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Abstract

A hole is a chordless cycle with at least four vertices. A pan is a graph which
consists of a hole and a single vertex with precisely one neighbor on the hole. An
even hole is a hole with an even number of vertices. We prove that a (pan, even
hole)-free graph can be decomposed by clique cutsets into essentially unit circular-arc
graphs. This structure theorem is the basis of our O(nm)-time certifying algorithm
for recognizing (pan, even hole)-free graphs and for our O(n2.5 + nm)-time algorithm
to optimally color them. Using this structure theorem, we show that the tree-width
of a (pan, even hole)-free graph is at most 1.5 times the clique number minus 1, and
thus the chromatic number is at most 1.5 times the clique number.

1 Introduction

A hole is a chordless cycle with at least four vertices. A graph is chordal if it does not
contain a hole as an induced subgraph. Chordal graphs are well-studied and have a number
of interesting structural properties (see [3, 18]). For example, it is known [14] that every
chordal graph contains a simplicial vertex; i.e., a vertex whose neighborhood induces a
clique. Based on this, a largest clique, a minimum coloring, a largest stable set, and a
minimum partition into cliques of a chordal graph can be found in polynomial time [17].

An even hole is a hole with an even number of vertices. A graph is even-hole-free if it
does not contain an even hole as an induced subgraph. Even-hole-free graphs generalize
chordal graphs and analogous properties have been found. A largest clique of an even-hole-
free graph can be found in polynomial time [1, 2, 13]. However, it is not known whether
even-hole-free graphs can be optimally colored in polynomial time.

The claw is the graph with vertices a, b, c, d and edges ab, ac, ad. As usual, n (re-
spectively, m) denotes the number of vertices (respectively, edges) of the input graph G.

∗Research support by Natural Sciences and Engineering Research Council of Canada.
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We give an O(n2.5 + nm)-time algorithm to color (claw, even hole)-free graphs, providing
a contrast to the well-known result [19] that it is NP-hard to optimally color claw-free
graphs. Our techniques actually apply to a larger class of graphs which we will now de-
fine. An atom is a connected graph without a clique cutset. A pan is a graph which
consists of a hole and a single vertex with precisely one neighbor on the hole. Let C denote
the class of graphs G such that each atom of G is (pan, even hole)-free. In this paper,
we will give an O(n2.5 + nm)-time algorithm to color a graph in C, and an O(nm)-time
certifying algorithm for recognition of graphs in C and recognition of (pan, even hole)-free
graphs. Pan-free graphs have been studied previously regarding: establishing the perfect-
ness of (pan, odd hole)-free graphs [27], and providing a polynomial-time algorithm to find
a largest weight stable set first on a subclass of pan-free graphs [15] and then the whole
class of pan-free graphs [4]. The latter two papers use the term “apple” for “pan”.

In Section 2, we will cover the relevant background and state our main results. In
Section 3, we will prove that a (pan, even hole)-free graph can be decomposed by the
well-studied clique cutset decomposition into, essentially, “unit circular-arc graphs”. This
structural result is the foundation of our polynomial-time algorithms. In Section 4, we give
our O(n2.5 + nm)-time algorithm for coloring the graphs in C. In Section 5, we discuss
our O(nm)-time algorithm to recognize if a graph is in C. In Section 6, we show that the
tree-width of a (pan, even hole)-free graph is at most 1.5 times the clique number minus
1, and thus the chromatic number is at most 1.5 time the clique number. In Section 7, we
discuss open problems related to our work.

2 Background and results

In this section, we discuss the relevant background and give the definitions necessary to
state our main results. Let G be a graph. For a subset S of the vertices of G, we use G[S]
to denote the subgraph of G induced by S. A clique cutset of G is a set S of vertices where
G[S] is a clique whose removal increases the number of components of G. The following
theorem is well known.

Theorem 2.1 [14] Every chordal graph is either a clique or contains a clique cutset.

Recall that a vertex is simplicial if its neighborhood induces a clique, and a vertex is
bi-simplicial if its neighborhood can be partitioned into two cliques (i.e., its neighborhood
induces the complement of a bipartite graph). It follows from Theorem 2.1 that every
chordal graph contains a simplicial vertex.

Let dG(x) denote the degree of a vertex x in a graph G. When the context is clear,
we will write d(x) to mean dG(x). Let χ(G) (respectively, ω(G)) denote the chromatic
number (respectively, the clique number, i.e., the number of vertices in a largest clique)
of G. If v is a simplicial vertex of G, then χ(G) = max(χ(G − v), d(v) + 1) and ω(G) =
max(ω(G−v), d(v)+1). An analogous property was established for even-hole-free graphs.
(Recall a hole is even (odd) if it has an even (odd) number of vertices.)

Theorem 2.2 [2] Every even-hole-free graph contains a bi-simplicial vertex.

Theorem 2.2 implies that for even-hole-free graphs G, a largest clique can be found in
polynomial time and that χ(G) ≤ 2ω(G) − 1. However, it is not known if the coloring
problem can be solved in polynomial time for even-hole-free graphs.

The clique (respectively, chordless cycle, chordless path) on t vertices is denoted by Kt

(respectively, Ct, Pt). Recall that the claw is the graph with vertices a, b, c, d and edges
ab, ac, ad; vertex a is the center of the claw. Let F be a graph and let F be a family
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of graphs. We say that a graph G is F -free if G does not contain an induced subgraph
isomorphic to F and G is F-free if G does not contain an induced subgraph isomorphic
to any graph in F . In particular, G is (claw, even hole)-free if G does not contain a claw
or an even hole as an induced subgraph.

Theorem 2.2 implies that an even-hole-free graph contains a vertex that is not the
center of a claw. This suggests that even-hole-free graphs such that no vertex is the center
of a claw (i.e., (claw, even hole)-free graphs) might have interesting structure. Indeed, our
results show that (claw, even hole)-free graphs can be decomposed by the clique cutset
decomposition into (essentially) unit circular-arc graphs. Our results actually apply to a
larger class of graphs that we will define later in this section (see Theorem 2.3).

a
b

c d

Figure 1: The claw with center a.

Consider the following procedure to decompose a graph G. If G has a clique cutset C,
then G can be decomposed into subgraphs G1 = G[V1] and G2 = G[V2] where V = V1∪V2
and C = V1∩V2. Note: there is no edge between (G1−C) and (G2−C). Given minimum
colorings of G1 and G2, we can obtain a minimum coloring of G by identifying the coloring
of C in G1 with that of C in G2. In particular, we have χ(G) = max(χ(G1), χ(G2)). If Gi

(i ∈ {1, 2}) has a clique cutset, then we can recursively decomposeGi in the same way. This
decomposition can be represented by a binary tree T (G) whose root is G and where the
two children of G are G1 and G2, which are in turn the roots of subtrees representing the
decompositions of G1 and G2. Each leaf of T (G) corresponds to an induced subgraph of G
that contains no clique cutset; such an induced graph is called an atom of G. Algorithmic
aspects of the clique cutset decomposition are studied in [33] and [35]. In particular, the
decomposition tree T (G) can be constructed in O(nm) time such that the total number
atoms is at most n − 1 [33]. We have seen in the discussion above that the clique cutset
decomposition can be used to color a graph. With G, G1, and G2 defined as above, G
contains an even hole (or odd hole) if and only if G1 or G2 does. Thus, the clique cutset
decomposition can also be used to find an even hole (or odd hole), if one exists.

Recall that a pan is the graph obtained from taking a Ck with k ≥ 4, adding another
vertex x, and joining x to a vertex y of the Ck by an edge. The edge xy is called the handle
of the pan. We will show that (pan, even hole)-free atoms have very special structure.
This structure allows us to solve the recognition and coloring problems. To describe this
structure, we will need to introduce more definitions.

A graph G is a circular-arc graph if there is a bijection between its vertices and a
set A of arcs on a circle such that two vertices of G are adjacent if and only if the two
corresponding arcs of A intersect. A circular-arc graph is proper if no arc contains another.
Additionally, G is a unit circular-arc graph if every arc of A has the same length. It is
easy to see that unit circular-arc graphs are proper and that proper circular-arc graphs
are claw-free and hence pan-free.

Let A and B be two disjoint sets of vertices. We say A is B-null if there is no edge
between A and B, and A is B-complete if every possible edge between A and B is present.
For a vertex x, NG(x) denotes the set of neighbors of x in G. When the context is obvious,
we use N(x) for NG(x). For a set X of vertices, N(X) denotes the set of vertices outside
X that have neighbors in X. A vertex a dominates a vertex b if (N(b) − {a}) ⊆ N(a).
Vertex a strictly dominates vertex b if (N(b)− {a}) ( N(a). Two vertices are comparable
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if one dominates the other. The domination relation is transitive, that is, if a dominates b
and b dominates c, then a dominates c. Thus, given a set X of vertices such that any two
vertices in X are comparable, there is a total order ≺ on X such that a ≺ b whenever a
dominates b. We call such order a domination order. Two vertices a and b are comparable
in X if they are comparable in the subgraph induced by X ∪ {a, b}.

Let A and B be two vertex-disjoint graphs. The join of A and B is the graph C
obtained from A and B by adding every edge between the vertices of A and those of B;
thus, in C the vertices of A are B-complete and vice versa.

We now state our decomposition theorem for the class C.

Theorem 2.3 If G is a connected graph in C (i.e. every atom of G is (pan, even hole)-
free), then

(i) G is a clique, or

(ii) G contains a clique cutset, or

(iii) G is a unit circular-arc graph, or

(iv) G is the join of a unit circular-arc graph and a clique.

In [6], a polynomial-time algorithm is given for finding an even hole (or, odd hole) in
a circular-arc graph. In [28] or combining [24] and [31], polynomial-time algorithms are
given for finding an optimal coloring of a unit circular-arc graph. In Sections 4 and 5,
we discuss how these results can be used to color and recognize both the class C and the
class of (pan, even hole)-free graphs. In Section 3, we will establish structural properties
of (pan, even hole)-free graphs. Specifically, we will prove Theorem 2.3.

Our main result is:

Theorem 2.4 Given a graph G, a pan or even hole of G, if one exists, can be found in
O(nm) time.

We end this section with a discussion on the relationship between even-hole-free graphs
and β-perfect graphs, which were introduced in [26] and are defined as follows. Let δ(G)
denote the minimum degree of a vertex of a graph G. Order the vertices of G as v1, . . . , vn
where vi has minimum degree in G[vi, . . . , vn]. Greedily color G starting from vn, i.e., vi
is given the smallest color distinct from its neighborhood in G[vi, . . . , vn]. The number
of colors used is at most maximum{δ(H) + 1 : H is an induced subgraph of G}, which
is denoted β(G). Thus for any graph G, we have χ(G) ≤ β(G). A graph is defined to
be β-perfect, if for every induced subgraph F of G, χ(F ) = β(F ). An even hole C2k

has χ(C2k) = 2 and β(C2k) = 3. It follows that β-perfect graphs are even-hole-free. A
diamond is the complete graph on four vertices with an edge removed. In [21], it is proved
that (diamond, even hole)-free graphs are β-perfect. In [26], the authors gave the graph
of Figure 2 as an example of an even-hole-free graph which is not β-perfect. This graph is
claw-free and hence pan-free, so it follows that (claw, even hole)-free and thus (pan, even
hole)-free graphs need not be β-perfect.

3 Properties of (pan, even hole)-free graphs

In this section we will prove our structure theorem (Theorem 2.3). We will actually prove
a stronger but more technical result which implies Theorem 2.3 (see Theorem 3.17). We
separate the discussion into two subsections. In the first we consider a special substructure
of a graph which generalizes holes: we call this substructure a “buoy”. In the second we
prove that (pan, even hole)-free graphs decompose into buoys via clique cutsets.
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Figure 2: A claw-free, non-β-perfect graph

3.1 Buoys

To motivate our buoys we start with a key observation regarding the structure around a
hole in a pan-free graph.

Observation 3.1 Let G be a pan-free graph. Let C be a hole of G of length at least five
and let x be a vertex outside C.

(i) If x has a neighbor v in C, then some u ∈ C is adjacent to both v and x.

(ii) If x has exactly three neighbors v1, v2, v3 in C, then v1, v2, v3 forms a path in C.

(iii) If x has exactly four neighbors in C, then G contains an even hole.

(iv) If x has at least five neighbors in C, then x is C-complete.

(v) If G is even-hole-free, then x has 2, 3, or ` neighbors in C, where ` is the length
of C.

Proof: Enumerate the vertices of C in the cyclic order as v0, v1, . . . , v`−1. Suppose that
(i) is false for a neighbor v of x. We may assume v = v0, i.e., x is adjacent to v0, and
non-adjacent to v1 and v`−1. Vertex x must have another neighbor in C, for otherwise
x and C form a pan. Let k be the smallest subscript, different from 0, such that vk is
a neighbor of x. If k = ` − 2, then {v1, v0, v`−1, v`−2, x} induces a pan. If k 6= ` − 2,
then {v`−1, v0, v1, . . . , vk, x} induces an pan. We have established (i). Now (ii) follows
immediately from (i). For (iii) suppose C is an odd hole (otherwise, we are done). Now, by
(i), these four vertices either form single sub-path vivi+1vi+2vi+3 of C or two non-adjacent
paths vivi+1 and vtvt+1 such that C can be written as vi+1P1vtvt+1P2vi (for non-empty
paths P1, P2). In the former case, an even hole is induced by {x}∪C −{vi+1vi+2}. In the
latter case, one of xvi+1P1vt and xvt+1P2vi is an even hole. We now prove (iv). Suppose x
has at least five neighbors in C but is not C-complete (this implies ` > 5). We may assume
x is adjacent to v0 and non-adjacent to v1. Let k be the smallest subscript, different from
0, such that vk is a neighbor of x. By (i), x is adjacent to vk+1 and v`−1. Since x has at
least five neighbors in C, x is adjacent to a vertex vt with k + 1 < t < ` − 1. But now
{vt, x, v0, v1, . . . , vk} induces a pan. Part (v) follows from (i)–(iv). 2

For the purpose of finding a forbidden induced subgraph for recognition of class C, we
will now reformulate the results of Observation 3.1 into their algorithmic counter-parts.
From the proof of Observation 3.1, we can extract a linear-time algorithm to find a pan
or even hole of an input graph when one of the conditions (i)-(v) fails.

Observation 3.2 Let G be a graph, let C be a hole of G of length at least five, and let x
be a vertex outside C. If x fails to satisfy (i)–(v) of Observation 3.1, then G contains a
pan or an even hole, and such an induced graph can be found in linear time. 2
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We generalize the presence of a length ` ≥ 5 hole (and Observation 3.1) in a graph
to the presence of an `-buoy (defined as follows). For ` ≥ 5, an `-buoy B is a collection
of sets B0, B1, . . . , B`−1 of vertices of G such that each Bi induces a clique, each vertex
in Bi has a neighbor in Bi+1 and one in Bi−1, and there are no edges between Bi and
B− (Bi−1 ∪Bi ∪Bi+1), with subscripts taken modulo ` (see Figure 3 for an example); the
sets Bi are called the bags of the buoy; a buoy is odd or even depending on whether the
number of bags (`) is odd or even. We also refer to G[B] as a buoy. A skeleton of B is a
hole containing one vertex of each Bj , j ∈ {0, . . . , `− 1}. A buoy B in a graph G is said
to be full when it includes every vertex of G. Due to the cyclic structure of `-buoys, when
we refer to a bag Bi of an `-buoy, we always mean the bag Bi (mod `). We will see that
when G is C4-free its buoys are circular-arc graphs (see Theorem 3.8). Similarly, when G
is (pan, even hole)-free its buoys are unit circular-arc graphs (see Theorem 3.14).

B1 B2 B3 B4B0

Figure 3: An example of a 5-buoy.

Observation 3.3 Let G be an even-hole-free graph having an odd `-buoy with bags B0, . . . , B`−1.
Consider a path b0, b1, . . . , bk−1 with 1 ≤ k ≤ ` where bi ∈ Bi for i = 0, . . . , k − 1. Then
where z = min{k − 1, `− 2}, {b0, . . . , bz} belongs to a skeleton of B.

Proof: By definition of the buoy, there is an induced path bk−1, bk, . . . , b`−1 such that
bj ∈ Bj for j = k, k+1, . . . , `−1. We may assume b0 is not adjacent to b`−1, for otherwise
we are done. Let y be a neighbor of b0 in B`−1. We have b`−2y ∈ E(G), for otherwise
{b0, b1 . . . , b`−2, b`−1, y} induced an even hole. If k = `, then {b0, . . . , bk−2, y} induces a
skeleton; if k < `, then {b0, . . . , bk−2, bk−1, . . . , b`−2, y} induces a skeleton. 2

Bk-1 Bk B -2 B -1B0

b0 bk-1... ...bk b -2
b -1
y

Figure 4: The skeleton containing the path b0, . . . , bz where z = min{k − 1, ` − 2} as in
the proof of Observation 3.3. Note: the bold edges connecting b0 to bk−1 and bk to b`−2
correspond to the paths connecting these vertices.

Corollary 3.4 Let G be an even-hole-free graph having an odd `-buoy with bags B0, . . . ,
B`−1. Let P be a path with vertices pi, pi+1, . . . , pi+k where 0 ≤ k ≤ `− 2 and pj ∈ Bj for
all j (with the subscripts taken modulo `), then P belongs to a skeleton of B. 2

From the proof of Observation 3.3, we can extract a linear-time algorithm to establish the
following observation.

Observation 3.5 Let G be a graph having an odd `-buoy with bags B0, . . . , B`−1. Con-
sider a path b0, b1, . . . , bk−1 with 1 ≤ k ≤ ` where bi ∈ Bi for i = 0, . . . , k − 1. Then there
is a linear-time algorithm that either finds an even hole, or a skeleton containing the set
{b0, . . . , bz} (for a given z = min{k − 1, `− 2}). 2
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Observation 3.6 Let G be a C4-free graph. Let B be an `-buoy of G with bags B0, . . . , B`−1.
Then any two vertices a and b in the same Bi are comparable in Bi−1. By symmetry, a
and b are comparable in Bi+1.

Proof: Let a and b be two vertices in Bi. Suppose they are not comparable in Bi−1.
Then there are vertices x, y ∈ Bi−1 with xa, yb ∈ E(G) and xb, ya 6∈ E(G). Now, the four
vertices a, b, x, y form a C4. 2

From the proof of Observation 3.6, we can extract a linear-time algorithm to establish the
following observation.

Observation 3.7 Let G be a graph. Let B be an `-buoy of G with bags B0, . . . , B`−1. If
two vertices a and b in the same Bi are not comparable in Bi−1, then G contains a C4,
and this C4 can be found in linear time. 2

Theorem 3.8 If B is an `-buoy of a C4-free graph G, then B is a circular-arc graph.

Proof: Let B0, . . . , B`−1 be the bags of B. We construct a circular-arc representation of G
as follows. First we partition the circle into ` arcs of equal length and label the boundary
points of these arcs as (0), (1), . . . , (` − 1) in clockwise order. By Observation 3.6 the
vertices of Bi can be partitioned and ordered by neighborhood inclusion with respect to
Bi+1.

That is, we let Bi =
⋃ti

j=1Bi,j such that for v, v′ ∈ Bi,j , N(v) ∩ Bi+1 = N(v′) ∩ Bi+1

and for u ∈ Bi,j and x ∈ Bi,j+1, the neighborhood of u is a strict subset of that of x
with respect to Bi+1 (i.e., N(u) ∩ Bi+1 ( N(x) ∩ Bi+1). That is, Bi can be partitioned
into ti subsets Bi,1, . . . , Bi,ti where: (1) if v, v′ ∈ Bi,j , then they have the same neighbors
in Bi+1 (i.e., N(v) ∩ Bi+1 = N(v′) ∩ Bi+1), and (2) if u ∈ Bi,j and v ∈ Bi,j+1, then
in Bi+1 the neighborhood of u is a strict subset of the of the neighborhood of v (i.e.,
N(u)∩Bi+1 ( N(v)∩Bi+1). From this partitioning of Bi and Bi+1 we can easily construct
arcs between (i) and (i+ 1) to capture the edges between vertices of Bi and Bi+1. This is
depicted in Figure 5 and described as follows.

For every i, we place ti equally spaced points {(i, 1), . . . , (i, ti)} on the arc from (i) to
(i+ 1) and:

• for a vertex bj in Bi,j we use the arc from (i) to (i, j).

• for a vertex xj in Xi+1,j we use the arc from (i, j) to (i+ 1).

Clearly, the arc from (i) to (i, j) precisely intersects all arcs from vertices in Bi and the
arcs of bj ’s neighbors in Bi+1. Similarly, the arc from (i, j) to (i + 1) precisely intersects
all arcs from vertices in Bi+1 and the arcs of xj ’s neighbors in Bi.

Notice that, for each v ∈ B there is a unique triple (i, j, j′) of indices where v ∈
Bi,j ∩Xi,j′ . Thus, by performing this construction for each i ∈ {0, . . . , `− 1}, each v will
be mapped to an arc from (i− 1, j′) to (i, j); i.e., we have a circular-arc representation for
B. 2

Let B be an `-buoy of a graph G with bags B0, . . . , B`−1. Consider a vertex x of some bag
Bi. We say x is a dominant vertex of Bi if (in B) it dominates every other vertex of Bi.

Observation 3.9 Let B be an odd `-buoy of an even-hole-free graph G with bags B0, . . . , B`−1.
For every i ∈ {0, . . . , `− 1} and every pair of vertices x, y in Bi, x and y are comparable
in B. In particular, each Bi contains a dominant vertex.
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Bi Bi+1

x2
b1

x1

b2

bt -1

(i,1) (i,2) (i,  )
 (i)   (i+1)

......

...

bti

xti

xt -1i

(i,  -1)ti ti

i

...
(0)

(1)  ( -1)

(i+1)

(i)

...

...

...

{

{

Figure 5: The partial arcs between (i) and (i+ 1) where the arc bj represents the vertices
from Bi,j and the arc xj represents the vertices from Xi+1,j .

Proof: Figure 6 depicts the structure we observe in this proof. Suppose some pair of
vertices x, y in B0 are incomparable. Then by Observation 3.6, there are vertices a ∈
B1, b ∈ B`−1 with xa, by ∈ E(G) and ya, bx 6∈ E(G). Now, by Observation 3.3 and for the
edges xa and by, B has skeletons (x, a(= a1), a2, . . . , a`−1) and (y, b(= b`−1), . . . , b1) where
ai, bi ∈ Bi.

Notice that if aibi+1 is an edge, then (y, x, a1, a2, a3, . . . , ai, bi+1, . . . , b`−1) is an even
hole. Thus, aibi+1 /∈ E(G) and each ai is distinct from each bj . Moreover, biai+1 is an edge
(otherwise ai, bi, bi+1, ai+1 is an induced C4). But now (x, a1, a2, b2, b3, . . . , b`−2, a`−1) is an
even hole since a1b2, a2b3 /∈ E(G), a2 6= b2, and b`−2a`−1 ∈ E(G), a contradiction. Since
the domination relation is transitive, every bag Bi contains a vertex di that dominates
every other vertex of Bi, i.e., di is a dominant vertex of Bi 2

B1 B2 B -2B0

...
b2 b -2

a1x

y b1

a -2a2

 ...

 ...B -1

b -1

a -1

B -1

b -1

a -1

Figure 6: The `-buoy from the proof of Observation 3.9. Note: we have duplicated bag
B`−1 for ease of presentation. Also, the bold edges connecting a2 with a`−2 and b2 with
b`−2 correspond the to the paths a2, . . . , a`−2 and b2, . . . , b`−2 respectively.

From the proof of Observation 3.9, we can extract a linear-time algorithm to establish the
following observation.

Observation 3.10 Let B be an odd `-buoy of a graph G with bags B0, . . . , B`−1. If there
are vertices x and y in some Bi such that x and y are incomparable in B, then G contains
an even hole, and this even hole can be found in linear time. 2

Later (Lemma 5.7) we will show that the domination property of Observation 3.9 can be
verified in linear time.

Observation 3.11 Let G be a (pan, even hole)-free graph. Let B be an `-buoy of G with
bags B0, . . . , B`−1. Let a and b be two vertices in some Bi. If a strictly dominates b in
Bi+1, then b dominates a in Bi−1.

Proof: Let a and b be two vertices in Bi. Suppose a strictly dominates b in Bi+1, but
b does not dominate a in Bi−1. Thus, there are vertices c ∈ Bi+1, d ∈ Bi−1 such that
ac, ad ∈ E(G) and bc, bd 6∈ E(G). By Corollary 3.4, there is a skeleton C containing the
vertices d, a, c. Now b together with C induces a pan in G. 2
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From the proof of Observation 3.11, we can extract an algorithm to establish the
following observation.

Observation 3.12 Let G be a graph. Let B be an `-buoy of G with bags B0, . . . , B`−1.
Let a and b be two vertices in some Bi. If a strictly dominates b in Bi+1, and b does not
dominate a in Bi−1, then G contains a pan or an even hole, and such an induced subgraph
can be found in linear time. 2

Observations 3.11 and 3.9 tell us that the structure of a buoy in a (pan, even hole)-free
graph is very restricted (see Corollary 3.13 below). Additionally, this structure allows us
to prove that a buoy in a (pan, even hole)-free graph is a unit circular-arc graph (see
Theorem 3.14 below).

Corollary 3.13 Let G be a (pan, even hole)-free graph and let B be an `-buoy of G with
bags B0, . . . , B`−1. For every i ∈ {0, . . . , `− 1} either Bi−1 ∪Bi or Bi ∪Bi+1 is a clique.

Proof: Consider a bag Bi. By Observation 3.9, we can order the vertices of Bi as
bi,1, bi,2, . . . , bi,t such that bi,k dominates bi,j whenever k > j. In particular, the vertex bi,t
is a dominant vertex of Bi, and bi,t is adjacent to all of Bi−1 ∪ Bi+1. We may suppose
Bi ∪ Bi+1 is not a clique, for otherwise we are done. Consider a vertex bi,r that is not
adjacent to some vertex u in Bi+1. Thus, bi,t strictly dominates bi,r, and therefore bi,1. By
Observation 3.11, bi,1 dominates bi,t in Bi−1, and so bi,1 is adjacent to all of Bi−1. By the
domination order of Bi, every other vertex in Bi is adjacent to all of Bi−1. Thus Bi−1∪Bi

induces a clique. 2

Theorem 3.14 If B is an `-buoy in a (pan, even hole)-free graph G, then B is a unit
circular-arc graph.

Proof: This proof is an easy adaptation of the construction from the proof of Theorem 3.8.
By Corollary 3.13, when Bi∪Bi+1 is not a clique, both Bi−1∪Bi and Bi+1∪Bi+2 must be
cliques. In particular, when Bi ∪Bi+1 is not a clique we use nearly the same construction
as before and exploit the fact that Bi−1 ∪Bi and Bi+1 ∪Bi+2 are cliques to ensure all of
our arcs have the same length. Figure 7 depicts our construction and we will refer to it as
we describe the details.

Bi Bi+1

x2
b1

x1

b2

bt -1

(i,1) (i,2) (i,  )
(i) (i+1)

......

...

bti

xti

xt -1i

(i,  -1)ti ti

i

...

{Ai+

{Ai

{Ai+1

(i,1) (i,2)

...

(i,  -1)ti...

{

length=1

{

length=1{Ai-1+

(i,1) (i,2)

...

(i,  -1)ti...

{

length=1

{

length=1{Ai+1+

(i,  )ti (i,  )ti

length=1

Bi-1 Bi+2

(i-1) (i+2)

Figure 7: The unit circular-arc construction from the proof of Theorem 3.14 for the case
when Bi ∪Bi+1 is not a clique.

The arcs we construct will have length 2 + ε. As in the previous case we first partition
the circle into arcs. We then use these arcs to place the endpoints of the arcs for the
vertices of B.
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We partition the circle into arcs as follows. For each bag Bi we allocate an arc Ai of
length ε. The midpoint of Ai will be the point (i) from the proof of Theorem 3.8. For
each i ∈ {0, . . . , `− 1} we allocate an arc Ai+ such that:

• When Bi ∪Bi+1 is a clique, the length of Ai+ is two.

• When Bi ∪Bi+1 is not a clique, the length of Ai+ is one.

These arcs are arranged as A0, A0+, A1, A1+, . . . , A`−1, A`−1+ around the circle so that
the circle is covered and consecutive arcs intersect in precisely one point.

As we mentioned, when Bi ∪ Bi+1 is not a clique we use the previous construction
subject to the constraint that the length of the arc from (i, 1) to (i, ti) is one (note: ti > 1
since Bi ∪Bi+1 is not a clique).

In the first half of Ai−1+ we insert a copy of the points of Ai+. In particular, the left
endpoint of Ai−1+ is a copy of (i, 1) and this is followed by (i, 2), . . . , (i, ti−1), (i, ti) with
precisely the same spacing as in Ai+. With these points we can now create the arcs for
the vertices in Bi. Specifically, using the same partition Bi,j as before, each bj ∈ Bi,j is
represented by the arc from the copy of (i, j) in Ai−1+ to the original (i, j) in Ai+. It is
important to note that each such arc includes the midpoint of Ai−1+, has length 2 + ε,
and includes the same points between (i) and (i+ 1) as in our previous construction.

We similarly, insert a copy of the points of Ai+ in the second half of Ai+1+. Specifically,
the midpoint of Ai+1+ is a copy of (i, 1), which is followed by (i, 2), . . . , (i, ti − 1), (i, ti)
with precisely the same spacing as in Ai+. With these points we can now create the arcs
for the vertices in Bi+1. Specifically, using the partition Xi+1,j as before, each xj ∈ Xi+1,j

is represented by the arc from the original (i, j) in Ai+ to the copy of (i, j) in Ai+1+. It
is important to note that each such arc includes the midpoint of Ai+1+, has length 2 + ε,
and includes the same points between (i) and (i+ 1) as in our previous construction.

We need only consider one special case to complete our construction, namely, when
both Bi ∪ Bi+1 and Bi ∪ Bi−1 are cliques. In this case we simply map each vertex of Bi

to an arc from the midpoint of Ai−1+ to the midpoint of Ai+. This again provides arcs
of length 2 + ε.

Now, when Bi ∪ Bi+1 is not a clique, this construction properly represents the edges
between Bi and Bi+1 since we simply have the same representation as before. Additionally,
when Bi ∪ Bi+1 is a clique, the arcs of Bi and Bi+1 always include the midpoint of Ai+.
This again properly represents the edges between Bi and Bi+1. Thus, we have produced
a unit circular-arc representation of B. 2

3.2 Neighbors of Buoys

We now generalize the results of Observation 3.1 to buoys. We examine the different types
of adjacencies between vertices outside a buoy B in a (pan, even hole)-free graph and
vertices inside B. Let x be a vertex of G outside of B. We say x is of type t with respect
to B if x has neighbors in exactly t distinct bags Bi. It is easy to see that in a pan-free
graph, x cannot be of type 1. The following lemma describes possible adjacencies between
x and B.

Lemma 3.15 Let G be a (pan, even hole)-free graph. Let B be an odd `-buoy of G with
bags B0, . . . , B`−1 and let x be a vertex of G−B that has some neighbors in B.

(i) If N(x) ∩Bi 6= ∅, then N(x) ∩Bi−1 6= ∅, or N(x) ∩Bi+1 6= ∅.
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(ii) If i and j are indices such that j ∈ {2, . . . , `−1}, x has a neighbor in each of Bi and
Bi+j, and x has no neighbors in Bi+1∪ . . .∪ Bi+j−1, then j is odd (i.e., the number
of bags Bi, . . . , Bi+j is even).

(iii) If x has neighbors in Bi−1 and neighbors in Bi+1, then x is Bi-complete.

(iv) Vertex x is of types 2, 3, or `. If x is of type `, then x is B-complete.

(v) If x is of type 3, then x has neighbors in three consecutive Bis.

(vi) Suppose x is of type 2 and has neighbors in Bi and in Bi+1. Then {x} ∪ Bi ∪ Bi+1

is a clique.

Proof: Let Bi be a fixed bag. Let dt be a dominant vertex of Bt, 0 ≤ t ≤ ` − 1. The
vertices dt exist for all t by Observation 3.9.

Proof of (i). Suppose x is adjacent to some bi ∈ Bi and is (Bi−1 ∪Bi+1)-null. Let bi−1
be a neighbor of bi in Bi−1 and let bi+1 be a neighbor of bi in Bi+1. By Corollary 3.4,
there is a skeleton C containing bi−1, bi, bi+1. But then part (i) of Observation 3.1 is
contradicted. 2

Proof of (ii). Suppose (ii) is false. Let a and a′ be neighbors of x in Bi and Bi+j

respectively. Since dt is a dominant vertex of Bt for all t, {x, a, di+1, . . . , di+j−1, a
′}

induces an even hole. 2

Proof of (iii). Suppose there is bi ∈ Bi which is not a neighbor of x. We will distinguish
among three cases: (1) bi and x have common neighbors ai−1 ∈ Bi−1 and ai+1 ∈ Bi+1;
(2) bi and x have no common neighbors in Bi−1 ∪Bi+1; and (3) bi and x have a common
neighbor ai−1 ∈ Bi−1, but no common neighbor in Bi+1. In case (1), {x, ai−1, bi, ai+1}
induces a C4. For case (2), let ai−1 be a neighbor of x in Bi−1 and let ai+1 be a neighbor
of x in Bi+1. Note that bi must have neighbors bi−1 in Bi−1 and bi+1 in Bi+1. Thus, in
this case, {x, ai−1, bi−1, bi, bi+1, ai+1} induces a C6.

Now we handle case (3). Let ai+1 be a neighbor of x in Bi+1 and bi+1 be a neighbor
of bi in Bi+1. The dominant vertex di of Bi is adjacent to both ai−1 and ai+1. Thus, di is
adjacent to x, for otherwise {x, ai−1, di, ai+1} induces a C4.

Suppose x is not adjacent to di−2. By Corollary 3.4, there is a skeleton C containing
di−2, ai−1, bi. But then x and C contradict Observation 3.1 (i). Thus x is adjacent to di−2.
Let P be the path di−2ai−1dibi+1. Corollary 3.4 implies there is a skeleton C containing P .
Since di+2 is a dominant vertex of Bi+2, we may assume di+2 ∈ C (di+2 may replace the
vertex of C ∩Bi+2). Since x has at least three neighbors and one non-neighbor (bi+1) on
C, Observation 3.1 (v) implies that x has exactly three neighbors on C. In particular, we
have xdi+2 6∈ E(G). Let C ′ = (C−{bi+1})∪{ai+1}. Then C ′ is a hole. But now, x has at
least four neighbors and one non-neighbor (di+2) on C ′, a contradiction to Observation 3.1
(v). 2

Proof of (iv). Suppose x is of a type different from 2, 3, or `. There are indices i, j
such that x has neighbors in each of Bi and Bj and no neighbors in Bi+1, . . . , Bj−1 and
|j− i| 6≡ 1 mod `. By (i), x has neighbors in Bi−1 and in Bj+1. By (ii), the number of sets
Bi, Bi+1, . . . , Bj is even. So the number of sets Bj+1, Bj+2, . . . , Bi−1 is odd. Let bt be a
neighbor (if one exists) of x in Bt, for all t. Consider the path P = bj+1dj+2 . . . di−2bi−1.
Vertex x must be adjacent to an interior vertex p of this path, for otherwise P and x form
an even hole. But now there is a pan formed by the vertices p, x, bi, di+1, . . . , dj−1, bj .

If x is of type `, then by (iii), x is Bi-complete for all i. 2
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Proof of (v) Let x be of type 3. Assume x has a neighbor in Bi for some i. By (i) we
may assume x has a neighbor in Bi+1. Let Bj be the third bag such that x has neighbors
in Bj . If j /∈ {i− 1, i+ 2}, then (i) is contradicted. 2

Proof of (vi). Suppose x is of type 2 and has neighbors in Bi and Bi+1 and let ai ∈ Bi

and ai+1 ∈ Bi+1 be neighbors of x. If ai and ai+1 are not adjacent, then {ai, x, ai+1, di+2,
. . . , di−1} induces an even hole. Thus, the neighbors of x in B form a clique.

We now show that x is adjacent to every neighbor bi+1 ∈ Bi+1 of ai. Suppose x is not
adjacent to bi+1. Consider the skeleton C formed by the vertices ai, bi+1, di+2, di+3, . . . , di−1.
Vertex x has only one neighbor on this hole, a contradiction to part (v) of Observation 3.1.
By symmetry, x is adjacent to every neighbor bi ∈ Bi of ai+1.

From the previous paragraph x must be adjacent to both di and di+1 since they are
neighbors of ai+1 and ai respectively. Thus, x is adjacent to all of Bi ∪Bi+1 and as such
{x} ∪Bi ∪Bi+1 form a clique. 2

From the proof of Lemma 3.15, we can extract a linear-time algorithm to establish the
following lemma.

Lemma 3.16 Let G be a graph. Let B be an odd `-buoy of G with bags B0, . . . , B`−1, and
let x be a vertex of G − B that has some neighbors in B. If x fails to satisfy (i)–(vi) of
Lemma 3.15, then G contains a pan or an even hole, and such an induced subgraph can
be found in linear time. 2

3.3 Structure Theorem

Now that we understand the structure of buoys (see Section 3.1) and their neighbors
(see Section 3.2), we are ready to prove the structure theorem introduced in Section 2.
We prove the following theorem which together with Theorem 3.14 implies Theorem 2.3.
Recall that C is the class of graphs G such that every atom of G is (pan, even hole)-free.

Theorem 3.17 If G is a connected graph in C then

(i) G is a clique, or

(ii) G contains a clique cutset, or

(iii) For every maximal buoy B of G, either B is a full buoy of G, or G is the join of B
and a clique.

Proof: We may assume G is connected and contains an odd hole C, for otherwise G is
chordal and the theorem holds. Let ` be the length of C. Since G contains C, G contains
a maximal buoy B with bags B0, B1, . . . , B`−1 and skeleton C (here, as usual, “maximal”
is meant with respect to set inclusion, not size). If G− B = ∅, then G is a full buoy and
we are done. Let A be the set of vertices in G−B with some neighbor in B, and R be the
set of vertices in G with no neighbor in B. Consider a vertex x in A. By Lemma 3.15, x is
of types 2, 3, or `. If x is of type 3, then, by (iii) and (iv) of Lemma 3.15, x has neighbors
in three consecutive bags Bi−1, Bi, Bi+1 and is complete to Bi. In particular, B ∪ {x} is
a larger buoy with bags B0, B1, . . . , Bi−1, Bi ∪ {x}, Bi+1, . . . , B`−1, a contradiction to our
choice of B. Also, when x is of type 2, then, by (ii) and (vi) of Lemma 3.15, there is
an index i such that {x} ∪ Bi ∪ Bi+1 is a clique. Thus, A can be partitioned into sets
A0, A1, . . . A`−1, U such that

• a ∈ Ai if and only if N(a) ∩B = Bi ∪Bi+1; and
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• u ∈ U if and only if u is B-complete.

Note that all type-` vertices are in U . The set U (if non-empty) induces a clique for
otherwise, two non-adjacent vertices of U and two non-adjacent vertices of B form a C4.
We may assume there is a non-empty Ai, for otherwise G is the join of B and U (if R = ∅),
or U is a clique cutset of G separating B and R (if R 6= ∅).

Consider a non-empty set Ai and let D = Bi ∪ Bi+1 ∪ U . The set D is a clique
by Lemma 3.15. We will show that D is a clique cutset. Suppose it is not a clique
cutset. Then, in G − D, there is a shortest path P from a vertex ai ∈ Ai to a vertex
b ∈ B − (Bi ∪ Bi+1). Enumerate the vertices of P as v1, v2, . . . , vt with v1 = ai and
vt = b. Since the path is shortest, vt−1 ∈ Aj for some j 6= i, t ≥ 3, and vj ∈ R for
j ∈ {2, 3, . . . t − 2} (when t > 3). There are two induced paths whose endpoints are vt−1
and ai, and whose interior vertices are disjoint and lie in B. We may enumerate one as
P1 = vt−1bj+1 . . . biai, and the second one as P2 = vt−1bj . . . bi+1ai with bk ∈ Bk for all k.
Since ` is odd, P1 and P2 have different parities. Let P ′ = P −{vt}. One of the two holes
induced by P1 ∪ P ′ and P2 ∪ P ′ has to be even, a contradiction. 2

An algorithm can be extracted from the proof of Theorem 3.17 to prove the following
theorem.

Theorem 3.18 Let B be a maximal buoy of a graph G. If B is not a full buoy of G and
if G is not the join of B and a clique, then G contains an even hole or a pan, and such
an induced subgraph can be found in linear time. 2

4 A coloring algorithm for (pan, even hole)-free graphs

In this section, we discuss a polynomial-time algorithm to color a graph in C. Consider a
graph G with a clique cutset decomposition tree T (G). From the discussion in Section 2,
if we can color the atoms of G in polynomial time, then we can also color G. The purpose
of this section is to show that G can indeed be colored in polynomial time.

In [28], an O(n2)-time algorithm is given for coloring proper circular-arc graphs. For
unit circular-arc graphs, this can be improved. First, we use theO(n+m)-time algorithm of
[24] for recognizing unit circular-arc graphs to construct a unit circular-arc representation.
Then we use the O(n1.5)-time algorithm of [31] to find a minimum coloring of a unit
circular-arc graph given the representation. This gives an O(n1.5 +m)-time algorithm to
color unit circular-arc graphs.

Thus, from Theorems 3.14 and 3.17, we have the following two results.

Theorem 4.1 There is an O(n1.5 + m)-time algorithm to find a minimum coloring of a
(pan, even hole)-free graph that is either a buoy or the join of a buoy and a clique.

Proof: Let G be a (pan, even hole)-free graph that is the join of a clique K and a buoy B.
Then we have χ(G) = |K|+ χ(B). Thus, we only need to establish the theorem for (pan,
even hole)-free buoys. Now the result follows from Theorem 3.14 and the O(n1.5+m)-time
algorithm to color unit circular-arc graphs. 2

Theorem 4.2 There is an O(n2.5 +nm)-time algorithm to find a minimum coloring of a
graph in C.

Proof: By the discussion above and the fact that the clique cutset decomposition provides
at most n− 1 atoms, we only need show there is an O(n1.5 +m)-time algorithm to color a
(pan, even hole)-free atom G. By Theorem 2.3, G is one of the following: a clique, a buoy,
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or the join of a clique and a buoy. Thus, by Theorem 4.1, G can be optimally colored in
O(n1.5 +m) time. 2

5 Recognition algorithms for (pan, even hole)-free graphs

In this section, we give two polynomial-time algorithms to recognize (pan, even hole)-free
graphs. We note that a polynomial-time algorithm for recognizing (pan, even hole)-free
graphs can easily be converted to a polynomial-time algorithm for recognizing graphs in C.

There exist several polynomial-time algorithms ([7, 8, 9]) for finding an even hole in
a graph. But the fastest such algorithm [7] runs in time O(n5m3) ≤ O(n11). A straight-
forward algorithm to recognize a (pan, even hole)-free graph is to test for a pan using
Theorem 5.3 below, and then to test for an even hole. In particular, we can recognize
(pan, even hole)-free graphs in O(n5m3) time. We will design faster algorithms for (pan,
even hole)-free graph recognition. We provide two recognition algorithms. The first uses
the fact that the (pan, even hole)-free atoms are unit circular-arc graphs and recognizes
(pan, even hole)-free graphs in O(nm2 + n2m log log n) time. The second uses the fact
that the atoms are essentially very special buoys and runs in O(nm) time.

Similar to our coloring algorithm, we note that detecting an even hole in a graph G is
easily reduced to checking for an even hole in an atom. That is, suppose a graph G has a
clique cutset C and consider the subgraphs G1 = G[V1] and G2 = G[V2] where V = V1∪V2
and C = V1 ∩ V2. Then G contains an even hole if and only if G1 or G2 does; i.e., when
testing for even holes one need only consider atoms.

As we have mentioned previously, the clique cutset decomposition tree T (G) can be
computed in O(nm) time such that there are fewer than n atoms [33].

5.1 Recognition via testing for pans and then testing for even holes in
unit circular-arc atoms

We will first describe an algorithm to find a pan in a graph.

Lemma 5.1 Let a graph G be an atom. Then every vertex v of G is universal, or lies
in a hole of G. Furthermore, there is a linear-time algorithm to find a hole containing v
when v is not universal.

Proof: Let G be an atom and v be a vertex of G. Let M(v) = V (G) − (N(v) ∪ {v}). If
M(v) = ∅, then v is universal. Compute the components C1, . . . , Ct of G[M(v)]. For each
Ci, compute the set Ni of vertices in N(v) that have some neighbors in Ci. If some Ni

is a clique, then Ni is a clique cutset separating v from Ci, a contradiction. Thus, none
of the Nis are cliques. Choose an arbitrary set Ni. Consider two non-adjacent vertices x
and y in Ni. Find a chordless path P from x to y whose interior vertices lie entirely in Ci.
Then P and v induce a hole in G. 2

Lemma 5.2 Given a graph G and a vertex v in G, there is an O(nm) time algorithm to
find a hole containing v, if such a hole exists.

Proof: Construct in O(nm) time the clique cutset decomposition T (G) of G. Consider all
the atoms of T (G) containing v. If v is a universal vertex in all such atoms, then v does
not lie on any hole of G. Suppose v is not universal in some atom A. By Lemma 5.1, we
can find a hole containing v in linear time. 2
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Theorem 5.3 There is an O(nm2)-time algorithm to find a pan in a graph, if one exists.

Proof: For an edge ab we can check, by Lemma 5.2, in O(nm) time whether ab is the
handle of a pan by finding a hole containing a (respectively, b) in the subgraph of G
induced by V (G) − (N(b) − {a}) (respectively, V (G) − (N(a) − {b}).) Since G has m
edges, the time bound of the theorem follows. 2

Now, to recognize whether H is a (pan, even hole)-free graph, we first use Theorem 5.3
to test for a pan. If H has no pan, find the clique cutset decomposition.

For an atom G, Theorem 2.3 implies that G is either a unit circular-arc graph or the
join of a clique K and a unit circular-arc graph G′. In the latter case, G is even-hole-free
if and only if G′ is even-hole-free. One can test whether a graph is a unit circular-arc
graph in linear time [24]. In particular, if G′ is not unit circular-arc, then we know G must
have an even hole (by Theorem 3.14). Additionally, an O(nm log logn)-time algorithm
is known for finding an even (or odd) hole in a circular-arc graph [6]. That is, via the
clique cutset decomposition, we can test whether a graph in C contains an even hole in
O(n2m log log n) time (since the decomposition can be computed in O(nm) time and has
O(n) atoms).

Thus, for a given graph H, we can recognize whether H is (pan, even hole)-free in
O(nm2 + n2m log log n) time.

5.2 Recognition via buoy construction

We now present an algorithm which relies on the buoy structure of a (pan, even hole)-free
graph to test whether an atom is (pan, even hole)-free, and if it is not, to find a pan or
even hole. Recall that, by Theorem 3.17, in a (pan, even hole)-free atom G either every
maximal buoy is a full buoy or G is the join of a clique and a buoy. With this approach,
we do not attempt to directly find a pan. Instead, a pan (if it exists) can be found by
examining the buoys and their neighborhoods.

An atom A of graph G is maximal if any induced subgraph H of G that properly
contains A is not an atom, i.e., if H has a clique cutset. The atoms produced by the clique
cutset decomposition are maximal.

The algorithm will produce a forbidden induced subgraph, if one exists. The algorithm
has three steps.

(1) Find a clique cutset decomposition tree T (G) of G.

(2) For each (maximal) atom A of T (G), (i) extract a forbidden induced subgraph (if one
exists) from A, or (ii) show that A is a buoy, or (iii) find a partition of the vertices of
A into the join of a buoy and a clique. The involved buoy will satisfy Observation 3.9.

(3) For each atom A of T (G), verify that no holes of A form a pan with a vertex outside A.

We will show that steps (2) and (3) can be done in linear time for an atom. This shows
the algorithm runs in O(nm) time.

The correctness of step (2) follows from the following theorem.

Theorem 5.4 Let G be an atom. There is a linear-time algorithm to output

(i) a pan, or

(ii) an even hole, or
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(iii) a certificate that G is (pan, even hole)-free, and either a certificate that G is a buoy
or a partition of V (G) into sets B and K such that B is a buoy, K is a clique, and
G is the join of B and K.

To prove Theorem 5.4, we will need the following three lemmas.

Lemma 5.5 If B is an `-buoy where each Bi can be ordered by neighborhood inclusion,
then every hole in B has length `.

Proof: Consider a hole H of B. No two vertices of H have comparable neighborhoods.
Thus, each bag of B contains at most one vertex of H. If H has fewer than ` vertices,
then H is not a hole (a contradiction) since vertices in a bag can only have neighbors in
the bag preceding it and the bag following it in the cyclic order. So H has length `. 2

Lemma 5.6 Let B be an odd `-buoy where each bag Bi can be ordered by neighborhood
inclusion. The following three statements are equivalent

(i) There are two vertices a, b in some Bi such that a strictly dominates b in Bi−1, but
b does not dominate a in Bi+1.

(ii) B has a pan.

(iii) There is a subscript i such that Bi−1 ∪Bi and Bi ∪Bi+1 are both not cliques.

Proof: First, note that Lemma 5.5 implies that B has no even hole. Now the fact that
(i) =⇒ (ii) follows from Observation 3.12. Next, we prove the implication (ii) =⇒ (iii).
Suppose B contains a pan. By Lemma 5.5, the hole of this pan must contain exactly one
vertex of each bag. Let the pan consist of vertices a, b0, b1, . . . , b`−1 where bi ∈ Bi and the
vertices bi form a hole. Without loss of generality, we may assume a ∈ B1. So, (iii) is
satisfied with i = 1. Finally, we prove the implication (iii) =⇒ (i). Suppose B0 ∪ B1 and
B1∪B2 are both not cliques. Let a be the dominant vertex of B1, and b be the vertex in B1

that is dominated by every other vertex of B1. If b is adjacent to every vertex in B0, then
every vertex in B1 is adjacent to every vertex in B0, a contradiction. So b is non-adjacent
to some vertex of B0, i.e., a strictly dominates b in B0. A symmetric argument shows that
a strictly dominates b in B2. 2

Lemma 5.7 Let B be an `-buoy with bags B0, . . . , B`−1 for some `. There is a linear-time
algorithm to verify that the bags of B admit a domination order, i.e., the vertices of each
Bi are pairwise comparable.

Proof: For each bag Bi, we order its vertices by non-decreasing size of their neighborhoods;
i.e., Bi is ordered as b0i , . . . , b

ki−1
i , where |N(b0i )| ≤ |N(b1i )| ≤ . . . ≤ |N(bki−1i )| with

ki = |Bi|. This can be done in O(|Bi−1| + |Bi| + |Bi+1|) time via bucket-sort. That
is, sorting all of the bags can be done in O(n) time. We then check that for every
j ∈ {1, . . . , ki − 1}, every neighbor of bj−1i is a neighbor of bji (if this is not the case,

then bj−1i is incomparable with bji ). For each bag Bi, this neighborhood checking can be

performed in O(Σki−1
j=0 |N(bji )|) time. In particular, all such checking can be performed in

O(m) time. Thus, we can check that the bags of B admit a domination order in O(n+m)
time. 2

Now we can prove Theorem 5.4.
Proof: Suppose that G is an atom. Using the linear-time algorithm in [32], we either
confirm that G is chordal (and hence is (pan, even hole)-free) or obtain a hole H. We may
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assume H is an odd hole. We first briefly describe the algorithm. We will construct a
maximal buoy B with H as its skeleton in O(n+m) time. During this process, we verify
that B has the domination property of Observation 3.9 or G contains a pan or even hole.
If H 6= G and G is not the join of B and a clique, then we will find a pan or even hole.

We now describe our construction of a maximal `-buoy B in an atom G from a hole
H = {h0, . . . , h`−1} of G. We start with the initial `-buoy B with bags B0 = {h0}, . . .,
B`−1 = {h`−1}.

Let K be the set of universal vertices of G. We remove vertices in K from G since these
cannot be part of an even hole or a pan. Since K is not a clique cutset of G, removing K
does not make the resulting graph disconnected. Also, if C is a clique cutset of GK , then
C ∪K is a clique cutset of G. Thus, the graph we obtain by removing K is still an atom.

Consider a vertex x inG−B with some neighbors inB. If x is of type t with t 6∈ {2, 3, `},
then by Lemma 3.15, we know G has a pan or even hole, and we can find this forbidden
induced subgraph by Lemma 3.16. So, x is of type 2, 3 or `. The only candidates to
be added to B are type 3 vertices. Suppose x is of type 3. By Lemma 3.15, either x is
adjacent to three consecutive bags Bi−1, Bi, Bi+1 of B, or G contains a pan or an even
hole. Suppose x is adjacent to three consecutive bags Bi−1, Bi, Bi+1. If x is not adjacent
to all vertices of Bi, then by Lemmas 3.15 and 3.16, we will find a forbidden induced
subgraph. Now x is adjacent to all vertices of Bi. We then add x to Bi. We summarize
the operations described in the above paragraph with Algorithm 1, named ENGLARGE
and given below.

Algorithm 1 ENLARGE

Iterating over the edges from B to G−B, label each vertex of G−B with the bags of
its neighbors in B.
for every vertex x of G−B with a label do

if x has t labels with t 6∈ {2, 3, `} then
output a pan or even hole, and stop

end if
if x is labelled with three non-consecutive indices then

output a pan or even hole, and stop
end if
if x is labelled with three consecutive indices (say, Bi−1, Bi, Bi+1) then
if x is not adjacent to all of Bi then

output a pan or even hole, and stop
else

add x to Bi

end if
end if

end for

Starting with our first buoy B which is an odd hole, we call ENLARGE on B twice.
We will show that after two calls to ENLARGE, we can decide whether G is (pan, even
hole)-free. After the first (respectively, second) call to ENLARGE, let B1 (respectively,
B2) be the resulting buoy, and let the bags of B1 (respectively, B2) be B1

0 , B
1
1 , . . . , B

1
`−1

(respectively, B2
0 , B

2
1 , . . . , B

2
`−1). Note that B1

i ⊆ B2
i for all i. Using Lemma 5.7, we verify

in linear time that both B1 and B2 have the desired domination property, or else we find
a pan or even hole.

Suppose there is a vertex of G not belonging to any B2
i . Consider a vertex x in G−B2
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with neighbors in some of the bags. If x is of type t with t 6∈ {2, 3, `}, then by Lemma 3.16,
we can produce a pan or even hole in linear time.

We will prove that x is of type 2 or `. Suppose x is of type 3. If x does not have
neighbors in three consecutive bags, then by Lemma 3.16, we can produce a pan or even
hole in linear time. So x has neighbors in three consecutive bags, say, B2

i−1, B
2
i , B

2
i+1.

Vertex x is adjacent to all of B2
i , for otherwise, by Observation 3.16 we can find a pan or

even hole. So, B3 = B2 ∪ {x} is a buoy with bags B2
0 , . . . , B

2
i−1, B

2
i ∪ {x}, B2

i+1, . . . , B
2
`−1

. We may assume B3 has the domination property of Observation 3.9, for otherwise by
Observation 3.10, we will find a pan or even hole. Thus, each bag B2

j of B3 has a dominant
vertex dj . Since the vertex dj is adjacent to three vertices of H, dj is added to the buoy
B1 in the first iteration. Vertex x is adjacent to di−1, hi, di+1, so x would have been added
to B2 in the second iteration, a contradiction.

So x is of type 2 or `. (From now on, we only refer to the buoy produced after the
second call; so to simplify notation, we will let B = B2.) When x is of type 2, then, by
(vi) of Lemma 3.15, there is an index i such that {x} ∪ Bi ∪ Bi+1 is a clique, or else we
can produce a pan or even hole. Thus, by (iv) and (vi) of Lemma 3.15, G − B can be
partitioned into sets A0, A1, . . . A`−1, U,R such that

• a ∈ Ai if and only if N(a) ∩B = Bi ∪Bi+1,

• u ∈ U if and only if u is B-complete,

• r ∈ R if and only if r is B-null.

We may now use the proof of Theorem 3.17 to find a pan or even hole. The set U (if
non-empty) induces a clique for otherwise, two non-adjacent vertices of U and two non-
adjacent vertices of B form a C4. If all sets Ai are empty, then U is a clique cutset of
G. So, some Ai is non-empty. Since G is an atom, U ∪ Bi ∪ Bi+1 is not a clique cutset
separating Ai from B−(Bi∪Bi+1). Thus, there is a shortest path P from a vertex ai ∈ Ai

to a vertex aj ∈ Aj (i 6= j) whose interior vertices lie entirely in G − (B ∪ U). Find an
induced path P ′ with the same parity as P from ai to aj whose interior vertices belongs
to B. Then P ∪ P ′ is an even hole.

Thus, after two calls to ENLARGE, we have constructed a full buoy B of the graph
G−K, where K is the set of universal vertices we remove before the first call to ENLARGE.

To complete the proof, we only need to find a pan in B, if one exists. By Lemma 5.6, B
has no pan if and only if for every i, Bi−1∪Bi or Bi∪Bi+1 is a clique. This condition can be
checked in O(m) time. If the condition fails for some i, then the proof of Lemma 5.6 shows
that the dominant vertex a of Bi strictly dominates the vertex b ∈ Bi with the smallest
degree; and so we can find a pan using Observation 3.12. If K (the set of universal vertices
of G) is non-empty, then G is the join of the buoy B and K; otherwise, B is a full buoy
of G. 2

Now we show that step (3) of our algorithm can be implemented in O(nm) time. At
this point, we know that the (maximal) atom A of T (G) under consideration is (pan, even
hole)-free, and that A is either a buoy or the join of a buoy and a clique. We need to
determine that no hole of A forms a pan with a vertex in G − A; we call such a pan
straddling. We need to find a straddling pan with respect to A (if one exists). An atom
A of a graph G is maximal if for any induced subgraph H of G containing A, either H
has a clique cutset, or A is a component of H. The atoms produced by the clique cutset
decomposition are maximal. We will need the following observation.

Observation 5.8 If A is a maximal atom of a graph G, then for every vertex x in G−A,
NA(x) is either empty or a clique.
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Proof: Suppose NA(x) is not empty but is not a clique. Write G′ = G[A∪{x}]. Since A is
a maximal atom, G′ is not an atom, i.e., G′ has a clique cutset C. If x ∈ C, then C −{x}
is a clique cutset of A, a contradiction. So, x belongs to a component P of G′−C. Vertex
x cannot be the only vertex of P , for otherwise, NA(x) is a subset of C, and therefore a
clique, a contradiction. But now C is a clique cutset of A, a contradiction. 2

Now consider an atom A of T (G) that is either a buoy B or the join of a buoy B and a
clique K. We are going to describe a way to find a straddling pan (if one exists) whose
hole belongs to B. (Vertices of K do not belong to a hole in A.) Let the bags of B be
B0, B1, . . . , B`−1. Remember that A is (pan, even hole)-free, so by Observation 3.9, each
bag can be ordered by neighborhood inclusion, so by Lemma 5.5, every hole in B has
length `. Compute the set Q of vertices of G−A that have neighbors in B. The set Q can
be computed in O(m) time. Let Qi be the set of vertices x of Q with NB(x)∩B = Bi∪Bi+1.
Since A is a maximal atom, the graph G[A∪Q] contains a clique cutset C such that C ⊂ A.
It follows from Observation 5.8 that, with respect to the buoy B, every vertex in Q is of
type 1 or 2. Furthermore, since A is (pan, even hole)-free, it follows from Lemma 3.15(vi)
that every vertex of type 2 belongs to some Qi. If some x ∈ Q is of type 1, then clearly
a straddling pan can be found in linear time. Now, every vertex x in Qi is such that
{x} ∪Bi ∪Bi+1 is a clique, and we conclude there is no straddling pan.

Thus, for a maximal atom, we can determine in O(m) time whether a straddling pan
exists. Since there are at most n− 1 atoms of T (G), we can implement step 3 in O(nm)
time. This completes the proof of Theorem 2.4:

Theorem 2.4 Given a graph G, a pan or even hole of G, if one exists, can be found
in O(nm) time.

Note that for an input graphG, ifG is not (pan, even hole)-free, our algorithm produces
a pan or an even hole. If G is (pan, even hole)-free, the algorithm produces a clique cutset
decomposition tree which satisfies Theorem 5.9 below; furthermore, the set of atoms of
every clique cutset decomposition tree will satisfy (i) and (ii) below.

Theorem 5.9 A graph G is (pan, even hole)-free if and only if there is a clique cutset
decomposition tree with most n− 1 atoms Gj such that

(i) Each atom Gj is either a clique or consists of a buoy B(Gj) and a possibly empty
set Uj of universal vertices; the buoy B(Gj) has an odd number of bags; each bag can
be ordered by neighborhood inclusion; and, for each consecutive triple of bags either
the first two or second two form a clique.

(ii) Further, for each atom Gj which is not a clique, the neighborhood of V (Gj) in G can
be partitioned into sets Ai, some of which may be empty, where Ai is universal to
the ith and (i+1)st bags of the buoy B(Gj) and Ai has no other neighbors in B(Gj).

The correctness of the algorithm proves the “only if” part of the theorem. To see
that the “if” part holds, note that a graph Gj satisfying property (i) of Theorem 5.9 is
(pan, even hole)-free. Since any hole of G must lie in some atom Gj , property (ii) then
guarantees that there is no straddling pan whose hole is in Gj .

It follows from Theorem 5.9 that our algorithm is certifying. The certificate given by
Theorem 5.9 has size O(nm).
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6 Tree-width and χ-boundedness

In this section we bound the tree-width of (pan, even hole)-free graphs in terms of their
clique number (see Theorem 6.4). This bound immediately provides a bound on the
chromatic number (see Corollary 6.5).

A tree decomposition (T, t) of a graph G is defined to be a tree T together with a
function t : V (G)→ V (T ) such that:

• For every v ∈ V (G), t(v) induces a subtree of T .

• For every uv ∈ E(G), t(v) ∩ t(u) 6= ∅.

Notice that a simple tree decomposition of any graph can be obtained by choosing T to be
a single vertex and mapping every vertex of G to this vertex. The vertices of T are often
treated as sets, referred to as the bags of the tree decomposition, and the elements of a
bag b are the vertices v of G where b ∈ t(v). For a tree decomposition (T, t) of a graph
G, the tree-width of (T, t), denoted tw(T, t), is the size of the largest bag of T minus 1;
i.e., tw(T, t) = maxb∈T (|b| − 1). For a graph G, the tree-width of G, denoted tw(G), is the
smallest tree-width of any tree decomposition of G.

We use the following three well-known and easy results regarding tree-width.

Observation 6.1 For a graph G, χ(G) ≤ tw(G) + 1.

Proof: Let (T, t) be a tree decomposition of G with tw(T, t) = tw(G). We create a
supergraph G′ by completing the bags of (T, t) to cliques. This resulting graph is chordal,
and thus perfect. So we now have χ(G) ≤ χ(G′) = ω(G′) = tw(G) + 1. 2

Lemma 6.2 If G contains a clique cutset S where G1, . . . , Gk are the components of G−S,
then:

tw(G) = max
i
tw(G[Gi ∪ S])

Lemma 6.3 Let G be a graph that is the join of a graph B and a clique K. Then

tw(G) = tw(B) + |K|

where |K| denotes the number of vertices of K.

For further information on tree-width, see [30].

Theorem 6.4 A (pan, even hole)-free graph G has tw(G) + 1 ≤ 1.5ω(G).

Proof: By Lemmas 6.2 and 6.3 and Theorem 3.17, we only need show that tw(B) ≤
1.5ω(B) for any buoy in G. Recall that, for every bag Bi of B, either Bi ∪ Bi+1 is a
clique or Bi−1∪Bi is a clique. In particular, we can build a tree representation (T, t) of B
where T is path using the unit circular-arc construction from the proof of Theorem 3.14.
To do this we choose the smallest Bi, and “split” the unit circular-arc representation at
the point (i) and “unroll” it onto a line. We now have a path where every point from
our unit circular-arc representation is a bag, and the extreme bags are copies of the bag
corresponding to the point (i). Thus, by adding the vertices of Bi to every bag on this
path, we obtain a tree representation of B. It is easy to see that the largest bag in this
representation has size ω(G) + |Bi| ≤ 1.5ω(G). 2

20



Theorem 6.4 is tight since odd cycles have tree-width two and clique number two.
Similarly, by making a buoy with an odd number of bags such that each bag has k vertices
and Bi∪Bi+1 is a clique for every i, we have a graph whose tree-width is 3k−1 and whose
clique number is 2k. (See Figure 2 for an example with k = 2.) Moreover, by Observation
6.1, we obtain the following corollary.

Corollary 6.5 A (pan, even hole)-free graph G has χ(G) ≤ 1.5ω(G). 2

7 Conclusion and open problems

In this paper, we studied the structure of (claw, even hole)-free graphs. It turned out that
our results apply to the larger class of (pan, even hole)-free graphs. From the structure
results, we obtained fast recognition and coloring algorithms for (pan, even hole)-free
graphs. The complexity of coloring even-hole-free graphs is unknown. It follows from
Corollary 1 in [23] that coloring odd-hole-free graphs is NP-Complete. Thus, the following
problem, analogous to our result, is of interest to us.

Problem 7.1 What is the complexity of coloring (pan, odd hole)-free graphs?

Observation 6.1 shows the tree-width of a (pan, even hole)-free graphs is bounded by a
function in the clique number. It is conceivable that a more general statement holds.

Problem 7.2 Is the tree-width of an even-hole-free graph bounded by a function of its
clique number?

The clique-width of a graph G, denoted by cw(G), is the minimum number of labels
needed to construct G using the following four operations:

(i) Creation of a new vertex v with label i.

(ii) Disjoint union of two labeled graphs.

(iii) Joining each vertex with label i to each vertex with label j.

(iv) Changing label i to j.

It is known [10] that for any graph G, cw(G) ≤ 3 ·2tw(G)−1 and that [12] cw(G) ≤ 2 ·cw(G)
where G is the complement of G.

In [11], it is shown that every problem definable in a certain kind of Monadic Sec-
ond Order Logic, called LinEMSOL(τ1, L) is linear-time solvable on any graph class with
bounded clique-width for which a k-expression can be constructed in linear time. In [11],
it is mentioned that, roughly speaking, MSOL(τ1) is Monadic Second Order Logic with
quantification over subsets of vertices but not of edges; MSOL(τ1, L) is the restriction
of MSOL(τ1) with the addition of labels added to the vertices, and LinEMSOL(τ1, L) is
the restriction of MSOL(τ1, L) which allows search for sets of vertices which are optimal
with respect to some linear evaluation functions. The problems Vertex Cover, Maximum
Weight Stable Set, Maximum Weight Clique, Steiner Tree and Domination are examples
of LinEMSOL(τ1, L) definable problems. Furthermore, from the results of [29] and [22], it
follows that the chromatic number of any class of graphs with bounded clique-width can
be computed in polynomial time.

In [25], it is shown that split graphs have unbounded clique-width. It follows that
even-hole-free graphs have unbounded clique-width. However, it might be possible that
the clique-width of an even-hole-free graph is bounded by a function of its clique number.
To conclude our paper, we pose this as an open problem.
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Problem 7.3 Is the clique-width of an even-hole-free graph bounded by a function of its
clique number?
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