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Abstract

We take an application of the Kernel Lemma by Kostochka and Yancey [10] to
its logical conclusion. The consequence is a sort of magical way to draw conclusions
about list coloring (and online list coloring) just from the existence of an independent
set incident to many edges. We use this to prove an Ore-degree version of Brooks’
Theorem for online list-coloring. The Ore-degree of an edge xy in a graph G is θ(xy) =
dG(x) + dG(y). The Ore-degree of G is θ(G) = maxxy∈E(G) θ(xy). We show that every

graph with θ ≥ 18 and ω ≤ θ
2 is online

⌊

θ
2

⌋

-choosable. In addition, we prove an upper
bound for online list-coloring triangle-free graphs: χOL ≤ ∆+1−⌊14 lg(∆)⌋. Finally, we
characterize Gallai trees as the connected graphs G with no independent set incident
to at least |G| edges.

1 Introduction

In [10], Kostochka and Yancey applied the Kernel Lemma to a coloring problem in a novel
manner. Our Main Lemma generalizes and strengthens their idea. The basic idea is that
given an independent set that is incident to many edges, we can find a reducible configuration.
In this way, we can reduce coloring problems to the mere existence of a large independent
set. Before stating the Main Lemma we need to introduce some notation, and define the
concepts of f -choosable and online f -choosable graphs.

Let G = (V,E) be a graph. We write |G| for |V | and ‖G‖ for |E|. For A,B ⊆ V ,
put ‖A,B‖G :=

∑

v∈A |NG(v) ∩ B|. Also, put ‖A‖G := ‖G[A]‖. Note that ‖A,B‖G =
‖Ar B,B rA‖G + 2 ‖A ∩B‖G. In particular, ‖A,B‖G = ‖B,A‖G and ‖V, V ‖G = 2 ‖V ‖G.
When the graph G is clear from context we drop the G from the notation and write ‖A,B‖
and ‖A‖. For v ∈ V , let N [v] = N(v) ∪ {v}.

Let G = (V,E) be a graph. A list assignment on G is a function L from V to the subsets
of N. A graph G is L-colorable if there is π : V → N such that π(v) ∈ L(v) for each v ∈ V
and π(x) 6= π(y) for each xy ∈ E. For f : V → N, a list assignment L is an f -assignment
if |L(v)| = f(v) for each v ∈ V . We say that G is f -choosable if G is L-colorable for every
f -assignment L.

∗School of Mathematical and Statistical Sciences, Arizona State University
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Online choosability was independently introduced by Zhu [21] and Schauz [18] (Schauz
called it paintability). Let G = (V,E) be a graph and f : V → N. We say that G is
online f -choosable if |G| = 0 or both f(v) ≥ 1 for all v ∈ V and for every S ⊆ V there is
an independent set I ⊆ S such that G − I is online f ′-choosable where f ′(v) := f(v) for
v ∈ V r S and f ′(v) := f(v)− 1 for v ∈ S r I.

Observe that if G is online f -choosable then it is f -choosable: For any f -list assignment L
on G, let v ∈ V (G), α ∈ L(v), and S = {x ∈ V (G) : α ∈ L(x)}. As G is online f -choosable,
there is an independent set I ⊆ S with G − I online f ′-choosable. Color each vertex of I
with α, and let L′ be the f ′-list assignment on G−I obtained by removing α from every list.
Arguing inductively (with a trivial basis) yields an L′-coloring of G− I, and an L-coloring
of G.

When f(v) := k − 1 for all v ∈ V (G), we say that G is online k-list-critical if G is not
online f -choosable, but every proper subgraph H of G is online f

∣

∣

V (H)
-choosable.

Main Lemma. Let G = (V,E) be a nonempty graph and f : V → N with f(v) ≤ dG(v) + 1
for all v ∈ V . If there is an independent A ⊆ V such that

‖A, V ‖ ≥
∑

v∈V

dG(v) + 1− f(v),

then G has a nonempty induced subgraph H that is (online) fH-choosable where fH(v) :=
f(v) + dH(v)− dG(v) for v ∈ V (H).

As a simple first application, we show that Brooks’ Theorem can be derived from the
simple bound on the independence number it implies. In particular, the proof shows that
Brooks’ Theorem for list coloring [20] and online list coloring [7] follow from Brooks’ Theorem
for ordinary coloring.

Brooks’ Theorem for Independence Number. If G is a graph with ∆ := ∆(G) ≥ 3

and K∆+1 6⊆ G, then α(G) ≥ |G|
∆
.

To prove Brooks’ Theorem, consider a minimal counterexample G. By minimality G is
regular: if d(x) < ∆ then G − x has a ∆-coloring, and some color is used on no neighbor
of x, a contradiction. Hence for any maximum independent set A in G, Brooks’ Theorem
for Independence Number gives ‖A, V (G)‖ ≥ |A|∆ ≥ |G|. Applying the Main Lemma with
f(v) := dG(v) gives a nonempty induced subgraph H of G that is (online) dH-choosable. So,
after ∆-coloring G−H by minimality of G, we can finish the coloring on H , a contradiction.

A bound like Brooks’ Theorem in terms of the Ore-degree was given by Kierstead and
Kostochka [8] and subsequently the required lower bound on ∆ was improved in [15, 12, 17].
For example, we have the following.

Definition 1. The Ore-degree of an edge xy in a graph G is θ(xy) := d(x) + d(y). The
Ore-degree of a graph G is θ(G) := maxxy∈E(G) θ(xy).

Theorem 1.1. Every graph with θ ≥ 10 and ω ≤ θ
2
is

⌊

θ
2

⌋

-colorable.
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Another method for achieving the tightest of these results on Ore-degree was given by
Kostochka and Yancey [10]. Their proof combined their new lower bound on the number of
edges in a color critical graph together with their list coloring lemma derived via the kernel
lemma. The Main Lemma improves this latter lemma and, in a similar way, we use it in
combination with our lower bound on the number of edges in online list-critical graphs [9]
to prove an Ore-degree version of Brooks’ Theorem for online list coloring.

Now we introduce the key graph theoretic parameter for this paper.

Definition 2. The maximum independent cover number of a graph G is the maximum
mic(G) of

∑

v∈I dG(v) (= ‖I, V (G)‖) over all independent sets I of G. A set I that witnesses
this maximum is said to be optimal.

We work in terms of a class of graphs that is more general than the class of online k-list-
critical graphs. Basically, we want graphs G that have no induced subgraph H such that
every online (k− 1)-list-coloring of G−H can be extended to H . We can replace k− 1 with
δ(G) and still get a generalization of online k-list-critical since an online k-list-critical graph
has minimum degree at least k− 1. Doing so, we get the following graph class that does not
depend on k, but still does everything we need.

Definition 3. A graph G is OC-reducible to H if H is a nonempty induced subgraph of G
which is online fH -choosable where fH(v) := δ(G) + dH(v)− dG(v) for all v ∈ V (H). If G is
not OC-reducible to any nonempty induced subgraph, then it is OC-irreducible.

The Main Lemma can be used to give another lower bound on the number of edges in a
critical graph G. Viewed differently, it gives an upper bound on mic(G).

Theorem 2.4. Every OC-irreducible graph G satisfies mic(G) ≤ 2 ‖G‖− (δ(G)−1) |G|−1.

This quickly gives the aforementioned Ore degree version of Brooks’ Theorem for list coloring.

Theorem 3.13. Every graph with θ ≥ 18 and ω ≤ θ
2
is

⌊

θ
2

⌋

-choosable.

Note that using Kostochka and Stiebitz’s lower bound on the number of edges in a list
critical graph [13] gives a weakened version of Theorem 3.13 with θ ≥ 54 instead of θ ≥ 18.
Similarly, we get the online version.

Theorem 3.12. Every graph with θ ≥ 18 and ω ≤ θ
2
is online

⌊

θ
2

⌋

-choosable.

We expect that Theorems 3.12 and 3.13 actually hold for θ ≥ 10. In the regular coloring
case, it was shown in [12] that the only exception when θ ≥ 8 is the graph O5; where On is
the graph formed from the disjoint union of Kn − xy and Kn−1 by joining

⌊

n−1
2

⌋

vertices of
the Kn−1 to x and the other

⌈

n−1
2

⌉

vertices of the Kn−1 to y. Again, the expectation is that
the same result will hold for Theorems 3.12 and 3.13.

A simple probabilistic argument gives a reasonable bound on mic(G) for triangle-free
graphs and we get the following.

Corollary 5.3. Triangle-free graphs are online
(

∆+ 1−
⌊

1
4
lg(∆)

⌋)

-choosable.

In the final section, we characterize Gallai trees as the connected graphs G that have
mic(G) = |G| − 1, and some further characterizations.
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2 Proving the Main Lemma

A kernel in a digraphD is an independent set I ⊆ V (D) such that each vertex in V (D)rI has
an edge into I. A digraph in which every induced subdigraph has a kernel is kernel-perfect.

Kernel Lemma. Let G = (V,E) be a graph and f : V → N. If G has a kernel-perfect
orientation such that f(v) ≥ d+(v) + 1 for each v ∈ V , then G is online f -choosable.

Lemma 2.1 (Kostochka and Yancey [10]). Let A be an independent set in a graph G and
let B := V (G)rA. Any digraph D created from G by replacing each edge in G[B] by a pair
of opposite arcs and orienting the edges between A and B arbitrarily is kernel-perfect.

Proof. Let G be a minimum counterexample, and let D be a digraph created from G that
is not kernel-perfect. To get a contradiction it suffices to construct a kernel in D, since each
subdigraph has a kernel by minimality. Either A is a kernel or there is some v ∈ B which
has no outneighbors in A. In the latter case, each neighbor of v in G has an inedge to v, so
a kernel in D − v −N(v) together with v is a kernel in D.

The following lemma is folklore and can be derived from Hall’s theorem by vertex split-
ting. It also follows by taking an arbitrary orientation and repeatedly reversing paths if
doing so gets a gain.

Lemma 2.2. Let G = (V,E) be a graph and g : V → N. Then G has an orientation such
that d−(v) ≥ g(v) for all v ∈ V if and only if for every X ⊆ V , we have

‖X‖+ ‖X, V rX‖ ≥
∑

v∈X

g(v).

For independent A ⊆ V (G), we write GA for the bipartite subgraph G−E(G−A) of G.
Thus G is the edge-disjoint union of GA and G[V (G)r A].

Lemma 2.3. Let G = (V,E) be a graph and f : V → N with f(v) ≤ dG(v)+1 for all v ∈ V .
If there is an independent A ⊆ V such that each X ⊆ V (GA) satisfies

‖X‖GA
+ ‖X, V (GA)rX‖GA

≥
∑

v∈X

(dG(v) + 1− f(v)).

then G is online f -choosable.

Proof. Applying Lemma 2.2 on GA with g(v) := dG(v)+ 1− f(v) for all v ∈ V (GA) gives an
orientation of GA where d−(v) ≥ dG(v) + 1− f(v) for each v ∈ V (GA). Make an orientation
D of G by using this orientation of GA for the edges between A and V (G)rA and replacing
each edge in G−A by a pair of opposite arcs. For v ∈ V (D), where dG−A(v) = 0 if v ∈ A,

d+(v) ≤ dG−A(v) + dGA
(v)− (dG(v) + 1− f(v)) = f(v)− 1,

so f(v) ≥ d+(v) + 1. By Lemma 2.1, D is kernel-perfect, so the Kernel Lemma implies G is
online f -choosable.
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Proof of Main Lemma. Let A ⊆ V be an independent set with

‖A, V ‖ ≥
∑

v∈V

(dG(v) + 1− f(v)) .

Choose a nonempty induced subgraph H of G with ‖HA‖ ≥
∑

v∈V (H) (dH(v) + 1− fH(v))

minimizing |H| (we can make this choice since G is a such a subgraph). Suppose H is not
online fH -choosable. Then, by Lemma 2.3, we have X ⊆ V (HA) with

‖X‖HA
+ ‖X, V (HA)rX‖HA

<
∑

v∈X

(dH(v) + 1− fH(v)).

Now X 6= V (H) by our assumption on ‖HA‖, hence Z := H − X is a nonempty induced
subgraph of G with

‖ZA‖ = ‖HA‖ − ‖X‖HA
− ‖X, V (HA)rX‖HA

>
∑

v∈V (H)

(dH(v) + 1− fH(v))−
∑

v∈X

(dH(v) + 1− fH(v))

=
∑

v∈V (Z)

(dZ(v) + 1− fZ(v)) ,

contradicting the minimality of |H|.

As a special case we get:

Theorem 2.4. Every OC-irreducible graph G = (V,E) satisfies

mic(G) ≤ 2 ‖G‖ − (δ(G)− 1) |G| − 1.

Proof. As G is OC-irreducible, it has no proper, induced, online fH-choosable subgraph H ,
where fH(v) = δ(G) + dH(v)− dG(v). Let A ⊆ V be an optimal set. By the Main Lemma

mic(G) = ‖A, V ‖ <
∑

v∈V

(dG(v) + 1− δ(G)) = 2 ‖G‖+ |G|(1− δ(G)).

3 Ore version of Brooks’ Theorem for (online) list coloring

For a graph G, let H(G) be the subgraph of G induced on the vertices of degree greater than
δ(G) and L(G) the subgraph of G induced on the vertices of degree δ(G).

Lemma 3.1. All OC-irreducible graphs G with H(G) edgeless and ∆(G) = δ(G) + 1 satisfy

1. mic(G) < |H(G)|+ |G|, and

2. (δ − 1) |H(G)| < |L(G)|, and 2 ‖G‖ <
(

δ(G) + 1
δ(G)

)

|G|.
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Proof. Put δ := δ(G) and ∆ := ∆(G). As ∆ = δ + 1, 2 ‖G‖ = δ |G| + |H(G)|. As H(G) is
edgeless, and using Theorem 2.4,

(δ + 1) |H(G)| ≤ mic(G) < 2 ‖G‖+ |G| (1− δ) = |H(G)|+ |G| .

Thus (1) holds, and δ |H(G)| < |G|, (δ − 1) |H(G)| < |L(G)|, and 2 ‖G‖ < (δ+1/δ) |G|.

To break up our computations we reformulate Lemma 3.1 as an upper bound on σ where

σ(G) :=

(

δ(G)− 1 +
2

δ(G)

)

|L(G)| − 2 ‖L(G)‖ .

Lemma 3.2. If G is an OC-irreducible graph such that H(G) is edgeless and ∆(G) =

δ(G) + 1, then σ(G) <
(

4− 2
δ(G)

)

|H(G)|.

Proof. Put δ := δ(G). As (1 + δ) |H(G)| = ‖H(G),L(G)‖ = δ |L(G)| − 2 ‖L(G)‖,

σ(G) =

(

δ − 1 +
2

δ

)

|L(G)|+ (1 + δ) |H(G)| − δ |L(G)|

=

(

2

δ
− 1

)

|L(G)|+ (1 + δ) |H(G)|

<

(

2

δ
− 1

)

(δ − 1) |H(G)|+ (1 + δ) |H(G)| (Lemma 3.1.2)

=

(

4−
2

δ

)

|H(G)| .

We need the following bound from [9]. Put αk := 1
2
− 1

(k−1)(k−2)
and let c(G) be the

number of components in G.

Corollary 3.3. If G is an OC-irreducible graph with δ(G) ≥ 6 and ω(G) ≤ δ(G) such that
H(G) is edgeless, then σ(G) ≥ (δ(G)− 2)αδ(G)+1 |H(G)|+ 2(1− αδ(G)+1)c(L(G)).

By combining Lemma 3.2 with Corollary 3.3 we can prove the Ore version of Brooks’
Theorem for online list coloring for ∆ ≥ 11. With a bit more work we will improve this to
∆ ≥ 10. First, we can squeeze a bit more out of Theorem 2.4 by considering independent
sets of low vertices that have no high neighbors. Such sets can be added to V (H(G)) to get
a cut with more edges. To apply this idea we need the following counting lemma. For a
graph G and t ∈ N, let Vt = {v ∈ V (G) : d(v) = t}, Gt = G[Vt] and βt = α(Gt).

To apply this idea, we need to better understand the structure of L(G) when G is OC-
irreducible. A Gallai tree is a graph such that each block is a clique or odd cycle. A Gallai
forest is a disjoint union of Gallai trees. A classical result of Gallai [6] says that if G is a
k-critical graph, then L(G) is a Gallai forest. Borodin [3] and independently Erdős, Rubin
and Taylor [5] generalized Gallai’s result to show that a connected graph H is f -choosable
where f(v) = dH(v) for all v ∈ V (H) if and only if H is not a Gallai tree. In [7], Hladkỳ,
Král and Schauz extended this result to online f -choosability.
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Lemma 3.4 (Hladkỳ, Král and Schauz). A connected graph H is online f -choosable where
f(v) = dH(v) for all v ∈ V (H) if and only if H is not a Gallai tree.

In Section 6, we give another proof of Lemma 3.4 using our Main Lemma. We need
Gallai’s result for OC-irreducible graphs.

Lemma 3.5. If G is OC-irreducible, then L(G) is a Gallai forest.

Proof. Let G be an OC-irreducible graph and H a component of L(G). Since G is OC-
irreducible, H is not online fH-choosable where fH(v) := δ(G) + dH(v) − dG(v) for all
v ∈ V (H). But dG(v) = δ(G) for v ∈ V (H), so fH(v) = dH(v) for all v ∈ V (H). By
Lemma 3.4, H is a Gallai tree.

Lemma 3.6. Fix k ≥ 6. Let G be a Gallai forest with maximum degree at most k − 1 not
containing Kk. We have the following inequality:

(k − 1)βk−1(G) +
∑

v∈V (G)

k − 1− d(v) ≥
2(k − 3)

k − 2
|G| −

(k − 1)(k − 4)

k − 2
c(G).

Proof. It will suffice to prove that for any Gallai tree T with maximum degree at most k− 1
we have:

(k − 1)βk−1(T ) +
∑

v∈V (T )

(k − 1− d(v)) ≥
2(k − 3)

k − 2
|T | −

(k − 1)(k − 4)

k − 2
.

Suppose not and choose a counterexample T minimizing |T |. First, if T has only one
block it is easy to see that the inequality is satisfied. Let B be an endblock of T and say x
is the cutvertex in B. Suppose χ(B) ≤ k− 3. Put T ∗ := T − (B−x). By minimality of |T |,
T ∗ satisfies the inequality. Adding B−x back increases the left side by (k−χ(B)) |B − x|−

‖x,B − x‖ ≥ 2(|B| − 1), but only increases the right side by 2(k−3)
k−2

(|B| − 1), so T is not a
counterexample, a contradiction. Thus B is either Kk−2 or Kk−1.

Consider T ′ := T −B. First suppose dT (x) = k−1. Note that none of x’s neighbors in T ′

have degree k−1 in T ′ and thus are in no maximum independent set of degree k−1 vertices
in T ′. Therefore, we can add x to any such independent set, giving βk−1(T ) > βk−1(T

′).
Hence, after applying minimality to T ′, we see that adding back B increases the left side by
k − 1 + |B − x| − ‖x, T ′‖ = 2k − 4 if B is Kk−1 and by k − 1 + 2 |B − x| − ‖x, T ′‖ = 3k − 9

if B is Kk−2. Since the right side increases by only 2(k−3)
k−2

|B| in both cases, T satisfies the
inequality, a contradiction.

Otherwise, dT (x) ≤ k−2. So B is Kk−2 and dT (x) = k−2. Now adding B back, increases
the left side by 2(k − 3) + 1 − 1 and increases the right side by only 2(k − 3), so again T
satisfies the inequality, a contradiction.

Lemma 3.7. If G is an OC-irreducible graph such that H(G) is edgeless, ∆(G) = δ(G)+1 ≥

7 and K∆(G) 6⊆ G, then |H(G)| < δ(G)(δ(G)−3)
(δ(G)−1)(δ(G)−5)

c(L(G)).
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Proof. Put δ := δ(G). By Lemma 3.1.1 we have

mic(G) < |L(G)|+ 2 |H(G)| < |L(G)|+
2

δ − 1
|L(G)| =

δ + 1

δ − 1
|L(G)| .

By Lemma 3.5, L(G) is a Gallai forest. Pick I ⊆ Vk−1 with |I| = βk−1(G), and set
J = I ∪ H(G). As J is independent, applying Lemma 3.6 to the Gallai forest L(G) gives

mic(G) ≥ ‖J, V (G)‖ ≥ δβk−1(L(G)) +
∑

v∈V (L(G))

δ − dL(G)(v)

≥ 2
δ − 2

δ − 1
|L(G)| −

δ(δ − 3)

δ − 1
c(L(G)).

By Lemma 3.1.2, |L(G)| > (δ−1) |H(G)|. Combining this with the inequalities above proves
the lemma.

Lemma 3.8. Every OC-irreducible graph G with δ(G) + 1 = ∆(G) ≥ 10 such that H(G) is
edgeless contains K∆(G).

Proof. Suppose not and let G be a counterexample. Put δ := δ(G). Then

(

4−
2

δ

)

|H(G)| > σ(G) (Lemma 3.2)

≥ (δ − 2)αδ+1 |H(G)|+ 2(1− αδ+1)c(L(G)) (Corollary 3.3)

≥ |H(G)|

(

(δ − 2)αδ+1 + 2(1− αδ+1)
(δ − 1)(δ − 5)

δ(δ − 3)

)

(Lemma 3.7)

4−
2

δ
> αδ+1(δ − 2) + 2(1− αδ+1)

(δ − 1)(δ − 5)

δ(δ − 3)
.

Thus δ ≤ 8, a contradiction.

The following lemma from [18] allows us to infer online list colorability of the whole from
online list colorability of parts.

Lemma 3.9. Let G be a graph and f : V (G) → N. If H is an induced subgraph of G
such that G−H is online f

∣

∣

V (G−H)
-choosable and H is online fH-choosable where fH(v) :=

f(v) + dH(v)− dG(v), then G is online f -choosable.

Theorem 3.10. If G is a graph with ∆(G) ≥ 10 not containing K∆(G) such that H(G) is
edgeless, then G is online (∆(G)− 1)-choosable.

Proof. Suppose not and choose a counterexample G minimizing |G|. Then G is online f -
critical where f(v) := ∆(G)−1 for all v ∈ V (G). Hence δ(G) ≥ ∆(G)−1 and we may apply
Lemma 3.8 to get a nonempty induced subgraph H of G that is online fH -choosable where
fH(v) := ∆(G)− 1 + dH(v)− dG(v) for all v ∈ V (H). But then applying Lemma 3.9 shows
that G is (∆(G)− 1)-choosable, a contradiction.
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Combining Theorem 3.10 with the following version of Brooks’ Theorem for online list
coloring (first proved in [7]) we get Theorem 3.12.

Lemma 3.11. Every graph with ∆ ≥ 3 not containing K∆+1 is online ∆-choosable.

Theorem 3.12. Every graph with θ ≥ 18 and ω ≤ θ
2
is online

⌊

θ
2

⌋

-choosable.

Proof. Suppose not and choose a counterexample G minimizing |G|. Put k :=
⌊

θ(G)
2

⌋

.

Then G is online f -critical where f(v) := k for all v ∈ V (G). Hence δ(G) ≥ k and thus
∆(G) ≤ k + 1. If ∆(G) = k, then the theorem follows from Lemma 3.11. Hence we must
have ∆(G) = k+1. Therefore H(G) is edgeless, ∆(G) ≥ 10 and ω(G) ≤ ∆(G)−1. Applying
Theorem 3.10 shows that G is online (∆(G)− 1)-choosable, a contradiction.

The same result for list coloring is an immediate consequence.

Theorem 3.13. Every graph with θ ≥ 18 and ω ≤ θ
2
is

⌊

θ
2

⌋

-choosable.

4 Ore Brooks for maximum degree four

Kostochka and Yancey’s bound [10] shows that if G is 4-critical, then ‖G‖ ≥
⌈

5|G|−2
3

⌉

. If we

try to analyze 4-critical graphs with edgeless high vertex subgraphs by putting this lower
bound on the number of edges together with the results on orientations and list coloring
obtained in [10], the bounds miss each other. Using the improved bound from Lemma 3.1
we get an exact bound on the number of edges in such a graph.

Lemma 4.1. For a critical graph G with ∆(G) ≤ χ(G) = 4 such that H(G) is edgeless we

have ‖G‖ =
⌈

5|G|−2
3

⌉

and |G| is not a multiple of 3.

Proof. Since G is 4-critical, applying Lemma 3.1.1 gives 2 ‖G‖ <
(

3 + 1
3

)

|G| = 10
3
|G|. By

Kostochka and Yancey’s bound we have
⌈

5|G|−2
3

⌉

≤ ‖G‖ < 5
3
|G|. Hence ‖G‖ =

⌈

5|G|−2
3

⌉

and

|G| is not a multiple of 3.

It is easy to see that contracting a diamond in a critical graph G with ∆(G) ≤ χ(G) = 4
such that H(G) is edgeless gives another such graph. So, the following characterization of
these graphs is natural. Recently, Postle [14] proved this using an extension of the potential
method of Kostochka and Yancey.

Theorem 4.2 (Postle [14]). Every critical graph G with ∆(G) ≤ χ(G) = 4 such that H(G)
is edgeless, except K4, has an induced diamond. In particular, any such G can be reduced to
K4 by a sequence of diamond contractions.

9



5 Online choosability of triangle-free graphs

We write lg(x) for the base 2 logarithm of x. We can get a reasonably good lower bound
on mic(G) for triangle-free graphs using a simple probabilistic technique of Shearer and its
modification by Alon (see [1]).

Lemma 5.1. Every triangle-free graph G = (V,E) satisfies mic(G) ≥ 1
4

∑

v∈V lg(d(v)).

Proof. Let W be a random independent set in G chosen uniformly from all independent sets
in G. It suffices to show that E(‖W,V ‖) ≥ 1

4

∑

v∈V lg(d(v)). For each v ∈ V put

Xv :=

{

d(v) if v ∈ W

‖v,W‖ if v /∈ W
.

Then ‖W,V ‖ = 1
2

∑

v∈V Xv. By linearity of expectation it suffices to prove

E(Xv) ≥
1

2
lg(d(v)). (1)

To prove (1), let H := G[V r N [v]], fix an independent set S in H , and set X :=
N(v)rN(S). Put x := |X|. It suffices to prove that all such S satisfy

E (Xv | W ∩ V (H) = S) ≥
lg(d(v))

2
. (2)

Suppose (2) fails for S. As G is triangle-free, the independent sets W with W ∩V (H) = S
are exactly S ∪ {v} and S ∪X0 where X0 ⊆ X . Thus

lg(d(v))

2
> E (Xv | W ∩ V (H) = S) =

x2x−1 + d(v)

2x + 1
.

So 2x lg(d(v)) + lg(d(v)) > x2x + 2d(v). Putting t := lg(d(v))− x and rearranging yields

2xt = 2x (lg(d(v))− x) > 2d(v)− lg(d(v)) > d(v).

Now we have the contradiction
t

2t
=

2xt

d(v)
> 1.

Theorem 5.2. If G is a triangle-free graph and f : V (G) → N by f(v) := dG(v) + 1 −
⌊

1
4
lg(dG(v))

⌋

, then G has a nonempty induced subgraph H that is online fH-choosable where
fH(v) := f(v) + dH(v)− dG(v) for v ∈ V (H).

Proof. Immediate upon applying Main Lemma to G since

∑

v∈V (G)

dG(v) + 1− f(v) =
∑

v∈V (G)

⌊

1

4
lg(dG(v))

⌋

≤ mic(G).

10



Corollary 5.3. If G is a triangle-free graph with ∆(G) ≤ t for some t ∈ N, then G is online
(

t+ 1−
⌊

1
4
lg(t)

⌋)

-choosable.

Proof. Suppose not and choose a counterexample G and t ∈ N so as to minimize |G|. Put
f(v) := dG(v) + 1 −

⌊

1
4
lg(dG(v))

⌋

. By Theorem 5.2, G has a nonempty induced subgraph
H that is online fH-choosable where fH(v) := f(v) + dH(v) − dG(v) for v ∈ V (H). Since
t+1−

⌊

1
4
lg(t)

⌋

≥ dG(v)+1−
⌊

1
4
lg(dG(v))

⌋

for all v ∈ V (G), we have that H is g(v)-choosable
where g(v) := t+1−

⌊

1
4
lg(t)

⌋

+ dH(v)−dG(v). Now applying minimality of |G| and Lemma
3.9 gives a contradiction.

The best, known bounds for the chromatic number of triangle-free graphs are Kostochka’s
upper bound of 2

3
∆+ 2 in [11] (see [16] for a proof in English) for small ∆ and Johansson’s

upper bound of 9∆
ln(∆)

for large ∆. Johansson’s proof also works for list coloring, but not for
online list coloring. To the best of our knowledge Corollary 5.3 is the best, known-upper
bound for online list colorings of triangle-free graphs. Additionally, Corollary 5.3 improves
on Johansson’s bound for list coloring for ∆ ≤ 8000. The bound can surely be improved by
a more complicated computation of mic(G), but not beyond around ∆ + 1 − ⌊2 ln(∆)⌋ via
this method as can be seen by examples of triangle-free graphs with independence number
near 2 ln(∆)

∆
n.

6 Gallai Forests

Recall that a Gallai forest is a graph such that each block is a clique or odd cycle. In this
section we add to the many characterizations of Gallai forests.

6.1 Graphs with minimum mic

Lemma 6.1. Let G = (V,E) be a connected graph with a connected induced subgraph H.
Then mic(G) ≥ mic(H) + |G−H|. In particular, mic(G) ≥ |G| − 1.

Proof. Argue by induction on |G−H|. Plainly, |G−H| > 0. Let v /∈ V (H) be a noncutvertex
in G/H . By induction mic(G − v) ≥ mic(H) + |G − H − v|. Let A be an optimal set in
G− v. Put A′ := A ∪ {v} if ‖v, A‖ = 0; else put A′ := A. Then A′ is independent in G and
‖A′, V ‖ ≥ mic(H) + |G−H|. Letting |H| = 1 yields mic(G) ≥ |G| − 1.

Lemma 6.2. Every Gallai tree G = (V,E) satisfies mic(G) = |G| − 1.

Proof. Argue by induction on the number of blocks. If G has only one block then G is a
clique or an odd cycle, and the lemma holds. Else let B be an endblock with cutvertex x.
Then G′ := G− (B − x) is a Gallai tree with fewer blocks. Let A = I ∪ J be an optimal set
in G, where I ⊆ V (B) and J ⊆ V (G′). Lemma 6.1 and induction yield the equality

|G| − 1 ≤ mic(G) = ‖A, V ‖G = ‖I, V (B)‖B + ‖J, V (G′)‖G′ ≤ |B|+ |G′| − 2 = |G| − 1.

11



The next lemma has many different proofs [5, 4, 7]. Although it is known as Rubin’s
Block Lemma [5], the lemma was implicit in the much earlier work of Gallai [6] and Dirac.

Lemma 6.3 (Rubin’s Block Lemma). If G is a 2-connected graph that is not complete and
not an odd cycle, then G contains an even cycle with at most one chord.

Theorem 6.4. A connected graph G = (V,E) is a Gallai tree if and only if mic(G) = |G|−1;
otherwise mic(G) ≥ |G|.

Proof. By Lemmas 6.1 and 6.2, it suffices to show that mic(G) ≥ |G| when G is not a Gallai
tree. In this case Rubin’s Block Lemma implies G has an induced even cycle C with only
one possible chord xy. As C has an equitable 2-coloring, it has an independent set A with
|A| = |C|/2 that contains at most one of x and y. Then A is independent in H := G[C], so
mic(H) ≥ |H|. By Lemma 6.1, mic(G) ≥ mic(H) + |G−H| ≥ |G|.

6.2 f -AT graphs

For a graph G, we define d0 : V (G) → N by d0(v) := dG(v). The d0-choosable graphs were
first characterized by Borodin [3] and independently by Erdős, Rubin and Taylor [5]. The
connected graphs which are not d0-choosable are precisely the Gallai trees (connected graphs
in which every block is complete or an odd cycle). Hladkỳ, Král and Schauz [7] generalized
this classification to online d0-choosable graphs. In fact, they proved a classification in terms
of Alon-Tarsi orientations as follows. A subgraph H of a directed multigraph D is called
Eulerian if d−H(v) = d+H(v) for every v ∈ V (H). We call H even if ‖H‖ is even and odd
otherwise. Let EE(D) be the number of even, spanning, Eulerian subgraphs of D and
EO(D) the number of odd, spanning, Eulerian subgraphs of D. Note that the edgeless
subgraph of D is even and hence we always have EE(D) > 0.

Let G be a graph and f : V (G) → N. We say that G is f -Alon-Tarsi (for brevity, f -AT )
if G has an orientation D where f(v) ≥ d+D(v) + 1 for all v ∈ V (D) and EE(D) 6= EO(D).
One simple way to achieve EE(D) 6= EO(D) is to have D be acyclic since then we have
EE(D) = 1 and EO(D) = 0. In this case, ordering the vertices so that all edges point
the same direction and coloring greedily shows that G is f -choosable. If we require f to be
constant, we get the familiar coloring number col(G); that is, col(G) is the smallest k for
which G has an acyclic orientation D with k ≥ d+D(v) + 1 for all v ∈ V (D). Alon and Tarsi
[2] generalized from the acyclic case to arbitrary f -AT orientations.

Lemma 6.5. If a graph G is f -AT for f : V (G) → N, then G is f -choosable.

Schauz [19] extended this result to online f -choosability.

Lemma 6.6. If a graph G is f -AT for f : V (G) → N, then G is online f -choosable.

Hladkỳ, Král and Schauz [7] proved the following.

Theorem 6.7. A connected graph is d0-AT if and only if it is not a Gallai tree.
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6.3 d0-KP graphs

Acyclic orientations are also a special case of kernel-perfect orientations. A graph H is f -KP
if H has a kernel-perfect oriented supergraph H ′ with vertex set V (H), where f(v) > d+H′(v)
for all v ∈ V (H ′). This supergraph for f -KP gives us more power. For example K4 − e has
no kernel-perfect orientation D with dG(v) ≥ d+D(v) + 1 for every vertex v, but if H is the
result of doubling the edge that is in two triangles, then there is a kernel-perfect orientation
D of H with dG(v) ≥ d+D(v) + 1. We could allow a supergraph for f -AT as well, but this
doesn’t give us any more power. We will now prove the classification of connected d0-KP
graphs.

Lemma 6.8. A connected graph G is d0-KP if and only if some nonempty induced subgraph
of G is d0-KP.

Proof. The ‘only if’ direction is trivial. For the other direction, suppose G has a nonempty
induced subgraph that is d0-KP and choose H to be a maximal such subgraph. If H = G,
we are done, so suppose not. Let S = NG(V (H))rV (H). Then S 6= ∅ since G is connected.
We show that G[V (H)∪S] is d0-KP, violating maximality of H . Start with a kernel-perfect
oriented supergraph H ′ of H where dH(v) > d+H′(v) for all v ∈ V (H ′). Now create an
oriented supergraph Q′ of Q := G[V (H) ∪ S] by directing all edges from V (H) to S into S
and replacing each edge in Q[S] with arcs going both ways. Clearly, this oriented graph is
kernel-perfect. Each vertex in Q′[S] has at least one in-edge coming from V (H), so we have
dQ(v) > d+Q′(v) for all v ∈ V (Q′) as desired.

Corollary 6.9. A connected graph is d0-KP if and only if it is not a Gallai tree.

Proof. If G is a Gallai tree, then it is not d0-choosable and hence not d0-KP by the Kernel
Lemma. For the other direction, let G be a connected graph that is not a Gallai tree.
By Theorem 6.4, we have mic(G) ≥ |G|. Applying Main Lemma with f(v) := dG(v) for
all v ∈ V (G) gives a nonempty induced subgraph H of G that is fH -KP where fH(v) :=
f(v) + dH(v)− dG(v) = dH(v) for v ∈ V (H). Now Lemma 6.8 shows that G is d0-KP.
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