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DEGREE CONDITIONS FOR MATCHABILITY IN 3-PARTITE HYPERGRAPHS

RON AHARONI, ELI BERGER, DANI KOTLAR, AND RAN ZIV

Abstract. We study conjectures relating degree conditions in 3-partite hypergraphs to the matching number
of the hypergraph, and use topological methods to prove special cases. In particular, we prove a strong version
of a theorem of Drisko [14] (as generalized by the first two authors [2]), that every family of 2n−1 matchings
of size n in a bipartite graph has a partial rainbow matching of size n. We show that milder restrictions on
the sizes of the matchings suffice. Another result that is strengthened is a theorem of Cameron and Wanless
[11], that every Latin square has a diagonal (permutation submatrix) in which no symbol appears more than
twice. We show that the same is true under the weaker condition that the square is row-Latin.

1. Rainbow matchings and matchings in 3-partite 3-uniform hypergraphs

All conjectures and results mentioned in this paper can be traced back to a by now well known conjecture
of Ryser [20], that for n odd every Latin square possesses a full transversal, namely a permuatation submatrix
with distinct symbols. Brualdi [10] and Stein [21] conjectured that for general n, every n × n Latin square
possesses a partial transversal of size n − 1. Stein [21] generalized this still further, replacing the Latinity
condition by the milder requirement that each of the n symbols appears in n cells (implying, among other
things, that each cell contains precisely one symbol). See [22] for a survey on these conjectures and related
results.

These conjectures can be formulated in the terminology of 3-partite hypergraphs. We say that a pair
(X,Y ) of sides of a k-partite hypergraph H is simple if no pair (x, y) with x ∈ X, y ∈ Y appears in more
than one edge of H . A hypergraph is called simple if no edge repeats more than once. In this terminology,
an n×n Latin square is an n-regular 3-partite hypergraph with all sides of size n, and all three pairs of sides
being simple. For a hypergraph H denote by ν(H) the maximal size of a matching in H . In this language
the Brualdi-Stein conjecture is:

Conjecture 1.1. Let H be an n-regular 3-partite hypergraph with sides A,B,C, all of size n, and assume
that all three pairs of sides, (A,B), (B,C) and (A,C), are simple. Then ν(H) ≥ n− 1.

While Stein’s conjecture is:

Conjecture 1.2. Let H be an n-regular 3-partite hypergraph with sides A,B,C, all of size n, and assume
that the pair (A,B) is simple. Then ν(H) ≥ n− 1.

In fact, we believe that an even stronger (and more simply stated) conjecture is true:

Conjecture 1.3. Let H be a simple n-regular 3-partite hypergraph with sides of size n. Then ν(H) ≥ n− 1.

In the final section of this paper we shall present some yet more general conjectures. But let us first turn
to a concept pertinent to these conjectures, that of rainbow matchings. Given a family F1, . . . , Fm of sets, a
choice f1 ∈ F1, . . . , fm ∈ Fm is called a rainbow set. If the elements of the sets Fi are themselves sets, and if
the sets fi are disjoint, then the rainbow set is called a rainbow matching. If the elements of the sets in Fi

are edges of a bipartite graph G, then a rainbow matching is a matching in a 3-partite hypergraph, in which
the vertices of one side represent the sets Fi, and the other two sides are those of G.

A generalization of Conjecture 1.2 was proposed in [2]:
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Conjecture 1.4. Any n matchings of size n in a bipartite graph have a partial rainbow matching of size
n− 1.

Many partial results have been obtained on this conjecture, see, e.g., [23, 15, 5, 16, 8, 12, 13, 19].

What happens if we demand that ν ≥ n, rather than n− 1, or in the terminology of rainbow matchings
we want a rainbow matching of size n? Strangely, we need to almost double the requirement on the number
of matchings. Drisko [14] proved a theorem which was later generalized in [2] to:

Theorem 1.5. A family of 2n− 1 matchings of size n in a bipartite graph has a rainbow matching of size n.

This is sharp - repeating n − 1 times each of the matchings consisting respectively of the even edges in
C2n and the odd edges in C2n shows that 2n− 2 matchings do not suffice. In [7] this was shown to be the
only example demonstrating the sharpness of the theorem.

In 3-partite hypergraphs terminology, Theorem 1.5 reads:

Theorem 1.6. Let H be a 3-partite hypergraph with sides A,B,C, and assume that

(1) |A| = 2n− 1.
(2) deg(a) = n for every a ∈ A.
(3) The pairs (A,B) and (A,C) are simple.

Then ν(H) ≥ n.

It is plausible that condition (3) in this theorem is too restrictive.

Conjecture 1.7. Let H be a 3-partite hypergraph with sides A,B,C, and assume that

(1) |A| ≥ 2n− 1.
(2) deg(a) ≥ n for every a ∈ A.
(3) deg(v) ≤ 2n− 1 for every v ∈ B ∪ C.

Then ν(H) ≥ n.

The proofs of Theorem 1.5 given in [14, 2] were combinatorial. A topological proof yields a stronger
version:

Theorem 1.8. Let G = (V,E) be a bipartite graph and let F = {F1, F2, . . . , F2n−1} be a family of matchings
in G so that |Fi| ≥ i for i = 1, . . . , n− 1 and |Fi| = n for i = n, . . . , 2n− 1. Then F has a rainbow matching
of size n.

In fact, this condition is also necessary. Call a sequence of numbers a1 ≤ a2 ≤ . . . ≤ a2n−1 accommodating
if every family F = {F1, F2, . . . , F2n−1} of matchings in a bipartite graph satisfying |Fi| ≥ ai has a rainbow
matching of size n.

Theorem 1.9. A sequence a1 ≤ a2 ≤ . . . ≤ a2n−1 is accommodating if and only if ai ≥ min(i, n) for all
i ≤ 2n− 1.

We call a pair (X,Y ) of sides in a k-partite hypergraph H p-simple if no pair (x, y), for x ∈ X, y ∈ Y is
contained in more than p edges of H .

The following is a special case of Conjecture 1.7:

Theorem 1.10. Let H be a 3-partite hypergraph with sides A,B,C, and assume that

(1) |A| ≥ 2n− 1 and |B| = |C| = n,
(2) deg(a) = n for every a ∈ A, and
(3) The pair (A,C) is simple and the pair (B,C) is 2-simple.

Then ν(H) ≥ n.

This theorem will yield a strengthening of the following result of Cameron and Wanless [11], which can be
regarded as “half” of Conjecture 1.2:



DEGREE CONDITIONS FOR MATCHABILITY IN 3-PARTITE HYPERGRAPHS 3

Theorem 1.11. Every Latin square contains a permutation submatrix in which no symbol appears more than
twice.

For a set S of vertices in a hypergraph H let δ(S) (resp. ∆(S)) be the minimal (resp. maximal) degree of
a vertex in S. In this terminology, Theorem 1.11 is:

Theorem 1.12. Let H be an n-regular 3-partite hypergraph with sides A,B,C such that |A| = |B| = |C| = n,
and all pairs of sides are simple. Then there exists a set F of n edges, satisfying

(1) ∆F (B ∪ C) = δF (B ∪ C) = 1
(2) ∆F (A) ≤ 2.

Here the vertices in A represent symbols, those in B represent columns, and those in C represent rows.
Theorem 1.12 follows quite directly from Theorem 1.5:

Proof. For each a ∈ A let Ma = Na = {(b, c) | b ∈ B, c ∈ C | (a, b, c) ∈ H}. By the simplicity assumption,
these are matchings of size n. By Theorem 1.5, the set of matchings {Ma | a ∈ A} ∪ {Na | a ∈ A} possesses
a rainbow matching R of size n. Defining F = {(a, b, c) | (b, c) ∈ R} yields the desired result. �

The topological tools will allow us to strengthen Theorem 1.11 to row-Latin squares, namely squares in
which no symbol appears twice in the same row (but may appear more than once in the same column). In
3-partite hypergraph terminology:

Theorem 1.13. For the conclusion of Theorem 1.12 to hold it suffices that the two pairs (A,C) and (B,C)
are simple.

Of course, by symmetry, it suffices also to assume that (A,B) and (B,C) are simple.

2. A topological tool

For a graph G denote by I(G) the complex (closed down hypergraph) of independent sets in G. If
G = L(H), the line graph of a hypergraph H , then I(G) is the complex of matchings in H . A simplicial
complex C is called (homologically) k-connected if for every −1 ≤ j ≤ k, the j-th reduced simplicial homology

group of C with rational coefficients H̃j(C) vanishes. The (homological) connectivity ηH(C) is the largest k
for which C is k-connected, plus 2.

Remark 2.1.

(a) This is a shifted (by 2) version of the usual definition of connectivity. The shift simplifies the
statements below, as well as the statements of basic properties of the connectivity parameter.

(b) If H̃j(C) = 0 for all j then we define ηH(C) = ∞.
(c) There exists also a homotopical notion of connectivity, ηh(C): it is the minimal dimension of a “hole”

in the complex. The first topological version of Hall’s theorem [6] used that notion. The relationship
between the two parameters is that ηH ≥ ηh for all complexes, and if ηh(C) ≥ 3, meaning that the
complex is simply connected, then ηH(C) = ηh(C). All facts mentioned in this article (in particular,
the main tool we use, the Meshulam game) apply also to ηh.

Notation 2.2. Given sets (Vi)
n
i=1 and a subset I of [n] = {1, . . . , n}, we write VI for

⋃
i∈I Vi. For A ⊆ V (G)

we denote by I(G) ↾ A the complex of independent sets in the graph induced by G on A.

Given sets (Vi)
n
i=1 of vertices in a graph G, an independent transversal is an independent set containing

at least one vertex from each Vi. Note that in this definition the transversal needs not be injective, namely
a set Vi may be represented twice, which makes a difference if the sets are not disjoint. In our application
(as is the case in the most common applications of the theorem) the sets Vi are disjoint, in which case the
transversal may well be assumed to be injective.

The following is a topological version of Hall’s theorem:

Theorem 2.3. If ηH(I(G) ↾ VI) ≥ |I| for every I ⊆ [n] then there exists an independent transversal.
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Variants of this theorem appeared implicitly in [6] and [17], and the theorem is stated and proved explicitly
as Proposition 1.6 in [18].

A standard argument of adding dummy vertices yields the deficiency version of Theorem 2.3:

Theorem 2.4. If ηH(I(G[
⋃

i∈I Vi])) ≥ |I| − d for every I ⊆ [m] then the system has a partial independent
transversal of size m− d.

In order to apply these theorems, combinatorially formulated lower bounds on ηH(I(G)) are needed. One
such bound is due to Meshulam [18] and is conveniently expressed in terms of a game between two players,
CON and NON, on the graph G. CON wants to show high connectivity, NON wants to thwart her attempt.
At each step, CON chooses an edge e from the graph remaining at this stage, where in the first step the
graph is G. NON can then either

(1) Delete e from the graph. We call such a step a “deletion”, and denote the resulting graph by “G−e”.
or

(2) Remove the two endpoints of e, together with all neighbors of these vertices and the edges incident to
them, from the graph. We call such a step an “explosion”, and denote the resulting graph by “G∗e”.

The result of the game (payoff to CON) is defined as follows: if at some point there remains an isolated
vertex, the result is ∞. Otherwise, at some point all vertices have disappeared, in which case the result of
the game is the number of explosion steps. We define Ψ(G) as the value of the game, i.e., the maximum
payoff to CON in an optimal play of both players.

Theorem 2.5. [18] ηH(I(G)) ≥ Ψ(G).

Remark 2.6. This formulation of Ψ is equivalent to a recursive definition of Ψ(G) as the maximum over all
edges of G, of min(Ψ(G−e),Ψ(G∗e)+1). For an explicit proof of Theorem 2.5 using the recursive definition
of Ψ, see Theorem 1 in [1]. The “game” formulation first appeared in [4].

We shall use the Meshulam bound on line graphs. If G = L(H) then playing the game means that CON
offers NON a pair of edges in H having a common vertex. Deletion in G corresponds to separating the two
edges at the vertex where they meet. Explosion corresponds to removing the three endpoints of these edges.

3. Proof of Theorem 1.9

Lemma 3.1. Let G be a bipartite graph with sides U,W , and assume that there exist u1, . . . , u2ℓ−1 ∈ U

satisfying deg(ui) ≥ min(i, ℓ) for all i ≤ 2ℓ− 1 . Then Ψ(L(G)) ≥ ℓ.

Proof. By induction on ℓ. For ℓ = 1 the statement is obvious. For ℓ > 1 CON chooses an edge e = u1w for
some w ∈ W , and offers NON in any order all pairs e, f for edges f = yw 6= e (here y ∈ U). Assume first that
NON explodes one of these pairs. Since G is simple, the degree of each vertex in U ∩ V (G′) is reduced by
the explosion by at most 1. This implies that the remaining graph G′ satisfies the hypothesis of the theorem
with ℓ− 1 replacing ℓ. By the induction hypothesis, we have Ψ(L(G′)) ≥ ℓ− 1 and hence Ψ(L(G)) ≥ ℓ.

Next consider the case that NON separates e from f for all f = yw 6= e. Then CON offers all pairs e, g
for g = u1z 6= e (here z ∈ W ). NON has to explode one of these pairs, say e, g for g = u1z, so as not to
render e isolated. Since all pairs e, f for f = yw 6= e have been separated, this explosion preserves the vertex
w, removing at it only the edge u1w. Thus, again, the degrees of all ui, i > 1 are reduced by only 1, and the
condition of the lemma holds with ℓ− 1 replacing ℓ. Again, the desired conclusion follows by induction. �

Proof of Theorem 1.9. For the sufficiency part, let a1 ≤ a2 ≤ . . . ≤ a2n−1 be a sequence of natural numbers
satisfying ai ≥ min(i, n) for all i ≤ 2n − 1 and let F = {F1, F2, . . . , F2n−1} be a family of matchings in a
bipartite graph G = (V,E) satisfying |Fi| ≥ ai for all i ≤ 2n − 1. We need to show that F has a rainbow
matching of size n. Let A and B be the two sides of V and let m = |A| ≥ n. By considering a third side
C of size 2n− 1 whose vertices correspond to the matchings Fi we obtain a 3-partite 3-hypergraph H . We
need to show that H has a matching of size n.

Consider the bipartite graph G induced on B and C. Since the sets Fi are matchings, G is simple. The
vertices in A induce a partition V1, . . . , Vm on E(G). By the hypothesis of the theorem, the vertices of C
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can be ordered as ci, i ≤ 2n − 1, where degG(ci) ≥ min(i, n). For I ⊆ A let GI be the graph with sides
B,C induced by I, namely having as edges pairs (b, c) completed by some a ∈ I to an edge of H . Write
k = |A| − |I|. Since the sets Fi are matchings, meaning that the pair of sides (A,C) in H is simple, for
every c ∈ C we have degGI (c) ≥ degG(c)− k. This entails that the conditions of Lemma 3.1 are valid for GI

with ℓ = n − k. By the lemma, we have ηH(I(L(GI))) ≥ n − k. By Theorem 2.4 this suffices to show that
ν(H) ≥ n, namely there is a rainbow matching of size n.

For the other direction of the theorem, let a1, . . . , an be an ascending sequence of natural numbers such
that ak ≤ k − 1 for some k ≤ n. Let C2n be a cycle of size 2n and let M ∪N be a partition of its edges into
two matchings, each of size n. Consider the following family F = {F1, F2, . . . , F2n−1} of matchings. Each
of Fn+1, . . . , F2n−1 is a copy of M . Let N = {e1, . . . , en} and for each i = 1, . . . , n let Fi be a copy of the
matching {e1, . . . , emin(n,ai)}. Clearly, these matchings satisfy the condition of the theorem. We claim that
they do not possess a rainbow matching of size n. Clearly, a matching of size n is contained either in M or in
N , and since there are only n−1 matchings Fi that meet M , a rainbow matching of size n must represent the
matchings F1, . . . , Fn. But this is impossible, since the union of the matchings F1, . . . , Fk contain together
fewer than k edges. �

It may be worth noting that an anaolgous version of Conjecture 1.4 fails. Let Q1, . . . , Q2k be disjoint
copies of P3, the path with three edges, let Oi be the set of two odd edges in Qi (i ≤ 2k), let ei be the middle
edge in Qi, let Fi = {e1, . . . , ek} for i ≤ k, and let Fi =

⋃
{Oj | 1 ≤ j ≤ i − k} ∪ {ej | j > i − k} for i > k.

Then |Fi| ≥ i for all i, and the largest rainbow matching is of size ⌊ 3k
2 ⌋.

4. Proof of Theorems 1.10 and 1.13

For the convenience of the reader, let us repeat Theorem 1.10:

Theorem 1.10. Let H be a 3-partite hypergraph with sides A,B,C, and assume that

(1) |A| ≥ 2n− 1 and |B| = |C| = n,
(2) deg(a) = n for every a ∈ A, and
(3) The pair (A,C) is simple and the pair (B,C) is 2-simple.

Then ν(H) ≥ n.

Proof. Since the pair (A,C) is simple, it follows from (2) that the degree of each vertex in C is |A|. Since
(B,C) is 2-simple, we have

(1) ∆(B) ≤ 2n.

For b ∈ B let Vb = {(a, c) | (a, b, c) ∈ E(H)} be a set of edges in A×C. We need to show that the sets Vb

have a full rainbow matching. For K ⊆ B let GK be the bipartite graph with sides A and C, and with edge
set

⋃
b∈K Vb. By Theorems 2.3 and 2.5 it suffices to show that

(2) Ψ(I(L(GK))) ≥ |K|

for every set K ⊆ B. Write k = |K|. The minimal value of |E(GK)| occurs when all the vertices in B \K
have maximal degree, which by (1) means:

(3) |E(GK)| ≥ n(2n− 1)− 2n(n− k) = 2nk − n,

and by the 2-simplicity of the pair (B,C) we have

(4) ∆GK
(C) ≤ 2k.

We play Meshulam’s game on GK as follows. Let u1, u2, . . . , un be the vertices of C. For each i ≤ n let
di be the degree of ui in GK and assume that d1 ≤ d2 ≤ · · · ≤ dn. CON goes over the vertices in this order.
Let ℓi be the degree of ui at the time it is handled. For each i, if ℓi ≥ 2 then CON offers all pairs of edges



6 RON AHARONI, ELI BERGER, DANI KOTLAR, AND RAN ZIV

meeting at ui, in any order. This he does until NON explodes a pair, or until all edges meeting at ui are
separated from each other. If ℓi < 2 then ui is skipped and CON handles the next vertex in the list.

Let pi be the number of explosions performed until ui was handled, including the possible explosion at
ui itself. Assume first that for some i NON separated all pairs of edges meeting at ui and pi + ℓi ≥ k. Let
e1, . . . , eℓi be the edges meeting at ui at the time it is handled and let w1, . . . , wℓi be their corresponding
endpoints at A. For each j = 1, . . . , ℓi, CON offers the pairs of edges (ej , f) for all edges f meeting ej at
wj . Note that at least one such f exists for each wj , otherwise ej is isolated, meaning that the score of the
game is ∞. Also note that NON must explode a pair in each wj , otherwise the corresponding ej will become
isolated. Thus, CON scores ℓi points at ui, which together with the pi already scored, the score of the game
is at least k.

Hence, if we make the negation assumption that the score of the game is less than k, then for each ui one
of the following two occurs:

POS1: NON exploded a pair at ui, or
POS2: NON separated all the edges meeting at ui and pi + ℓi < k.

In each explosion two vertices from A are removed along with their incident edges. Thus, as GK is simple,
in each explosion the degree of each vertex in C decreases by at most two. Hence,

(5) ℓi ≥ di − 2pi for all i.

Suppose NON separated all the edges meeting at ui. Then, by POS2 we have pi + ℓi < k. This together
with (5) yield,

Claim 1: If NON separated all the edges meeting at ui then di < k + pi.

For each i = 1, . . . , n let πi = pi + (n − i). Note that by the negation assumption πn = pn < k, so there
exists a minimal index t for which πt < k.

Claim 2: NON separated all the edges meeting at ut.

Proof of Claim 2. Consider first the case t = 1. If NON exploded a pair at u1 then p1 = 1 and we have
π1 = n ≥ k, contradicting the definition of t. So we may assume that t > 1. If NON exploded a pair at ut

then pt−1 = pt − 1 and thus πt−1 = pt−1 + (n− (t − 1)) = pt − (n− t) < k, contradicting the minimality of
t. �

Now, by the minimality of t we have πt−1 = pt−1 + (n− (t− 1)) ≥ k and πt = pt + (n− t) < k. By Claim
2, pt−1 = pt. Hence pt−1 + (n− (t− 1)) = k and pt + (n− t) = k − 1. Thus

Claim 3: t = n− k + pt + 1.

We calculate an upper bound on |E(GK)|. By Claims 1 and 2 and the fact that the dis are ascending we
have di < k + pt for all i = 1, . . . , t. From this and Claim 3, we conclude that the first t vertices are incident
to less than (n − k + pt + 1)(k + pt) edges in |E(GK)|. By (4) and Claim 3, the remaining n − t edges are
incident to at most (k − pt − 1)2k edges. So, we have,

(6) |E(GK)| < (n− k + pt + 1)(k + pt) + (k − pt − 1)2k.

Let s = k − pt. Then (6) can be written in a somewhat simpler form:

(7) |E(GK)| < (n− s+ 1)(2k − s) + (s− 1)2k.

Let m = s(n− s+ 1). Rearranging terms in (7) we obtain

(8) |E(GK)| < 2nk −m,
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By the negation assumption s ≥ 1 implyingm ≥ n. By (8) it follows that |E(GK)| < 2nk−n, contradicting
(3). �

Proof of Theorem 1.13. Let A′ be the union of two identical copies of A, that is, A′ = A ∪ A†, where
A† = {a† | a ∈ A} and let H ′ be the hypergraph with sides A′, B, C, defined by E(H ′) = E(H) ∪ {(a†, b, c) |
(a, b, c) ∈ H}. We have |A′| = 2n. Also, since (A,C) is simple so is (A′, C), and since (B,C) is simple, the
pair (B,C) is 2-simple in H ′. By Theorem 1.10, we have ν(H ′) = n, which implies the desired result. �

5. Possible generalizations

In [8] the following conjecture was proposed:

Conjecture 5.1. Let H be a simple 3-partite d-regular hypergraph with sides of size n.

(1) If d ≤ n then ν(H) ≥ d−1
d

n.
(2) If d ≥ 2n− 1 then ν(H) = n.

Part (1) would imply Conjecture 1.3. Part (2) is sharp. To see this, let a, b, c be vertices in the respective
sides A,B,C of a hypergraph H with |A| = |B| = |C| = n, put in E(H) the set {(a, b, x) | x ∈ C \ {c}} ∪
{(a, y, c) | y ∈ B \ {b}} ∪ {(z, b, c) | z ∈ A \ {a}}, and complete it to a 2n− 2 regular hypergraph by adding
edges not containing any of a, b, c. In such a hypergraph ν ≤ n − 1, since a, b, c cannot be covered by the
same matching.

An asymmetric formulation of the conjecture may better capture its essence:

Conjecture 5.2. Let H be a simple 3-partite hypergraph with sides A,B,C.

(1) If d = δ(A) ≥ ∆(B ∪C) then ν(H) ≥ d−1
d

|A|.
(2) If δ(A) ≥ max(∆(B ∪ C), 2|A| − 1) then ν(H) = |A|.

Remark 5.3. Theorem 2.3 can be used to prove that if δ(A) ≥ 2∆(B ∪C) − 1 then ν(H) = |A|.

Note that in item (2) there is a jump by a factor of 2 with respect to (1), similar to that between Conjecture
1.4 and Theorem 1.5. By (1) to get ν(H) ≥ |A|− 1 we only (conjecturally) need δ(A) ≥ max(∆(B ∪C), |A|).

A conjecture generalizing Theorem 1.5 in the same spirit is:

Conjecture 5.4. Let H be a simple 3-partite hypergraph with sides A,B,C, and suppose that |A| = 2n− 1,
deg(a) ≥ n for all a ∈ A, and deg(v) ≤ 2n− 1 for all v ∈ B ∪ C. Then ν(H) ≥ n.
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