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General Parity Result and Cycle-plus-Triangles Graphs
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Abstract

We generalize a parity result of Fleishner and Stiebitz that being combined with Alon–

Tarsi polynomial method allowed them to prove that a 4-regular graph formed by a

Hamiltonian cycle and several disjoint triangles is always 3-choosable. Also we present

a modification of polynomial method and show how it gives slightly more combinatorial

information about colourings than direct application of Alon’s Combinatorial Nullstellen-

satz.

We start with the following parity theorem.

Theorem 1. Let V = ⊔n
i=1Vi be a finite set partitioned onto disjoint subsets Vi of odd sizes |Vi|.

Let G be a graph on a ground set V such that each Vi is independent set in G and each bipartite
subgraph induced on Vi ⊔Vj is Eulerian (i.e. all degrees are even). Consider the subsets U ⊂ V
such that |U ∩ Vi| = 1 for all i and subgraph induced on U is Eulerian. Then the number of
such U is odd.

Proof. Consider ordered sequences of vertices (x1, . . . , xn, y1, . . . , yn) so that for all i = 1, . . . , n:
(i) xi ∈ Vi;
(ii) yi ∈ {x1, . . . , xn};
(iii) either yi = xi or xi and yi are joined by edge in G. Call it a special sequence.
We have to prove that number of such sequences is odd. Indeed, given x1, . . . , xn fixed

the number of ways to choose y1, . . . , yn is odd if and only if the subgraph on {x1, . . . , xn} is
Eulerian.

For any special sequence λ = (x1, . . . , yn) we construct a directed graphG(λ) on {1, 2, . . . , n}:
draw directed edge from i to j 6= i if yi ∈ Vj. This is a directed graph with outdegrees at most
1. Clearly x1, . . . , xn and graph G define y1, . . . , yn (at most) uniquely. Further in the proof a
cycle of length at least 3 is called long. Denote by L the set of special sequences λ for which
G(λ) has a long cycle. We prove that |L| is even by constructing an involution without fixed
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points on L. It acts as follows. Choose a minimal (lexicographically) long cycle in G and
reverse its edges. For example, if the minimal cycle is formed by edges 2− 3, 3− 9, 9− 2, i.e.
y2 = x3, y3 = x9, y9 = x2, we replace (y2, y3, y9) from (x3, x9, x2) to (x9, x2, x3). No new cycles
appear, since any edge in G may belong to at most one cycle. Hence this map is an involution
without fixed points, as desired.

Thus the parity of the number of special sequences is the same as the parity of the number of
special sequences λ for which graphG(λ) does not have long cycles. Number of special sequences
with empty G(λ) equals

∏

|Vi|, i.e. is odd. So, it suffices to prove that if a non-empty directed
graph G on {1, . . . , n} without long cycles is fixed, the number of special sequences λ with
G(λ) = G is even. It is almost obvious. Indeed, G has a vertex which has at most 1 neighbour,
say, vertex p is joined only with q (by 1 or 2 edges). Fix all xi for i 6= p. The number of ways
to choose xp is the number of neighbors of xq in Vp, it is even number.

Corollary. Given a circle γ. Let P1, . . . , Pn be closed polygonal lines inscribed in γ, each having
odd number of edges, without common vertices. Then the total number of ways to choose edges
sI of Pi, i = 1, . . . , n, so that each chosen edge intersects even number of other chosen edges,
is odd.

The following corollary is the crucial parity theorem of [1], originally proved by successive
modifications of the graph.

Corollary. Consider a 4-regular (multi)graph G on the ground set V = {x1, . . . , x3n}, x3n+1 =
x1 (we identify vertices and abstract variables), which is a union of Hamiltonian cycle x1 −
x2 − · · · − x3n − x1, naturally considered as a regular 3n-gon, and n triangles ai − bi − ci − ai,
i = 1, . . . , n. Consider the following Laurent polynomial

Φ(x1, . . . , x3n) =
3n
∏

i=1

(1− xi+1/xi)
n
∏

i=1

(1− ai/bi)(1− bi/ci)(1− ci/ai).

Then the constant term CT [Φ] is congruent to 2 modulo 4.

Proof. Start with expanding brackets in
∏3n

i=1(1−xi+1/xi). We get monomials with each variable
in a power 0 or ±1, and powers +1 and −1 alternate. Coefficient of each such monomial is ±1.

Now consider triangles. We have (1−a/b)(1−b/c)(1−c/a) = a/c+c/b+b/a−c/a−b/c−a/b.
That is, for any triangle we should take one vertex in power 1, another in power -1, third in
power 0. Draw an arrow a → b if we choose −a/b, and so on. Additionally colour a in black and
b in white. So, we have one black-to-white arrow for each triangle. Product of corresponding
multiples may cancel (i.e. give a constant product) with the unique multiple arising from
∏3n

i=1(1 − xi+1/xi). This happens if only if black and white vertices alternate. This in turn
happens exactly when each chosen arrow intersects even number of other chosen arrows. And
for given n not-oriented edges there exist exactly two ways to draw arrows on them in such a
way that black and white vertices alternate. These two ways give a total amount +2 or -2 to
the constant term of Φ (since they are obtained one from another by changing summand in all
6n brackets). Now we just use the previous corollary and conclude that half of the constant
term of Φ is odd.
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Now we write down the formula for the central coefficient of Φ via the values of Φ on a grid.
Choose sets A1, . . . , A3n of cardinality 3 in K \ {0} for some field K (we use only K = R, but
it is possible that other fields may be useful for other goals.) Define a function ϕi on the set
Ai. If, say, Ai = {u, v, w} we put ϕi(u) =

vw
(u−v)(u−w)

and so on. Then

∑

x∈Ai

ϕi(x)x
d =

{

1 if d = 0

0 if d = 1 or d = 2.
(1)

The formula for the constant term is

CT [Φ] =
∑

xi∈Ai

Φ(x1, . . . , x3n) ·
3n
∏

i=1

ϕi(xi). (2)

Indeed, expand Φ(x1, . . . , x3n). For each monomial term
∏

xdi
i in Φ the sum of products is a

product of sums:
∑

xi∈Ai

3n
∏

i=1

xdi
i ·

3n
∏

i=1

ϕi(xi) =

3n
∏

i=1

(

∑

x∈Ai

ϕi(x)x
di

)

Equation (1) yields that this product equals 1 if d1 = · · · = d3n = 0 (for the constant term)
and equals 0 if di ∈ {1, 2} for at least one index i (it happens for each non-constant term of Φ,
that is seen from the formula for Φ). This gives (2).

Immediate corollary of (2) is that Φ can not vanish on
∏

Ai. In other words, graph G is
3-choosable.

Now consider genuine colourings of G. Assume that G is properly 3-coloured, we identify
colours with three real numbers u, v, w. Clearly vertices of any triangle have different colours,
therefore there are n vertices of each colour. Denote by U , V , W number of vw-edges, uw-edges,
uv-edges respectively in the Hamiltonian cycle. Then U + V is twice more than the number of
w-vertices, i.e. U + V = 2n, analogously V +W = U +W = 2n, hence U = V = W = n.

Now we take A1 = A2 = . . . A3n = A = {u, v, w} and apply formula (2). Consider non-zero
summand in RHS of (2), it corresponds to some proper colouring. We have

3n
∏

i=1

ϕi(xi) =(−1)3n
(uvw)2n

(u− v)2n(v − w)2n(w − u)2n

n
∏

i=1

(1− ai/bi)(1− bi/ci)(1− ci/ai) =±
(u− v)n(v − w)n(w − u)n

(uvw)n

3n
∏

i=1

(1− xi+1/xi) = ±
(u− v)n(v − w)n(w − u)n

(uvw)n
.

Totally

Φ(x1 . . . , x3n)
3n
∏

i=1

ϕi(xi) = ±1.
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Let’s see what happens if we rename colours. If we simultaneously replace, say, colours u and
v, we totally change sign of 2n or 6n multiples, hence sign of the product does not change.
Therefore we may partition all non-zero summands in the RHS of (2) onto 6-tuples with the
same value of summands, and the number of 6-tuples equals the number of essentially different
3-colourings of G (permutation of colours gives the same colouring). Hence we have proved

Theorem 2. Number of essentially different 3-colourings of the cycle-plus-triangles graph G is
odd.

Corollary. There exists a proper colouring of G in 3 colours white, blue and red such that blue
and red vertices form a connected graph.

Proof. Assume the contrary. Then for given n white vertices, other 2n vertices have r ≥ 2
connected components. We may interchange blue and red colour in each component by all
possible 2r ways. Therefore total number of white-blue-red colourings is divisible by 4, on the
other hand, it is 6 times more than the odd number of essentially different colourings. The
contradiction.

Above modification of polynomial method is essentially the same as proposed in [3, 4], the
only difference is that we apply to it Laurent polynomials directly, without making polynomials
from them. In [1] the authors used the method of [2], which was later explained as application
of Combinatorial Nullstellensatz in the main survey by Alon [5].

I am grateful to Vladislav Volkov for fruitful discussions.
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