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Abstract
For an edge-colored graph, its minimum color degree is

defined as the minimum number of colors appearing on

the edges incident to a vertex and its maximum monochro-

matic degree is defined as the maximum number of edges

incident to a vertex with a same color. A cycle is called

properly colored if every two of its adjacent edges have

distinct colors. In this article, we first give a minimum

color degree condition for the existence of properly colored

cycles, then obtain the minimum color degree condition for

an edge-colored complete graph to contain properly colored

triangles. Afterwards, we characterize the structure of an

edge-colored complete bipartite graph without containing

properly colored cycles of length 4 and give the minimum

color degree and maximum monochromatic degree condi-

tions for an edge-colored complete bipartite graph to con-

tain properly colored cycles of length 4, and those passing

through a given vertex or edge, respectively.
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1 INTRODUCTION

All graphs considered in this article are finite and simple. For terminology and notation not defined
here, we refer the reader to [4].

Let 𝐺 be a graph. We use 𝑉 (𝐺) and 𝐸(𝐺) to denote the set of vertices and edges of 𝐺, respec-
tively. For two disjoint subsets 𝐴 and 𝐵 of 𝑉 (𝐺), denote by 𝐸𝐺(𝐴,𝐵) the set of edges in 𝐺 between
𝐴 and 𝐵. If 𝐴 contains only one vertex 𝑎, we write 𝐸𝐺(𝑎, 𝐵) instead of 𝐸𝐺({𝑎}, 𝐵). An edge-
coloring of 𝐺 is a mapping 𝐶𝐺 ∶ 𝐸(𝐺) → ℕ, where ℕ is the natural number set. We call 𝐺 an
edge-colored graph if it has such an edge-coloring and say that 𝐺 is properly edge-colored (or
briefly PC) if each pair of adjacent edges of 𝐺 are in distinct colors, and rainbow if all edges of 𝐺
are in distinct colors. Denote by 𝐶(𝐺) the set of colors appearing on the edges of 𝐺. For vertex-
disjoint subgraphs 𝐹 and 𝐻 of 𝐺, we use 𝐶(𝐹 ,𝐻) to denote the set of colors appearing on the
edges between 𝐹 and 𝐻 . For a color 𝑖 ∈ 𝐶(𝐺), we use 𝐺𝑖 to denote the subgraph of 𝐺 induced by
{𝑒 ∈ 𝐸(𝐺) ∶ 𝐶𝐺(𝑒) = 𝑖}. For a vertex 𝑣 of 𝐺, the color neighbor of 𝑣, denote by 𝑁𝑐

𝐺
(𝑣), is the set

of colors appearing on the edges incident to 𝑣. The color degree of 𝑣, denote by 𝑑𝑐
𝐺
(𝑣), is the car-

dinality of 𝑁𝑐
𝐺
(𝑣). For a subset 𝑆 of 𝑉 (𝐺), define the minimum color degree of vertices in 𝑆 by

𝛿𝑐
𝐺
(𝑆) = min{𝑑𝑐

𝐺
(𝑣) ∶ 𝑣 ∈ 𝑆} and the maximum monochromatic degree of vertices in 𝑆 by Δ𝑚𝑜𝑛

𝐺
(𝑆) =

max{𝑑𝐺𝑖(𝑣) ∶ 𝑖 ∈ 𝐶(𝐺), 𝑣 ∈ 𝑆}. For a subgraph 𝐻 of 𝐺, define 𝛿𝑐
𝐺
(𝐻) = 𝛿𝑐

𝐺
(𝑉 (𝐻)) and Δ𝑚𝑜𝑛

𝐺
(𝐻) =

Δ𝑚𝑜𝑛
𝐺

(𝑉 (𝐻)). If there is no ambiguity, we often write 𝐶(𝑒) for 𝐶𝐺(𝑒), 𝑁𝑐(𝑣) for 𝑁𝑐
𝐺
(𝑣), 𝑑𝑐(𝑣) for 𝑑𝑐

𝐺
(𝑣),

𝛿𝑐(𝐺) for 𝛿𝑐
𝐺
(𝐺) and Δ𝑚𝑜𝑛(𝐺) for Δ𝑚𝑜𝑛

𝐺
(𝐺). Throughout the article, we use 𝐶𝓁 to denote a cycle of

length 𝓁.
Subgraphs in edge-colored graphs have been well studied through the ages. For rainbow subgraphs,

see the survey papers [8,12]. For PC subgraphs, especially, PC paths and cycles, see Chapter 16 of [2].
When considering the existence of PC cycles in an edge-colored graph, one often needs to know
the structure of graphs containing no PC cycles. So we start with the following important structural
result:

Theorem 1 (Grossman and Häggkvist [10], Yeo [22]). Let 𝐺 be an edge-colored graph containing
no PC cycles. Then there is a vertex 𝑧 ∈ 𝑉 (𝐺) such that no component of 𝐺 − 𝑧 is joint to 𝑧 with edges
of more than one color.

There are lots of results and problems on the existence of PC Hamilton cycles and long cycles
(see [1,6,7,16,17,19,20]). For short PC cycles, especially, a PC triangle (or a rainbow triangle), the
well-known Gallai coloring theory gives a structural characterization of edge-colored complete graphs
containing no rainbow triangles (see [9] and [11]). Conditions for the existence of rainbow triangles in
edge-colored graphs (not necessarily complete) are given in [13] and [14]. In a variety of those work,
minimum color degree conditions for edge-colored graphs to contain PC cycles with certain properties
are often discussed. One natural problem in this area would be asking a sharp color degree condition
for an edge-colored graph to contain a PC cycle. In this article, we first give a complete solution to this
problem.

To state our answer, we construct an edge-colored graph 𝐺𝐷 such that 𝛿𝑐(𝐺𝐷) = 𝐷 and 𝐺𝐷 contains
no PC cycles. Let 𝐺1 be an edge-colored graph that is isomorphic to 𝐾2 with color 𝑐

𝐺1
1 . For 1 ≤

𝑖 ≤ 𝐷 − 1, let 𝐺𝑖+1 be an edge-colored graph obtained from 𝑖 + 1 vertex-disjoint copies of 𝐺𝑖, say
𝐻1,… ,𝐻𝑖+1, and a new vertex 𝑣𝑖+1 by joining 𝑣𝑖+1 to each 𝐻𝑗 for 1 ≤ 𝑗 ≤ 𝑖 + 1 and coloring the

edges from 𝑣𝑖+1 to 𝐻𝑗 with color 𝑐
𝐻𝑗

𝑖+1 (for 𝑠 ≠ 𝑡, 𝐶(𝐻𝑠) and 𝐶(𝐻𝑡) may be different as long as 𝐺𝑖+1
satisfies the condition that 𝛿𝑐(𝐺𝑖+1) = 𝑖 + 1 and 𝐺𝑖+1 has no PC cycles). By the construction, we can
easily check that |𝑉 (𝐺𝐷)| = 𝐷!

∑𝐷

𝑖=0
1
𝑖! , 𝛿

𝑐(𝐺𝐷) = 𝐷 and 𝐺𝐷 has no PC cycles.
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Theorem 2. Let 𝐺 be an edge-colored graph of order 𝑛 with 𝛿𝑐(𝐺) ≥ 𝐷. Suppose that 𝑛 ≤ 𝐷!
∑𝐷

𝑖=0
1
𝑖!

and 𝐺 contains no PC cycles. Then the equality on 𝑛 is attained, and moreover, 𝐺 is isomorphic to 𝐺𝐷,
up to the edge-coloring structure.

The problem of giving sharp minimum color degree conditions for short PC cycles seems more dif-
ficult. So far, we have some known results that give partial answers to this problem. Lo [16] showed
that, for any constant number 𝜖 > 0, if an edge-colored graph of order 𝑛 (sufficiently large) has mini-

mum color degree at least
(
2
3 + 𝜖

)
𝑛, then it contains a PC cycle of length 𝓁 for all 3 ≤ 𝓁 ≤ 𝑛. Li [14]

proved that if an edge-colored graph of order 𝑛 has minimum color degree at least 𝑛+1
2 , then it con-

tains a PC triangle. Čada et al. [5] proved that if an edge-colored triangle-free graph of order 𝑛 has
minimum color degree at least 𝑛

3 + 1 then it contains a rainbow 𝐶4. As seen in these results, it seems
a reasonable approach for us to consider this problem for some specified graph classes. In this arti-
cle, we shall restrict our considerations to this problem in edge-colored complete graphs and complete
bipartite graphs.

In the study of PC Hamilton cycles and long cycles in edge-colored complete graphs, maximum
monochromatic degree conditions are often involved (see [18] and [20] and the articles cited therein).
Bollobás and Erdős [3] conjectured that every edge-colored complete graph 𝐾𝑛 with Δ𝑚𝑜𝑛(𝐾𝑛) < ⌊ 𝑛

2⌋
contains a PC Hamilton cycle. Recently, Lo [18] proved that this conjecture is true asymptotically. For
short PC cycles, Wang and Zhou [21] showed that this upper bound of Δ𝑚𝑜𝑛(𝐾𝑛) can guarantee a PC
triangle or a PC 𝐶4 with two colors. Gyárfás and Simonyi [11] proved that each edge-colored complete
graph 𝐾𝑛 with Δ𝑚𝑜𝑛(𝐾𝑛) <

2𝑛
5 contains a PC triangle and this bound is tight. Here, we give the color

degree condition for PC triangles in edge-colored complete graphs.

Theorem 3. If 𝛿𝑐(𝐾𝑛) > log2 𝑛 with 𝑛 ≥ 3, then 𝐾𝑛 contains a PC 𝐶3.

Remark 1. The bound of 𝛿𝑐(𝐾𝑛) in Theorem 3 is tight. The following construction due to Li and
Wang [15] shows the sharpness. Let 𝐺1 = 𝐾2. For the unique edge 𝑒 ∈ 𝐸(𝐺1), let 𝐶(𝑒) = 1. For 𝑖 =
2, 3,…, construct an edge-colored graph 𝐺𝑖+1 by joining two disjoint copies of 𝐺𝑖 completely with
edges of color 𝑖 + 1. The resulting edge-colored complete graph 𝐾𝑛 satisfies 𝛿𝑐(𝐾𝑛) = log2 𝑛 but it has
no PC 𝐶3’s.

In what follows, we always consider an edge-colored complete bipartite graph 𝐾𝑚,𝑛 with 𝑚 ≥ 2 and
𝑛 ≥ 2 (so we often omit lower bounds on 𝑚 and 𝑛).

Observation 1. If 𝛿𝑐(𝐾𝑚,𝑛) ≥ 2, then 𝐾𝑚,𝑛 contains a PC 𝐶4 or a PC 𝐶6.

Proof. Since 𝛿𝑐(𝐾𝑚,𝑛) ≥ 2, we have 𝑚, 𝑛 ≥ 2. Thus 𝐾𝑚,𝑛 − 𝑥 is connected for any 𝑥 ∈ 𝑉 (𝐾𝑚,𝑛). By
Theorem 1, 𝐾𝑚,𝑛 contains a PC cycle. Otherwise, there is a vertex 𝑦 ∈ 𝑉 (𝐾𝑚,𝑛) such that 𝑑𝑐(𝑦) = 1, a
contradiction.

Let 𝐶 = 𝑣1𝑣2⋯ 𝑣𝑘𝑣1 be a shortest PC cycle in 𝐾𝑚,𝑛. If 𝑘 ≤ 6, then there is nothing to prove.
Now, suppose that 𝑘 ≥ 8, 𝐶(𝑣1𝑣2) = 𝑝 and 𝐶(𝑣2𝑣3) = 𝑞. Then 𝐶(𝑣3𝑣4) ≠ 𝑞. If 𝐶(𝑣3𝑣4) = 𝑝, then
either 𝑣1𝑣2𝑣3𝑣4𝑣1 or 𝑣1𝑣4𝑣5⋯ 𝑣𝑘𝑣1 is a shorter PC cycle than 𝐶 , a contradiction. So we can assume
that 𝐶(𝑣3𝑣4) = 𝑟. Since 𝑣1𝑣2𝑣3𝑣4𝑣1 is not a PC cycle, we have 𝐶(𝑣1𝑣4) = 𝑝 or 𝑟. Without loss of
generality, assume that 𝐶(𝑣1𝑣4) = 𝑝. Since 𝑣1𝑣4𝑣5⋯ 𝑣𝑘𝑣1 is not a PC cycle, we have 𝐶(𝑣4𝑣5) = 𝑝.
Moreover, considering that neither 𝑣1𝑣2𝑣3𝑣4𝑣7𝑣8⋯ 𝑣𝑘𝑣1 nor 𝑣1𝑣4𝑣7𝑣8⋯ 𝑣𝑘𝑣1 is a PC cycle, we have
𝐶(𝑣4𝑣7) = 𝐶(𝑣7𝑣8). Thus 𝐶(𝑣4𝑣7) ≠ 𝐶(𝑣6𝑣7). Since 𝑣4𝑣5𝑣6𝑣7𝑣4 is not a PC 𝐶4, we have 𝐶(𝑣4𝑣5) =
𝐶(𝑣4𝑣7) = 𝐶(𝑣7𝑣8) = 𝑝. This implies that either 𝑣2𝑣3𝑣4𝑣5𝑣6𝑣7𝑣2 or 𝑣1𝑣2𝑣7𝑣8⋯ 𝑣𝑘𝑣1 is a PC cycle, a
contradiction. ■
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F I G U R E 1 The structure of 𝐾𝑚,𝑛 in Theorem 5

Theorem 4. Let 𝐴 and 𝐵 be the partite sets of an edge-colored complete bipartite graph 𝐺 with|𝐴| = 𝑚, |𝐵| = 𝑛, and 𝛿𝑐(𝐺) ≥ 2. Then 𝐺 contains a PC 𝐶4 if one of the following conditions holds.

(i) 𝛿𝑐(𝐺) ≥ 3;
(ii) Δ𝑚𝑜𝑛

𝐺
(𝐴) < 2𝑛

3 ;

(iii) Δ𝑚𝑜𝑛
𝐺

(𝐵) < 2𝑚
3 .

In fact, we obtained Theorem 4 as a corollary of the following stronger structural result.

Theorem 5. Let𝐴 and𝐵 be the partite sets of an edge-colored complete bipartite graph𝐺 with |𝐴| = 𝑚

and |𝐵| = 𝑛. If 𝛿𝑐(𝐺) ≥ 2 and 𝐺 contains no PC 𝐶4, then 𝐴 and 𝐵, respectively, can be partitioned
into {𝐴1, 𝐴2, 𝐴3, 𝑋1, 𝑋2, 𝑋3, 𝑋0} and {𝐵1, 𝐵2, 𝐵3, 𝑌1, 𝑌2, 𝑌3, 𝑌0} (see Fig. 1) such that the following
properties hold for 𝑖 = 1, 2, 3 (indices are taken modulo 3).

(i) 𝐴𝑖, 𝐵𝑖 ≠ ∅;
(ii) 𝐶(𝐴𝑖, 𝐵𝑖−1 ∪ 𝐵𝑖) = {𝑐𝑖} and 𝐶(𝐴𝑖, 𝐵𝑖+1) = {𝑐𝑖−1}; s

(iii) 𝐶(𝐴𝑖,
⋃

0≤𝑗≤3,𝑗≠𝑖 𝑌𝑗) ⊆ {𝑐𝑖} and 𝐶(𝐴𝑖, 𝑦𝑖) = {𝑐𝑖−1, 𝑐𝑖} for each vertex 𝑦𝑖 ∈ 𝑌𝑖;
(iv) 𝐶(𝐵𝑖,

⋃
0≤𝑗≤3,𝑗≠𝑖 𝑋𝑗) ⊆ {𝑐𝑖+1} and 𝐶(𝐵𝑖, 𝑥𝑖) = {𝑐𝑖, 𝑐𝑖+1} for each vertex 𝑥𝑖 ∈ 𝑋𝑖.

Remark 2. The bounds in Theorem 4 are sharp. Let𝐺 be an edge-colored𝐾𝑚,𝑛 admitting a partition as
that in Figure 1 with 𝑋𝑖, 𝑌𝑖 = ∅, |𝐴𝑗| = 𝑚

3 and |𝐵𝑗| = 𝑛

3 for all 𝑖 ∈ [0, 3] and 𝑗 ∈ [1, 3]. Then 𝛿𝑐(𝐺) =
2, Δ𝑚𝑜𝑛

𝐺
(𝐴) = 2𝑛

3 and Δ𝑚𝑜𝑛
𝐺

(𝐵) = 2𝑚
3 . But 𝐺 contains no PC 𝐶4.

By applying Theorem 4 (i), we obtain the following corollaries on vertex-disjoint PC cycles in edge-
colored complete bipartite graphs.

Corollary 1. For 𝑘 ≥ 2, if 𝛿𝑐(𝐾𝑚,𝑛) ≥ 2𝑘, then 𝐾𝑚,𝑛 contains 𝑘 vertex-disjoint PC cycles 𝐻1,… ,𝐻𝑘

such that 4 ≤ |𝑉 (𝐻1)| ≤ 6 and |𝑉 (𝐻𝑖)| = 4 for every 2 ≤ 𝑖 ≤ 𝑘.

Corollary 2. For 𝑘 ≥ 2, if 𝛿𝑐(𝐾𝑚,𝑛) ≥ 2𝑘 + 1, then 𝐾𝑚,𝑛 contains 𝑘 vertex-disjoint PC 𝐶4’s.
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In connection with Theorem 4, we would like to consider a sharp color degree condition for an
edge-colored 𝐾𝑚,𝑛 to satisfy the property that each vertex is contained in a PC 𝐶4. In fact, this was
originally discussed for edge-colored complete graphs by Fujita and Magnant in [7]; they conjectured
that, if 𝛿𝑐(𝐾𝑛) ≥

𝑛+1
2 , then this edge-colored 𝐾𝑛 is properly vertex pancyclic (i.e. each vertex of the

𝐾𝑛 is contained in a PC cycle of length 𝓁 for every 3 ≤ 𝓁 ≤ 𝑛), and they showed that if 𝛿𝑐(𝐾𝑛) ≥
𝑛+1
2

then each vertex is contained in a PC 𝐶3, a PC 𝐶4 and a PC cycle of length at least five when 𝑛 ≥ 13.
In this article, we propose the complete bipartite version of their conjecture.

Conjecture 1. If 𝛿𝑐(𝐾𝑚,𝑛) ≥
𝑚+𝑛
4 + 1 then each vertex of the 𝐾𝑚,𝑛 is contained in a PC cycle of length

𝓁, where 𝓁 is any even integer with 4 ≤ 𝓁 ≤ min{2𝑚, 2𝑛}.

Regarding this conjecture, we could manage to show that if 𝛿𝑐(𝐾𝑚,𝑛) ≥
𝑚+𝑛
4 + 1 then each vertex

of the 𝐾𝑚,𝑛 is contained in a PC 𝐶4. In fact, we can prove the following maximum monochromatic
condition for PC 𝐶4’s passing given vertices, with this minimum color degree result as a corollary.

Theorem 6. Let 𝐴 and 𝐵 be the partite sets of an edge-colored complete bipartite graph 𝐺 with|𝐴| = 𝑚 and |𝐵| = 𝑛. Then every vertex of 𝐺 is contained in a PC 𝐶4 if one of the following conditions
holds:

(i) Δ𝑚𝑜𝑛
𝐺

(𝐴) ≤ 3𝑛−𝑚
4 and Δ𝑚𝑜𝑛

𝐺
(𝐵) ≤ 3𝑚−𝑛

4 ;
(ii) Δ𝑚𝑜𝑛

𝐺
(𝐴) ≤ 𝑛

2 and Δ𝑚𝑜𝑛
𝐺

(𝐵) ≤ 𝑚

2 .

Corollary 3. Let 𝐴 and 𝐵 be the partite sets of an edge-colored complete bipartite graph 𝐺 with|𝐴| = 𝑚 and |𝐵| = 𝑛. Then every vertex of 𝐺 is contained in a PC 𝐶4 if one of the following conditions
holds:

(i) 𝛿𝑐(𝐺) ≥ 𝑚+𝑛
4 + 1;

(ii) 𝛿𝑐
𝐺
(𝐴) ≥ 𝑛

2 + 1 and 𝛿𝑐
𝐺
(𝐵) ≥ 𝑚

2 + 1.

Remark 3. The bounds for Δ𝑚𝑜𝑛 and 𝛿𝑐 in Theorem 6 and Corollary 3 are tight. Let 𝐴 and 𝐵 be
the partite sets of an edge-colored complete bipartite graph 𝐺 with |𝐴| = 2𝑡 − 2 and |𝐵| = 2𝑠 − 1.
Partition 𝐴 and 𝐵 into 𝐴1, 𝐴2 and 𝐵1, 𝐵2, {𝑣}, respectively, such that |𝐴1| = |𝐴2| = 𝑡 − 1 and |𝐵1| =|𝐵2| = 𝑠 − 1. For vertices 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, color the edge 𝑎𝑏 with

𝐶(𝑎𝑏) =
{
𝑏, if 𝑎 ∈ 𝐴𝑖, 𝑏 ∈ 𝐵𝑖, 𝑖 = 1, 2;
𝑎, if 𝑎 ∈ 𝐴𝑖, 𝑏 ∉ 𝐵𝑖, 𝑖 = 1, 2.

Then 𝛿𝑐
𝐺
(𝐴) = |𝐵|+1

2 and 𝛿𝑐
𝐺
(𝐵) = |𝐴|

2 + 1, Δ𝑚𝑜𝑛
𝐺

(𝐴) = |𝐵|+1
2 , and Δ𝑚𝑜𝑛

𝐺
(𝐵) = |𝐴|

2 , but the vertex 𝑣 is
not contained in any PC 𝐶4’s.

Moreover, we have the following analogous results:

Theorem 7. Let 𝐴 and 𝐵 be the partite sets of an edge-colored complete bipartite graph 𝐺 with|𝐴| = 𝑚 and |𝐵| = 𝑛. If Δ𝑚𝑜𝑛
𝐺

(𝐴) ≤ 𝑛

3 and Δ𝑚𝑜𝑛
𝐺

(𝐵) ≤ 𝑚

3 , then every edge of 𝐺 is contained in a PC
𝐶4.

Corollary 4. Let 𝐴 and 𝐵 be the partite sets of an edge-colored complete bipartite graph 𝐺 with|𝐴| = 𝑚 and |𝐵| = 𝑛. If 𝛿𝑐
𝐺
(𝐴) ≥ 2𝑛

3 + 1 and 𝛿𝑐
𝐺
(𝐵) ≥ 2𝑚

3 + 1, then each edge of 𝐺 is contained in a
PC 𝐶4.

Remark 4. The bounds of Δ𝑚𝑜𝑛 in Theorem 7 are tight. Let 𝐴 and 𝐵 be the partite sets of
an edge-colored complete bipartite graph 𝐺 with |𝐴| = 3𝑠 + 1 and |𝐵| = 3𝑡 + 1. Partition 𝐴 into
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𝐴1, 𝐴2, 𝐴3, {𝑥} and 𝐵 into 𝐵1, 𝐵2, 𝐵3, {𝑦} such that |𝐴𝑖| = 𝑠 and |𝐵𝑖| = 𝑡 (𝑖 = 1, 2, 3). For vertices
𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, color the edge 𝑎𝑏 with

𝐶(𝑎𝑏) =
⎧⎪⎨⎪⎩
𝑐0, if 𝑎 = 𝑥, 𝑏 ∈ 𝐵3 ∪ {𝑦} or 𝑎 ∈ 𝐴3, 𝑏 = 𝑦;
𝑏, if 𝑎 ∈ 𝐴𝑖 ∪ {𝑥}, 𝑏 ∈ 𝐵𝑖, 𝑖 = 1, 2;
𝑎, if 𝑎 ∈ 𝐴𝑖, 𝑏 ∉ 𝐵𝑖 ∪ 𝐵3, 𝑖 = 1, 2.

Use new colors to give a proper coloring to the graph induced by the rest of the edges. Then Δ𝑚𝑜𝑛
𝐺

(𝐴) =
𝑡 + 1 =

⌈ |𝐵|
3

⌉
and Δ𝑚𝑜𝑛

𝐺
(𝐵) = 𝑠 + 1 =

⌈ |𝐴|
3

⌉
, but there is no PC 𝐶4 containing the edge 𝑥𝑦.

We give the proofs of our results in the rest of this article.

2 PROOF OF THEOREM 2

For convenience, put 𝑧(𝐷) = 𝐷!
∑𝐷

𝑖=0
1
𝑖! . It is easy to check that the theorem holds for 𝐷 = 2. Suppose

that 𝑛 ≤ 𝑧(𝐷) (𝐷 ≥ 3) and 𝐺 has no PC cycles. By Theorem 1, there exists a vertex 𝑣 ∈ 𝑉 (𝐺) such
that, for every component 𝐻1,𝐻2,… ,𝐻𝑡 of 𝐺 ⧵ {𝑣}, all the edges in 𝐸𝐺(𝑣,𝐻𝑖) has a common color.
This implies that 𝐷 ≤ 𝑡. We may assume that |𝑉 (𝐻1)| ≤ 𝑛−1

𝑡
. Note that 𝛿𝑐(𝐺[𝐻1]) ≥ 𝐷 − 1. Thus, by

the induction hypothesis,

(𝐷 − 1)!
𝐷−1∑
𝑖=0

1
𝑖!

≤ |𝑉 (𝐻1)| ≤ 𝑛 − 1
𝑡

≤
𝑛 − 1
𝐷

holds. This implies that 𝑛 = 𝑧(𝐷) and hence all the equalities are attained in above. Thus, 𝑡 = 𝐷 and|𝑉 (𝐻𝑖)| = 𝑧(𝐷)−1
𝐷

= 𝑧(𝐷 − 1) holds for every 1 ≤ 𝑖 ≤ 𝐷. For every 1 ≤ 𝑖 ≤ 𝐷, applying the induction
hypothesis to 𝐺[𝐻𝑖], we know that 𝐺[𝐻𝑖] is isomorphic to 𝐺𝐷−1, up to the edge-coloring structure
because 𝐺[𝐻𝑖] has no PC cycles. This implies that 𝐺 is isomorphic to 𝐺𝐷, up to the edge-coloring
structure.

3 PROOF OF THEOREM 3

To prove Theorem 31, we need the following result due to Gallai [9].

Theorem 8 (Gallai [9]). For an edge-colored complete graph 𝐾𝑛, if it does not contain a PC 𝐶3 then
𝑉 (𝐾𝑛) can be partitioned into several (at least two) parts such that between the parts, there are a total
of at most two colors and, between every pair of parts, there is only one color on the edges.

For convenience we name the partition in the above theorem as Gallai partition.

Proof of Theorem 3. We prove the theorem by induction on 𝑛. It is easy to check that the theorem holds
for small 𝑛. So we assume that 𝑛 ≥ 5.

Suppose that 𝐾𝑛 contains no PC 𝐶3. Then it follows from Theorem 8 that 𝐾𝑛 has a Gallai parti-
tion 𝑆1, 𝑆2,… , 𝑆𝑘 with 𝑘 ≥ 2. If 𝑘 ≥ 4 then there exists 𝑆𝑗 such that |𝑆𝑗| ≤ 𝑛

4 . Since 𝛿𝑐(𝐾𝑛[𝑆𝑗]) >
log2 |𝑆𝑗|, applying induction hypothesis to 𝐾𝑛[𝑆𝑗], we can find a PC 𝐶3, a contradiction. Thus we may
assume that 2 ≤ 𝑘 ≤ 3. In this case, we can take 𝑆𝑗 so that only one color is used on edges between
𝑆𝑗 and 𝑉 (𝐾𝑛) ⧵ 𝑆𝑗 . Again, applying induction hypothesis to the smaller part of {𝑆𝑗, 𝑉 (𝐾𝑛) ⧵ 𝑆𝑗}, we
can find a PC 𝐶3, a contradiction. Hence the theorem holds. ■
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4 PROOFS OF THEOREMS 4 AND 5

Proof of Theorem 4. Let 𝐺 ≅ 𝐾𝑚,𝑛 with partite sets 𝐴 and 𝐵 satisfies that 𝛿𝑐(𝐺) ≥ 2 and contains no

PC 𝐶4. Proving Theorem 4 is equivalent to show that 𝛿𝑐(𝐺) = 2, Δ𝑚𝑜𝑛
𝐺

(𝐴) ≥ 2𝑛
3 and Δ𝑚𝑜𝑛

𝐺
(𝐵) ≥ 2𝑚

3 . By
Theorem 5, the partite sets 𝐴 and 𝐵 can be partitioned into sets

{𝐴1, 𝐴2, 𝐴3, 𝑋1, 𝑋2, 𝑋3, 𝑋0} 𝑎𝑛𝑑 {𝐵1, 𝐵2, 𝐵3, 𝑌1, 𝑌2, 𝑌3, 𝑌0},

respectively, with properties in the statement of Theorem 5. Choose a vertex 𝑎1 ∈ 𝐴1. Since𝐶(𝑎1, 𝐵) =
{𝑐1, 𝑐3}, there holds 𝑑𝑐

𝐺
(𝑎1) = 2. Recall that 𝛿𝑐(𝐺) ≥ 2. We have 𝛿𝑐(𝐺) = 2. Now consider the number

of vertices that are adjacent to 𝑎1 with the color 𝑐1. We have 𝑑𝐺𝑐1 (𝑎1) ≥ 𝑛 − |𝐵2| − |𝑌1|. Choose ver-
tices 𝑎2 ∈ 𝐴2 and 𝑎3 ∈ 𝐴3. Similarly, we have 𝑑𝐺𝑐2 (𝑎2) ≥ 𝑛 − |𝐵3| − |𝑌2| and 𝑑𝐺𝑐3 (𝑎3) ≥ 𝑛 − |𝐵1| −|𝑌3|. Thus ∑

1≤𝑖≤3
𝑑𝐺𝑐𝑖 (𝑎𝑖) ≥ 3𝑛 −

∑
1≤𝑖≤3

|𝐵𝑖| − ∑
1≤𝑗≤3

|𝑌𝑗| ≥ 3𝑛 −
∑
1≤𝑖≤3

|𝐵𝑖| − ∑
0≤𝑗≤3

|𝑌𝑗| = 2𝑛.

There must exist a vertex 𝑎𝑖 for some 𝑖 with 1 ≤ 𝑖 ≤ 3 such that 𝑑𝐺𝑐𝑖 (𝑎𝑖) ≥
2𝑛
3 . Thus Δ𝑚𝑜𝑛

𝐺
(𝐴) ≥ 2𝑛

3 .

Similarly, we can obtain Δ𝑚𝑜𝑛
𝐺

(𝐵) ≥ 2𝑚
3 . ■

Proof of Theorem 5. By contradiction. Let 𝐺 ≅ 𝐾𝑚,𝑛 be a counterexample to Theorem 5 with 𝑚 + 𝑛

as small as possible. Since 𝛿𝑐(𝐺) ≥ 2, by Observation 1, 𝐺 must contain a PC cycle of length 6. This
implies that 𝑚, 𝑛 ≥ 3. If 𝑚 = 𝑛 = 3, then 𝐺 contains a PC Hamilton cycle of length 6. Note that 𝐺
contains no PC 𝐶4. It is easy to check that 𝐺 satisfies Theorem 5, a contradiction. So we have 𝑚 ≥

3, 𝑛 ≥ 3 and 𝑚 + 𝑛 ≥ 7. Now, we proceed by proving the following Claims.

Claim 1. There exists a vertex 𝑣 ∈ 𝑉 (𝐺) such that 𝛿𝑐(𝐺 − 𝑣) ≥ 2.

Proof. By contradiction. Suppose to the contrary that 𝛿𝑐(𝐺 − 𝑣) = 1 for every vertex 𝑣 ∈ 𝑉 (𝐺). For
vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), we say 𝑣 dominates 𝑢 if 𝑑𝑐

𝐺−𝑣(𝑢) = 1. Thus, for each vertex 𝑣 ∈ 𝑉 (𝐺), there exists
a vertex 𝑢 such that 𝑣 dominates 𝑢. If a vertex 𝑢 ∈ 𝑉 (𝐺) is dominated by two vertices, then 𝑑𝐺(𝑢) =
𝑑𝑐
𝐺
(𝑢) = 2. Thus 𝑚 = 2 or 𝑛 = 2, a contradiction. So each vertex 𝑢 ∈ 𝑉 (𝐺) is dominated by at most one

vertex. Based on these conclusions, we can construct a directed graph 𝐷 such that 𝑉 (𝐷) = 𝑉 (𝐺) and
𝑢𝑣 ∈ 𝐴(𝐷) if and only if 𝑢 dominates 𝑣. Then we have

∑
𝑣∈𝑉 (𝐷) 𝑑

+
𝐷
(𝑣) ≥ |𝑉 (𝐷)| and

∑
𝑣∈𝑉 (𝐷) 𝑑

−
𝐷
(𝑣) ≤|𝑉 (𝐷)|. This implies that 𝑑+

𝐷
(𝑣) = 𝑑−

𝐷
(𝑣) = 1 for each vertex 𝑣 ∈ 𝑉 (𝐷). Thus𝐷 is composed of disjoint

cycles. Let 𝐷1, 𝐷2,… , 𝐷𝑘 be the components of 𝐷. Then 𝐷𝑖(1 ≤ 𝑖 ≤ 𝑘) is either a cycle of length 2
or an even cycle of length at least 6. In the later case, 𝐷𝑖 corresponds to a PC cycle in 𝐺.

If 𝐷 contains two components of order 2, then we can obtain a PC 𝐶4 in 𝐺 by combining them
together, a contradiction. So 𝐷 contains at most one component of order 2. Note that |𝑉 (𝐷)| =|𝑉 (𝐺)| ≥ 7. Then 𝐷 must contain a component (say 𝐷1) that is an even cycle of length at least six.
Let 𝐷1 = 𝑢1𝑢2⋯ 𝑢𝑡𝑢1. For each 𝑖 with 1 ≤ 𝑖 ≤ 𝑡, since 𝑢𝑖𝑢𝑖+1𝑢𝑖+2𝑢𝑖+3𝑢𝑖 (indices are taken modulo 𝑡)
is not a PC cycle and 𝑢𝑖+2 dominates 𝑢𝑖+3 in 𝐺, we have 𝐶(𝑢𝑖𝑢𝑖+3) = 𝐶(𝑢𝑖𝑢𝑖+1) = 𝐶(𝑢𝑖+3𝑢𝑖+4). This
implies that 𝐶(𝑢𝑖𝑢𝑖+1), 𝐶(𝑢𝑖+1𝑢𝑖+2), and 𝐶(𝑢𝑖+2𝑢𝑖+3) are three distinct colors and |𝐷1| = 6𝑝 for some
integer 𝑝 ≥ 1. Without loss of generality, assume that 𝐶(𝑢𝑖𝑢𝑖+1) = 𝑐𝑖 for 𝑖 = 1, 2, 3. If 𝑝 ≥ 2, then con-
sider the color 𝐶(𝑢1𝑢6). Since 𝑢𝑡 dominates 𝑢1, 𝐶(𝑢1, 𝑉 (𝐺) − 𝑢𝑡) = {𝑐1}, in particular, 𝐶(𝑢1𝑢6) = 𝑐1.
Note that 𝐶(𝑢5𝑢6) = 𝐶(𝑢2𝑢3) = 𝑐2 and 𝐶(𝑢6𝑢7) = 𝐶(𝑢3𝑢4) = 𝑐3. We have 𝑑𝑐

𝐺
(𝑢6) ≥ 3. This contradicts

that 𝑢5 dominates 𝑢6. Hence, 𝑝 = 1, 𝐷1 = 𝑢1𝑢2⋯ 𝑢6𝑢1 and 𝐶(𝑢1𝑢2), 𝐶(𝑢3𝑢4), and 𝐶(𝑢5𝑢6) are three
distinct colors. Without loss generality, assume that 𝑢1, 𝑢3, 𝑢5 ∈ 𝐴. Note that |𝑉 (𝐷)| = |𝑉 (𝐺)| ≥ 7.
Then 𝐷 must contain a component (say 𝐷2) that is different from 𝐷1. Let 𝑢𝑣 be an arc in 𝐷2 with
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𝑣 ∈ 𝐵. Since 𝑢𝑖−1 dominates 𝑢𝑖 (indices are taken modulo 6) for 𝑖 = 1, 3, 5, we have 𝐶(𝑣𝑢1) = 𝐶(𝑢1𝑢2),
𝐶(𝑣𝑢3) = 𝐶(𝑢3𝑢4), and 𝐶(𝑣𝑢5) = 𝐶(𝑢5𝑢6). Thus 𝑑𝑐

𝐺
(𝑣) ≥ 3. This contradicts that 𝑢 dominates 𝑣.

The proof of Claim 1 is complete. ■

Let 𝑣 be the vertex in the statement of Claim 1 and let 𝐻 = 𝐺 − 𝑣. Then 𝐻 is an edge-colored
complete bipartite graph with 𝛿𝑐(𝐻) ≥ 2. By symmetry, without loss of generality, assume that 𝑣 ∈
𝐵. Recall the assumption that 𝐺 is a minimum counterexample to Theorem 5. The partite sets (𝐴
and 𝐵 − 𝑣) of 𝐻 can be partitioned into {𝐴1, 𝐴2, 𝐴3, 𝑋1, 𝑋2, 𝑋3, 𝑋0} and {𝐵1, 𝐵2, 𝐵3, 𝑌1, 𝑌2, 𝑌3, 𝑌0},
respectively, with the properties in the statement of Theorem 5. Now we continue the proof by analyzing
the colors that are appearing between 𝑣 and

⋃
1≤𝑖≤3 𝐴𝑖. Since 𝑋𝑖 and 𝑌𝑖 (0 ≤ 𝑖 ≤ 3) can possibly be

empty sets, for 𝑆 ⊆
⋃3

𝑖=0(𝑋𝑖 ∪ 𝑌𝑖), we sometimes write 𝐶(𝑣, 𝑆) ⊆ {𝑐} to say that 𝐶(𝑣, 𝑆) = {𝑐} if 𝑆
is nonempty. When there are no emphases, in the following, indices are always taken modulo 3.

Claim 2. |𝐶(𝑣,
⋃

1≤𝑖≤3 𝐴𝑖)| ≥ 2.

Proof. Suppose to the contrary that |𝐶(𝑣,
⋃

1≤𝑖≤3 𝐴𝑖)| = 1. Let 𝐶(𝑣,
⋃

1≤𝑖≤3 𝐴𝑖) = {𝛼}. Since 𝑑𝑐
𝐺
(𝑣) ≥

2, there exists a vertex 𝑥 ∈
⋃

0≤𝑖≤3 𝑋𝑖 such that 𝐶(𝑣𝑥) ≠ 𝛼. Let 𝑎𝑖 ∈ 𝐴𝑖 and 𝑏𝑗 ∈ 𝐵𝑗 be arbitrarily
chosen vertices for 𝑖, 𝑗 = 1, 2, 3. If 𝑥 ∈ 𝑋0, then one of the cycles {𝑥𝑣𝑎𝑖𝑏𝑖𝑥 ∶ 𝑖 = 1, 2, 3} must be a PC
𝐶4, a contradiction. So 𝑥 ∉ 𝑋0. If 𝑥 ∈ 𝑋1, then consider cycles {𝑥𝑣𝑎2𝑏2𝑥, 𝑥𝑣𝑎3𝑏3𝑥} and that 𝐶(𝑣𝑥) ≠
𝛼. We have 𝐶(𝑣𝑥) = 𝑐1 and 𝛼 = 𝑐2 (this can be verified by firstly proving that 𝐶(𝑣𝑥) ≠ 𝑐3 and 𝛼 ≠

𝑐3). Note that 𝐶(𝑥1, 𝐵1) = {𝑐1, 𝑐2} for each vertex 𝑥1 ∈ 𝑋1. There exists a vertex 𝑏′1 ∈ 𝐵1 such that
𝐶(𝑥𝑏′1) = 𝑐2. This implies that 𝑣𝑥𝑏′1𝑎1𝑣 is a PC 𝐶4, a contradiction. Thus 𝑥 ∉ 𝑋1. Similarly, we can
prove that 𝑥 ∉ 𝑋2 ∪𝑋3. This contradiction completes the proof of Claim 2. ■

Claim 3. 𝐶(𝑣, 𝐴𝑖) ⊆ {𝑐𝑖−1, 𝑐𝑖} for 𝑖 = 1, 2, 3.

Proof. We firstly prove that 𝐶(𝑣, 𝐴1) ⊆ {𝑐1, 𝑐2, 𝑐3}. Suppose to the contrary that there exists a
vertex 𝑎 ∈ 𝐴1 such that 𝐶(𝑣𝑎) = 𝛼 ∉ {𝑐1, 𝑐2, 𝑐3}. Let 𝑎2, 𝑎3, 𝑏1, 𝑏2 and 𝑏3 be arbitrary vertices in
𝐴2, 𝐴3, 𝐵1, 𝐵2, and 𝐵3, respectively. Consider cycles 𝑣𝑎𝑏1𝑎3𝑣 and 𝑣𝑎𝑏3𝑎3𝑣. We have 𝐶(𝑣, 𝐴3) = {𝛼}.
Then consider cycles 𝑣𝑎3𝑏3𝑎2𝑣 and 𝑣𝑎3𝑏2𝑎2𝑣. We have 𝐶(𝑣, 𝐴2) = {𝛼}. By Claim 2, there must exist
a vertex 𝑎′ ∈ 𝐴1 such that 𝐶(𝑣𝑎′) ≠ 𝛼. This implies that either 𝑎′𝑏2𝑎2𝑣𝑎

′ or 𝑎′𝑏3𝑎3𝑣𝑎
′ is a PC 𝐶4, a

contradiction.
Now, we will show that 𝑐2 ∉ 𝐶(𝑣, 𝐴1). Suppose the contrary. Let 𝑎 ∈ 𝐴1 be a vertex satisfying

𝐶(𝑣𝑎) = 𝑐2. Let 𝑎2, 𝑎3, 𝑏1, 𝑏2, and 𝑏3 be arbitrary vertices in 𝐴2, 𝐴3, 𝐵1, 𝐵2, and 𝐵3, respectively. Con-
sider cycles 𝑎𝑏1𝑎2𝑣𝑎 and 𝑎𝑏1𝑎3𝑣𝑎. We have𝐶(𝑣, 𝐴2 ∪ 𝐴3) = {𝑐2}. By Claim 2, there must exist a vertex
𝑎′ ∈ 𝐴1 such that 𝐶(𝑣𝑎′) ≠ 𝑐2. We assert that 𝐶(𝑣𝑎′) = 𝑐1. Otherwise, 𝑣𝑎′𝑏3𝑎3𝑣 is a PC 𝐶4, a contra-
diction. So we have 𝐶(𝑣, 𝐴1) = {𝑐1, 𝑐2}. Let 𝐴′

1 = {𝑢 ∈ 𝐴1 ∶ 𝐶(𝑢𝑣) = 𝑐1} and 𝐴′′
1 = 𝐴1 ⧵ 𝐴′

1. Then
𝐴′
1, 𝐴

′′
1 ≠ ∅. For each vertex 𝑥 ∈ 𝑋2 ∪𝑋3 ∪𝑋0, by considering the cycle 𝑣𝑎𝑏1𝑥𝑣, we have 𝐶(𝑣,𝑋2 ∪

𝑋3 ∪𝑋0) ⊆ {𝑐2}. Define 𝐵′
1 = 𝐵1 ∪ {𝑣}, 𝑋′

1 = 𝑋1 ∪ 𝐴′′
1 . Partition 𝑌1 into three sets 𝑌 ′

1 , 𝑌
′′
1 ,

and 𝑌 ′′′
1 such that

𝑌 ′
1 = {𝑦 ∈ 𝑌1 ∶ 𝐶(𝑦, 𝐴′

1) = {𝑐1, 𝑐3}},

𝑌 ′′
1 = {𝑦 ∈ 𝑌1 ∶ 𝐶(𝑦, 𝐴′

1) = {𝑐1}}

and

𝑌 ′′′
1 = {𝑦 ∈ 𝑌1 ∶ 𝐶(𝑦, 𝐴′

1) = {𝑐3}}.
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If 𝑌 ′′′
1 = ∅, then let 𝑌 ′

0 = 𝑌0 ∪ 𝑌 ′′
1 . Thus the partite sets of 𝐺 can be partitioned into

{𝐴′
1, 𝐴2, 𝐴3, 𝑋

′
1, 𝑋2, 𝑋3, 𝑋0} 𝑎𝑛𝑑 {𝐵′

1, 𝐵2, 𝐵3, 𝑌
′
1 , 𝑌2, 𝑌3, 𝑌

′
0 },

respectively, with properties in the statement of Theorem 5, a contradiction. If 𝑌 ′′′
1 ≠ ∅, then choose

a vertex 𝑦 ∈ 𝑌 ′′′
1 . Since 𝐶(𝑦, 𝐴1) = {𝑐1, 𝑐3} and 𝐶(𝑦, 𝐴′

1) = {𝑐3}, there exists a vertex 𝑎′′ ∈ 𝐴′′
1 such

that 𝐶(𝑎′′𝑦) = 𝑐1. Arbitrarily choose a vertex 𝑎′ ∈ 𝐴′
1. Then 𝑦𝑎′𝑣𝑎′′𝑦 is a PC 𝐶4, a contradiction.

Hence, 𝐶(𝑣, 𝐴1) ⊆ {𝑐1, 𝑐3}. Similarly, we can prove that 𝐶(𝑣, 𝐴2) ⊆ {𝑐1, 𝑐2} and 𝐶(𝑣, 𝐴3) ⊆
{𝑐2, 𝑐3}. This completes the proof of Claim 3. ■

Claim 4. If 𝑐𝑖−1 ∈ 𝐶(𝑣, 𝐴𝑖) for some 𝑖 with 1 ≤ 𝑖 ≤ 3, then 𝐶(𝑣, 𝐴𝑖−1) = {𝑐𝑖−1} and 𝐶(𝑣, 𝐴𝑖+1) =
{𝑐𝑖+1}.

Proof. Assume that there exists a vertex 𝑎 ∈ 𝐴1 such that 𝐶(𝑣𝑎) = 𝑐3. Then let 𝑎2, 𝑎3, 𝑏1, 𝑏2, and 𝑏3
be arbitrary vertices in 𝐴2, 𝐴3, 𝐵1, 𝐵2, and 𝐵3, respectively. Consider the cycle 𝑣𝑎𝑏1𝑎2𝑣. We have
𝐶(𝑣, 𝐴2) ⊆ {𝑐2, 𝑐3}. By Claim 3, 𝐶(𝑣, 𝐴2) ⊆ {𝑐1, 𝑐2}. This implies that 𝐶(𝑣, 𝐴2) = {𝑐2}. Consider the
cycle 𝑣𝑎𝑏3𝑎3𝑣. We have 𝐶(𝑣, 𝐴3) = {𝑐3}. The left cases can be verified by similar arguments. The
proof of Claim 4 is complete. ■

Claim 5. 𝐶(𝑣, 𝐴𝑖) = {𝑐𝑖−1} for some 𝑖 with 1 ≤ 𝑖 ≤ 3.

Proof. By Claim 3, 𝐶(𝑣, 𝐴𝑖) ⊆ {𝑐𝑖−1, 𝑐𝑖} for all 𝑖 with 1 ≤ 𝑖 ≤ 3.
If 𝐶(𝑣, 𝐴𝑖) = {𝑐𝑖−1, 𝑐𝑖} for some 𝑖 with 1 ≤ 𝑖 ≤ 3, then by Claim 4, 𝐶(𝑣, 𝐴𝑖−1) = {𝑐𝑖−1} and

𝐶(𝑣, 𝐴𝑖+1) = {𝑐𝑖+1}. Without loss of generality, assume that 𝑖 = 1. Let 𝑌 ′
1 = 𝑌1 ∪ {𝑣}. Thus the partite

sets of 𝐺 can be partitioned into

{𝐴1, 𝐴2, 𝐴3, 𝑋1, 𝑋2, 𝑋3, 𝑋0} 𝑎𝑛𝑑 {𝐵1, 𝐵2, 𝐵3, 𝑌
′
1 , 𝑌2, 𝑌3, 𝑌0},

respectively, with properties in the statement of Theorem 5, a contradiction.
If 𝐶(𝑣, 𝐴𝑖) = {𝑐𝑖} for all 𝑖 with 1 ≤ 𝑖 ≤ 3, then let 𝑌 ′

0 = 𝑌0 ∪ {𝑣}. Thus the partite sets of 𝐺 can be
partitioned into

{𝐴1, 𝐴2, 𝐴3, 𝑋1, 𝑋2, 𝑋3, 𝑋0} 𝑎𝑛𝑑 {𝐵1, 𝐵2, 𝐵3, 𝑌1, 𝑌2, 𝑌3, 𝑌
′
0 },

respectively, with properties in the statement of Theorem 5, a contradiction.
So we have 𝐶(𝑣, 𝐴𝑖) = {𝑐𝑖−1} for some 𝑖 with 1 ≤ 𝑖 ≤ 3. ■

According to Claim 5, without loss of generality, assume that 𝐶(𝑣, 𝐴1) = {𝑐3}. Then by Claim 4,
𝐶(𝑣, 𝐴2) = {𝑐2} and 𝐶(𝑣, 𝐴3) = {𝑐3}. Let 𝑎1, 𝑎3, and 𝑏2 be arbitrary vertices in 𝐴1, 𝐴3, and 𝐵2, respec-
tively. For each vertex 𝑥 ∈ 𝑋2 ∪𝑋0, by considering the cycle 𝑣𝑎1𝑏1𝑥𝑣, we have 𝐶(𝑣,𝑋2 ∪𝑋0) ⊆
{𝑐2, 𝑐3}. Now we will prove that 𝐶(𝑣,𝑋1 ∪𝑋3) ⊆ {𝑐3}. For each vertex 𝑥1 ∈ 𝑋1, by the definition of
𝑋1, there exist vertices 𝑏1 and 𝑏′1 in 𝐵1 such that 𝐶(𝑥1𝑏1) = 𝑐1 and 𝐶(𝑥1𝑏′1) = 𝑐2. Consider the cycle
𝑎1𝑏

′
1𝑥1𝑣𝑎1. We have 𝐶(𝑣𝑥1) ∈ {𝑐2, 𝑐3}. If 𝐶(𝑣𝑥1) = 𝑐2, then 𝑣𝑥1𝑏1𝑎3𝑣 is a PC 𝐶4, a contradiction. So

we have 𝐶(𝑣,𝑋1) ⊆ {𝑐3}. For each vertex 𝑥3 ∈ 𝑋3, there exists a vertex 𝑏 ∈ 𝐵3 such that 𝐶(𝑥3𝑏) = 𝑐3.
Consider the cycle 𝑣𝑎1𝑏𝑥3𝑣. We have 𝐶(𝑣𝑥3) = 𝑐3. Thus 𝐶(𝑣,𝑋3) ⊆ {𝑐3}.

Let 𝑋′
0 = {𝑥 ∈ 𝑋0 ∶ 𝐶(𝑣𝑥) = 𝑐3} and 𝑋′′

0 = 𝑋0 ⧵𝑋′
0. Then 𝐶(𝑣,𝑋′′

0 ) ⊆ {𝑐2}. Let 𝐵′
2 = 𝐵2 ∪ {𝑣}

and 𝑋′
2 = 𝑋2 ∪𝑋′′

0 . Thus the partite sets of 𝐺 can be partitioned into

{𝐴1, 𝐴2, 𝐴3, 𝑋1, 𝑋
′
2, 𝑋3, 𝑋

′
0} 𝑎𝑛𝑑 {𝐵1, 𝐵

′
2, 𝐵3, 𝑌1, 𝑌2, 𝑌3, 𝑌0},

respectively, with properties in the statement of Theorem 5, a contradiction. This completes the proof
of Theorem 5. ■
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5 PROOF OF THEOREM 6

By contradiction. Suppose that there exists a vertex 𝑣 ∈ 𝑉 (𝐺) such that any PC 𝐶4 does not contain
𝑣. Without loss of generality, let 𝑣 ∈ 𝐵 and 𝑑 = 𝑑𝑐(𝑣). Now, partition 𝐴 into 𝑑 nonempty subsets
𝐴1, 𝐴2,… , 𝐴𝑑 such that the color 𝑐𝑖 is assigned to all edges between 𝑣 and 𝐴𝑖 for each 1 ≤ 𝑖 ≤ 𝑑,
where 𝑐𝑖 ≠ 𝑐𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑑.

Consider a spanning subgraph 𝐺′ of 𝐺 with

𝐸(𝐺′) = {𝑎𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵,𝐶(𝑎𝑏) ≠ 𝐶(𝑎𝑣)}.

Let

𝐵′ = {𝑥 ∈ 𝐵 ∶ There exist 𝑖, 𝑗 with 𝑖 ≠ 𝑗, 𝑢 ∈ 𝐴𝑖,𝑤 ∈ 𝐴𝑗 such that𝑢𝑥,𝑤𝑥 ∈ 𝐸(𝐺′)}.

For a vertex 𝑥 ∈ 𝐵′, since 𝑣 is not contained in any PC 𝐶4’s, we have 𝐶(𝑢𝑥) = 𝐶(𝑤𝑥), where 𝑢,𝑤 are
as that in the definition of 𝐵′. By this observation, we obtain the following claim.

Claim 6. For a vertex 𝑥 ∈ 𝐵′, all edges of 𝐸𝐺′ (𝑥,𝐴) has a same color, i.e. 𝑑𝑐

𝐺′ (𝑥) = 1.

For simplicity, in the following, we use Δ𝐴 and Δ𝐵 respectively to denote Δ𝑚𝑜𝑛
𝐺

(𝐴) and Δ𝑚𝑜𝑛
𝐺

(𝐵).

Claim 7. The following statements hold:

(1) 𝑚𝑛 − 𝑚Δ𝐴 − (𝑛 − 1)Δ𝐵 > 0;
(2) |𝐸𝐺′ (𝐴, (𝐵 − 𝑣)∖𝐵′)| ≤ (𝑛 − 1 − |𝐵′|)Δ𝐵;
(3) 𝐵′ ≠ ∅.

Proof.

(1) If Δ𝑚𝑜𝑛
𝐺

(𝐴) ≤ 3𝑛−𝑚
4 and Δ𝑚𝑜𝑛

𝐺
(𝐵) ≤ 3𝑚−𝑛

4 , then we have 3𝑚 > 𝑛 (since 3𝑚−𝑛
4 > 0). Thus,

𝑚𝑛 − 𝑚Δ𝐴 − (𝑛 − 1)Δ𝐵 ≥
1
4
[(𝑚 − 𝑛)2 + 3𝑚 − 𝑛] > 0.

If Δ𝑚𝑜𝑛
𝐺

(𝐴) ≤ 𝑛

2 and Δ𝑚𝑜𝑛
𝐺

(𝐵) ≤ 𝑚

2 , then

𝑚𝑛 − 𝑚Δ𝐴 − (𝑛 − 1)Δ𝐵 ≥
𝑚

2
> 0.

(2) For a vertex 𝑏 ∈ (𝐵 − 𝑣)∖𝐵′, by the definition of 𝐵′, 𝑏 can be adjacent to at most one set of
𝐴1, 𝐴2,… , 𝐴𝑑 in 𝐺′. Since all edges between 𝑣 and 𝐴𝑖 are colored in 𝑐𝑖, we have |𝐴𝑖| ≤ Δ𝐵 for
all 1 ≤ 𝑖 ≤ 𝑑. Thus |𝐸𝐺′ (𝐴, (𝐵 − 𝑣)∖𝐵′)| ≤ (𝑛 − 1 − |𝐵′|)Δ𝐵 .

(3) Suppose that 𝐵′ = ∅. Then by the definition of 𝐺′ and Claim 7 (2)

𝑚(𝑛 − Δ𝐴) ≤ |𝐸𝐺′ (𝐴,𝐵 − 𝑣)| ≤ (𝑛 − 1)Δ𝐵.

So we have

𝑚Δ𝐴 + (𝑛 − 1)Δ𝐵 ≥ 𝑚𝑛.

This contradicts Claim 7 (1). ■
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Utilizing Claim 7, we obtain

|𝐸𝐺′ (𝐴,𝐵′)||𝐵′| =
|𝐸𝐺′ (𝐴,𝐵 − 𝑣)| − |𝐸𝐺′ (𝐴, (𝐵 − 𝑣)∖𝐵′)||𝐵′| ≥

𝑚(𝑛 − Δ𝐴) − (𝑛 − 1 − |𝐵′|)Δ𝐵|𝐵′|
= Δ𝐵 +

𝑚𝑛 − 𝑚Δ𝐴 − (𝑛 − 1)Δ𝐵|𝐵′| > Δ𝐵.

Hence, there must exist a vertex 𝑥 ∈ 𝐵′ such that 𝑑𝐺′ (𝑥) > Δ𝐵 . By Claim 6, we know that there exists
a color appearing at least Δ𝐵 + 1 times on the edges incident to 𝑥, a contradiction.

6 PROOF OF THEOREM 7

By contradiction. Suppose that 𝑒 = 𝑥𝑦 ∈ 𝐸(𝐺) is an edge satisfying 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 but not contained
in any PC 𝐶4’s. Let 𝐴′ = {𝑎 ∈ 𝐴 ∶ 𝐶(𝑎𝑦) = 𝐶(𝑥𝑦)} and 𝐵′ = {𝑏 ∈ 𝐵 ∶ 𝐶(𝑥𝑏) = 𝐶(𝑥𝑦)}.

Obviously, 𝑥 ∈ 𝐴′,𝑦 ∈ 𝐵′, |𝐴′| ≤ Δ𝑚𝑜𝑛
𝐺

(𝐴) ≤ 𝑚

3 , |𝐵′| ≤ Δ𝑚𝑜𝑛
𝐺

(𝐵) ≤ 𝑛

3 and 𝐶(𝑎𝑏) ∈ {𝐶(𝑎𝑦), 𝐶(𝑥𝑏)}
for all 𝑎 ∈ 𝐴∖𝐴′ and 𝑏 ∈ 𝐵∖𝐵′. Now construct an oriented graph 𝐷 with

𝑉 (𝐷) = (𝐴∖𝐴′) ∪ (𝐵∖𝐵′)

and

𝐴(𝐷) = {𝑎𝑏 ∶ 𝐶(𝑎𝑏) = 𝐶(𝑥𝑏), 𝑎 ∈ 𝐴∖𝐴′, 𝑏 ∈ 𝐵∖𝐵′}

∪{𝑏𝑎 ∶ 𝐶(𝑎𝑏) ≠ 𝐶(𝑥𝑏), 𝑎 ∈ 𝐴∖𝐴′, 𝑏 ∈ 𝐵∖𝐵′}.

Clearly, for each vertex 𝑣 ∈ 𝑉 (𝐷), all edges between 𝑣 and 𝑁−
𝐷
(𝑣) ∪ {𝑥, 𝑦} have a same color. Thus

𝑑−
𝐷
(𝑎) ≤ 𝑛

3
− 1 <

𝑛

3

and

𝑑−
𝐷
(𝑏) ≤ 𝑚

3
− 1 <

𝑚

3

for all 𝑎 ∈ 𝐴∖𝐴′ and 𝑏 ∈ 𝐵∖𝐵′. Then we have

𝑛(𝑚 − |𝐴′|)
3

+ 𝑚(𝑛 − |𝐵′|)
3

>
∑

𝑣∈𝑉 (𝐷)
𝑑−
𝐷
(𝑣) = |𝐴(𝐷)| = (𝑚 − |𝐴′|)(𝑛 − |𝐵′|).

This implies that

0 > 𝑚𝑛 + 3|𝐴′||𝐵′| − 2𝑛|𝐴′| − 2𝑚|𝐵′| =

(
2𝑚√
3
−
√
3|𝐴′|)(

2𝑛√
3
−
√
3|𝐵′|) − 𝑚𝑛

3

≥

(
2𝑚√
3
− 𝑚√

3

)(
2𝑛√
3
− 𝑛√

3

)

− 𝑚𝑛

3

(|𝐴′| ≤ 𝑚

3
, |𝐵′| ≤ 𝑛

3
.

)
= 0,

a contradiction, which completes the proof.
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ENDNOTE
1 The second and third authors of this article first gave a proof of Theorem 3 in a manuscript without using Theorem 8.

The proof we present here is more simple than that one and was suggested by two referees of that article. We include it
here for completeness.
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