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Abstract

Let k, d (2d ≤ k) be two positive integers. We generalize the well studied notions of

(k, d)-colorings and of the circular chromatic number χc to signed graphs. This implies

a new notion of colorings of signed graphs, and the corresponding chromatic number χ.

Some basic facts on circular colorings of signed graphs and on the circular chromatic

number are proved, and differences to the results on unsigned graphs are analyzed. In

particular, we show that the difference between the circular chromatic number and the

chromatic number of a signed graph is at most 1. Indeed, there are signed graphs where

the difference is 1. On the other hand, for a signed graph on n vertices, if the difference

is smaller than 1, then there exists εn > 0, such that the difference is at most 1− εn.

We also show that notion of (k, d)-colorings is equivalent to r-colorings (see [10]

(X. Zhu, Recent developments in circular coloring of graphs, in Topics in Discrete

Mathematics Algorithms and Combinatorics Volume 26, Springer Berlin Heidelberg

(2006) 497-550)).

1 Introduction

Graphs in this paper are simple and finite. The vertex set of a graph G is denoted by

V (G), and the edge set by E(G). A signed graph (G, σ) is a graph G and a function

σ : E(G) → {±1}, which is called a signature of G. The set Nσ = {e : σ(e) = −1} is the

set of negative edges of (G, σ) and E(G)−Nσ the set of positive edges. For v ∈ V (G), let

E(v) be the set of edges which are incident to v. A switching at v defines a graph (G, σ′)

with σ′(e) = −σ(e) for e ∈ E(v) and σ′(e) = σ(e) otherwise. Two signed graphs (G, σ) and

(G, σ∗) are equivalent if they can be obtained from each other by a sequence of switchings.

We also say that σ and σ∗ are equivalent signatures of G.

A circuit in (G, σ) is balanced, if it contains an even number of negative edges; otherwise

it is unbalanced. The graph (G, σ) is unbalanced, if it contains an unbalanced circuit;

otherwise (G, σ) is balanced. It is well known (see e.g. [3]) that (G, σ) is balanced if and
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only if it is equivalent to the signed graph with no negative edges, and (G, σ) is antibalanced

if it is equivalent to the signed graph with no positive edges. Note, that a balanced bipartite

graph is also antibalanced. The underlying unsigned graph of (G, σ) is denoted by G.

In the 1980s Zaslavsky [5, 6, 7] started studying vertex colorings of signed graphs. The

natural constraints for a coloring c of a signed graph (G, σ) are, that c(v) 6= σ(e)c(w) for

each edge e = vw, and that the colors can be inverted under switching, i.e. equivalent

signed graphs have the same chromatic number. In order to guarantee these properties of a

coloring, Zaslavsky [5] used the set {−k, . . . , 0, . . . , k} of 2k+ 1 ”signed colors” and studied

the interplay between colorings and zero-free colorings through the chromatic polynomial.

Recently, Máčajová, Raspaud, and Škoviera [2] modified this approach. If n = 2k + 1,

then let Mn = {0,±1, . . . ,±k}, and if n = 2k, then let Mn = {±1, . . . ,±k}. A mapping c

from V (G) to Mn is a n-coloring of (G, σ), if c(v) 6= σ(e)c(w) for each edge e = vw. They

defined χ±((G, σ)) to be the smallest number n such that (G, σ) has a n-coloring.

Since every element of an additive abelian groups has an inverse element, it is natural

to choose the elements of an additive abelian group as colors for a coloring of signed graphs.

The self-inverse elements of the group play a crucial role in the colorings, since the induced

color classes are independent sets. Hence, the following statement is true.

Proposition 1.1. Let G be a graph and χ(G) = k. If C is a set of k pairwise different

self-inverse elements of an abelian group (e.g. of Zn2 (k ≤ 2n)), then every k-coloring of G

with colors from C is a k-coloring of (G, σ), for every signature σ of G. In particular, the

chromatic number of (G, σ) with respect to C is k.

1.1 (k, d)-colorings of signed graphs

A coloring parameter, where the colors are also the elements of an abelian group, namely

the cyclic group of integer modulo n, and where the coloring properties are defined by

using operations within the group, is the circular chromatic number. This parameter was

introduced by Vince [4] in 1988. We combine these two approaches to define the circular

chromatic number of a signed graph. For x ∈ R and a positive real number r, we denote by

[x]r, the remainder of x divided by r, and define |x|r = min{[x]r, [−x]r}. Hence, [x]r ∈ [0, r)

and |x|r = | − x|r.
Let Zn denote the cyclic group of integers modulo n, Z/nZ. Let k and d be positive

integers such that k ≥ 2d. A (k, d)-coloring of a signed graph (G, σ) is a mapping c :

V (G) 7→ Zk such that for each edge e with e = vw: d ≤ |c(v) − σ(e)c(w)|k. The circular

chromatic number χc((G, σ)) is inf{kd : (G, σ) has a (k, d)-coloring}. The minimum k such

that (G, σ) has a (k, 1)-coloring is the chromatic number of (G, σ) and it is denoted by

χ((G, σ)).
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Proposition 1.2. Let k, d be positive integers, (G, σ) be a signed graph and c be a (k, d)-

coloring of (G, σ). If (G, σ) and (G, σ′) are equivalent, then there is a (k, d)-coloring c′ of

(G, σ′). In particular, χc((G, σ)) = χc((G, σ
′)).

Proof. Let x ∈ V (G) and (G, σ′) be obtained from (G, σ) by a switching at x. Define

c′ : V (G) → Zk with c′(v) = c(v), if v 6= x, and c′(x) = −c(x). For every edge e with

e = uw: If x 6∈ {u,w}, then |c(u)−σ(e)c(w)|k = |c′(u)−σ′(e)c′(w)|k, and if x ∈ {u,w}, say

x = w, then |c′(u) − σ′(e)c′(w)|k = |c(u) − (−σ(e))(−c(w))|k = |c(u) − σ(e)c(w)|k. Hence,

c′ is a (k, d)-coloring of (G, σ′), and therefore, χc((G, σ)) = χc((G, σ
′)).

Note, that if (G, σ) has a (k, d)-coloring, then by switching we can obtain an equivalent

graph (G, σ′) and a (k, d)-coloring c′ on (G, σ′) such that c′(v) ∈ {0, 1, . . . , bk2c} for each v ∈
V (G). We will show that the circular chromatic number is a minimum; i.e. if χc((G, σ)) = k

d ,

then there exists a (k, d)-coloring of (G, σ). Furthermore, χ((G, σ)) − 1 ≤ χc((G, σ)) ≤
χ((G, σ)) for (G, σ). In contrast to the corresponding result for unsigned graphs we show,

that for each even k there are signed graphs with circular chromatic number k and chromatic

number k+ 1, i.e. they do not have a (k, 1)-coloring. On the other hand, for a signed graph

on n vertices, if the difference between these parameters is smaller than 1, then there exists

εn > 0, such that the difference is at most 1 − εn. The proofs of the main results of this

paper follow the approach of Bondy and Hell [1] for similar results for unsigned graphs.

1.2 r-colorings of signed graphs

The name ”circular coloring” was introduced by Zhu [8], and motivated by the equivalence

of (k, d)-colorings to r-colorings. In section 3 we will show that this is also true in the context

of signed graphs. Let (G, σ) be a signed graph and r be a real number at least 1. A circular

r-coloring of (G, σ) is a function f : V (G)→ [0, r) such that for any edge e with e = xy: if

σ(e) = 1, then 1 ≤ |f(x)−f(y)| ≤ r−1, and if σ(e) = −1, then 1 ≤ |f(x)+f(y)−r| ≤ r−1.

Clearly, if we identify 0 and r of the interval [0, r] into a single point, then we obtain a circle

with perimeter r. Let Sr be this circle. The colors are the points on Sr, and the distance

between two points a, b of Sr is the shorter arc of Sr connecting a and b, which is |a− b|r.
For a ∈ Sr let r − a be the inverse element of a. By this notation, a circular r-coloring of

(G, σ) is a function that assigns if σ(e) = 1, then 1 ≤ |f(x) − f(y)|r, and if σ(e) = −1,

then 1 ≤ |f(x) + f(y)|r. Note, that this definition also respects switchings. Let f be an

r-coloring of (G, σ) and (G, σ′) be obtained from (G, σ) by a switching at v ∈ V (G). Then

f ′ with f ′(x) = f(x) if x ∈ V (G) \ {v} and f ′(v) = r − f(v) is an r-coloring of (G, σ′). As

above we deduce that there is always a coloring on an equivalent graph of (G, σ), which

only uses colors in the interval [0, r2 ].

We will show in section 3 that χc((G, σ)) = inf{r : (G, σ) has an r-coloring}.
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The circular chromatic number and r-colorings seem to be a very natural notion for the

coloring of signed graphs. The color set Sr has always two self-inverse elements, namely 0

and r
2 .

2 Basic properties of (k, d)-colorings and χc

Lemma 2.1. Let d, k, t be positive integers with gcd(k, d) = 1 and t ≥ 3, and let (G, σ) be

a signed graph. If (G, σ) has a (tk, td)-coloring, then it has a (tk − 2k, td− 2d)-coloring.

Proof. For i ∈ {0, 1, · · · , t−1}, let Ai = {i, i+t, i+2t, · · · , i+(k−1)t}. Clearly, A0, . . . , At−1

are t pairwise disjoint sets of colors whose union is exactly the color set Ztk. We shall recolor

each color in both sets A1 and At−1 by a color in set A0 as follows: for i ∈ A1, recolor i

by i − 1, and for i ∈ At−1, recolor i by i + 1. We obtain a new (tk, td)-coloring of (G, σ)

in which no vertex receives a color from A1 ∪ At−1. Define k′ = tk − 2k. Since the colors

in the set A1 ∪At−1 are not used, we define a new coloring by renaming colors by elements

of Zk′ . Change color x (from Ztk) to x − |{y : y ∈ A1 ∪ At−1 and y < x}| (interpreted as

element in Zk′) to obtain a mapping φ′ : V → Zk′ . Let d′ = td− 2d. We claim that φ′ is a

(k′, d′)-coloring of (G, σ). Denote by Ij the set {j, j + 1, . . . , j + td− 1} which is an interval

of Ztk. Each interval Ij contains exactly 2d elements of A1∪At−1, and any pair of mutually

inverse elements of Ztk has been recolored by a pair of mutually inverse elements of Zk′ . It

follows that φ′ is a (k′, d′)-coloring of (G, σ), as required.

By the rearrangement theorem of group theory we have

Lemma 2.2. Let k, d and x be three integers with k, d > 0 and gcd(k, d) = 1. If A =

{0, 1, . . . , k − 1} and B = {[x+ id]k : i ∈ A}, then A = B.

Definition 2.3. Let c be a (k, d)-coloring of a signed graph (G, σ) in which colors x0 and

its inverse k−x0 are missing. Updating c at x0 is defined as follows: if the color [x0 +d]k

appears in c, then recolor [x0 +d]k by [x0 +d− 1]k; and meanwhile, if the color [k−x0−d]k

appears in c, then recolor [k − x0 − d]k by [k − x0 − d + 1]k. Let r be a positive integer.

Updating c at a sequence of colors x0, [x0 + d]k, . . . , [x0 + (r − 1)d]k is called updating c

from x0 by r steps. We also say that a function c′ is obtained from c by updating at x0 (in

r steps) if c′ is the final function from V (G) to Zk in this process.

Let k, d be two positive integers and P (k, d) = {12(k−2d+1), 12(k−d+1), 12(2k−d+1)}.
Clearly, if both k and d are even, then Zk ∩ P (k, d) = ∅; otherwise, |Zk ∩ P (k, d)| = 2.

Lemma 2.4. Let (G, σ) be a signed graph, c be a (k, d)-coloring of (G, σ), and let c′ be

obtained from c by updating at x0. Either x0 /∈ P (k, d) or both [x0 + d]k and [k − x0 − d]k
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are not used in c if and only if c′ is a (k, d)-coloring of (G, σ) in which the colors x0, [x0 +

d]k, [k − x0]k and [k − x0 − d]k are not used.

Proof. (⇒) If both [x0 + d]k and [k − x0 − d]k are not used in c, then it follows that c′ is

the same coloring as c since nothing happens in the updating process. So we are done in

this case.

Let x0 /∈ P (k, d), and suppose to the contrary that c′ is not a (k, d)-coloring of (G, σ).

Then there exists an edge e with two end-points u and v such that |c′(u)− σ(e)c′(v)|k < d.

Since c is a (k, d)-coloring of (G, σ), it follows that |c(u)−σ(e)c(v)|k ≥ d. Hence, the distance

between the colors of u and v has been decreased in the updating process. The distance

can be decreased by at most 2. Hence, we distinguish two cases.

Case a: The distance between the colors of u and v decreases by 2. In this case, both

u and v have been recolored, say c(u) = [x0 + d]k and c(v) = [k − x0 − d]k; and moreover,

[c(u)−σ(e)c(v)]k ∈ {d, d+1}. It follows that σ(e) = 1 and furthermore, [c(u)−σ(e)c(v)]k =

d + 1 since for otherwise c(u) and c(v) are in fact the colors x0 and [k − x0]k which are

missing in c. By simplification of this equality, we get [2(x0 + d) − k]k = d + 1 and thus,

x0 ∈ {k−d+1
2 , 2k−d+1

2 }, contradicting the assumption that x0 /∈ P (k, d).

Case b: The distance between the colors of u and v decreases by 1. In this case, exactly

one of u and v has been recolored, say u; and moreover, |c(u) − σ(e)c(v)|k = d. Without

loss of generality, we may assume c(u) = [x0 + d]k. It follows that c(v) = x0, contradicting

the fact that x0 is not used in c.

Therefore, c′ is a (k, d)-coloring of (G, σ). If the colors [x0 + d]k and [k− x0 − d]k occur

in c′, then they have been recolored by each other, which can happen in the only case that

k is odd and [x0 + d]k = x0 + d = k+1
2 . However, this case is impossible since x0 /∈ P (k, d).

Finally, suppose to the contrary that the colors x0 and [k− x0]k occur in c′. Since they are

not used in c, they have been reused in the updating process. Thus, [x0 +d−1]k = [k−x0]k
and so x0 ∈ {k−d+1

2 , 2k−d+1
2 }, a contradiction.

(⇐) Suppose to the contrary that x0 ∈ P (k, d) and at least one of [x0+d]k and [k−x0−d]k

are used in c. Without loss of generality, say [x0 + d]k is used. We distinguish two cases

according to the value of x0.

Case 1: assume x0 ∈ {k−d+1
2 , 2k−d+1

2 }. Thus, [x0 + d − 1]k = [k − x0]k, which implies

that the color [k − x0]k has been reused in the updating process, a contradiction.

Case 2: assume x0 = k−2d+1
2 . Thus, [x0 + d]k = [k−x0− d]k + 1, which implies that the

colors [x0 + d]k and [k − x0 − d]k have been exchanged, a contradiction.

Lemma 2.5. Let (G, σ) be a signed graph on n vertices that has a (2k, 2d)-coloring and

gcd(k, d) = 1. If k > 2n, then (G, σ) has a (k, d)-coloring.
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Proof. Let c be a (2k, 2d)-coloring of (G, σ). Since k > 2n, we may assume that there is

odd x0, such that x0 and k − x0 are not used in c. Update c from x0 by k steps to obtain

a function c′. Denote by A the set of odd elements of Z2k. Since both 2k and 2d are even

it follows with Lemma 2.2 that the colors of A ∩ {c(v) : v ∈ V (G)} have been recolored by

colors of Z2k \A in the updating process. Hence, A∩{c′(v) : v ∈ V (G)} = ∅, and by Lemma

2.4, c′ is a (2k, 2d)-coloring of (G, σ). Thus, φ : V (G)→ Zk with φ(v) = 1
2c
′(v) is a coloring

of (G, σ). Let Ij = {j, j + 1, . . . , j + 2d − 1} which is an interval of Z2k. Each interval Ij

contains exactly d elements of A. Moreover, any pair of mutually inverse elements of Z2k

has been recolored by a pair of mutually inverse elements of Zk. Hence, φ is a (k, d)-coloring

of (G, σ), as required.

Lemma 2.6. If (G, σ) is a signed graph on n vertices that has a (k, d)-coloring with

gcd(k, d) = 1 and k > 4n, then (G, σ) has a (k′, d′)-coloring with k′ < k and k′

d′ <
k
d .

Proof. Since gcd(k, d) = 1, we may assume that P (k, d) ∩ Zk = {p, q} and p < q.

Let f : Zk 7→ Zk such that x ≡ f(x)d (mod k). Lemma 2.2 implies that f is a bijection.

Further, x and y are mutually inverse elements of Zk if and only if f(x) and f(y) are

mutually inverse ones, and |f(p)− f(q)|k = bk2c.
Let c be a (k, d)-coloring of (G, σ). Since k > 4n we may assume that x0 ∈ Zk such that

x0 and k− x0 are not used in c, and that f(q), f(x0) and f(p) are in clockwise order in Zk.
Hence, c can be updated from x0 by [f(p)− f(x0)]k steps to obtain a (k, d)-coloring c′

of (G, σ) in which colors p and k − p are not used. Let r = min{[f(p)− f(k − p)]k, [f(q)−
f(k− p)]k}, i.e., r is the minimum positive integer such that either k− p+ rd ≡ p (mod k)

or k − p + rd ≡ q (mod k). Updating c′ from k − p by r steps, we obtain a function c′′,

which is a (k, d)-coloring c′′ of (G, σ) by Lemma 2.4.

We will show that no color is reused in this updating process such that we can define a

(k′, d′)-coloring of (G, σ) with k′

d′ <
k
d and k′ < k.

Let A = {[k − p + id]k : 0 ≤ i ≤ r} and B = {k − a : a ∈ A}. By simplifying the

congruence expressions, we reformulate the minimality of r as: r is the minimum positive

integer such that

(1) either (r + 1)d ≡ 1 (mod k) or (2r + 2)d ≡ 2 (mod k), if k is even;

(2) either (r + 2)d ≡ 1 (mod k) or (2r + 3)d ≡ 2 (mod k), if k is odd.

Claim 2.6.1. No element of A ∪B is used in coloring c′′.

Suppose to the contrary that A∪B has a color α with α ∈ {[k−p+r1d]k, k−[k−p+r1d]k}
appearing in c′′. Concerning that the color α is missing in the resulting coloring after exactly

r1 steps in the updating process, its appearance in c′′ yields that it has been reused in some

6



r2 step with r > r2 > r1. It follows that either k − p + r2d ≡ k − p + r1d + 1 (mod k) or

k − p+ r2d ≡ −(k − p+ r1d) + 1 (mod k).

In the former case, the congruence expression can be simplified as (r2−r1)d ≡ 1 (mod k).

Note that 0 < r2 − r1 < r + 1. A contradiction is obtained by the minimality of r.

In the latter case, the congruence expression can be simplified as (r1 + r2 + 1)d ≡
2 (mod k) if k is even and (r1 + r2 + 2)d ≡ 2 (mod k) if k is odd. But then r1 + r2 < 2r+ 1

which is a contradiction to the minimality of r. This completes the proof of the claim.

Case 1: k is even. In this case, p = 1
2(k − d+ 1) and q = 1

2(2k − d+ 1).

Case 1.a: k − p+ rd ≡ p (mod k).

The colors [k− p+ id]k and [k− p+ (r− i)d]k are mutually inverse, for 0 ≤ i ≤ r. Thus,

the set A consists of d r+1
2 e pairs of mutually inverse elements of Zk and {0, k2} * A = B.

Since the colors of A ∪ B are not used in c′′ by Claim 2.6.1, we rename the other colors:

if 0 /∈ A, then change color x to x − |{y : y ∈ A and y < x}|; otherwise, change color x

to x − |{y : y ∈ A and y < x}| − bk−|A|2 c. Define k′ = k − r − 1. We thereby obtain a

mapping φ′ : V (G)→ Zk′ . Denote by Ij the set {j, j+ 1, . . . , j+ d− 1} which is an interval

of Zk. Each interval Ij contains at most rd+d−1
k elements of A. Define d′ = d − rd+d−1

k .

Moreover, any pair of mutually inverse colors of Zk has been recolored to mutually inverse

colors of Zk and then has been renamed to be mutually inverse colors of Zk′ . Hence, φ′ is

a (k′, d′)-coloring of (G, σ), and k′

d′ = k(k−r−1)
d(k−r−1)+1 <

k
d .

Case 1.b: k − p+ rd ≡ q (mod k).

We have that either 0 < f(q), f(k − p) < k
2 or k

2 < f(q), f(k − p) < k. Since |f(p) −
f(q)|k = k

2 , it follows that neither {f(a) : a ∈ A} nor A contains any pair of mutually inverse

colors. Thus, A ∪ B consists of r + 1 pairs of mutually inverse colors and 0, k2 6∈ A ∪ B.

Define k′ = k − 2(r + 1). Since the colors in the set A ∪ B are not used in c′′ by Claim

2.6.1, we may rename the other colors, changing color x to x−|{y : y ∈ A∪B and y < x}|,
thereby obtain a mapping φ′ : V (G) → Zk′ . Denote by Ij the set {j, j + 1, . . . , j + d − 1}
which is an interval of Zk. Each interval Ij contains at most 2rd+2d−2

k elements of A. Define

d′ = d − 2rd+2d−2
k = (k−2r−2)d+2

k . By repeating the argument as in Case 1.a, we get a

(k′, d′)-coloring of (G, σ).Furthermore, k′

d′ = k(k−2r−2)
d(k−2r−2)+2 <

k
d .

Case 2: k is odd. In this case, p = 1
2(k − 2d+ 1), and q = 1

2(k − d+ 1) when d is even

and q = 1
2(2k − d+ 1) when d is odd.

Case 2.a: k − p+ rd ≡ p (mod k).

The colors [p+ id]k and [p+ (r− i)d]k are mutually inverse for 0 ≤ i ≤ r. Thus, A = B

and A consists of d r+1
2 e pairs of mutually inverse colors of Zk. Since the colors of A ∪ B

are not used in c′′ by Claim 2.6.1, we may rename the other colors: if 0 /∈ A, then change

x to x− |{y : y ∈ A and y < x}| for each x ≤ bk2c and to x− |{y : y ∈ A and y < x}| − 1

for each x > bk2c; otherwise, change x to x − |{y : y ∈ A and y < x}| − k−|A|
2 + 1 for each

7



x ≤ bk2c and to x− |{y : y ∈ A and y < x}|− k−|A|
2 for each x > bk2c. The mutually inverse

colors k−1
2 and k+1

2 of Zk are not in A and they have been renamed into the same color.

Define k′ = k − r − 2. We thereby obtain a mapping φ′ : V → Zk′ . Denote by Ij the set

{j, j + 1, . . . , j + d − 1} which is an interval of Zk. Define d∗ = 1
k (rd + 2d − 1). For each

interval Ij , if both colors k−1
2 and k+1

2 belong to Ij , then Ij contains at most d∗−1 elements

of A; otherwise, Ij contains at most d∗ elements of A. Define d′ = d−d∗. Moreover, any pair

of mutually inverse colors of Zk has been recolored to be mutually inverse colors of Zk and

then has been renamed to be mutually inverse colors of Zk′ . Hence, φ′ is a (k′, d′)-coloring

of (G, σ), and k′

d′ = k(k−r−2)
d(k−r−2)+1 <

k
d .

Case 2.b: k − p+ rd ≡ q (mod k).

By similar argument as in Case 1.b, we may assume that A contains no mutually inverse

colors of Zk. Thus, A ∪B consists of r + 1 pairs of mutually inverse colors and 0 /∈ A ∪B.

Since the colors of A∪B are not used in c′′ by Claim 2.6.1, we may rename the other colors:

change x to x−|{y : y ∈ A and y < x}| for each x ≤ bk2c and to x−|{y : y ∈ A and y < x}|−1

for each x > bk2c. The mutually inverse colors k−1
2 and k+1

2 of Zk are not contained in the

set A and have been renamed into the same color. Define k′ = k − 2r − 3. We thereby

obtain a mapping φ′ : V → Zk′ . Denote by Ij the set {j, j + 1, . . . , j + d − 1} which is an

interval of Zk. Define d∗ = 1
k (2rd + 3d − 2). Clearly, d∗ is a positive integer because of

the assumption of Case 2.b. For each interval Ij , if both colors k−1
2 and k+1

2 belong to Ij ,

then Ij contains at most d∗ − 1 elements of A; otherwise, Ij contains at most d∗ elements

of A. Define d′ = d − d∗. Any pair of mutually inverse colors of Zk has been recolored to

be mutually inverse colors of Zk and then has been renamed to be mutually inverse colors

of Zk′ . Hence, φ′ is a (k′, d′)-coloring of (G, σ), and k′

d′ = k(k−2r−3)
d(k−2r−3)+2 <

k
d .

Theorem 2.7. If (G, σ) is a signed graph on n vertices, then

χc((G, σ)) := min{k
d

: (G, σ) has a (k, d)-coloring and k ≤ 4n}.

Proof. By Lemmas 2.1, 2.5 and 2.6, if (G, σ) has a (k, d)-coloring then it has a (k′, d′)-

coloring with k′ ≤ 4n and k′

d′ ≤
k
d . Therefore,

χc((G, σ)) := inf{k
d

: (G, σ) has a (k, d)-coloring and k ≤ 4n}.

Since the set {kd : (G, σ) has a (k, d)-coloring and k ≤ 4n} is finite, the infimum can be

replaced by a minimum.

Relation between χc and χ

Lemma 2.8. If a signed graph (G, σ) has a (k, d)-coloring, then for any positive integer t,

(G, σ) has a (tk, td)-coloring.
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Proof. Let c be a (k, d)-coloring of (G, σ). Define a (tk, td)-coloring c′ of (G, σ) by

c′(x) = tc(x), for all x ∈ V (G).

Lemma 2.9. If a signed graph (G, σ) has a (k, d)-coloring and k′ > k, where k′ is a positive

integer, then (G, σ) has a (k′, d)-coloring.

Proof. Let c be a (k, d)-coloring of (G, σ). Define the mapping c′ : V (G) → Zk′ by for all

x ∈ V (G),

c′(x) =

c(x) if c(x) ≤ bk2c,

c(x) + k′ − k otherwise.

It is easy to check that c′ is a (k′, d)-coloring of (G, σ).

Theorem 2.10. If a signed graph (G, σ) has a (k, d)-coloring, and k′ and d′ are two positive

integers such that k
d <

k′

d′ , then (G, σ) has a (k′, d′)-coloring.

Proof. By Lemma 2.8, (G, σ) has a (kd′, dd′)-coloring. Since k
d <

k′

d′ , Lemma 2.9 implies

that (G, σ) has a (k′d − 1, dd′)-coloring and a (k′d, dd′)-coloring as well. If d is odd, then

by Lemma 2.1, a (k′d, dd′)-coloring of (G, σ) yields a (k′, d′)-coloring of (G, σ) and we are

done. Let d be even and c′′ be a (k′d − 1, dd′)-coloring of (G, σ). Define the mapping

c : V (G)→ {1− d
2 , 2−

d
2 , . . . , k

′d− 1− d
2} as follows. For x ∈ V (G) let

c(x) =

c′′(x)− (k′d− 1), if c′′(x) > k′d− 1− d
2 ,

c′′(x), otherwise.

Define the mapping c′ : V (G)→ Zk′ by

c′(x) = bc(x)

d
+

1

2
c, for all x ∈ V (G).

We will show that c′ is a (k′, d′)-coloring of (G, σ).

Consider an edge uv. First assume that σ(uv) = 1. Without loss of generality, let

c(u) > c(v). Note that 1 ≤ c(u) − c(v) ≤ k′d − 2. Since c′′ is a (k′d − 1, dd′)-coloring of

(G, σ),

dd′ ≤ c(u)− c(v) ≤ k′d− 1− dd′.

Therefore,

c′(u)− c′(v) = bc(u)

d
+

1

2
c − bc(v)

d
+

1

2
c

≤ bk′ − d′ + c(v)− 1

d
+

1

2
c − bc(v)

d
+

1

2
c

≤ k′ − d′,
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and

c′(u)− c′(v) = bc(u)

d
+

1

2
c − bc(v)

d
+

1

2
c

≥ bd′ + c(v)

d
+

1

2
c − bc(v)

d
+

1

2
c

= d′.

Next assume that σ(uv) = −1. Note that 2− d ≤ c(u) + c(v) ≤ 2(k′d− 1)− d. Since c′′ is

a (k′d− 1, dd′)-coloring of (G, σ), either

dd′ ≤ c(u) + c(v) ≤ k′d− 1− dd′

or

k′d− 1 + dd′ ≤ c(u) + c(v) ≤ 2(k′d− 1)− dd′.

In the former case,

c′(u) + c′(v) = bc(u)

d
+

1

2
c+ bc(v)

d
+

1

2
c

≤ bk′ − d′ − c(v) + 1

d
+

1

2
c − bc(v)

d
+

1

2
c

≤ bk′ − d′ − 1

d
+ 1c.

= k′ − d′,

and

c′(u) + c′(v) = bc(u)

d
+

1

2
c+ bc(v)

d
+

1

2
c

≥ bd′ − c(v)

d
+

1

2
c+ bc(v)

d
+

1

2
c

= d′.

In the latter case, by a similar calculation, we deduce

k′ + d′ ≤ c′(u) + c′(v) ≤ 2k′ − d′.

Therefore, c′ is a (k′, d′)-coloring of (G, σ).

Proposition 2.11. If a signed graph (G, σ) has a (k, d)-coloring with d odd, and k′ and d′

are two positive integers such that k
d = k′

d′ , then (G, σ) has a (k′, d′)-coloring.

Proof. By Lemma 2.8, (G, σ) has a (kd′, dd′)-coloring, i.e., a (k′d, dd′)-coloring since k
d = k′

d′ .

Since d is odd, by Lemma 2.1, (G, σ) has a (k′, d′)-coloring of (G, σ).

Theorem 2.12. If (G, σ) is a signed graph, then χ((G, σ))− 1 ≤ χc((G, σ)) ≤ χ((G, σ)).
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Proof. By the definitions, we have χc((G, σ)) ≤ χ((G, σ)). On the other hand, suppose to

the contrary that χc((G, σ)) < χ((G, σ)) − 1. Theorem 2.7 implies that χc((G, σ)) is a

rational number. We may assume (G, σ) has a (k, d)-coloring with χc((G, σ)) = k
d . By

Theorem 2.10, (G, σ) has a (χ((G, σ))− 1, 1)-coloring, a contradiction.

If G is an unsigned graph, then χ(G) − 1 < χc(G) ≤ χ(G), see [4]. We will show that

there are signed graphs (G, σ) with χ((G, σ))− 1 = χc((G, σ)), see Figure 1.
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Figure 1: An example χ− 1 = χc

Theorem 2.13. Let (G, σ) be a signed graph with χ((G, σ)) = t + 1. The following state-

ments are equivalent.

1. χc((G, σ)) = t.

2. (G, σ) has a (2t, 2)-coloring.

Proof. (⇒) Let χc((G, σ)) = t. For each (k, d)-coloring of (G, σ) with k
d = t it follows that

d > 1 since for otherwise we would get a (t, 1)-coloring. If d is odd, then Lemma 2.1 implies,

that there is (t, 1)-coloring, a contradiction. Hence, d is even and therefore, k as well. Again

with Lemma 2.1 it follows that there is a (2t, 2)-coloring.

(⇐) Since (G, σ) does not have a (t, 1)-coloring but it has a (2t, 2)-coloring, it follows

that χc((G, σ)) = t = χ((G, σ))− 1.

Theorem 2.14. 1. If (G, σ) is antibalanced and not bipartite, then χ((G, σ)) = 3, and

χc((G, σ)) = 2.

2. For every even k ≥ 2, there is a signed graph (G, σ) with χ((G, σ))−1 = χc((G, σ)) =

k.

Proof. 1. The mapping c from V (G) to Z3 with c(v) = 1 is a 3-coloring of (G, σ). Hence,

χ((G, σ)) = 3, by statement 1. If we consider c as a mapping from V (G) to Z4, then c is a

(4, 2)-coloring of (G, σ). Hence, χc((G, σ)) = 2.
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2. For i ∈ {1, . . . , n} let (Gi, σ
i) be a connected signed graph with at least two vertices

and all edges negative. Take (G1, σ
1), . . . , (Gn, σ

n), and for every j ∈ {1, . . . , n} and every

v ∈ V (Gj) connect v to every vertex of (
⋃n
i=1 V (Gi)) − V (Gj). The resulting graph is

denoted by (K∗n, σn).

Claim 2.14.1. If n is even, then χ((K∗n, σn)) = n + 1 and χc((K
∗
n, σn)) = n. If n is odd,

then χ((K∗n, σn)) = n+ 2 and χc((K
∗
n, σn)) = n+ 1.

Clearly, the all positive subgraph K∗n − Nσn has chromatic number n. Since for all

i ∈ {1, . . . , n} the signed subgraph (Gi, σ
i) has only negative edges, and Gi has at least

one edge, it follows that all used colors are not self-inverse. Since n is even, it follows that

χ((K∗n, σn)) = n + 1. Furthermore c : V (K∗n) −→ Z2n with c(v) = 2i − 1 if v ∈ V (Gi) is a

(2n, 2)-coloring of (K∗n, σn). Hence, χc((K
∗
n, σn)) = n.

If n is odd, the statement will be proved analogously, and the Claim is proved. Statement

1 of this theorem is the case n = 1.

Note, that Lemma 2.5 does not apply to the graphs of Theorem 2.14 since the cardinality

of the set of colors is smaller than the order of the graphs. It would be of interest whether

a statement like Theorem 2.14 2. is also true for odd k. Furthermore, is there a non-trivial

characterization of the signed graphs with χ((G, σ))− 1 = χc((G, σ))?

The next theorem shows that if the lower bound in Theorem 2.12 is not attained, then

it can be improved.

Theorem 2.15. Let (G, σ) be a signed graph on n vertices, then either χ((G, σ)) − 1 =

χc((G, σ)) or (χ((G, σ)) − 1)(1 +
1

4n− 1
) ≤ χc((G, σ)) ≤ χ((G, σ)). In particular, if

χ((G, σ))− 1 6= χc((G, σ)), then χ((G, σ))− χc((G, σ)) < 1− 1
2n .

Proof. By Theorem 2.12, it suffices to show, that if χ((G, σ)) − 1 6= χc((G, σ)) then

(χ((G, σ))−1)(1+
1

4n− 1
) ≤ χc((G, σ)). By Theorem 2.7, we may assume that χc((G, σ)) =

p

q
, where p and q are coprime integers and p ≤ 4n. Then

χc((G, σ))− (χ((G, σ))− 1) ≥ 1

q
=
χc((G, σ))

p
≥ χc((G, σ))

4n
. (1)

By simplifying the inequality, we get

(χ((G, σ))− 1)(1 +
1

4n− 1
) ≤ χc((G, σ)).

Since 2q < p, it follows with the first inequality of equation (1) that χ((G, σ)) −
χc((G, σ)) < 1− 1

2n .
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3 r-colorings

Theorem 3.1. Let (G, σ) be a signed graph and k, d be positive integers with 2d ≤ k. (G, σ)

has a (2k, 2d)-coloring if and only if (G, σ) has a circular k
d -coloring. Furthermore, if (G, σ)

has a circular k
d -coloring such that a common denominator of the used colors is odd, then

(G, σ) has a (k, d)-coloring.

Proof. We give an analogous proof to the one for unsigned graphs (see Theorem 1 in [8]).

Suppose that c : V (G) 7→ Z2k is a (2k, 2d)-coloring of (G, σ). For each v ∈ V (G) set

f(v) = c(v)
2d . It is easy to verify that f is a circular k

d -coloring of (G, σ).

On the other side, suppose that f is a circular r-coloring of (G, σ) with r = k
d and

gcd(k, d) = 1. Let S = {f(v) : v ∈ V (G)}. The cardinality of S is finite since G is a finite

graph. We first show that we can assume that all elements of S are rational numbers. We

will show that each non-rational color can be shifted to a rational color without creating a

new pair of colors with distance less than 1. Let s ∈ S and suppose that s is not a rational

number. Let P = P1, . . . , Pn be the longest sequence of pairwise distinct points in [0, r)

which satisfies the following constraints:

• s ∈ P , and

• {Pi, r− Pi} ∩ S 6= ∅ and Pi+1 = [Pi + 1]r, where Pi is the element of P in the i place.

Define Q to be the sequence consisting of the opposite points of P . More precisely,

Qi = r − Pi. Let P = S ∩ P and Q = S ∩ Q. Let ε be a positive real number such that

s+ ε is rational. We shift the colors in P together by distance ε clockwise, and the ones in

Q together by the same distance anticlockwise. Choose ε to be small enough. It is easy to

see that this shift is the one required if we can show that the sequences P and Q contains

no common colors. If α is a common color of P and Q, then s−α is an integer and so does

r− s−α. It follows that r− 2s is an integer, contradicting with the fact that r is a rational

number but s not.

Let m be a common denominator of all the colors in S. Then the mapping f ′ : V (G) 7→
Zmk defined as f ′(v) = f(v)md is a (mk,md)-coloring of (G, σ). Since m can be chosen to

be even it follows with Lemma 2.1 that there is (2k, 2d)-coloring of (G, σ). Furthermore, if

m is odd, then it follows again with Lemma 2.1 that (G, σ) has a (k, d)-coloring.

The ‘(2k, 2d)-coloring’ in the previous theorem can not be replaced by ‘(k, d)-coloring’

since otherwise there exist counterexamples. The unbalanced triangle is one of the signed

graphs that has a circular 2-coloring but has no (2,1)-colorings.

With Theorems 2.7 and 3.1 we deduce the following statement.
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Theorem 3.2. If (G, σ) is a signed graph, then χc((G, σ)) = min{r : (G, σ) has a circular

r-coloring}.

4 Concluding remarks

First we determine the circular chromatic number of some specific graphs. For n ≥ 3, let

Cn denote the circuit with n vertices.

Proposition 4.1. Let k be a positive integer.

1. If (C2k+1, σ) is balanced, then χc((C2k+1, σ)) = 2 + 1
k , otherwise χc((C2k+1, σ)) = 2.

Furthermore χ((C2k+1, σ)) = 3.

2. χ((G, σ)) = 2 if and only if G is bipartite. Furthermore, χ((G, σ)) = χc((G, σ)) if G

is bipartite.

Proof. 1. If (C2k+1, σ) is balanced, then (C2k+1, σ) is switching equivalent to (C2k+1,+),

hence, χc((C2k+1, σ)) = 2 +
1

k
. If (C2k+1, σ) is unbalanced, then (C2k+1, σ) is switching

equivalent to C2k+1 which has one negative edge say, uv. Thus, we can assign to vertex u

and v color 1, and to other vertices colors 3 and 1 alternatively. We thereby get a (4, 2)-

coloring of (C2k+1, σ), i.e., χc((C2k+1, σ)) = 2. And it is easy to check (C2k+1, σ) has a

(3, 1)-coloring, but can not be colored properly by two colors, therefore, χ((C2k+1, σ)) = 3.

2. If G is bipartite, then it can be colored with colors 0 and 1 and therefore, χ((G, σ)) =

2. If χ((G, σ)) = 2, then, since both colors are self-inverse in Z2, both color classes are

independent sets. Hence, G is bipartite. Since χ((G, σ)), χc((G, σ)) ≥ 2, it follows that

χ((G, σ)) = χc((G, σ)) if G is bipartite.

4.1 Colorings with ”signed” colors

Next, we relate our parameter to the colorings which are considered in [2]. The definitions

are given in section 1.

Proposition 4.2. If (G, σ) is a signed graph, then χ±((G, σ))−1 ≤ χ((G, σ)) ≤ χ±((G, σ))+

1.

Proof. Let χ±((G, σ)) = n and c be an n-coloring of (G, σ) with colors from Mn.

If n = 2k+1, then let φ : M2k+1 → Z2k+1 with φ(t) = t if t ∈ {0, . . . , k} and φ(t) = 2k+

1+t if t ∈ {−k, . . . ,−1}. Then c is a (2k+1)-coloring of (G, σ) with colors from M2k+1 if and

only if φ ◦ c is a (2k+ 1)-coloring of (G, σ). Hence, χ((G, σ)) ≤ χ±((G, σ)). If n = 2k, then

let φ′ : M2k → Z2k+1 with φ(t) = t if t ∈ {1, . . . , k} and φ(t) = 2k+1+t if t ∈ {−k, . . . ,−1}.
Then φ′ ◦ c is a (2k + 1)-coloring of (G, σ). Hence, χ((G, σ)) ≤ χ±((G, σ)) + 1.

We analogously deduce that χ±((G, σ)) ≤ χ((G, σ)) + 1.

14



The next proposition shows, that the bounds of Proposition 4.2 cannot be improved

(see Figure 2).

Proposition 4.3. Let (G, σ) be a connected signed graph with at least three vertices.

1. If (G, σ) is antibalanced and not bipartite, then χ±((G, σ)) = 2 and χ((G, σ)) = 3.

2. If (G, σ) is bipartite but not antibalanced, then χ±((G, σ)) = 3 and χ((G, σ)) = 2.
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Figure 2: relation between χ and χ±
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