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Abstract

The size-Ramsey number of a graph G is the minimum number of edges in a graph
H such that every 2-edge-coloring of H yields a monochromatic copy of G. Size-Ramsey
numbers of graphs have been studied for almost 40 years with particular focus on the
case of trees and bounded degree graphs.

We initiate the study of size-Ramsey numbers for k-uniform hypergraphs. Analo-
gous to the graph case, we consider the size-Ramsey number of cliques, paths, trees,
and bounded degree hypergraphs. Our results suggest that size-Ramsey numbers for
hypergraphs are extremely difficult to determine, and many open problems remain.

1 Introduction

Given graphs G and H, say that H — G if every 2-edge-coloring of H results in a monochro-
matic copy of G in H. Using this notation, the Ramsey number R(G) of G is the minimum
n such that K,, — G. Instead of minimizing the number of vertices, one can minimize the
number of edges. Define the size-Ramsey number R(G) of G to be the minimum number of
edges in a graph H such that H — G. More formally,

~

R(G) = min{|E(H)| : H — G.

The study of size-Ramsey numbers was proposed by Erdds, Faudree, Rousseau and Schelp [5]

in 1978. By definition of R(G), we have Kp(g) — G. Since the complete graph on R(G)

R(G)

5 ) edges, we obtain the trivial bound

R(2G)>.

vertices has (

R(G) < ( 1)
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Chvatal (see, e.g., [5]) showed that equality holds in for complete graphs. In other

words, R(K,) = (R(;QJ) ' @)

One of the first problems in this area was to determine the size-Ramsey number of the n
vertex path P,. Answering a question of Erdds [4], Beck [I] showed that

R(P,) = O(n). 3)

Since R(G) > |E(G)| for any graph, Beck’s result is sharp in order of magnitude. The
linearity of the size-Ramsey number of paths was generalized to bounded degree trees by
Friedman and Pippenger [11] and to cycles by Haxell, Kohayakawa and Luczak [12]. Beck [2]
asked whether R(G) is always linear in the size of G for graphs G of bounded degree.
This was settled in the negative by Rodl and Szemerédi [18], who proved that there are
graphs of order n, maximum degree 3, and size-Ramsey number Q(n(log n)l/ 60, They also
conjectured that for a fixed integer A there is an ¢ > 0 such that

Q(n'*e) = max R(G) = O(n”),

where the maximum is taken over all graphs G of order n with maximum degree at most A.
The upper bound was recently proved by Kohayakawa, Rédl, Schacht, and Szemerédi [15].
For further results about the size-Ramsey number see, e.g, the survey paper of Faudree and
Schelp [8].

Somewhat surprisingly the size-Ramsey numbers have not been studied for hypergraphs,
even though classical Ramsey numbers for hypergraphs have been studied extensively since
the 1950’s (see, e.g., [7, [6]), and more recently [3]. In this paper we initiate this study
for k-uniform hypergraphs. A k-uniform hypergraph G (k-graph for short) on a vertex set
V(G) is a family of k-element subsets (called edges) of V(G). We write E(G) for its edge
set. Given k-graphs G and H, say that H — G if every 2-edge-coloring of H results in a
monochromatic copy of G in H. Define the size-Ramsey number R(Q) of a k-graph G as

R(G) = min{|E(H)| : H — G}.

2 Results and open problems

Motivated by extending the basic theory from graphs to hypergraphs, we prove results for
cliques, trees, paths, and bounded degree hypergraphs.

2.1 Cliques

For every k-graph G, we trivially have

R(G) < <Rf)>,

where R(G) is the ordinary Ramsey number of G. Our first objective was to generalize ([2)
to 3-graphs, which shows that equality holds for graphs. It is fairly easy to obtain a lower
bound for ]?(/Cg{%) ) that is quadratic in R(IC#)), but we were only able to do slightly better.



Theorem 2.1 R(IC,(E))) > %;(R(;cf)))'

The following basic questions remain open.
~ (k)
Question 2.2 s R(ICSLIC)) = (R(’%" )) ?

Question 2.3 For k > 3 let N = R(ICglk)). Define /Cg\’;)_ to be the hypergraph obtained
from ICE\];) by removing one edge. Is it true that ICE\’;)_ — ICSC) ?

Clearly, the affirmative answer to the latter gives a negative answer to Question

2.2 Trees

Given integers 1 < £ < k and n, a k-graph 7;(12) of order n with edge set {e1,...,e,} is an
U-tree, if for each 2 < j < m we have [e; N{U;<;; €| <€ and ej N, € C e, for some
1 <ig < j. We are able to give the following general upper bound for trees.

Theorem 2.4 Let 1 < /¢ < k be fized integers. Then

n

One can easily show that this bound is tight in order of magnitude when ¢ = 1 (see
Section [ for details). The situation for £ > 2 is much less clear.

Question 2.5 Let 2 < 0 < k be fized integers. Is it true that for every n there exists a
k-uniform f-tree T of order at most n such that

R(T) = Q(n").
Here is another related question pointed out by Fox [9]. Let us weaken the restriction

on the edge intersection in the definition of 7;(12). Let 7—;(’? be a k-graph of order n with
edge set {e1,...,en} such that for each 2 < j < m we have |e; N J;;; e < L.

Question 2.6 Let 2 < { < k be fixed integers. Is R('f;l(lz)) polynomial in n?

2.3 Paths

Given integers 1 < ¢ < k and n = ¢ (mod k—/), we define an ¢-path 77792 to be the k-uniform
hypergraph with vertex set [n] and edge set {e1,...,en}, wheree; = {(i—1)(k—0)+1, (i —
Dk=0+2,...,(i—1)(k—¢)+k} and m = Z:g. In other words, the edges are intervals
of length k in [n] and consecutive edges intersect in precisely ¢ vertices. The two extreme
cases of £ =1 and £ = k — 1 are referred to as, respectively, loose and tight paths. Clearly
every (-path is also an /-tree. Thus, by Theorem we obtain the following result.

R(PY)) = o' (4)

Our first result shows that determining the size-Ramsey number of a path 737%) for £ < g
can easily be reduced to the graph case.



Proposition 2.7 Let 1 </ < g Then,
R(P)) < R(P,) = O(n).

Clearly, this result is optimal.

Determining the size-Ramsey number of a path 737(1]62 for ¢ > % seems to be a much

harder problem. Here we will only consider tight paths (¢ = k —1). By we get
5o (k
R(P,,) = O("). (5)

The most complicated result of this paper is the following improvement of .
Theorem 2.8 Fix k >3 and let o = (k — 2)/((k;1) +1). Then

R(P(kg_l) = O(nkil*a(log n)HO‘).

The gap in the exponent of n between the upper and lower bounds for this problem
remains quite large (between 1 and k — 1 — a). We believe that the lower bound is much
closer to the truth. Indeed, the following question still remains open.

Question 2.9 Is R(vak,z_l) =0(n)?

If true, then since R(Pr(fg)) < R(Pr(flz_l), this would imply the linearity of the size-Ramsey
number of all ¢-paths.

2.4 Bounded degree hypergraphs

Our main result about bounded degree hypergraphs is that their size-Ramsey numbers can
be superlinear. This is proved by extending the methods of Rédl and Szémerédi [18] to the
hypergraph case.

Theorem 2.10 Let k > 3 be an integer. Then there is a positive constant ¢ = c(k) such
that for every n there is a k-graph G of order at most n with mazximum degree k + 1 such
that

R(G) = Q(n(logn)®).

There are several other problems to consider such as finding the asymptotic of the size-
Ramsey number of cycles and many other classes of hypergraphs. In general, they seem to
be very difficult. Therefore, this paper is the first step towards a better understanding of
this concept.

In the next sections we prove these result for cliques (Section, trees (Section , paths
(Section , and hypergraphs with bounded degree (Section @

3 Cliques

(3)
Proof of Theorem [2.1L We show that if H is a 3-graph with |E(H)| < %;(R(ch )) for
n >4, then H » ICS’).




Induction on N = |[V(H)|. If N < R(IQ(@S)), then there is a 2-coloring of K](\?) with

no monochromatic K,(f)’). Since H C K (3), this coloring yields a 2-coloring of H with no
monochromatic K,(L3).
(3) . n2 (R(K) . .
Suppose that N > R(Ky"). Since |[E(H)| < & (™% /), there are u and v in V (H) with

deg(u,v) = |{e € BE(H) : {u,v} Ce}| < g—; Otherwise,

1 1 (N n?
Bo0l=y X destun) > gy )5 > B0
{uoe(V5Y)
a contradiction.
2
Let u and v be such that deg(u,v) < 55. Define H,, as follows:

V(Hu) = V(H)\ {v}
and
EHy) ={e:vé¢ec E(H)} U{{u,z,y} : {v,z,y} € E(H) and {u,z,y} ¢ E(H)}.

Clearly, |V(Hy,)| = N—1and |[E(H,)| < |E(H)| < S—S(R(’Cf))). By the inductive hypothesis
there is a 2-coloring ¥, of the edges of H, with no monochromatic ICS’). Let T =T, =
Ny(u,v) = {w € V(H) : {u,v,w} € E(H)}. Thus, Ty C V(H,) and |T1] < g—; If there
exists S1 C T such that [S1| > & and H,[S1U{u}] is monochromatic, then set T = 71\ S1.
If there exists Sy C T, such that [So| > % and H,[S2 U {u}] is monochromatic, then set
T3 =Ty \ S2. We continue this process obtaining

T=5USU---US,,ul,

where H,[S; U {u}] is monochromatic, [S;| > %, and H,[U U {u}] contains only monochro-
matic cliques of order at most 7.
Now we define a 2-coloring x of H.

(i) If v ¢ e, then x(e) = xu(e).
(ii) fv ee={v,z,y} and u ¢ e, then x(e) = xu({u, z,y}).

(iii) If {u,v} C e = {u,v,z} and = € S;, then e takes the opposite color to the color of
Ho[Si U {u}].

(iv) If {u,v} Ce={u,v,z} and = € U, then color e arbitrarily.

Now suppose that there is a monochromatic clique K = ICS’) in H. Such a clique

must contain v. Now there are two cases to consider. If u ¢ V(K), then the subgraph of
H,, induced by V(K) U {u} \ {v} is also a monochromatic copy of K, a contradiction.
Otherwise, u € V(K). Thus, V(K) \ {u,v} C T and |V(K) \ {u,v}| =n — 2. Observe that
[V(K)NS;| <2 and |[V(K)NU| < %. But this yields a contradiction

n2
n—2= V) \{uv} <2m+> <232 4 2T op o
4 7 n 42
for n > 4. O



4 Trees

First for convenience we recall the definition of a hypertree. Given integers 1 < ¢ < k and

n, recall that a k-graph 7;1(]2) of order n with edge set {ei1,...,en} is an £-tree, if for each
2 < j < m we have |e; N U1§i<j eil <l ande;N U1§i<j ei C e;, for some 1 <ig < j.

Proof of Theorem [2.4, Fix 1 < /¢ < k. We are to show that R(ﬂ’?) = O(n**1). Recall
that a partial Steiner system S(t,k,N) is a k-graph of order N such that each t-tuple is
contained in at most one edge. Due to a result of R6dl [17] it is known that there is a
constant Ny = Ny(t, k) such that for every N > Ny there is an S = S(t,k, N) with the
number of edges satisfying

9 (1) (+)
= SES) < (6)
k k
10 () (2)
(see also [14} 19, 20} 21] for similar results). It is easy to observe that for 1 < s < ¢ every

(3=

s-tuple is contained in at most ) edges.

t—s

Fix 1 < /¢ < k. Let N = [en] + ¢, where the constant ¢ is defined as

c:max{No(E—i—l,k),2;)(€+1)(£f1>}.

Let H be a S(¢ + 1,k, N) satisfying (@ Observe that if £ + 1 = k, then H can be viewed
as a complete k-graph of order N. Clearly, |[E(H)| = O(n’*!). It remains to show that for

any T = 7;(7’? tree, H — T.
Define a degree of a set U C V(H) (1 < |U| < k) by

deg(U) ={e€ E(H) : e D U}|
and for E(H) # 0 a minimum (non-zero) £-degree by
0¢(H) = min{deg(U) : |U| = ¢ and U C e for some e € E(H)}.

First observe that for any 2-coloring of the edges of H, there is a monochromatic sub-
hypergraph F with §;(F) > n. Indeed, suppose that # is colored with blue and red colors.
Assume by symmetry that the red hypergraph R has at least %|E (H)| edges. Set Rgp = R.
If there exists Uy C V(Ro) with degg, (Us) < n, then let Ry = Rg — Uy (we remove Uy
and all incident to Uy edges). Now we repeat the process. If there exists Uy C V(R1) with
deggr, (U1) < n, then let Ry = Ry — Uy. Continue this way to obtain hypergraphs

R=Ro2R12R22 2R,

where either d;(R,,) > n or R, is empty hypergraph. But the latter cannot happen, since
the number of removed edges from R is less than

N N\ (+1 NNe+1 9 (f) 1
— — < < 2. el )
<£>” <£+1>N—£”—<£+1> c =20 (Zk)<2’E(H)’




Figure 1: A star of order n with ”T_l arms each of length 2.

Now we greedily embed 7T into F = R,,. At every step we have a connected sub-tree
7: C T. Assume that we already embedded i edges of T obtaining 7;. Let |U| < ¢ be such
that U C e for some e € E(T;). Observe that there is always an edge f € E(F)\ E(T;) such
that fNV(7;) = U. Indeed, if |U| = ¢, then this is true since degr(U) > n and |V (T;)| <n
and every (¢ + 1)-tuple of vertices of F is contained in at most one edge in F. Otherwise,
if |U| < ¢, first we find a set W C V(F) \ V(7;) such that [W| = /¢ — |U| and U U W is
contained in an edge of F, and next apply the previous argument to U U W. Thus, we can
extend 7; to T;+1, as required. O

As mentioned in the introduction, it would be interesting to decide whether Theo-
rem [2.4] is tight up to the hidden constant. This is definitely the case for ¢ = 1. In-
deed, let 7 be a k-uniform star-like tree of order n defined as follows. Assume that
2k — 2 divides n — 1. T consists of J=% arms P; (each with two edges): E(P;) =
{{v,wiwh, .o wt F{wi wh oo wh, o), where 1 < i < 2’};12 and all w§ vertices
are pairwise different (see Figure [I).

Assume that H — 7 and color e € H by red if degree (in H) of every vertex in e is less
than %; otherwise e is blue. Since H — (7)§ and there is no red copy of T, there must be
a blue copy of 7. Every edge in such a copy has at least one vertex of degree at least %

(in H). Since T has 27114:7_—12 vertex disjoint edges and every edge (in H) can intersect at most
3 of those disjoint edges,
- 1 n—-1 n-1

—_ . . — 2
R(T)z 3 o5 op—g = )

5 Paths

In this section we prove Proposition [2.7] and Theorem

Proof of Proposition Let H be a graph satisfying H — P, and |E(H)| = O(n)
(cf. ) We construct a k-graph H as follows. Replace every vertex v € V(H) by an
(-tuple {v1, v, ..., v} (different for every v) and each e = {v,w} € E(H) by

{v1,--ww,wlwwwe,wh--.,ﬂ?kﬂé},



where x1, ..., z,_9 are different for every edge e, too. Thus, H is a k-graph with |V (H)| =
UV (H)|+ (k—2¢)|E(H)| and |[E(H)| = |E(H)|. Now color E(H). This coloring (uniquely)
defines a coloring of E(H). Since H contains a monochromatic copy of P,, H also contains
k) k)

a monochromatic copy of 7775 ;- Consequently, H — PT(L ; and the proof is complete. O

‘We now turn to the main result of this section which we restate for convenience.

Theorem Fiz k > 3 and let a« = (k — 2)/((k51) +1). Then

~

RPI_) = O(mF 1= (logn) ).

First we prove an auxiliary result. In order to do it we state some necessary notation.

Set
1

(1) +1

For a graph G = (V, E) let T;(G) be the set of all cliques of order ¢ and let t, = |T;(G)|.
Let A C V and B C T;_1(G) be a family of pairwise vertex-disjoint cliques. Define x4z
as the number of k-cliques of G which k£ — 1 vertices form a vertex set of some B € B and
the remaining vertex is from V' \ (AU Jgeg V(B)). Similarly, let y4 5 be the number of
k-cliques in G which k — 1 vertices form a vertex set of some B € B and the remaining

vertex is from AU (Jgez V(B). Finally, let z¢ (for C C V) be the number of k-cliques
containing at least one vertex from C.

8=

Proposition 5.1 Let k > 3 be an integer and let ¢ = 33% Then there exists a graph
G = (V,E) of order n (for sufficiently large n) satisfying the following:

(i) For every ACV, |A| <cn, and every B C Tp_1(G), |B| = cn, vertex disjoint (k —1)-
cliques such that ANJgeg V(B) =0 we have

1
< .
YAB S T TAB
(ii) For every C CV, |C| < (k—1)en,
tk
Z —_
©= 4k
(iii) The total number of k-cliques satisfies
t < Vnk 1fa(10g n)lJroz’

(2)
where v = (3/2)’“%.



Proof. Tt suffices to show that the random graph G € G(n,p) with p = d(logn/n)? and
d = 3000 satisfies a.a.s[l - .

Below we will use the following bounds on the tails of the binomial distribution Bin (n, p)
(for details, see, e.g., [13]):

2
Pr(Bin (n.p) < (1 — 1)E(X)) < exp (—”ﬂm) , ()

Pr(Bin (n,p) > (1 +v)E(X)) < exp (—?E(X)) . (8)

First we show that G a.a.s. satisfies (if). Fix an A C V and B C T;_1 with |B| = cn.
Observe that without loss of generality we may assume that |A| = cn. Note that x4 5 ~
Bin (cn(n — cn — (k — 1)en), pF=1). Thus,

E(xan) =c(l— k:c)n2pk’1 = dk*10(1 _ kc)n%(k*l)ﬁ(log n)(k,l)ﬂ
and @) (applied with v = 1/2) implies

Pr (I‘A,B < E(ZA’B)> < exp <—;E($A,B)>

k—1
= exp <—d S (1 — ke)n?= k=D (10g n)(k_l)ﬁ) . 9)
Now we bound from above the number of all possible choices for A and B. Clearly we
have at most n“" choices for A. Observe that the number of choices for B can be bounded
from above by the number of ways of choosing an ordered subset of vertices of size (k —
L)cn. Indeed, suppose that v1,...,V(k—1)e, 18 such a choice. Then B can be defined as
{{vl, o k1 Uk V22 ) - AV = Den—kt15 - - - ,U(k_l)m}}. Thus we conclude that
there are at most n*“" ways to choose A and B. Hence, by @D

E(ras E(ras
Pr g{fﬂA,BS ( 5 )} §nkcnPI‘ <$A,B§(2)

< exp (kcn logn — dk8_lc(1 — ke)n?~ kDB (10g n)(k—1)5>
= o(1). (10)
Similarly, since ya g ~ Bin (cn - ken, pP=1),
E(yag) = k2n2pht = dF 1 jc?n2= (D8 (1og n) (=15

i = 1 1
and since ¢ = 53 < HETEVE

20k + 1) 2(k+1)
dk‘—lkCZnZ—(k—l)ﬁ(log TL)(k_l)’B

E(zap) _ c(l —ke) 12— (=18 (1 1) (=18

>

E(ya,B)-

oW w

LAn event E, occurs asymptotically almost surely, or a.a.s. for brevity, if lim,_, . Pr (En) =1.



Inequality (applied with v = 1/2) yields

E(zan 3 1
Pr <yA,B > 2()> < Pr (?/A,B > 2E(yA,B)> < exp <_12E(?JA,B)> -

(k+1)
Therefore, we deduce that
P P < plen ——FE =o(1). 11
r Al Bl{yA,B Zokrn )| =Pl (yaB) | = o(1) (11)

Consequently, by and we get that a.a.s.

E(zag) = zapB
yaB < <
2k+1) — k+1
for any choice of A and B. This finishes the proof of .
For each vertex v € V, let degy,(v) denote the number of k-cliques of G which contain v.
In order to show that a.a.s. G also satisfies , we will first estimate degy, (v) for each v € V.
The standard application of (8) (applied with Bin (n — 1, p) and v = 1/2) with the union
bound imply that a.a.s. the degree of every vertex v € V(G) satisfies

deg(v) < gdnlfﬁ(log n)®.

The number of k-cliques which contain v is equal to the number of (k — 1)-cliques in
the neighborhood of v. Therefore, in order to show it suffices to bound the number of
(k — 1)-cliques in any set of size at most 3dn'~#(logn)P.

Let S C V with s = |S| = 3dn'~P(logn)’. First we will decompose all (k — 1)-tuples of
S into linear (k — 1)-uniform hypergraphs S1,So, ..., Sy, with

m= (1+o(1)><kil> (/@;1)/(;

(3)
(*3")
for every 1 < i < m. That means that each (kK — 1)-tuple of S belongs to exactly one S;
and each pair of elements of S appears in at most one (k — 1)-tuple in S;. The existence
of such a decomposition follows from a more general result of Pippenger and Spencer [16]
(see also [10]).

Let s; be the random variable that counts the number of (k — 1)-tuples of S; which
k—1
2

appear as (k — 1)-cliques of G. Observe that s; ~ Bin (]Si|,p( )> Therefore for each 1,

() %5

&7

and
|Sil = (1+0(1))

E(si) = (1 +0(1))




and by (§) (with v =1/2)

Pr <5i > gE(si)) < exp (1121@(51-)> < exp ( 32+ () 1B log n)1+ﬁ> .

16k2

Consequently, the union bound over all subsets S C V of size s and over all ¢ for each
1 <i < m implies

Pr U{Sz > ZE(Si)} < (Z) M - exp (—é}fzd“(k;)nlﬁ(logn)”ﬁ)

S,i

IN

n® - sF73 . exp <— 163k2 d2+(k§1)n1*5(log n)1+ﬂ>

= s"3 . exp (s logn — 62 d2+(k;1)n1_ﬁ(log n)HfB)
3 3 k-1
_ k-3 1-8 148 2+
=3 - exp <n (logn) <2d_16k:2d ("3 )>>
= 0(1)7
since s*~3 grows like a polynomial in n. Therefore it follows that a.a.s.
< 3 3
degy(v) = 3 si Sm- 5E(si) < 547 GE(s0) =m0 logm) e, (12)
i=1
where
3\ ¥ a(>) (13)
v=|=z| ————.
2) (k—=1)(k-2)

In a similar way one can show that
degy(v) > AnlF=20-9) (1gg n) 1+,

where

1\*1 as)
A== —_—. 14
== -
Note that equation gives the bound

t < yn(k—Z)(l—,B)-‘rl(lOgn)l—l-a _ ynk—l—a(logn)l—ka,

which proves part .
Now we finish the proof of . Since each k-clique is counted exactly k times, the
number of k-cliques is a.a.s. at least

ty > % AnF=20=8) (og p) 1o = %nk_l_“(log n)tte, (15)

11



It follows now from and that given a set C C V', |C| < (k — 1)cn, the number of
k-cliques of G which intersect C' is a.a.s. at most

k—1Dkv X c(k—1)k
Finally observe that , together with the choice of ¢ yield that
clk—1Dkv 1
S G
A — 4k
implying condition , as required. O

Now we are ready to prove main result of this section.

Proof of Theorem We show that there exists a k-graph H with
|H| = O(n*~1=*(logn)'**) such that any two-coloring of the edges of H yields a monochro-
matic copy of PT(Lk,i_l.

Let G be a graph from Proposition Set V(H) = V(G) and let E(H) be the set of

k-cliques in GG. We prove that such H is a Ramsey k-graph for 73( ) _, with m = cn, where

1
C= 5.
33k
Take an arbitrary red-blue coloring of the edges of Hy = H and assume that there is
)

no monochromatic 73( ko1 We will consider the following greedy procedure which at each
step finds a blue tlght path of length i labeled as vy, vs,...,v

(1) Let B =0 be the trash set of (k— 1)-tuples and U = V(H) be the set of unused vertices
and set i := 0. At any point in the process, if |B| = m, then stop.

(2) (In this step @ = 0.) If possible, then choose a blue edge from U and label its vertices
by v1,...,v and then set i := k. Otherwise, if not possible, stop.

(3) (In this step i > k.) Let v;_g41,...,vi—1,v; be the labels of the last k — 1 vertices of the
constructed blue path. If possible, select a vertex v € U for which v;_g11,...,vi—1,vi,u
form a blue edge. Label u as v;y1, set U := U \ {u} and i := i + 1. Repeat this step
until no such u can be found.

(4) (In this step also ¢ > k.) Let v;_g41,...,vi—1,v; be the labels of the last k — 1 vertices
of the constructed blue path which cannot be extended in a sense described in step .
Remove these k — 1 vertices from the path and set B := BU{{v;_g+1,...,vi—1,v;}} and
1:=1—k+ 1. After this removal there are two possibilities:

(i) if ¢ < k, then put back vy,...,v; to U (i.e. U :=UU{vy,...,v;}), set i := 0, and
return to step (2);

(ii) otherwise, return to step (3).

This procedure will terminate under two circumstances: either |B| = m or no blue edge can

be found in step .
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First let us consider the case when |B| = m, that means, there are m vertex disjoint
(k — 1)-tuples in B. Denote by A the vertex set of the blue path which was obtained when

|B| = m. Clearly, |A| < m, otherwise there would be a blue 737(5),{71. We are going to
apply Proposition [5.1] with sets A and B. Notice that every edge of H which contains a
(k —1)-tuple from B and the remaining vertex from V() \ (AU |Jpcp B) must be colored
red. (This is because for a (k — 1)-tuple to end up in B, there must have been no vertex u
in step (3)) that could extend the blue path.) It also follows from step (3) that each (k—1)-
tuple in B is contained in at least one blue edge. Thus, Proposition implies that
yaB < %—‘rle7B' That means that the number of red edges which contain a (k — 1)-tuple
from B and the remaining vertex from U is at least k + 1 times the number of blue edges
with a (k — 1)-tuple from B.

Now remove all the blue edges from H which contain a (k — 1)-tuple from B and denote
such k-graph by Hi. Perform the above procedure on H;. This will generate a new trash
set By. Observe that By N B = (), since every edge of H; which contains a (k —1)-tuple from
B must be red. Again, if |B;| = m, then we use the same argument as above to find that the
number of red edges in H; which contain a (k — 1)-tuple from B; and the remaining vertex
from U is at least k + 1 times the number of blue edges in H; with a (k — 1)-tuple from
Bi. Indeed, we can again apply the inequality from Proposition . This is because y4 5,
is smaller than the number of all blue edges in H containing a (k — 1)-tuple from B;, while
(since we do not remove red edges) x4 g, remains same in both #; and H. Now remove the
blue edges from #; which contain a (k — 1)-tuple from B; obtaining a k-graph Hs. Keep
repeating the procedure until it is no longer possible.

At some point, we will run out of blue edges in H; for some j > 1, and the procedure will
terminate prematurely in step (2). In this case |B;| < m, |A| = 0 and U has no blue edges.
However, there still may be some blue edges which contain a vertex from (J BeB, V(B).
Proposition (applied for C' = Jpe B, V(B)) implies that the number of such edges

is at most
12

< —,
O =k

Let xiAﬁ and y%vB be the numbers corresponding to x4 5 and y4 5 obtained at the end
of the procedure applied to H;. Thus,

yfal,za < mﬁiA,B
foreach 0 <4 <j—1.
Let tg and tp denote the number of red and blue edges in . Observe that
th< S Yistio<—— 3wtk (16)
= AB “k+1 AB T gk

0<i<j—1 0<i<j—1

Furthermore, since all sets BB; are mutually disjoint, each red edge in H containing a (k —1)-
tuple from some B; can be only counted at most &k times. Thus,

Y ahg<k-tg (17)

0<i<j—1

13



Consequently, by and , we get

tg+ ok
E+1 27 4k

ty =tp +1tp <tp+

and so
4k -1 k+1 1

—t —t1..
1 kit

The conclusion is that there are more red edges than there are blue edges in H. If we reverse
the procedure and look for a red path instead of a blue one, we will conclude that there are
more blue edges than red edges. Since these two statements contradict each other, the only
way to avoid both statements is if a monochromatic path exists. O

tp >

6 Hypergraphs with bounded degree

In this section we prove Theorem which states that hypergraphs with bounded degree
can have nonlinear size-Ramsey numbers.

Proof of Theorem We modify an idea from Roédl and Szemerédi [I8]. For simplicity
we only present a proof for £ = 3, which can easily be generalized to kK > 3. The hypergraph
G will be constructed as the vertex disjoint union of graphs G; each of which is a tree with
a path added on its leaves. Next we will describe the details of such construction.

Set ¢ = % We make no effort to optimize ¢ and always assume that n is sufficiently

large.
21
‘P {logZ <0gzn>J _
log, logy n

Let
Consider a binary 3-tree B = (V,E) on 1 +2+ 4+ --- + 2! vertices rooted at vertex z (see
Figure . Denote by L(B) the set of all its leafs. Call the edge containing z the root edge.
Observe that
V(B)|=1+2+4+ - +2' =2 —1 <logyn (18)

(recall that n is large enough) and
|L(B)| = 2".

Let ¢ by an automorphism of B. Since the root edge e is the unique edge with exactly one
vertex of degree 1, p(z) = z. The other two vertices of e are permuted by . Consequently,
 permutes two vertices of every other edge. Hence, it is easy to observe that the order of
the automorphism group of B satisfies

|Aut(B)| = 21244271 921 92"

Now consider a tight path P of length |L(B)| placed on the leaves L(B) in an arbitrary
order. Considering labeled vertices of L(B) there are clearly |L(B)|! such paths. Label them
by P; for i = 1,2,...,|L(T)|!. Let B; be vertex disjoint copies of B and G; = B; UP;, where
V(Pi) = L(B).

14
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Figure 2: Binary 3-tree B on 1 4 2 + 4 4 8 vertices and rooted at vertex z.

Let ¢ be an isomorphism between G; and G;. Since the only vertices of degree 4 are on
paths P; and Pj, ¢(P;) = P;. Thus,

P(E(Bi) = ¢(E(Gi) \ E(Pi)) = E(G;) \ E(P;) = E(B;)

and so B; and B; are isomorphic. Thus, the number of pairwise non-isomorphic G;’s is at
least

t

(&) |

2
LB 2) e (Gl
Aut(B)] = 22 = g2 = gr 2 -

Set

q: LV?BNJ

and let G = Gy U --- UG, where all Gy, ...,G, are pairwise non-isomorphic. We show that
G is a desired hypergraph.
Clearly, |V (G)| < n. Furthermore, by (18], we get

n
VO =alV(B) 2 (e = 1) V) > 0~ logyn.
V(B)| ?
Moreover, A(H) = 4 and the independence number of G satisfies

n. (19)

©| oo

a(G) <

Indeed, let I C V = V(G) be an independent set of size « = a(G). We estimate the number
of edges e(I,V \ I) between sets I and V' \ I. First observe that

e(I,V\I) < AG)-|[V\I| < 4(n— a).

Next, since each triple between I and V \ I intersects one of the partition classes on 2

vertices and 0(G) = 1,

6(G9)-1I] _ «a
e(L,V\I) > =5 = 2.

This implies that



and so .

Now we are ready to finish the proof and show that for any 3-graph with

utl=

1
[E(H)| < %n(logQ n)

we have H - G. )
Set d = (logyn)5 and define Vjgn C V(H) as

Vhigh = {v € V(H) : deg(v) > d}

and
Viow = V(H) \ Vhigh-

Clearly, |Viign| < 15; for otherwise, |[E(H)| > 1% - d - & > |E(H)|, a contradiction.

Recall that G consists of ¢ pairwise non-isomorphic copies of G;. We estimate the number
of copies of G;’s contained in a sub-hypergraph induced by V},,,. First fix an edge e in Vi, [H]
and count the number of copies of G;’s for which e is a root edge. Since deg(v) < d for each

v € Viow, we get that this number is at most

2. 2logg n 4
logg logon — n5?

3. @2 2t o 22t o (log, n)é

where the factor 3 counts the number of choices for the root vertex, the next factors count
the number of possible B;’s with e as a root, and the last factor counts the number of paths
on the set of leafs. Thus, there is an ig such that G;, appears in Viy,[H] at most

S

4 4 1
5. |FE 5 . 1 5

q logy

times.
Denote by F the sub-hypergraph consisting of root edges from all copies of G;, in Vj, [H].
Thus,
4 6
|[V(F)| < 3n3s(logygn)s.

Color edges in F together with edges incident to Vj;4, blue; otherwise red. Clearly, there
is no red copy of G, since there is no red copy of G;,. Moreover, there is no blue copy of G,
since every blue sub-hypergraph of order |V (G)| has an independent set of size at least

n 4 6 9 4 6
VA = Vaign| = [V(F)| > (n —logy n) — 15 —3n5 (logyn)s = 1 5n —logyn —3ns (logy n)*,

10
which is strictly bigger than «(G) (cf. (19)). O
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