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ON THE NUMBER OF NONISOMORPHIC SUBTREES OF A TREE

ÉVA CZABARKA, LÁSZLÓ A. SZÉKELY AND STEPHAN WAGNER

Abstract. We show that a tree of order n has at most O(5n/4) nonisomorphic subtrees,
and that this bound is best possible. We also prove an analogous result for the number of
nonisomorphic rooted subtrees of a rooted tree.

1. introduction

Subtrees of a tree have been studied extensively: Jamison [3, 4] investigated the average
number of vertices in a subtree, Székely and Wang studied the number of subtrees of trees
[5, 6]. Chung, Graham and Coppersmith [2] found the smallest order (asymptotically) of a
tree that contains all n-vertex trees as subtrees. A number of extremal results are known: in
particular, it is known that a tree of order n has at least

(n+1
2

)

subtrees (with equality for the

path) and at most 2n−1 + 1 subtrees (with equality for the star).

Things change considerably, however, if one considers the number of distinct nonisomor-
phic subtrees. Bubeck and Linial [1] recently analyzed the distribution of subtrees of fixed
order by isomorphism type. In this paper we consider the extremal problem of determining
the smallest and largest number of nonisomorphic subtrees of a tree. Both the path and
the star have only very few nonisomorphic subtrees (equal to the number of vertices, to be
precise), and this is in fact the minimum:

Proposition 1. Every tree of order n has at least n distinct nonisomorphic subtrees.

Proof. This is easily established by noticing that every tree of order n has subtrees of every
order k between 1 and n (obtained by repeatedly removing leaves from the original tree),
which are trivially nonisomorphic. �

The maximum is much more difficult to obtain; we will show that it is of the order Θ(5n/4).
In a certain sense, this is a dual question to the aforementioned problem of Chung, Graham
and Coppersmith: while they were looking for the minimum number of vertices needed to
contain all small trees, we would like to know how many different trees can fit into a tree with
a given number of vertices.

For our purposes, it turns out to be useful to also consider a closely related problem: for
a rooted tree, we count the number of nonisomorphic subtrees that contain the root, where
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non-isomorphism is understood in the rooted sense, i.e., two subtrees containing the root
are considered isomorphic if there is an isomorphism between them that maps the root to
itself. Again, the maximum number is Θ(5n/4), as we will prove in the following. Let us first
introduce some notation.

For a tree T , we let |T | be the number of vertices and ns(T ) be the number of nonisomor-
phic subtrees of T . Likewise, for a rooted tree T , we let nr(T ) be the number of nonisomorphic
subtrees containing the root, in the sense explained in the previous paragraph. Moreover, we
write

Sn = max
|T |=n

ns(T ) and Rn = max
|T |=n

nr(T )

for the respective maxima among trees with n vertices. The following table gives explicit
values for small n, obtained by means of a comprehensive computer search:

n 1 2 3 4 5 6 7 8 9 10
Sn 1 2 3 4 6 8 11 16 23 33
Rn 1 2 3 5 7 11 16 24 34 54

Table 1. Sn and Rn for small values of n.

While it appears difficult to determine Sn and Rn explicitly for general n, we will be able
to bound them from above and to provide a construction that matches the bound up to a
constant factor.

2. The asymptotic order of Sn and Rn

Our approach will consist of the following steps:

• Provide a construction that yields trees with “many” nonisomorphic subtrees,
• Bound Sn in terms of Rn,
• Prove an upper bound on Rn.

The three statements of Proposition 3 below correspond to those three steps. In order to
prove the upper bound on Rn, we will require the following simple lemma.

Lemma 2.

1. Let T be a rooted tree, and suppose that T is the union of two rooted trees R1 and
R2 (nontrivial, i.e. of order at least 2) that only share the root. Then we have the
inequality

nr(T ) ≤ nr(R1) nr(R2)− 1. (1)

2. Let T1, T2, . . . , Td be the root branches (in other words, the components that remain
when the root is removed) of a rooted tree T , endowed with their natural roots. Then
the inequality

nr(T ) ≤

d
∏

j=1

(nr(Tj) + 1) (2)

holds.
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Proof.

1. Note that each subtree S of T that contains the subtree decomposes naturally into a
subtree S1 of R1 and a subtree of S2 of R2, each containing the respective root. Two
pairs of subtrees (S1, S2) and (S′

1, S
′
2) of subtrees such that S1 is isomorphic to S′

1 and
S2 is isomorphic to S′

2 induce isomorphic subtrees of T . Therefore, we clearly have

nr(T ) ≤ nr(R1) nr(R2).

To show that even strict inequality must hold for nontrivial trees R1 and R2 (which
implies the desired statement), note that the two-vertex subtree is counted twice in
this argument: once as a subtree of R1, once as a subtree of R2 (of course, this might
also apply to other subtrees). Thus we obtain (1).

2. The argument is analogous to the first part: every subtree of T induces a subtree that
contains the root or the empty set in each Tj. The inequality (2) follows immediately
(and it is generally strict because subtrees are counted repeatedly).

�

Proposition 3. The following inequalities hold for all n ≥ 1:

1. Sn ≥ 2 · 5n/4−2,
2. Sn ≤ Rn + 3 · 2n/2−1,
3. Rn ≤ 5n/4.

Proof.

1. For n < 8, the stated inequality is essentially trivial, since it provides a lower bound
of 1 (n < 7) or 2 (n = 7). For n ≥ 8, we obtain the lower bound on Sn by an explicit
construction (see Figure 1). Its core is formed by a path of m = ⌊n4 ⌋ − 2 vertices,
to each of which we attach three vertices: one leaf and two others forming a path of
length 2. Depending on the residue class of n modulo 4, we add between 8 and 11
additional vertices as indicated in the figure to obtain an n-vertex tree that we denote
by Cn.

It is clear that Sn ≥ ns(Cn), so let us estimate ns(Cn). For a simple lower bound, we
only consider subtrees that contain the entire “backbone” consisting of v1, v2, . . . , vm
and x1, x2, x3, y1, y2, y3, as well as the vertex z. Note that the paths from x1 to
y3 and from z to y3 are always the only diameters of these subtrees, so they are
uniquely determined by the parts “dangling” from x3, v1, v2, . . . , vm, y1. Including z
in all subtrees we are counting guarantees that there is no double-counting due to
mirror symmetry.

The leaf or leaves attached to x3 can be included in such a subtree or not, which
gives us 2 possibilities for n ≡ 0, 1 mod 4 and 3 possibilities for n ≡ 2, 3 mod 4.
Likewise, the leaf or leaves attached to y1 can be included or not, giving us 1, 2 or 3
possible options, depending on the residue class again. Finally, for each of the vertices
v1, v2, . . . , vm, we have 5 distinct ways of extending the subtree by adding a subset of
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n ≡ 3 mod 4:

v1 v2 v3 vm−1 vm

x1 x2 x3 y1 y2 y3

z

n ≡ 2 mod 4:

v1 v2 v3 vm−1 vm

x1 x2 x3 y1 y2 y3

z

n ≡ 1 mod 4:

v1 v2 v3 vm−1 vm

x1 x2 x3 y1 y2 y3

z

n ≡ 0 mod 4:

v1 v2 v3 vm−1 vm

x1 x2 x3 y1 y2 y3

z

Figure 1. A construction that yields a lower bound.

the three vertices attached to it. Altogether, this gives us

ns(Cn) ≥



















2 · 5m n ≡ 0 mod 4,

4 · 5m n ≡ 1 mod 4,

6 · 5m n ≡ 2 mod 4,

9 · 5m n ≡ 3 mod 4,

where m = ⌊n4 ⌋ − 2. It is easy to verify that ns(Cn) ≥ 2 · 5n/4−2 in each of the four
cases, which completes our proof.

2. For the inequality between Rn and Sn, consider a tree T of order n for which the
maximum Sn is attained, i.e., ns(T ) = Sn. Let v be a centroid vertex of T , which
is a vertex for which the sum of the distances to all other vertices is minimized. It
is well known that none of the centroid branches (the connected components that
remain when the centroid is removed) can contain more than n/2 vertices, since one
could then decrease the sum of distances by moving one step towards the largest
branch (see Zelinka’s paper [7]). Let T1, T2, . . . , Tk be the centroid branches, so that
|T1|+ |T2|+ · · ·+ |Tk| = n− 1. The total number of subtrees that do not contain the
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centroid v is clearly at most
k

∑

i=1

2|Ti|.

Some of these subtrees may of course be isomorphic, but we are only interested in
an upper bound. Note that this sum increases if we transfer vertices from any of
the branches to a branch with the same or greater number of vertices. Therefore,
it reaches its maximum when there are only two branches, each containing either
(n− 1)/2 vertices (if n is odd) or n/2 and n/2− 1 vertices respectively (if n is even).

It follows that at most 2n/2 + 2n/2−1 = 3 · 2n/2−1 of the subtrees of T do not contain
the centroid v. The number of distinct nonisomorphic subtrees containing v is clearly
at most Rn by definition, so this completes the proof.

3. For the proof of the third statement, we use induction on n to prove a minimally
stronger inequality, which makes the inductive argument simpler. Specifically, we
claim that for a rooted tree T of order n,

nr(T ) ≤ 5n/4 − 1, (3)

unless T is one of ten exceptional trees (denoted E1, . . . , E10 for future reference) that
are shown in Figure 2. Note, however, that all these trees still satisfy inequality (3)
without the final −1, which is what we actually want to obtain.

nr(E1) = 1 nr(E2) = 2 nr(E3) = 3 nr(E4) = 3 nr(E5) = 5

nr(E6) = 7 nr(E7) = 7 nr(E8) = 7 nr(E9) = 11 nr(E10) = 16

Figure 2. The ten exceptional rooted trees.

The statement can be verified directly for n ≤ 7, so for the induction step, we
consider a tree T of order n ≥ 8, and we denote its root by r and its root branches
by T1, T2, . . . , Td. Now consider the following cases:
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Case 1: At least one of the branches (without loss of generality T1) is not an exceptional
tree. In this case, we can regard T as the union of the rooted trees R1 = {r}∪T1

and R2 = T \T1, both rooted at r. If the tree R2 is nontrivial (in other words, if T
has more than one branch), then we can apply (1) and the induction hypothesis
to obtain

nr(T ) ≤ nr(R1) nr(R2)− 1 = (nr(T1) + 1) nr(R2)− 1

≤ (5|T1|/4 − 1 + 1) · 5|R2|/4 − 1

= 5(|T1|+|R2|)/4 − 1 = 5n/4 − 1,

which proves the desired inequality. If T1 is the only branch, then we obtain from
the induction hypothesis that

nr(T ) = 1 + nr(T1) ≤ 1 + 5(n−1)/4 − 1 = 5(n−1)/4 ≤ 5n/4 − 1.

Case 2: We are left with the case that all branches are on the list of exceptional trees.
Suppose that some set of branches (without loss of generality T1, T2, . . . , Tk),

together with the root of T , form a rooted tree R1 such that nr(R1) ≤ 5(|R1|−1)/4.
In this case, we can apply the same argument as in the previous case: if R1 is
already all of T , we are done immediately; otherwise, set R2 = T \R1 ∪ {r} and
apply (1) in combination with the induction hypothesis as before. This means
that we are done if any of the following cases applies:

– At least four branches are single vertices (copies of E1): in this case, |R1| =
5 and nr(R1) = 5.

– At least three branches have order 2 (copies of E2): in this case, |R1| = 7
and nr(R1) = 10.

– At least two branches are identical copies of one of the exceptional trees
Ej, where j ∈ {3, 4, . . . , 10}: in this case, |R1| = 2|Ej | + 1 and nr(R1) =
(nr(Ej)+ 1)(nr(Ej)+ 2)/2, since each subtree of R1 that contains the root
is obtained from an unordered pair of root-containing subtrees of Ej , or a
single such subtree, or consists of the root only. For each j, the desired
inequality is easily verified.

– At least two of the branches belong to the set {E6, E7, E8, E9, E10} of
“large” exceptional branches: in each of these cases, one verifies that the
tree R1 formed by the root and these two branches satisfies nr(R1) ≤

5(|R1|−1)/4.
This leaves us with 4 · 3 · 23 · 6 = 576 remaining cases (determined by how often
each exceptional tree occurs as a branch: up to three copies of E1, up to two
copies of E2, either one or no copy for each of E3, E4, E5, and potentially one of
E6, E7, . . . , E10), and these can be checked directly by a computer.

�

Our main result follows immediately:

Theorem 4. We have both Sn = Θ(5n/4) and Rn = Θ(5n/4).

Proof. Simply combine the inequalities of Proposition 3 (and note that 21/2 < 51/4). �
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Remark 1. Note the special role of the rooted tree E5 in the construction of the trees Cn:
these trees, which gave us the lower bound, mostly consist of copies of E5, attached to a
long path. The reason why this construction is essentially optimal is the fact that 51/4 is the
maximum of nr(T )1/|T | taken over all rooted trees T , and this maximum is only attained by
E5.

Remark 2. Both the upper and lower bound on Sn and Rn are probably not even asymptot-
ically sharp. The following question is therefore natural:

Does the limit limn→∞ 5−n/4Sn exist, and if so, what is its value?

It is conceivable that the limit does not exist in this form, but that it does exist if n is
restricted to a specific residue class modulo 4 (compare the construction of the tree Cn, which
depends on the residue class of n modulo 4).

References

[1] S. Bubeck and N. Linial, On the local profiles of trees, J. Graph Theory, to appear (2015). DOI:
10.1002/jgt.21865

[2] F.R.K. Chung, R.L. Graham and D. Coppersmith, “On trees containing all small trees”, The Theory of
Applications of Graphs, G. Chartrand, (Editor), John Wiley and Sons, (1981), pp. 265–272

[3] R.E. Jamison, On the average number of nodes in a subtree of a tree, J. Combin. Theory Ser. B 35(3)(1983),
207–223.

[4] R.E. Jamison, Monotonicity of the mean order of subtrees, J. Combin. Theory Ser. B 37(1)(1984), 70–78.
[5] L.A. Székely and Hua Wang, On subtrees of trees, Adv. Appl. Math. 34(2005), 138–155.
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