# On the size-Ramsey number of hypergraphs 

Andrzej Dudek*<br>Steven La Fleur ${ }^{\dagger}$<br>Vojtech Rödl ${ }^{\S}$

August 6, 2021


#### Abstract

The size-Ramsey number of a graph $G$ is the minimum number of edges in a graph $H$ such that every 2 -edge-coloring of $H$ yields a monochromatic copy of $G$. Size-Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs.

We initiate the study of size-Ramsey numbers for $k$-uniform hypergraphs. Analogous to the graph case, we consider the size-Ramsey number of cliques, paths, trees, and bounded degree hypergraphs. Our results suggest that size-Ramsey numbers for hypergraphs are extremely difficult to determine, and many open problems remain.


## 1 Introduction

Given graphs $G$ and $H$, say that $H \rightarrow G$ if every 2-edge-coloring of $H$ results in a monochromatic copy of $G$ in $H$. Using this notation, the Ramsey number $R(G)$ of $G$ is the minimum $n$ such that $K_{n} \rightarrow G$. Instead of minimizing the number of vertices, one can minimize the number of edges. Define the size-Ramsey number $\hat{R}(G)$ of $G$ to be the minimum number of edges in a graph $H$ such that $H \rightarrow G$. More formally,

$$
\hat{R}(G)=\min \{|E(H)|: H \rightarrow G\} .
$$

The study of size-Ramsey numbers was proposed by Erdős, Faudree, Rousseau and Schelp 5 ] in 1978. By definition of $R(G)$, we have $K_{R(G)} \rightarrow G$. Since the complete graph on $R(G)$ vertices has $\binom{R(G)}{2}$ edges, we obtain the trivial bound

$$
\begin{equation*}
\hat{R}(G) \leq\binom{ R(G)}{2} \tag{1}
\end{equation*}
$$

[^0]Chvátal (see, e.g., 5) showed that equality holds in (11) for complete graphs. In other words,

$$
\begin{equation*}
\hat{R}\left(K_{n}\right)=\binom{R\left(K_{n}\right)}{2} . \tag{2}
\end{equation*}
$$

One of the first problems in this area was to determine the size-Ramsey number of the $n$ vertex path $P_{n}$. Answering a question of Erdős [4], Beck [1] showed that

$$
\begin{equation*}
\hat{R}\left(P_{n}\right)=O(n) . \tag{3}
\end{equation*}
$$

Since $\hat{R}(G) \geq|E(G)|$ for any graph, Beck's result is sharp in order of magnitude. The linearity of the size-Ramsey number of paths was generalized to bounded degree trees by Friedman and Pippenger [11] and to cycles by Haxell, Kohayakawa and Luczak [12]. Beck [2] asked whether $\hat{R}(G)$ is always linear in the size of $G$ for graphs $G$ of bounded degree. This was settled in the negative by Rödl and Szemerédi [18], who proved that there are graphs of order $n$, maximum degree 3 , and size-Ramsey number $\Omega\left(n(\log n)^{1 / 60}\right)$. They also conjectured that for a fixed integer $\Delta$ there is an $\varepsilon>0$ such that

$$
\Omega\left(n^{1+\varepsilon}\right)=\max _{G} \hat{R}(G)=O\left(n^{2-\varepsilon}\right)
$$

where the maximum is taken over all graphs $G$ of order $n$ with maximum degree at most $\Delta$. The upper bound was recently proved by Kohayakawa, Rödl, Schacht, and Szemerédi [15]. For further results about the size-Ramsey number see, e.g, the survey paper of Faudree and Schelp [8].

Somewhat surprisingly the size-Ramsey numbers have not been studied for hypergraphs, even though classical Ramsey numbers for hypergraphs have been studied extensively since the 1950 's (see, e.g., [7, 6]), and more recently [3]. In this paper we initiate this study for $k$-uniform hypergraphs. A $k$-uniform hypergraph $\mathcal{G}$ ( $k$-graph for short) on a vertex set $V(\mathcal{G})$ is a family of $k$-element subsets (called edges) of $V(\mathcal{G})$. We write $E(\mathcal{G})$ for its edge set. Given $k$-graphs $\mathcal{G}$ and $\mathcal{H}$, say that $\mathcal{H} \rightarrow \mathcal{G}$ if every 2 -edge-coloring of $\mathcal{H}$ results in a monochromatic copy of $\mathcal{G}$ in $\mathcal{H}$. Define the size-Ramsey number $\hat{R}(\mathcal{G})$ of a $k$-graph $\mathcal{G}$ as

$$
\hat{R}(\mathcal{G})=\min \{|E(\mathcal{H})|: \mathcal{H} \rightarrow \mathcal{G}\} .
$$

## 2 Results and open problems

Motivated by extending the basic theory from graphs to hypergraphs, we prove results for cliques, trees, paths, and bounded degree hypergraphs.

### 2.1 Cliques

For every $k$-graph $\mathcal{G}$, we trivially have

$$
\hat{R}(\mathcal{G}) \leq\binom{ R(\mathcal{G})}{k}
$$

where $R(\mathcal{G})$ is the ordinary Ramsey number of $\mathcal{G}$. Our first objective was to generalize (2) to 3 -graphs, which shows that equality holds for graphs. It is fairly easy to obtain a lower bound for $\hat{R}\left(\mathcal{K}_{n}^{(3)}\right)$ that is quadratic in $R\left(\mathcal{K}_{n}^{(3)}\right)$, but we were only able to do slightly better.

Theorem $2.1 \hat{R}\left(\mathcal{K}_{n}^{(3)}\right) \geq \frac{n^{2}}{96}\binom{R\left(\mathcal{K}_{n}^{(3)}\right)}{2}$.
The following basic questions remain open.
Question 2.2 Is $\hat{R}\left(\mathcal{K}_{n}^{(k)}\right)=\binom{R\left(\mathcal{K}_{n}^{(k)}\right)}{k}$ ?
Question 2.3 For $k \geq 3$ let $N=R\left(\mathcal{K}_{n}^{(k)}\right)$. Define $\mathcal{K}_{N}^{(k)^{-}}$to be the hypergraph obtained from $\mathcal{K}_{N}^{(k)}$ by removing one edge. Is it true that $\mathcal{K}_{N}^{(k)^{-}} \rightarrow \mathcal{K}_{n}^{(k)}$ ?
Clearly, the affirmative answer to the latter gives a negative answer to Question 2.2.

### 2.2 Trees

Given integers $1 \leq \ell<k$ and $n$, a $k$-graph $\mathcal{T}_{n, \ell}^{(k)}$ of order $n$ with edge set $\left\{e_{1}, \ldots, e_{m}\right\}$ is an $\ell$-tree, if for each $2 \leq j \leq m$ we have $\left|e_{j} \cap \bigcup_{1 \leq i<j} e_{i}\right| \leq \ell$ and $e_{j} \cap \bigcup_{1 \leq i<j} e_{i} \subseteq e_{i_{0}}$ for some $1 \leq i_{0}<j$. We are able to give the following general upper bound for trees.

Theorem 2.4 Let $1 \leq \ell<k$ be fixed integers. Then

$$
\hat{R}\left(\mathcal{T}_{n, \ell}^{(k)}\right)=O\left(n^{\ell+1}\right)
$$

One can easily show that this bound is tight in order of magnitude when $\ell=1$ (see Section 4 for details). The situation for $\ell \geq 2$ is much less clear.

Question 2.5 Let $2 \leq \ell<k$ be fixed integers. Is it true that for every $n$ there exists $a$ $k$-uniform $\ell$-tree $\mathcal{T}$ of order at most $n$ such that

$$
\hat{R}(\mathcal{T})=\Omega\left(n^{\ell+1}\right)
$$

Here is another related question pointed out by Fox [9]. Let us weaken the restriction on the edge intersection in the definition of $\mathcal{T}_{n, \ell}^{(k)}$. Let $\overline{\mathcal{T}}_{n, \ell}^{(k)}$ be a $k$-graph of order $n$ with edge set $\left\{e_{1}, \ldots, e_{m}\right\}$ such that for each $2 \leq j \leq m$ we have $\left|e_{j} \cap \bigcup_{1 \leq i<j} e_{i}\right| \leq \ell$.
Question 2.6 Let $2 \leq \ell<k$ be fixed integers. Is $\hat{R}\left(\overline{\mathcal{T}}_{n, \ell}^{(k)}\right)$ polynomial in $n$ ?

### 2.3 Paths

Given integers $1 \leq \ell<k$ and $n \equiv \ell(\bmod k-\ell)$, we define an $\ell$-path $\mathcal{P}_{n, \ell}^{(k)}$ to be the $k$-uniform hypergraph with vertex set $[n]$ and edge set $\left\{e_{1}, \ldots, e_{m}\right\}$, where $e_{i}=\{(i-1)(k-\ell)+1,(i-$ $1)(k-\ell)+2, \ldots,(i-1)(k-\ell)+k\}$ and $m=\frac{n-\ell}{k-\ell}$. In other words, the edges are intervals of length $k$ in $[n]$ and consecutive edges intersect in precisely $\ell$ vertices. The two extreme cases of $\ell=1$ and $\ell=k-1$ are referred to as, respectively, loose and tight paths. Clearly every $\ell$-path is also an $\ell$-tree. Thus, by Theorem 2.4 we obtain the following result.

$$
\begin{equation*}
\hat{R}\left(\mathcal{P}_{n, \ell}^{(k)}\right)=O\left(n^{\ell+1}\right) \tag{4}
\end{equation*}
$$

Our first result shows that determining the size-Ramsey number of a path $\mathcal{P}_{n, \ell}^{(k)}$ for $\ell \leq \frac{k}{2}$ can easily be reduced to the graph case.

Proposition 2.7 Let $1 \leq \ell \leq \frac{k}{2}$. Then,

$$
\hat{R}\left(\mathcal{P}_{n, \ell}^{(k)}\right) \leq \hat{R}\left(P_{n}\right)=O(n) .
$$

Clearly, this result is optimal.
Determining the size-Ramsey number of a path $\mathcal{P}_{n, \ell}^{(k)}$ for $\ell>\frac{k}{2}$ seems to be a much harder problem. Here we will only consider tight paths $(\ell=k-1)$. By (4) we get

$$
\begin{equation*}
\hat{R}\left(\mathcal{P}_{n, k-1}^{(k)}\right)=O\left(n^{k}\right) \tag{5}
\end{equation*}
$$

The most complicated result of this paper is the following improvement of (5).
Theorem 2.8 Fix $k \geq 3$ and let $\alpha=(k-2) /\left(\binom{k-1}{2}+1\right)$. Then

$$
\hat{R}\left(\mathcal{P}_{n, k-1}^{(k)}\right)=O\left(n^{k-1-\alpha}(\log n)^{1+\alpha}\right) .
$$

The gap in the exponent of $n$ between the upper and lower bounds for this problem remains quite large (between 1 and $k-1-\alpha$ ). We believe that the lower bound is much closer to the truth. Indeed, the following question still remains open.
Question 2.9 Is $\hat{R}\left(\mathcal{P}_{n, k-1}^{(k)}\right)=O(n)$ ?
If true, then since $\hat{R}\left(\mathcal{P}_{n, \ell}^{(k)}\right) \leq \hat{R}\left(\mathcal{P}_{n, k-1}^{(k)}\right)$, this would imply the linearity of the size-Ramsey number of all $\ell$-paths.

### 2.4 Bounded degree hypergraphs

Our main result about bounded degree hypergraphs is that their size-Ramsey numbers can be superlinear. This is proved by extending the methods of Rödl and Szémerédi [18] to the hypergraph case.

Theorem 2.10 Let $k \geq 3$ be an integer. Then there is a positive constant $c=c(k)$ such that for every $n$ there is a $k$-graph $\mathcal{G}$ of order at most $n$ with maximum degree $k+1$ such that

$$
\hat{R}(\mathcal{G})=\Omega\left(n(\log n)^{c}\right) .
$$

There are several other problems to consider such as finding the asymptotic of the sizeRamsey number of cycles and many other classes of hypergraphs. In general, they seem to be very difficult. Therefore, this paper is the first step towards a better understanding of this concept.

In the next sections we prove these result for cliques (Section 3), trees (Section 4), paths (Section 5), and hypergraphs with bounded degree (Section 6).

## 3 Cliques

Proof of Theorem 2.1. We show that if $\mathcal{H}$ is a 3-graph with $|E(\mathcal{H})|<\frac{n^{2}}{96}\left({ }_{2}^{R\left(\mathcal{K}_{2}^{(3)}\right)}\right)$ for $n \geq 4$, then $\mathcal{H} \nrightarrow \mathcal{K}_{n}^{(3)}$.

Induction on $N=|V(\mathcal{H})|$. If $N<R\left(\mathcal{K}_{n}^{(3)}\right)$, then there is a 2 -coloring of $K_{N}^{(3)}$ with no monochromatic $K_{n}^{(3)}$. Since $\mathcal{H} \subseteq K_{N}^{(3)}$, this coloring yields a 2-coloring of $\mathcal{H}$ with no monochromatic $K_{n}^{(3)}$.

Suppose that $N \geq R\left(\mathcal{K}_{n}^{(3)}\right)$. Since $|E(\mathcal{H})|<\frac{n^{2}}{96}\binom{R\left(\mathcal{K}_{2}^{(3)}\right)}{2}$, there are $u$ and $v$ in $V(\mathcal{H})$ with $\operatorname{deg}(u, v)=|\{e \in E(\mathcal{H}):\{u, v\} \subseteq e\}|<\frac{n^{2}}{32}$. Otherwise,

$$
|E(\mathcal{H})|=\frac{1}{3} \sum_{\{u, v\} \in\binom{V(\mathcal{H})}{2}} \operatorname{deg}(u, v) \geq \frac{1}{3}\binom{N}{2} \frac{n^{2}}{32}>|E(\mathcal{H})|,
$$

a contradiction.
Let $u$ and $v$ be such that $\operatorname{deg}(u, v)<\frac{n^{2}}{32}$. Define $\mathcal{H}_{u}$ as follows:

$$
V\left(\mathcal{H}_{u}\right)=V(\mathcal{H}) \backslash\{v\}
$$

and

$$
E\left(\mathcal{H}_{u}\right)=\{e: v \notin e \in E(\mathcal{H})\} \cup\{\{u, x, y\}:\{v, x, y\} \in E(\mathcal{H}) \text { and }\{u, x, y\} \notin E(\mathcal{H})\} .
$$

Clearly, $\left|V\left(\mathcal{H}_{u}\right)\right|=N-1$ and $\left|E\left(\mathcal{H}_{u}\right)\right| \leq|E(\mathcal{H})|<\frac{n^{2}}{96}\binom{R\left(\mathcal{K}_{n}^{(3)}\right)}{2}$. By the inductive hypothesis there is a 2 -coloring $\chi_{u}$ of the edges of $\mathcal{H}_{u}$ with no monochromatic $\mathcal{K}_{n}^{(3)}$. Let $T=T_{1}=$ $N_{\mathcal{H}}(u, v)=\{w \in V(\mathcal{H}):\{u, v, w\} \in E(\mathcal{H})\}$. Thus, $T_{1} \subseteq V\left(\mathcal{H}_{u}\right)$ and $\left|T_{1}\right|<\frac{n^{2}}{32}$. If there exists $S_{1} \subseteq T_{1}$ such that $\left|S_{1}\right| \geq \frac{n}{4}$ and $\mathcal{H}_{u}\left[S_{1} \cup\{u\}\right]$ is monochromatic, then set $T_{2}=T_{1} \backslash S_{1}$. If there exists $S_{2} \subseteq T_{2}$ such that $\left|S_{2}\right| \geq \frac{n}{4}$ and $\mathcal{H}_{u}\left[S_{2} \cup\{u\}\right]$ is monochromatic, then set $T_{3}=T_{2} \backslash S_{2}$. We continue this process obtaining

$$
T=S_{1} \cup S_{2} \cup \cdots \cup S_{m} \cup U
$$

where $\mathcal{H}_{u}\left[S_{i} \cup\{u\}\right]$ is monochromatic, $\left|S_{i}\right| \geq \frac{n}{4}$, and $\mathcal{H}_{u}[U \cup\{u\}]$ contains only monochromatic cliques of order at most $\frac{n}{4}$.

Now we define a 2 -coloring $\chi$ of $\mathcal{H}$.
(i) If $v \notin e$, then $\chi(e)=\chi_{u}(e)$.
(ii) If $v \in e=\{v, x, y\}$ and $u \notin e$, then $\chi(e)=\chi_{u}(\{u, x, y\})$.
(iii) If $\{u, v\} \subseteq e=\{u, v, x\}$ and $x \in S_{i}$, then $e$ takes the opposite color to the color of $\mathcal{H}_{u}\left[S_{i} \cup\{u\}\right]$.
(iv) If $\{u, v\} \subseteq e=\{u, v, x\}$ and $x \in U$, then color $e$ arbitrarily.

Now suppose that there is a monochromatic clique $\mathcal{K}=\mathcal{K}_{n}^{(3)}$ in $\mathcal{H}$. Such a clique must contain $v$. Now there are two cases to consider. If $u \notin V(\mathcal{K})$, then the subgraph of $\mathcal{H}_{u}$ induced by $V(\mathcal{K}) \cup\{u\} \backslash\{v\}$ is also a monochromatic copy of $\mathcal{K}_{n}^{(3)}$, a contradiction. Otherwise, $u \in V(\mathcal{K})$. Thus, $V(\mathcal{K}) \backslash\{u, v\} \subseteq T$ and $|V(\mathcal{K}) \backslash\{u, v\}|=n-2$. Observe that $\left|V(\mathcal{K}) \cap S_{i}\right| \leq 2$ and $|V(\mathcal{K}) \cap U|<\frac{n}{4}$. But this yields a contradiction

$$
n-2=|V(\mathcal{K}) \backslash\{u, v\}|<2 m+\frac{n}{4}<2 \frac{\frac{n^{2}}{32}}{\frac{n}{4}}+\frac{n}{4}=\frac{n}{2} \leq n-2,
$$

for $n \geq 4$.

## 4 Trees

First for convenience we recall the definition of a hypertree. Given integers $1 \leq \ell<k$ and $n$, recall that a $k$-graph $\mathcal{T}_{n, \ell}^{(k)}$ of order $n$ with edge set $\left\{e_{1}, \ldots, e_{m}\right\}$ is an $\ell$-tree, if for each $2 \leq j \leq m$ we have $\left|e_{j} \cap \bigcup_{1 \leq i<j} e_{i}\right| \leq \ell$ and $e_{j} \cap \bigcup_{1 \leq i<j} e_{i} \subseteq e_{i_{0}}$ for some $1 \leq i_{0}<j$.

Proof of Theorem 2.4. Fix $1 \leq \ell \leq k$. We are to show that $\hat{R}\left(\mathcal{T}_{n, \ell}^{(k)}\right)=O\left(n^{\ell+1}\right)$. Recall that a partial Steiner system $S(t, k, N)$ is a $k$-graph of order $N$ such that each $t$-tuple is contained in at most one edge. Due to a result of Rödl [17] it is known that there is a constant $N_{0}=N_{0}(t, k)$ such that for every $N \geq N_{0}$ there is an $\mathcal{S}=S(t, k, N)$ with the number of edges satisfying

$$
\begin{equation*}
\frac{9}{10} \cdot \frac{\binom{N}{t}}{\binom{k}{t}} \leq|E(\mathcal{S})| \leq \frac{\binom{N}{t}}{\binom{k}{t}} \tag{6}
\end{equation*}
$$

(see also [14, 19, 20, 21] for similar results). It is easy to observe that for $1 \leq s \leq t$ every $s$-tuple is contained in at most $\frac{\left(\begin{array}{c}N-s \\ t-s \\ k-s \\ t-s\end{array}\right)}{\left(\begin{array}{c}\mathrm{s}\end{array}\right.}$ edges.

Fix $1 \leq \ell<k$. Let $N=\lceil c n\rceil+\ell$, where the constant $c$ is defined as

$$
c=\max \left\{N_{0}(\ell+1, k), \frac{20}{9}(\ell+1)\binom{k}{\ell+1}\right\} .
$$

Let $\mathcal{H}$ be a $S(\ell+1, k, N)$ satisfying (6). Observe that if $\ell+1=k$, then $\mathcal{H}$ can be viewed as a complete $k$-graph of order $N$. Clearly, $|E(\mathcal{H})|=O\left(n^{\ell+1}\right)$. It remains to show that for any $\mathcal{T}=\mathcal{T}_{n, \ell}^{(k)}$ tree, $\mathcal{H} \rightarrow \mathcal{T}$.

Define a degree of a set $U \subseteq V(\mathcal{H})(1 \leq|U|<k)$ by

$$
\operatorname{deg}(U)=|\{e \in E(\mathcal{H}): e \supseteq U\}|
$$

and for $E(\mathcal{H}) \neq \emptyset$ a minimum (non-zero) $\ell$-degree by

$$
\delta_{\ell}(\mathcal{H})=\min \{\operatorname{deg}(U):|U|=\ell \text { and } U \subseteq e \text { for some } e \in E(\mathcal{H})\} .
$$

First observe that for any 2 -coloring of the edges of $\mathcal{H}$, there is a monochromatic subhypergraph $\mathcal{F}$ with $\delta_{\ell}(\mathcal{F}) \geq n$. Indeed, suppose that $\mathcal{H}$ is colored with blue and red colors. Assume by symmetry that the red hypergraph $\mathcal{R}$ has at least $\frac{1}{2}|E(\mathcal{H})|$ edges. Set $\mathcal{R}_{0}=\mathcal{R}$. If there exists $U_{0} \subseteq V\left(\mathcal{R}_{0}\right)$ with $\operatorname{deg}_{\mathcal{R}_{0}}\left(U_{0}\right)<n$, then let $\mathcal{R}_{1}=\mathcal{R}_{0}-U_{0}$ (we remove $U_{0}$ and all incident to $U_{0}$ edges). Now we repeat the process. If there exists $U_{1} \subseteq V\left(\mathcal{R}_{1}\right)$ with $\operatorname{deg}_{\mathcal{R}_{1}}\left(U_{1}\right)<n$, then let $\mathcal{R}_{2}=\mathcal{R}_{1}-U_{1}$. Continue this way to obtain hypergraphs

$$
\mathcal{R}=\mathcal{R}_{0} \supseteq \mathcal{R}_{1} \supseteq \mathcal{R}_{2} \supseteq \cdots \supseteq \mathcal{R}_{m},
$$

where either $\delta_{\ell}\left(\mathcal{R}_{m}\right) \geq n$ or $\mathcal{R}_{m}$ is empty hypergraph. But the latter cannot happen, since the number of removed edges from $\mathcal{R}$ is less than

$$
\binom{N}{\ell} n=\binom{N}{\ell+1} \frac{\ell+1}{N-\ell} n \leq\binom{ N}{\ell+1} \frac{\ell+1}{c} \leq \frac{9}{20} \cdot \frac{\binom{N}{\ell+1}}{\binom{k}{\ell+1}}<\frac{1}{2}|E(\mathcal{H})| .
$$



Figure 1: A star of order $n$ with $\frac{n-1}{4}$ arms each of length 2.

Now we greedily embed $\mathcal{T}$ into $\mathcal{F}=\mathcal{R}_{m}$. At every step we have a connected sub-tree $\mathcal{T}_{i} \subseteq \mathcal{T}$. Assume that we already embedded $i$ edges of $\mathcal{T}$ obtaining $\mathcal{T}_{i}$. Let $|U| \leq \ell$ be such that $U \subseteq e$ for some $e \in E\left(\mathcal{T}_{i}\right)$. Observe that there is always an edge $f \in E(\mathcal{F}) \backslash E\left(\mathcal{T}_{i}\right)$ such that $f \cap V\left(\mathcal{T}_{i}\right)=U$. Indeed, if $|U|=\ell$, then this is true since $\operatorname{deg}_{\mathcal{F}}(U) \geq n$ and $\left|V\left(\mathcal{T}_{i}\right)\right|<n$ and every $(\ell+1)$-tuple of vertices of $\mathcal{F}$ is contained in at most one edge in $\mathcal{F}$. Otherwise, if $|U|<\ell$, first we find a set $W \subseteq V(\mathcal{F}) \backslash V\left(\mathcal{T}_{i}\right)$ such that $|W|=\ell-|U|$ and $U \cup W$ is contained in an edge of $\mathcal{F}$, and next apply the previous argument to $U \cup W$. Thus, we can extend $\mathcal{T}_{i}$ to $\mathcal{T}_{i+1}$, as required.

As mentioned in the introduction, it would be interesting to decide whether Theorem 2.4 is tight up to the hidden constant. This is definitely the case for $\ell=1$. Indeed, let $\mathcal{T}$ be a $k$-uniform star-like tree of order $n$ defined as follows. Assume that $2 k-2$ divides $n-1$. $\mathcal{T}$ consists of $\frac{n-1}{2 k-2}$ arms $\mathcal{P}_{i}$ (each with two edges): $E\left(\mathcal{P}_{i}\right)=$ $\left\{\left\{v, w_{1}^{i}, w_{2}^{i}, \ldots, w_{k-1}^{i}\right\},\left\{w_{k-1}^{i}, w_{k}^{i}, \ldots, w_{2 k-2}^{i}\right\}\right\}$, where $1 \leq i \leq \frac{n-1}{2 k-2}$ and all $w_{j}^{i}$ vertices are pairwise different (see Figure 1).

Assume that $\mathcal{H} \rightarrow \mathcal{T}$ and color $e \in \mathcal{H}$ by red if degree (in $\mathcal{H}$ ) of every vertex in $e$ is less than $\frac{n-1}{2 k-2}$; otherwise $e$ is blue. Since $\mathcal{H} \rightarrow(\mathcal{T})_{2}^{e}$ and there is no red copy of $\mathcal{T}$, there must be a blue copy of $\mathcal{T}$. Every edge in such a copy has at least one vertex of degree at least $\frac{n-1}{2 k-2}$ (in $\mathcal{H}$ ). Since $\mathcal{T}$ has $\frac{n-1}{2 k-2}$ vertex disjoint edges and every edge (in $\mathcal{H}$ ) can intersect at most 3 of those disjoint edges,

$$
\hat{R}(\mathcal{T}) \geq \frac{1}{3} \cdot \frac{n-1}{2 k-2} \cdot \frac{n-1}{2 k-2}=\Omega\left(n^{2}\right)
$$

## 5 Paths

In this section we prove Proposition 2.7 and Theorem 2.8 .
Proof of Proposition 2.7. Let $H$ be a graph satisfying $H \rightarrow P_{n}$ and $|E(H)|=O(n)$ (cf. (3)). We construct a $k$-graph $\mathcal{H}$ as follows. Replace every vertex $v \in V(H)$ by an $\ell$-tuple $\left\{v_{1}, v_{2}, \ldots, v_{\ell}\right\}$ (different for every $v$ ) and each $e=\{v, w\} \in E(H)$ by

$$
\left\{v_{1}, \ldots, v_{\ell}, w_{1}, \ldots, w_{\ell}, x_{1}, \ldots, x_{k-2 \ell}\right\}
$$

where $x_{1}, \ldots, x_{k-2 \ell}$ are different for every edge $e$, too. Thus, $\mathcal{H}$ is a $k$-graph with $|V(\mathcal{H})|=$ $\ell|V(H)|+(k-2 \ell)|E(H)|$ and $|E(\mathcal{H})|=|E(H)|$. Now color $E(\mathcal{H})$. This coloring (uniquely) defines a coloring of $E(H)$. Since $H$ contains a monochromatic copy of $P_{n}, \mathcal{H}$ also contains a monochromatic copy of $\mathcal{P}_{n, \ell}^{(k)}$. Consequently, $\mathcal{H} \rightarrow \mathcal{P}_{n, \ell}^{(k)}$ and the proof is complete.

We now turn to the main result of this section which we restate for convenience.
Theorem 2.8 Fix $k \geq 3$ and let $\alpha=(k-2) /\left(\binom{k-1}{2}+1\right)$. Then

$$
\hat{R}\left(\mathcal{P}_{n, k-1}^{(k)}\right)=O\left(n^{k-1-\alpha}(\log n)^{1+\alpha}\right)
$$

First we prove an auxiliary result. In order to do it we state some necessary notation. Set

$$
\beta=\frac{1}{\binom{k-1}{2}+1} .
$$

For a graph $G=(V, E)$ let $\mathcal{T}_{\ell}(G)$ be the set of all cliques of order $\ell$ and let $t_{\ell}=\left|\mathcal{T}_{\ell}(G)\right|$. Let $A \subseteq V$ and $\mathcal{B} \subseteq \mathcal{T}_{k-1}(G)$ be a family of pairwise vertex-disjoint cliques. Define $x_{A, \mathcal{B}}$ as the number of $k$-cliques of $G$ which $k-1$ vertices form a vertex set of some $B \in \mathcal{B}$ and the remaining vertex is from $V \backslash\left(A \cup \bigcup_{B \in \mathcal{B}} V(B)\right)$. Similarly, let $y_{A, \mathcal{B}}$ be the number of $k$-cliques in $G$ which $k-1$ vertices form a vertex set of some $B \in \mathcal{B}$ and the remaining vertex is from $A \cup \bigcup_{B \in \mathcal{B}} V(B)$. Finally, let $z_{C}$ (for $C \subseteq V$ ) be the number of $k$-cliques containing at least one vertex from $C$.

Proposition 5.1 Let $k \geq 3$ be an integer and let $c=\frac{1}{3^{3 k}}$. Then there exists a graph $G=(V, E)$ of order $n$ (for sufficiently large $n$ ) satisfying the following:
(i) For every $A \subseteq V,|A| \leq c n$, and every $\mathcal{B} \subseteq \mathcal{T}_{k-1}(G),|\mathcal{B}|=c n$, vertex disjoint ( $k-1$ )cliques such that $A \cap \bigcup_{B \in \mathcal{B}} V(B)=\emptyset$ we have

$$
y_{A, \mathcal{B}} \leq \frac{1}{k+1} x_{A, \mathcal{B}} .
$$

(ii) For every $C \subseteq V,|C| \leq(k-1) c n$,

$$
z_{C} \leq \frac{t_{k}}{4 k}
$$

(iii) The total number of $k$-cliques satisfies

$$
t_{k} \leq \nu n^{k-1-\alpha}(\log n)^{1+\alpha},
$$

where $\nu=(3 / 2)^{k} \frac{d^{\binom{k}{2}}}{(k-1)(k-2)}$.

Proof. It suffices to show that the random graph $G \in \mathbb{G}(n, p)$ with $p=d(\log n / n)^{\beta}$ and $d=3000$ satisfies a.a.s ${ }^{1}$ (ii) - (iii).

Below we will use the following bounds on the tails of the binomial distribution $\operatorname{Bin}(n, p)$ (for details, see, e.g., [13]):

$$
\begin{align*}
& \operatorname{Pr}(\operatorname{Bin}(n, p) \leq(1-\gamma) \mathbb{E}(X)) \leq \exp \left(-\frac{\gamma^{2}}{2} \mathbb{E}(X)\right)  \tag{7}\\
& \operatorname{Pr}(\operatorname{Bin}(n, p) \geq(1+\gamma) \mathbb{E}(X)) \leq \exp \left(-\frac{\gamma^{2}}{3} \mathbb{E}(X)\right) \tag{8}
\end{align*}
$$

First we show that $G$ a.a.s. satisfies (i). Fix an $A \subseteq V$ and $\mathcal{B} \subseteq \mathcal{T}_{k-1}$ with $|\mathcal{B}|=c n$. Observe that without loss of generality we may assume that $|A|=c n$. Note that $x_{A, \mathcal{B}} \sim$ $\operatorname{Bin}\left(c n(n-c n-(k-1) c n), p^{k-1}\right)$. Thus,

$$
\mathbb{E}\left(x_{A, \mathcal{B}}\right)=c(1-k c) n^{2} p^{k-1}=d^{k-1} c(1-k c) n^{2-(k-1) \beta}(\log n)^{(k-1) \beta}
$$

and (7) (applied with $\gamma=1 / 2)$ implies

$$
\begin{align*}
\operatorname{Pr}\left(x_{A, \mathcal{B}} \leq \frac{\mathbb{E}\left(x_{A, \mathcal{B}}\right)}{2}\right) & \leq \exp \left(-\frac{1}{8} \mathbb{E}\left(x_{A, \mathcal{B}}\right)\right) \\
& =\exp \left(-\frac{d^{k-1}}{8} c(1-k c) n^{2-(k-1) \beta}(\log n)^{(k-1) \beta}\right) \tag{9}
\end{align*}
$$

Now we bound from above the number of all possible choices for $A$ and $\mathcal{B}$. Clearly we have at most $n^{c n}$ choices for $A$. Observe that the number of choices for $\mathcal{B}$ can be bounded from above by the number of ways of choosing an ordered subset of vertices of size $(k-$ $1) c n$. Indeed, suppose that $v_{1}, \ldots, v_{(k-1) c n}$ is such a choice. Then $\mathcal{B}$ can be defined as $\left\{\left\{v_{1}, \ldots, v_{k-1}\right\},\left\{v_{k}, \ldots, v_{2 k-2}\right\}, \ldots,\left\{v_{(k-1) c n-k+1}, \ldots, v_{(k-1) c n}\right\}\right\}$. Thus we conclude that there are at most $n^{k c n}$ ways to choose $A$ and $\mathcal{B}$. Hence, by (9)

$$
\begin{align*}
\operatorname{Pr}\left(\bigcup_{A, \mathcal{B}}\left\{x_{A, \mathcal{B}} \leq \frac{\mathbb{E}\left(x_{A, \mathcal{B}}\right)}{2}\right\}\right) & \leq n^{k c n} \operatorname{Pr}\left(x_{A, \mathcal{B}} \leq \frac{\mathbb{E}\left(x_{A, \mathcal{B}}\right)}{2}\right) \\
& \leq \exp \left(k c n \log n-\frac{d^{k-1}}{8} c(1-k c) n^{2-(k-1) \beta}(\log n)^{(k-1) \beta}\right) \\
& =o(1) \tag{10}
\end{align*}
$$

Similarly, since $y_{A, \mathcal{B}} \sim \operatorname{Bin}\left(c n \cdot k c n, p^{k-1}\right)$,

$$
\mathbb{E}\left(y_{A, \mathcal{B}}\right)=k c^{2} n^{2} p^{k-1}=d^{k-1} k c^{2} n^{2-(k-1) \beta}(\log n)^{(k-1) \beta}
$$

and since $c=\frac{1}{3^{3 k}} \leq \frac{1}{k(3 k+4)}$,

$$
\begin{aligned}
\frac{\mathbb{E}\left(x_{A, \mathcal{B}}\right)}{2(k+1)} & =\frac{c(1-k c)}{2(k+1)} d^{k-1} n^{2-(k-1) \beta}(\log n)^{(k-1) \beta} \\
& \geq \frac{3}{2} d^{k-1} k c^{2} n^{2-(k-1) \beta}(\log n)^{(k-1) \beta} \\
& =\frac{3}{2} \mathbb{E}\left(y_{A, \mathcal{B}}\right)
\end{aligned}
$$

[^1]Inequality (8) (applied with $\gamma=1 / 2$ ) yields

$$
\operatorname{Pr}\left(y_{A, \mathcal{B}} \geq \frac{\mathbb{E}\left(x_{A, \mathcal{B}}\right)}{2(k+1)}\right) \leq \operatorname{Pr}\left(y_{A, \mathcal{B}} \geq \frac{3}{2} \mathbb{E}\left(y_{A, \mathcal{B}}\right)\right) \leq \exp \left(-\frac{1}{12} \mathbb{E}\left(y_{A, \mathcal{B}}\right)\right) .
$$

Therefore, we deduce that

$$
\begin{equation*}
\operatorname{Pr}\left(\bigcup_{A, \mathcal{B}}\left\{y_{A, \mathcal{B}} \geq \frac{\mathbb{E}\left(x_{A, \mathcal{B}}\right)}{2(k+1)}\right\}\right) \leq n^{k c n} \exp \left(-\frac{1}{12} \mathbb{E}\left(y_{A, \mathcal{B}}\right)\right)=o(1) \tag{11}
\end{equation*}
$$

Consequently, by (10) and (11) we get that a.a.s.

$$
y_{A, \mathcal{B}} \leq \frac{\mathbb{E}\left(x_{A, \mathcal{B}}\right)}{2(k+1)} \leq \frac{x_{A, \mathcal{B}}}{k+1}
$$

for any choice of $A$ and $\mathcal{B}$. This finishes the proof of (ii).
For each vertex $v \in V$, let $\operatorname{deg}_{k}(v)$ denote the number of $k$-cliques of $G$ which contain $v$. In order to show that a.a.s. $G$ also satisfies (iii), we will first estimate $\operatorname{deg}_{k}(v)$ for each $v \in V$.

The standard application of (8) (applied with $\operatorname{Bin}(n-1, p)$ and $\gamma=1 / 2)$ with the union bound imply that a.a.s. the degree of every vertex $v \in V(G)$ satisfies

$$
\operatorname{deg}(v) \leq \frac{3}{2} d n^{1-\beta}(\log n)^{\beta} .
$$

The number of $k$-cliques which contain $v$ is equal to the number of $(k-1)$-cliques in the neighborhood of $v$. Therefore, in order to show (iii) it suffices to bound the number of $(k-1)$-cliques in any set of size at most $\frac{3}{2} d n^{1-\beta}(\log n)^{\beta}$.

Let $S \subseteq V$ with $s=|S|=\frac{3}{2} d n^{1-\beta}(\log n)^{\beta}$. First we will decompose all $(k-1)$-tuples of $S$ into linear ( $k-1$ )-uniform hypergraphs $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{m}$ with

$$
m=(1+o(1))\binom{s}{k-1}\binom{k-1}{2} /\binom{s}{2}
$$

and

$$
\left|\mathcal{S}_{i}\right|=(1+o(1)) \frac{\binom{s}{2}}{\binom{k-1}{2}}
$$

for every $1 \leq i \leq m$. That means that each $(k-1)$-tuple of $S$ belongs to exactly one $\mathcal{S}_{i}$ and each pair of elements of $S$ appears in at most one $(k-1)$-tuple in $\mathcal{S}_{i}$. The existence of such a decomposition follows from a more general result of Pippenger and Spencer 16 (see also [10]).

Let $s_{i}$ be the random variable that counts the number of $(k-1)$-tuples of $\mathcal{S}_{i}$ which appear as $(k-1)$-cliques of $G$. Observe that $s_{i} \sim \operatorname{Bin}\left(\left|\mathcal{S}_{i}\right|, p\left(\begin{array}{c}\binom{k-1}{2}\end{array}\right)\right.$. Therefore for each $i$,

$$
\begin{aligned}
\mathbb{E}\left(s_{i}\right) & =(1+o(1)) \frac{\binom{s}{2}}{\binom{k-1}{2}} p^{\binom{k-1}{2}} \\
& =(1+o(1)) \frac{s^{2}}{(k-1)(k-2)} p^{\binom{k-1}{2}} \\
& =(1+o(1)) \frac{9}{4(k-1)(k-2)} d^{2+\binom{k-1}{2}} n^{1-\beta}(\log n)^{1+\beta}
\end{aligned}
$$

and by (8) (with $\gamma=1 / 2$ )

$$
\operatorname{Pr}\left(s_{i} \geq \frac{3}{2} \mathbb{E}\left(s_{i}\right)\right) \leq \exp \left(-\frac{1}{12} \mathbb{E}\left(s_{i}\right)\right) \leq \exp \left(-\frac{3}{16 k^{2}} d^{2+\binom{k-1}{2}} n^{1-\beta}(\log n)^{1+\beta}\right) .
$$

Consequently, the union bound over all subsets $S \subseteq V$ of size $s$ and over all $i$ for each $1 \leq i \leq m$ implies

$$
\begin{aligned}
\operatorname{Pr}\left(\bigcup_{S, i}\left\{s_{i} \geq \frac{3}{2} \mathbb{E}\left(s_{i}\right)\right\}\right) & \leq\binom{ n}{s} \cdot m \cdot \exp \left(-\frac{3}{16 k^{2}} d^{2+\binom{k-1}{2}} n^{1-\beta}(\log n)^{1+\beta}\right) \\
& \leq n^{s} \cdot s^{k-3} \cdot \exp \left(-\frac{3}{16 k^{2}} d^{2+\binom{k-1}{2}} n^{1-\beta}(\log n)^{1+\beta}\right) \\
& =s^{k-3} \cdot \exp \left(s \log n-\frac{3}{16 k^{2}} d^{2+\binom{k-1}{2}} n^{1-\beta}(\log n)^{1+\beta}\right) \\
& =s^{k-3} \cdot \exp \left(n^{1-\beta}(\log n)^{1+\beta}\left(\frac{3}{2} d-\frac{3}{16 k^{2}} d^{2+\binom{k-1}{2}}\right)\right) \\
& =o(1),
\end{aligned}
$$

since $s^{k-3}$ grows like a polynomial in $n$. Therefore it follows that a.a.s.

$$
\begin{equation*}
\operatorname{deg}_{k}(v)=\sum_{i=1}^{m} s_{i} \leq m \cdot \frac{3}{2} \mathbb{E}\left(s_{i}\right) \leq s^{k-3} \cdot \frac{3}{2} \mathbb{E}\left(s_{i}\right)=\nu n^{(k-2)(1-\beta)}(\log n)^{1+\alpha}, \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu=\left(\frac{3}{2}\right)^{k} \frac{d^{\binom{k}{2}}}{(k-1)(k-2)} . \tag{13}
\end{equation*}
$$

In a similar way one can show that

$$
\operatorname{deg}_{k}(v) \geq \lambda n^{(k-2)(1-\beta)}(\log n)^{1+\alpha}
$$

where

$$
\begin{equation*}
\lambda=\left(\frac{1}{2}\right)^{k-1} \frac{d^{\binom{k}{2}}}{(k-1)(k-2)} . \tag{14}
\end{equation*}
$$

Note that equation (12) gives the bound

$$
t_{k} \leq \nu n^{(k-2)(1-\beta)+1}(\log n)^{1+\alpha}=\nu n^{k-1-\alpha}(\log n)^{1+\alpha}
$$

which proves part (iii).
Now we finish the proof of (iii). Since each $k$-clique is counted exactly $k$ times, the number of $k$-cliques is a.a.s. at least

$$
\begin{equation*}
t_{k} \geq \frac{n}{k} \cdot \lambda n^{(k-2)(1-\beta)}(\log n)^{1+\alpha}=\frac{\lambda}{k} n^{k-1-\alpha}(\log n)^{1+\alpha} . \tag{15}
\end{equation*}
$$

It follows now from (12) and 15) that given a set $C \subseteq V,|C| \leq(k-1) c n$, the number of $k$-cliques of $G$ which intersect $C$ is a.a.s. at most

$$
z_{C} \leq(k-1) c n \cdot \nu n^{(k-2)(1-\beta)}(\log n)^{1+\alpha}=\frac{c(k-1) k \nu}{\lambda} \cdot \frac{\lambda}{k} n^{k-1-\alpha}(\log n)^{1+\alpha} \leq \frac{c(k-1) k \nu}{\lambda} t_{k} .
$$

Finally observe that (13), 14) together with the choice of $c$ yield that

$$
\frac{c(k-1) k \nu}{\lambda} \leq \frac{1}{4 k}
$$

implying condition (iii), as required.
Now we are ready to prove main result of this section.
Proof of Theorem 2.8. We show that there exists a $k$-graph $\mathcal{H}$ with $|\mathcal{H}|=O\left(n^{k-1-\alpha}(\log n)^{1+\alpha}\right)$ such that any two-coloring of the edges of $\mathcal{H}$ yields a monochromatic copy of $\mathcal{P}_{n, k-1}^{(k)}$.

Let $G$ be a graph from Proposition 5.1. Set $V(\mathcal{H})=V(G)$ and let $E(\mathcal{H})$ be the set of $k$-cliques in $G$. We prove that such $\mathcal{H}$ is a Ramsey $k$-graph for $\mathcal{P}_{m, k-1}^{(k)}$ with $m=c n$, where $c=\frac{1}{3^{3 k}}$.

Take an arbitrary red-blue coloring of the edges of $\mathcal{H}_{0}=\mathcal{H}$ and assume that there is no monochromatic $\mathcal{P}_{m, k-1}^{(k)}$. We will consider the following greedy procedure which at each step finds a blue tight path of length $i$ labeled as $v_{1}, v_{2}, \ldots, v_{i}$.
(1) Let $\mathcal{B}=\emptyset$ be the trash set of $(k-1)$-tuples and $U=V(\mathcal{H})$ be the set of unused vertices and set $i:=0$. At any point in the process, if $|\mathcal{B}|=m$, then stop.
(2) (In this step $i=0$.) If possible, then choose a blue edge from $U$ and label its vertices by $v_{1}, \ldots, v_{k}$ and then set $i:=k$. Otherwise, if not possible, stop.
(3) (In this step $i \geq k$.) Let $v_{i-k+1}, \ldots, v_{i-1}, v_{i}$ be the labels of the last $k-1$ vertices of the constructed blue path. If possible, select a vertex $u \in U$ for which $v_{i-k+1}, \ldots, v_{i-1}, v_{i}, u$ form a blue edge. Label $u$ as $v_{i+1}$, set $U:=U \backslash\{u\}$ and $i:=i+1$. Repeat this step until no such $u$ can be found.
(4) (In this step also $i \geq k$.) Let $v_{i-k+1}, \ldots, v_{i-1}, v_{i}$ be the labels of the last $k-1$ vertices of the constructed blue path which cannot be extended in a sense described in step (3). Remove these $k-1$ vertices from the path and set $\mathcal{B}:=\mathcal{B} \cup\left\{\left\{v_{i-k+1}, \ldots, v_{i-1}, v_{i}\right\}\right\}$ and $i:=i-k+1$. After this removal there are two possibilities:
(i) if $i<k$, then put back $v_{1}, \ldots, v_{i}$ to $U$ (i.e. $U:=U \cup\left\{v_{1}, \ldots, v_{i}\right\}$ ), set $i:=0$, and return to step (2);
(ii) otherwise, return to step (3).

This procedure will terminate under two circumstances: either $|\mathcal{B}|=m$ or no blue edge can be found in step (2).

First let us consider the case when $|\mathcal{B}|=m$, that means, there are $m$ vertex disjoint $(k-1)$-tuples in $\mathcal{B}$. Denote by $A$ the vertex set of the blue path which was obtained when $|\mathcal{B}|=m$. Clearly, $|A|<m$, otherwise there would be a blue $\mathcal{P}_{m, k-1}^{(k)}$. We are going to apply Proposition 5.1 with sets $A$ and $\mathcal{B}$. Notice that every edge of $\mathcal{H}$ which contains a $(k-1)$-tuple from $\mathcal{B}$ and the remaining vertex from $V(\mathcal{H}) \backslash\left(A \cup \bigcup_{B \in \mathcal{B}} B\right)$ must be colored red. (This is because for a $(k-1)$-tuple to end up in $\mathcal{B}$, there must have been no vertex $u$ in step (3) that could extend the blue path.) It also follows from step (3) that each $(k-1)$ tuple in $\mathcal{B}$ is contained in at least one blue edge. Thus, Proposition 5.1 (i) implies that $y_{A, \mathcal{B}} \leq \frac{1}{k+1} x_{A, \mathcal{B}}$. That means that the number of red edges which contain a $(k-1)$-tuple from $\mathcal{B}$ and the remaining vertex from $U$ is at least $k+1$ times the number of blue edges with a $(k-1)$-tuple from $\mathcal{B}$.

Now remove all the blue edges from $\mathcal{H}$ which contain a $(k-1)$-tuple from $\mathcal{B}$ and denote such $k$-graph by $\mathcal{H}_{1}$. Perform the above procedure on $\mathcal{H}_{1}$. This will generate a new trash set $\mathcal{B}_{1}$. Observe that $\mathcal{B}_{1} \cap \mathcal{B}=\emptyset$, since every edge of $\mathcal{H}_{1}$ which contains a ( $k-1$ )-tuple from $\mathcal{B}$ must be red. Again, if $\left|\mathcal{B}_{1}\right|=m$, then we use the same argument as above to find that the number of red edges in $\mathcal{H}_{1}$ which contain a $(k-1)$-tuple from $\mathcal{B}_{1}$ and the remaining vertex from $U$ is at least $k+1$ times the number of blue edges in $\mathcal{H}_{1}$ with a $(k-1)$-tuple from $\mathcal{B}_{1}$. Indeed, we can again apply the inequality from Proposition (i). This is because $y_{A, \mathcal{B}_{1}}$ is smaller than the number of all blue edges in $\mathcal{H}$ containing a $(k-1)$-tuple from $\mathcal{B}_{1}$, while (since we do not remove red edges) $x_{A, \mathcal{B}_{1}}$ remains same in both $\mathcal{H}_{1}$ and $\mathcal{H}$. Now remove the blue edges from $\mathcal{H}_{1}$ which contain a $(k-1)$-tuple from $\mathcal{B}_{1}$ obtaining a $k$-graph $\mathcal{H}_{2}$. Keep repeating the procedure until it is no longer possible.

At some point, we will run out of blue edges in $\mathcal{H}_{j}$ for some $j \geq 1$, and the procedure will terminate prematurely in step (22. In this case $\left|\mathcal{B}_{j}\right|<m,|A|=0$ and $U$ has no blue edges. However, there still may be some blue edges which contain a vertex from $\bigcup_{B \in \mathcal{B}_{j}} V(B)$. Proposition 5.1 (iii) (applied for $C=\bigcup_{B \in \mathcal{B}_{j}} V(B)$ ) implies that the number of such edges is at most

$$
z_{C} \leq \frac{t_{k}}{4 k}
$$

Let $x_{A, \mathcal{B}}^{i}$ and $y_{A, \mathcal{B}}^{i}$ be the numbers corresponding to $x_{A, \mathcal{B}}$ and $y_{A, \mathcal{B}}$ obtained at the end of the procedure applied to $\mathcal{H}_{i}$. Thus,

$$
y_{A, \mathcal{B}}^{i} \leq \frac{1}{k+1} x_{A, \mathcal{B}}^{i}
$$

for each $0 \leq i \leq j-1$.
Let $t_{R}$ and $t_{B}$ denote the number of red and blue edges in $\mathcal{H}$. Observe that

$$
\begin{equation*}
t_{B} \leq \sum_{0 \leq i \leq j-1} y_{A, \mathcal{B}}^{i}+z_{C} \leq \frac{1}{k+1} \sum_{0 \leq i \leq j-1} x_{A, \mathcal{B}}^{i}+\frac{t_{k}}{4 k} . \tag{16}
\end{equation*}
$$

Furthermore, since all sets $\mathcal{B}_{i}$ are mutually disjoint, each red edge in $\mathcal{H}$ containing a $(k-1)$ tuple from some $\mathcal{B}_{i}$ can be only counted at most $k$ times. Thus,

$$
\begin{equation*}
\sum_{0 \leq i \leq j-1} x_{A, \mathcal{B}}^{i} \leq k \cdot t_{R} \tag{17}
\end{equation*}
$$

Consequently, by 16 and 17 , we get

$$
t_{k}=t_{R}+t_{B} \leq t_{R}+\frac{k}{k+1} t_{R}+\frac{t_{k}}{4 k}
$$

and so

$$
t_{R} \geq \frac{4 k-1}{4 k} \cdot \frac{k+1}{2 k+1} t_{k}>\frac{1}{2} t_{k}
$$

The conclusion is that there are more red edges than there are blue edges in $\mathcal{H}$. If we reverse the procedure and look for a red path instead of a blue one, we will conclude that there are more blue edges than red edges. Since these two statements contradict each other, the only way to avoid both statements is if a monochromatic path exists.

## 6 Hypergraphs with bounded degree

In this section we prove Theorem 2.10, which states that hypergraphs with bounded degree can have nonlinear size-Ramsey numbers.

Proof of Theorem 2.10. We modify an idea from Rödl and Szemerédi 18 . For simplicity we only present a proof for $k=3$, which can easily be generalized to $k \geq 3$. The hypergraph $\mathcal{G}$ will be constructed as the vertex disjoint union of graphs $\mathcal{G}_{i}$ each of which is a tree with a path added on its leaves. Next we will describe the details of such construction.

Set $c=\frac{1}{5}$. We make no effort to optimize $c$ and always assume that $n$ is sufficiently large.

Let

$$
t=\left\lfloor\log _{2}\left(\frac{2 \log _{2} n}{\log _{2} \log _{2} n}\right)\right\rfloor
$$

Consider a binary 3 -tree $\mathcal{B}=(V, E)$ on $1+2+4+\cdots+2^{t}$ vertices rooted at vertex $z$ (see Figure 2 . Denote by $L(\mathcal{B})$ the set of all its leafs. Call the edge containing $z$ the root edge. Observe that

$$
\begin{equation*}
|V(\mathcal{B})|=1+2+4+\cdots+2^{t}=2^{t+1}-1<\log _{2} n \tag{18}
\end{equation*}
$$

(recall that $n$ is large enough) and

$$
|L(\mathcal{B})|=2^{t}
$$

Let $\varphi$ by an automorphism of $\mathcal{B}$. Since the root edge $e$ is the unique edge with exactly one vertex of degree $1, \varphi(z)=z$. The other two vertices of $e$ are permuted by $\varphi$. Consequently, $\varphi$ permutes two vertices of every other edge. Hence, it is easy to observe that the order of the automorphism group of $\mathcal{B}$ satisfies

$$
|A u t(\mathcal{B})|=2^{1+2+4+\cdots+2^{t-1}}=2^{2^{t}-1}<2^{2^{t}}
$$

Now consider a tight path $\mathcal{P}$ of length $|L(\mathcal{B})|$ placed on the leaves $L(\mathcal{B})$ in an arbitrary order. Considering labeled vertices of $L(\mathcal{B})$ there are clearly $|L(\mathcal{B})|$ ! such paths. Label them by $\mathcal{P}_{i}$ for $i=1,2, \ldots,|L(\mathcal{T})|$ !. Let $\mathcal{B}_{i}$ be vertex disjoint copies of $\mathcal{B}$ and $\mathcal{G}_{i}=\mathcal{B}_{i} \cup \mathcal{P}_{i}$, where $V\left(\mathcal{P}_{i}\right)=L\left(\mathcal{B}_{i}\right)$.


Figure 2: Binary 3 -tree $\mathcal{B}$ on $1+2+4+8$ vertices and rooted at vertex $z$.

Let $\varphi$ be an isomorphism between $\mathcal{G}_{i}$ and $\mathcal{G}_{j}$. Since the only vertices of degree 4 are on paths $\mathcal{P}_{i}$ and $\mathcal{P}_{j}, \varphi\left(\mathcal{P}_{i}\right)=\mathcal{P}_{j}$. Thus,

$$
\varphi\left(E\left(\mathcal{B}_{i}\right)\right)=\varphi\left(E\left(\mathcal{G}_{i}\right) \backslash E\left(\mathcal{P}_{i}\right)\right)=E\left(\mathcal{G}_{j}\right) \backslash E\left(\mathcal{P}_{j}\right)=E\left(\mathcal{B}_{j}\right)
$$

and so $\mathcal{B}_{i}$ and $\mathcal{B}_{j}$ are isomorphic. Thus, the number of pairwise non-isomorphic $\mathcal{G}_{i}$ 's is at least

$$
\frac{|L(\mathcal{B})|!}{|\operatorname{Aut}(\mathcal{B})|} \geq \frac{\left(2^{t}\right)!}{2^{2^{t}}} \geq \frac{\left(\frac{2^{t}}{e}\right)^{2^{t}}}{2^{2^{t}}} \geq \frac{\left(2^{t-2}\right)^{2^{t}}}{2^{2^{t}}}=2^{(t-3) 2^{t}}>n
$$

Set

$$
q=\left\lfloor\frac{n}{|V(\mathcal{B})|}\right\rfloor
$$

and let $\mathcal{G}=\mathcal{G}_{1} \cup \cdots \cup \mathcal{G}_{q}$, where all $\mathcal{G}_{1}, \ldots, \mathcal{G}_{q}$ are pairwise non-isomorphic. We show that $\mathcal{G}$ is a desired hypergraph.

Clearly, $|V(\mathcal{G})| \leq n$. Furthermore, by (18), we get

$$
|V(\mathcal{G})|=q|V(\mathcal{B})| \geq\left(\frac{n}{|V(\mathcal{B})|}-1\right)|V(\mathcal{B})|>n-\log _{2} n .
$$

Moreover, $\Delta(\mathcal{H})=4$ and the independence number of $\mathcal{G}$ satisfies

$$
\begin{equation*}
\alpha(\mathcal{G}) \leq \frac{8}{9} n . \tag{19}
\end{equation*}
$$

Indeed, let $I \subseteq V=V(\mathcal{G})$ be an independent set of size $\alpha=\alpha(\mathcal{G})$. We estimate the number of edges $e(I, V \backslash I)$ between sets $I$ and $V \backslash I$. First observe that

$$
e(I, V \backslash I) \leq \Delta(\mathcal{G}) \cdot|V \backslash I| \leq 4(n-\alpha)
$$

Next, since each triple between $I$ and $V \backslash I$ intersects one of the partition classes on 2 vertices and $\delta(\mathcal{G})=1$,

$$
e(I, V \backslash I) \geq \frac{\delta(\mathcal{G}) \cdot|I|}{2}=\frac{\alpha}{2} .
$$

This implies that

$$
\frac{\alpha}{2} \leq 4(n-\alpha)
$$

and so 19).
Now we are ready to finish the proof and show that for any 3 -graph with

$$
|E(\mathcal{H})| \leq \frac{1}{30} n\left(\log _{2} n\right)^{\frac{1}{5}}
$$

we have $\mathcal{H} \nrightarrow \mathcal{G}$.
Set $d=\left(\log _{2} n\right)^{\frac{1}{5}}$ and define $V_{\text {high }} \subseteq V(\mathcal{H})$ as

$$
V_{\text {high }}=\{v \in V(\mathcal{H}): \operatorname{deg}(v) \geq d\}
$$

and

$$
V_{\text {low }}=V(\mathcal{H}) \backslash V_{\text {high }} .
$$

Clearly, $\left|V_{\text {high }}\right| \leq \frac{n}{10}$; for otherwise, $|E(\mathcal{H})|>\frac{n}{10} \cdot d \cdot \frac{1}{3} \geq|E(\mathcal{H})|$, a contradiction.
Recall that $\mathcal{G}$ consists of $q$ pairwise non-isomorphic copies of $\mathcal{G}_{i}$. We estimate the number of copies of $\mathcal{G}_{i}$ 's contained in a sub-hypergraph induced by $V_{\text {low }}$. First fix an edge $e$ in $V_{\text {low }}[\mathcal{H}]$ and count the number of copies of $\mathcal{G}_{i}$ 's for which $e$ is a root edge. Since $\operatorname{deg}(v) \leq d$ for each $v \in V_{\text {low }}$, we get that this number is at most

$$
3 \cdot d^{2+4+\cdots+2^{t-1}} \cdot d^{2^{t}} \leq d^{2 \cdot 2^{t}} \leq\left(\log _{2} n\right)^{\frac{1}{5} \cdot 2 \cdot \frac{2 \log _{2} n}{\log _{2} \log _{2} n}}=n^{\frac{4}{5}}
$$

where the factor 3 counts the number of choices for the root vertex, the next factors count the number of possible $\mathcal{B}_{i}$ 's with $e$ as a root, and the last factor counts the number of paths on the set of leafs. Thus, there is an $i_{0}$ such that $\mathcal{G}_{i_{0}}$ appears in $V_{\text {low }}[\mathcal{H}]$ at most

$$
\frac{n^{\frac{4}{5}} \cdot|E(\mathcal{H})|}{q}<\frac{n^{\frac{4}{5}} \cdot n\left(\log _{2} n\right)^{\frac{1}{5}}}{\frac{n}{\log _{2} n}}=n^{\frac{4}{5}}\left(\log _{2} n\right)^{\frac{6}{5}}
$$

times.
Denote by $\mathcal{F}$ the sub-hypergraph consisting of root edges from all copies of $\mathcal{G}_{i_{0}}$ in $V_{\text {low }}[\mathcal{H}]$. Thus,

$$
|V(\mathcal{F})| \leq 3 n^{\frac{4}{5}}\left(\log _{2} n\right)^{\frac{6}{5}}
$$

Color edges in $\mathcal{F}$ together with edges incident to $V_{\text {high }}$ blue; otherwise red. Clearly, there is no red copy of $\mathcal{G}$, since there is no red copy of $\mathcal{G}_{i_{0}}$. Moreover, there is no blue copy of $\mathcal{G}$, since every blue sub-hypergraph of order $|V(\mathcal{G})|$ has an independent set of size at least
$|V(\mathcal{G})|-\left|V_{\text {high }}\right|-|V(\mathcal{F})|>\left(n-\log _{2} n\right)-\frac{n}{10}-3 n^{\frac{4}{5}}\left(\log _{2} n\right)^{\frac{6}{5}}=\frac{9}{10} n-\log _{2} n-3 n^{\frac{4}{5}}\left(\log _{2} n\right)^{\frac{6}{5}}$,
which is strictly bigger than $\alpha(\mathcal{G})(c f . \boxed{19})$.

## References

[1] J. Beck, On size Ramsey number of paths, trees, and circuits. I, Journal of Graph Theory 7 (1983), no. 1, 115-129.
[2] $\qquad$ , On size Ramsey number of paths, trees and circuits. II, Mathematics of Ramsey theory, Algorithms Combin., vol. 5, Springer, Berlin, 1990, pp. 34-45.
[3] D. Conlon, J. Fox, and B. Sudakov, Hypergraph Ramsey numbers, Journal of the American Mathematical Society 23 (2010), no. 1, 247-266.
[4] P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), no. 1, 25-42.
[5] P. Erdős, R. Faudree, C. Rousseau, and R. Schelp, The size Ramsey number, Periodica Mathematica Hungarica 9 (1978), no. 1-2, 145-161.
[6] P. Erdős, A. Hajnal, and R. Rado, Partition relations for cardinal numbers, Acta Mathematica Hungarica 16 (1965), 93-196.
[7] P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proceedings of the London Mathematical Society 3 (1952), 417-439.
[8] R. Faudree and R. Schelp, A survey of results on the size Ramsey number, Paul Erdős and his mathematics, II (Budapest, 1999), Bolyai Soc. Math. Stud., vol. 11, János Bolyai Math. Soc., Budapest, 2002, pp. 291-309.
[9] J. Fox, personal communication, 2014.
[10] P. Frankl and V. Rödl, Near perfect coverings in graphs and hypergraphs, European Journal of Combinatorics 6 (1985), no. 4, 317-326.
[11] J. Friedman and N. Pippenger, Expanding graphs contain all small trees, Combinatorica 7 (1987), no. 1, 71-76.
[12] P. Haxell, Y. Kohayakawa, and T. Łuczak, The induced size-Ramsey number of cycles, Combinatorics, Probability and Computing 4 (1995), no. 3, 217-239.
[13] S. Janson, T. Łuczak, and A. Ruciński, Random Graphs, Wiley, New York, 2000.
[14] P. Keevash, The existence of designs, preprint.
[15] Y. Kohayakawa, V. Rödl, M. Schacht, and E. Szemerédi, Sparse partition universal graphs for graphs of bounded degree, Advances in Mathematics 226 (2011), no. 6, 5041-5065.
[16] N. Pippenger and J. Spencer, Asymptotic behavior of the chromatic index for hypergraphs, Journal of Combinatorial Theory, Ser. A 51 (1989), no. 1, 24-42.
[17] V. Rödl, On a packing and covering problem, European Journal of Combinatorics $\mathbf{5}$ (1985), 69-78.
[18] V. Rödl and E. Szemerédi, On size Ramsey numbers of graphs with bounded degree, Combinatorica 20 (2000), no. 2, 257-262.
[19] R.M. Wilson, An existence theorem for pairwise balanced designs, I: composition theorems and morphisms, Journal of Combinatorial Theory, Ser. A 13 (1972), 220-245.
[20] ___ An existence theorem for pairwise balanced designs, II: the structure of PBDclosed set and the existence conjecture, Journal of Combinatorial Theory, Ser. A 13 (1972), 246-273.
[21] , An existence theorem for pairwise balanced designs, III: proof of the existence conjecture, Journal of Combinatorial Theory, Ser. A 18 (1975), 71-79.


[^0]:    *Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, andrzej.dudek@wmich.edu. Supported in part by Simons Foundation Grant \#244712.
    ${ }^{\dagger}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, slafleu@emory.edu.
    ${ }^{\ddagger}$ Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, mubayi@math.uic.edu. Supported in part by NSF grant DMS-1300138
    ${ }^{\S}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, rodl@mathcs.emory.edu. Supported in part by NSF grants DMS-1301698 and DMS-1102086.

[^1]:    ${ }^{1}$ An event $E_{n}$ occurs asymptotically almost surely, or a.a.s. for brevity, if $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(E_{n}\right)=1$.

