma 7. LetG = (V, E) be a randonm(n, p) graph and letk < logn. Pick
the functionsy, ¢ : [k] — V uniformly at random. Consider the events

e () that (¢, ) is a type | configuration.

e () that(¢, ) is atype Il configuration.
Then:

1. Pr(C1) <p* - (2 +p)*

2. Pr(Co) <pb- (24 p)i2-n?



Proof. We only prove the first claim. The same argument applies aktovéhe
second case.

Denote¢(k + 1) = ¢(1) andy(k + 1) = ¢(1). Fori = 0,...,k, we esti-
mate the probability of the events; that ¢ (;j)y(j + 1) € E for everyl <
j < iand(¢(l),...,¢6(k + 1)) is a simple cycle inG. Clearly, Pr(4,) =
Pr(¢(1),...,6(k+ 1) is a simple cycle < p*.

We complete the proof by showing tHait(A; 1| A;) < %er. Indeed, suppose
that (i) = ¢(j) for somej. In this case it is possible that(i), ¢ (i + 1) are
neighbors since (i + 1) coincides with eithen(j — 1) or with ¢(j + 1), but that
happens with probabilitc 2. Otherwise, they are neighbors with probability
p. ]

Lemma 8. Letw(+) < p = p(n) < O(n~%%~<) for somec > 0. Pick a random
G(n,p) graphG = (V, E') and two random maps, ¢ : [k] — V wherek < logn.
Let s denote the number of indicésc {1,...,k} such thatV(¢(i)) = V(1(i)).
Then:

1
Pr <s > Zk | C’l) < (pn)~HUVPR)

Pr (5 > %(k —2) | Cg) < (pn)~SHVPTR)

Proof. We only prove the type | case. The same argument applies ¢olktygon-
figurations as well. The argument below and all relevantutatons take place
in the spaceonditioned orC.

LetT' = Image¢) U Imaget) andt = |T'|. For each index let U; be the set
of those neighbors af(i) that have no other neighbor iN(T'). We expose the
subgraph induced ol (T'), thus revealing the set§. The following proposition
comes in handy:

Proposition 9. With probabilityl — e~ there holds:
o |N(T)| < 2npt
e There are at leas¥ indicesk > i > 1 for which™2 < |U;| < 4np.

We proceed under the conditioning that the conclusion «f Brioposition
holds. We next reveal the edges connecti@’) \ |J, U; andV' \ N(T). This de-
terminesV (¢ (j)) for all j. On the other handy (¢(7)) is completely determined
by the neighbor sets of vertices frdifin V' \ N (7). Consequently the family of
multisets{V(¢(i))}, is independent.

We are concerned with the event thato(i)) = V(¢ (i)). At this stage this
may already be impossible, and if possible, this uniquetgrmieines the multiset



of degreesi(x,V \ N(T)) overz € U;. The elements of this multiset are drawn
from a binomial distribution, so by Lemma 4,% < |U;| < 4np, then

Pr(V(¢(i)) = V(¥(i))) < (np) "W,

Note that fors > 1% to hold, the equalityv (¢(i)) = V(1 (i)) must hold for
at leastf of the indices for which |U;| > “2. Hence,

1 Tk
Pr(s > 2k) < <§ k) (np) ~HEVIP) < () TRV
5

as stated.
Proof of Propositiof P: The first claim follows from Chernoff’s bound, as we
observe that

IN(T)| ~ t+Bin(n —t,1 —¢'), whereq = 1 — p.
so that )
[E(IN(T))] < npt(1 + o(1)).

For the second claim
lo(T)| ~ Bin(n — t, tpqt_l)

and so
E(lo(T)]) > npt(1 — o(1)).

Let A denote the event thafV(T)| < 2npt and|o(T)| > mrt By Chernoff's
bound,
Pr(A) > 1 — e 9w,

Now,
o), V() ~ Bin (Jo()]- (17| - ¢ = TEIEL) )

Let B denote the event that holds, and, in additionj(o(T), N(T)) < "2,
Note thatA implies

o) (18] - 1= T < 1N < onpey

Hence, ,
2 t npt
Pr(B|A) > 1 — <( npt) )ps > 1 — e 2npt)

npt
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and so
Pr(B) = Pr(B|A) - Pr(A) > 1 — ¢ %)),

Let U = |J,U;. Note thatB implies that at least2 vertices ino(7') have no

neighbor inN(T), and thus|U| > ™. Clearly,|U;| ~ Bin(|U|,1). LetD;

denote the event thal/;| < “2. Forz > "2, Chernoff’s bound implies

Pr(D; | |U| = z) < e %),

Note that giverjU| = z, the eventD; is negatively correlated with every event of
the form(,, D; where) # J C [k] \ . Thus, for everyl C [£],

Pr (ﬂ D | |U| = :c) < [[Pr(D; | |U] = z) < e 2ID,

iel i€l

In particular, the evenb that at most% of the D, hold satisfies

~ k
PI"(D | |U| = {L’) Z 1— ( ) . 679(”1715) Z 1— efQ(npt)

k/16

which implies 3
Pr(BN D) >1— e %t

Let F' be the event that at most of the U;’s satisfy |U;| < 4npt. A similar
argument shows that given

Pr(BNE) > 1— e %)

and we conclude that

Pr(BNDNE)>1— ¢ 4w,

At this stage we have already established the following whpr w(%) <
p(n) < O(n=9%57¢) every automorphism of & (n,p) graph pointwise fixes its
2-core. However, we seek to prove the stronger statementhteatcore has no
nontrivial symmetries. As before consider two random mapsg : (k] — V
where3 < k < logn. LetT = Imagd¢) U Imagdg) and define the events
C1,Cs as above. Clearl§’ C R, sinceT is a union of cycles, and now we need
to control the effect of nor-core vertices on agtr). This effect is mediated
by the setP C T of T’s peripheralvertices, namely those within distangef
R =V \ R. As we show, the above-mentioned effect is not large, siR¢éends
to be small. We prove



Lemma 10. "
m(uw>—|a)s0wrww

pr (171> §1€2) < )

Proof. We only prove case |I. The same argument applies as well tolcask
our arguments below are madenditioned onC;. Letq = 1 — p andt = |T|.
Clearly,k <t < 2k.

Reveal the subgrapH of G, induced by \ 7. DenoteW = V(H) \ R(H).

Let[[’ = (np)I%' By Lemma[},

Pr(|[W|<z)>1—e %0 > 1 — (np)~+®),

We henceforth condition on this event. Note that- 1/, and thus, it is enough
to bound the number of verticesThat distance< 2 from 1. We denoteVy (V)
by @. We claim that@| < |W]|, since every vertex iQ) has a neighbor ifV/,
whereas every vertex i’ has at most one neighbor . (Note that) C R(H)
and a vertex with more than one neighborjns in R(H) as well).

To understand the sét of peripheral vertices, we define three sBisP;, Ps
with P C P, U P, U P; and show that whp allP;| are small. LetP, be the set of
those vertices ifi” with a neighbor inl¥/. Let P, be the set of those verticesTn
with a neighbor inP;. Finally, P; is the set of those vertices Twith a neighbor
in Q.

Now reveal the set of cross edgl§l", V' \ T'). Forv € T', the probability that
v has a neighbor ifl/ is at mostep. Thus,

k t X
1P| > ) < < i )(xp)m < (np)—Q(klog(np))
< 400 1o

00

and similarly,Pr (| P3| > 400) < (np)~%klos(mp)) In what follows we condition
on the event thatP, |, | Ps| < 4.

We finish by bounding?,|. Reveal the edge séi(P;,T). By assumption,
T is the image of a type | configuration, namely two simple cycpossibly with
some overlaps. This implies the existence of certain edyéX P, 7'), at most
4|P;| in number. In addition, the random variakléP;, T") is a sum of at most
| P1|| T mdependent Bernoulji-random variables. By assumptiopP; | < £, so

thatd(P;,T) > £ only if at least;% of these Bernoulli trials succeed. Therefore

]i] kt
Pr (d(Pl,T) > %) < (400) pmo < (]{;p)ﬂ(k (np) wn (k)

100

Clearly,| 5| < d(P,T),and so|P,| < £ with probability at least — (np) < *).,
L
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Definition 11. A configuration(¢, v) of G is said to becompatibleif there exists
an automorphismr of R(G) such thatr(¢(i)) = v (i) for each:.

Lemma 12. Let G be a randon((n, p) graph withw(2) < p < O(k’%). Then
whp G contains no compatible configuration of type | or II.

Proof. We prove the claim for type | configurations. The proof foreypfollows
the same argument.

In the coming paragraph we dendi&v) by Y (v). We also consider the 2-
neighborhood of € R(G) in the subgraph induced by(G) and denoté/ (v) in
that graph byZ(v). Clearly, a configuratiom, v : [k] — V can be compatible
only if Z(¢(i)) = Z(¢(i)) for eachl < i < k.

Let 3 < k < logn and pick two functionss, ¢ : [k] — V uniformly at
random. By Lemmal]7, the probability thap, ¢)) is a configuration is at most
pktor(l)  Conditioned on this event, let

A={ielk]|Y(e@i)) #Y(¥())}
By LemmaB.Pr(|A| < 2k) < (np)~“n®. Let
B={iek]|Y(s(i)) = Z(¢(i)) andY (¢ (i) = Z(¢(i))}.

Note thati € B when bothp(i) andiy (i) are non-peripherial. Hence, by Lemma 10,
Pr(|B] < 2k) < (np)~r®. But|Al,|B| > 2k, so they must intersect, say
i€ AN B. ThenZ(¢(i)) # Z(¢(i)), which makeg¢, ¢») incompatible. Clearly
this holds with probabilityl — (np)~«»*)

If a; is the number of compatible type | configurations we can nawnege
its expectation:

E(ak) — an‘ . p2k+0n(1) . (np)—wn(k;) S (np)—wn(k;)

and so
logn
> E(a) < (np)®
k=3
which completes the proof. O
We can now finish up the proof of our main theorem.

Theorem 1. LetG = (V, E) be aG(n, p) graph withw(%) < p < n~2. Then
whp its2-core has a trivial automorphism group.
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Proof. Let H denote the-core ofG. Itis known ([4]) that whp diar7) < 1“’%",
which we henceforth assume.

Suppose that(v) # v for somer € autH), and a vertex € R(G). By
Lemmal12, it is enough to show that this assumption implias®hhas a com-
patible configuration. It is easy to see thatrifixes all vertices offf contained
in cycles, thenr is trivial, so letC' be a cycle that contains The bound orG’s
diameter implies that such@ exists of length at mosbog n.

The argument splits now according to whethefixes some vertex ir@'. If
it does not, theny and ¢ that map[k| to C' and tox(C) respectively form a
compatible type | configuration, and we are done. Otherwgsesider an arc
[' = u ~ o' (possiblyw’ = u) of C so that:v € ', and the onlyr-fixed points in
I" areu,v’. We obtain a compatible type Il configuration by lettingnap (k] to T
andy map[k] to = (T).

O

4 Connections with the Reconstruction Problem

The purpose of this section is to prove:

Theorem 13. For every0 < p < 1 whp aG(n, p) graph is reconstructible.

We may clearly restrict ourselves to the ranpec p < % since a graph is

reconstructible iff its complement is reconstructible. kvay further restrict our
attention to the rang@# < p < B2H91%n ginee the theorem is known for

the two complementary ranges. For> W this was done by Bollobas
[2]. Also, disconnected graphs are reconstructible [3]icwhakes care of the
rangep < (1_5)% One further simplification is that fgrin the above range;
almost surely has n&s , subgraph. So we can and will be assuming this below.
Our line of argument resembles the first part of the proof afdrbnil. However,
we need to adapt Lemna 8, a key step in that proof. This lemxes gin upper
bound onPr(V(¢(i)) = V(¥(i))), while here this equality gets replaced by an
approximatesquality as we now define.

For two multisets of integers we say that~ B if they can be made equal
by applying some of the following operations to each of th¢ere X refers to
eitherA or B).

e Decrease some elementsfby 1 or 2. The total subtracted sum must be
<4.

e Delete one or two elements &f.

12



Definition 14. A configuration ¢, ¢) isacceptablé there exist vertex setg W C
V of sizen—2 such thatinie) C U, im(y) C W, andGy andGyy are isomorphic
through a graph isomorphismthat mapsp(i) to ¢ (i) for everys.

Lemma 15. Whp,G contains no acceptable configurations of type | or Il

Proof. We first claim thatV(u) ~ V(7 (u)), for everyu € U for U, W and

7 as above. This is so, since the propertyramplies V¢, (u) = Vg, (m(u)).
These are subgraphsof- 2 vertices and the effect of the two missing vertices is
limited due toK, 3-freeness. Sinc€'is K3, free, |N(u) N N(v)| < 2 for every

v € V\ U. Hence, by removing from G the possible changes Ni(u) are:

(i) Decreasing one or two elements Giu) by 1: Each vertex inV(u) N N(v)

(of which there are at most two) may lose one neighbor, (ilnBeal of a single
element fromV (u) (the element correspondingtdtself, if uv € F).

To prove the Lemma, we first strengthen Lenirha 8, and replacedhdition
V(gp(i)) = V(¢(i)) by V(4(i)) =~ V(i(i)). The proof is essentially the same,
with one change: Clearly the multisgt(z, V \ N(T)) | z € U;} is uniquely de-
termined by the conditioW (¢(i)) = V(¢ (i)). Now we operate under the weaker
conditionV(¢(i)) ~ V(¥ (i)). Rather than the above multiset, we consider a
multiset where at most two of the entries &re ” which stand for the possibly
deleted vertices. This multiset can take on only pofy possible values. Lemma
4 and a union bound argument yield:

Pr(V(0(1)) ~ V(1)) < (np) "2V - ()0 — ()= 2V,

By Lemma¥ and the stronger version of Lemma 8 proved hereexpected
number of acceptable type | or type Il configurationsg-is at most

" logn(np) ™ ®) < (np) ).
k=3

U
Definition 16. We say that a vertex pair, v € R(G) isinteriorif R(G\ {u,v}) =

R(G) \ {u,v}.

Lemma 17. Whp, for every interior vertex paifu, v} it holds that (i) every au-
tomorphism ofxy (., fixesR(G) \ {u, v} and (ii) For every interior vertex pair
{z,y} # {u, v}, the graphsiy (.3 and Gy g.) are non-isomorphic.

Proof. We may assume that didi) < lf’g", as this holds whp [4]. Also,
diam(Gi u,0}) < 82 (likewise for {z, y}) since the removal of a vertex at most
doubles the diameter. By Lemrhal 15, we may also assumé-thas no accept-

able type I or Il configurations.
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We prove both parts of the Lemma together by considering disthneecase
{z,y} = {u,v}. Assume that there exists an isomorphisrbetweenG (. .
and Gy (., that does not pointwise fix thg-core. To prove the Lemma, it is
enough to show that there exists an acceptable type | or flgroation inG. We
consider two cases, first wheranoves some vertex iR(Gy\ {.,.} ) that resides in
a cycle. Since diaft/y\ (u,0}) < k’g", we may assume that this cycle has length
< logn. The existence of an acceptable type | or Il configuratiofoved from
the same argument as that in Theofédm 1. In the second cds&s pointwise
every cycle ofR(Gv\ (u.). Thus, it must map some path between two vertices in
cycles, fixed byr, to a different path between these two vertices. Due to thatho
on the diameter offy (...}, the length of these paths mustoe®2, which yields
a type Il acceptable configuration. O

Proof of Theorerh_13We may and will assume thét satisfies the conclusion of
LemmalY. Fou € U, we denotes,, := Gy (-

We claim that the cardinality?(G)| is reconstructible. Indeed, it is known [3]
that the degree sequence(®fs reconstructible, and thus, the propefyG) = V/
is recognizable. Now, assume thHatG) # V. It is clearly possible to determine
d(u) from G,. Also R(G) = R(G,) whend(u) = 1. Sinceu € R(G) iff
|R(G.)| < |R(G)|, we can determine whethere R(G) by observing7,.

We also note that the degree sequena@’sf2-core is reconstructible. Indeed,
if V= R(G) this follows from the reconstructibility of’s degree sequence.
Otherwise, the-core itself is reconstructible, as above.

Let A = {u € R(G) | d(v, R(G)) > 4forallv € N(u)}. Note that every
vertex pair inA is interior. It is not hard to determine whetherc A given Gy,
based on the reconstructibility of tRecore’s degree sequence. We claim tAat
contains almost all vertices. By Lemrha 5, there holds WR{g7)| > n — o(n).
ForveV

Pr(d(v, R(G)) < 3) < O(np’e ")

and by the union bound
Pr(Iw v € N(u) Ad(v, R(G)) < 3) < O(npe™™) < o(1).

So, letv’ € V' \ {u} andu’ € V'\ {v} be such thafu, v’} and{v, '} are interior
pairs, and there exists an isomorphisnbetweenGy\ vy and Gy (u 3. BY
Lemmd_17, this holds only when= «/, v = v’ andr fixes the2-core pointwise.
Using this property, we can identify the verticeandu respectively in the graphs
G. andG, and identify each vertex in thzcore of one graph with its counterpart
in the other. This allows us to reconstrd¢tp to the question of whethew € F.
Since|E| is reconstructible, this last question can be answered hswe [
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5 Connections with the Canonical Graph Labeling
Problem

In this section we describe a polynomial time random graptoceal labeling
algorithm for graphs ir(n, p) wherew() < p < n=(05%9),

Let C be the collection of altooted, orientectycles of lengts < £ < logn
in ann-vertex graphG = (V, E). We useA < B to denote the lexicographic
ordering between multisets of integers, where the elememsand in B appear
in increasing order. We equipwith the semi-ordex where short cycles precede
longer ones. For two cycle¥ = (xy,...,2x),Y = (y1,...,yx) € C we say that
X < Y if for somes there holdsV(z;) < V(y;) andV(z;) = V(y;) for every
1<j<i.

We claim that for the relevant range @fa G(n, p) graph satisfies the follow-
ing conditions whp:

1. Each connected component®f () is a tree of size< logn.
2. diam@) < 2.
3. C(G) is totally ordered by<.

Property (1) is easy to derive by a first-moment argument.pFoperty (2), see
[4]. A proof of Property (3) follows from property (2) by a spie variation of the
proof of Theoreni 1.

We now explain how to canonically label a gra@h= (V. E) with these three
properties. To a vertex that is contained in a cycle we assign tkesmallest
label X = (z4,...,x) € C over all cycles for whichy = z;. This label can be
found in polynomial time. I is the length of the shortest cycle through= x4,
then it is easy to show that there are at mossuch cycles. We scan all of them
and pick the<-smallest one.

Note next, that a vertex € R(G) that is not contained in a cycle must reside
on the unique path between two verticesv € V, each contained in a cycle.
Thereforev is uniquely defined by its distances framand fromw. This, and the
labels ofu andw, give us a unique label far.

Finally we find labels for vertices ifv \ (R(G)). By property (1), such a
vertex belongs either to (i) a tree of sigelogn rooted at some vertex d¥(G)
or (ii) an acyclic connected component of skdog n. Letv be a vertex of type
(i), belonging to a tred rooted atu € R(G). There are only poly.) rooted
trees of size< logn [8], so we can list them and give a unique polynomial-length
label to each vertex of each such class. We lali®l a pair(z, y), wherez is the
label of the vertex corresponding tan 7’s isomorphism class in the list, and
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iIsu’s label. Thatisp is labeled as "The vertex of typein the tree rooted at”.
Type (ii) vertices are likewise handled, using a list of abmorphism classes of
non-rooted trees. To deal with vertices on acyclic conrtectamponents, collect
all connected components of the same isomorphism classie@@ach of them

a unique number. The label ofconsists of the type of tree that contains it, that
tree’s ordinal number in its isomorphism class, atsdocation in that tree.

6 Discussion and Open Problems

For smaller values af the structure of au&’) may become somewhat more com-
plicated. Fop = ©(=), aG(n,p) graph has, with probability bounded away from
zero and one, some small symmetric components, e.g., ataddlriangle. More-
over, with probabilitye (0, 1) even the2-core of the graph’s giant component, has
a nontrivial symmetry. This may result e.g., from a triantjlat "hangs off’ the
2-core. However, as shown inl[9], whp thliscore has a unique biconnected com-
ponent of2(n) vertices. We suspect that this giant biconnected compasggtd
whp.

For W <p< % it was shown by Bollobas [2] that not only &
reconstructible whp, such graphs have reconstruction euittivee. We do not
know whether this holds as well for smaller and substagtsthaller values op.
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