PACKING ODD T-JOINS WITH AT MOST TWO TERMINALS

AHMAD ABDI AND BERTRAND GUENIN

Abstract

Take a graph G, an edge subset $\Sigma \subseteq E(G)$, and a set of terminals $T \subseteq V(G)$ where $|T|$ is even. The triple (G, Σ, T) is called a signed graft. A T-join is odd if it contains an odd number of edges from Σ. Let ν be the maximum number of edge-disjoint odd T-joins. A signature is a set of the form $\Sigma \triangle \delta(U)$ where $U \subseteq V(G)$ and $|U \cap T|$ is even. Let τ be the minimum cardinality a T-cut or a signature can achieve. Then $\nu \leq \tau$ and we say that (G, Σ, T) packs if equality holds here.

We prove that (G, Σ, T) packs if the signed graft is Eulerian and it excludes two special nonpacking minors. Our result confirms the Cycling Conjecture for the class of clutters of odd T-joins with at most two terminals. Corollaries of this result include, the characterizations of weakly and evenly bipartite graphs, packing two-commodity paths, packing T-joins with at most four terminals, and a new result on covering edges with cuts.

1. The main result

A signed graph is a pair (G, Σ) where G is a graph and $\Sigma \subseteq E(G)$. A subset S of the edges is odd (resp. even) in (G, Σ) if $|S \cap \Sigma|$ is odd (resp. even). In particular, an edge e is odd if $e \in \Sigma$ and it is even otherwise. A graft is a pair (G, T) where G is a graph, $T \subseteq V(G)$ and $|T|$ is even. Vertices in T are terminal vertices. A T-join is an edge subset that induces a subgraph of G with the odd degree vertices equal to T. A T-cut is a cut $\delta(U)=\{u v \in E: u \in U, v \notin U\}$ where $|U \cap T|$ is odd. A signed graft is a triple (G, Σ, T) where (G, Σ) is a signed graph and (G, T) is a graft. Thus an odd T-join of (G, Σ, T) is a T-join of G that contains an odd number of edges of Σ. Take an edge subset $C \subseteq E(G)$. Then C is a circuit if it induces a connected subgraph where every vertex has degree two, and C is a cycle if it induces a subgraph where every vertex has even degree. When $T=\emptyset$ an (inclusion-wise) minimal odd T-join is an odd circuit. When $T=\{s, t\}$ a minimal odd T-join is either an odd $s t$-path, or it is the union of an even st-path P and an odd circuit C where P and C share at most one vertex. When $T=\{s, t\}$ we say that a set $B \subseteq E(G)$ is an $s t$-cut (resp. an $s t$-join) if it is a T-cut (resp. a T-join).

A signature of the signed graft (G, Σ, T) is a set of the form $\Sigma \triangle \delta(U)$, where $U \subseteq V(G)$ and $|U \cap T|$ is even. ${ }^{1}$ Observe that if Γ is a signature, then (G, Σ, T) and (G, Γ, T) have the same collection of odd T-joins. We will need the following basic result:

[^0]Theorem 1.1. Let (G, Σ, T) be a signed graft, and let $F \subseteq E(G)$. Then the following statements hold:

- (Zaslavsky [18]) Assume that $T=\emptyset$. If F contains no odd cycle, then there is a signature disjoint from F. If F contains no signature, then there is an odd cycle disjoint from F.
- If F does not contain a T-join, then there is a T-cut disjoint from F. If F does not contain a T-cut, then there is a T-join disjoint from F.

This theorem is very useful and will be applied many times without reference throughout this paper. The first application is the following:

Proposition 1.2. Let (G, Σ, T) be a signed graft. Let B be a minimal set of edges that intersects every odd T-join. Then B is either a T-cut or a signature. In particular, B intersects every odd T-join with odd parity.

Proof. By the minimality of B, it suffices to show that B contains a T-cut or a signature, as T-cuts and signatures intersect every odd T-join. To this end, let us assume that B does not contain a T-cut. Then there is a T-join J disjoint from B. Since B intersects every odd T-join, it follows that J is an even T-join. It also follows that B intersects every odd cycle C, for if not, then $J \triangle C$ would be an odd T-join disjoint from B, which is not the case. Hence, B contains a signature of (G, Σ, \emptyset). That is, there is a cut $\delta(U)$ such that $\Sigma \triangle \delta(U) \subseteq B$. It suffices to show that $|U \cap T|$ is even. Since $B \cap J=\emptyset$, we get that $(\Sigma \triangle \delta(U)) \cap J=\emptyset$, so in particular, $|(\Sigma \triangle \delta(U)) \cap J|$ is even. Since $|\Sigma \cap J|$ is even, it follows that $\delta(U) \cap J$ is even, implying in turn that $|U \cap T|$ is even, as required.

Given a signed graft, a cover is a set of edges that intersects every odd T-join with odd parity. ${ }^{2}$ Then by proposition 1.2 every minimal set of edges that intersects every odd T-join is a cover.

The maximum number of pairwise (edge) disjoint odd T-joins in (G, Σ, T) is denoted $\nu(G, \Sigma, T)$. The cardinality of a minimum cover is denoted $\tau(G, \Sigma, T)$. Clearly, $\tau(G, \Sigma, T) \geq \nu(G, \Sigma, T)$. We say that (G, Σ, T) packs if equality holds. $\widetilde{K_{5}}$ is the signed graft $\left(K_{5}, E\left(K_{5}\right), \emptyset\right)$ and F_{7} is the signed graft (G, Σ, T) in figure 1. Note, $4=\tau\left(\widetilde{K_{5}}\right)>\nu\left(\widetilde{K_{5}}\right)=2$ and $3=\tau\left(F_{7}\right)>\nu\left(F_{7}\right)=1$. Thus $\widetilde{K_{5}}$ and F_{7} do not pack.

Let (G, Σ, T) be a signed graft. (G, Γ, T) is obtained by resigning (G, Σ, T) if Γ is a signature of (G, Σ, T). For $e \in E(G)$, we say that $(G \backslash e, \Sigma-\{e\}, T)$ is obtained by deleting e. For $e=u v \in E(G)-\Sigma$, we say that $\left(G / e, \Sigma, T^{\prime}\right)$ is obtained by contracting e where $T^{\prime}=T-\{u, v\}$ if both or none of u, v are in T and $T^{\prime}=T-\{u, v\} \cup\{w\}$ if exactly one of u, v is in T where w is the vertex obtained from e by contracting e. A signed graft is a minor of (G, Σ, T) if it is obtained by sequentially

[^1]

Figure 1. Signed graft F_{7}. Dashed edges form the signature, square vertices are terminals.
deleting/contracting edges and resigning. Note, we can always do all deletions first, resign, and then do all contractions. We often do not distinguish between signed grafts related by resigning. In particular we denote by $(G, \Sigma, T) / I \backslash J$ the signed graft obtained from (G, Σ) by contracting edge set I and deleting edge set J. Observe that this is only well defined if I does not contain an odd circuit or an odd T-join.

We say that a signed graft (G, Σ, T) is Eulerian if every non-terminal vertex has even degree and either: every terminal has odd degree and the signature has an odd number of edges; or every terminal has even degree and the signature has an even number of edges. So (G, Σ, \emptyset) is Eulerian if every vertex has even degree. Notice that resigning preserves the Eulerian property.

We can now state the main result of the paper,
Theorem 1.3. If an Eulerian signed graft has at most two terminals and it does not contain either of $\widetilde{K_{5}}$ or F_{7} as a minor then it packs.

Observe that the Eulerian condition cannot be omitted. For instance $\left(K_{4}, E\left(K_{4}\right), \emptyset\right)$ does not pack and does not contain either of $\widetilde{K_{5}}$ or F_{7} as a minor. Similarly, the signed graft obtained from F_{7} by deleting the unique edge between the two terminal vertices does not pack and does not contain either $\widetilde{K_{5}}$ or F_{7} as a minor.
1.1. Special cases. We say that a graph H is an odd-minor of a graph G if H is obtained from G by first deleting edges and then contracting all edges on a cut. Theorem 1.3 implies,

Corollary 1.4 (Geelen and Guenin [3]). Let G be a graph that does not contain K_{5} as an odd minor and where every vertex has even degree. Then the minimum number of edges needed to intersect all odd circuits is equal to the maximum number of pairwise disjoint odd circuits.

Proof. Consider the signed graft $(G, E(G), T)$ where $T=\emptyset$. Since $T=\emptyset, F_{7}$ is not a minor of $(G, E(G), T)$. We claim that $\widetilde{K_{5}}$ is not a minor of $(G, E(G), T)$ either. Suppose for a contradiction that $\widetilde{K_{5}}=(G, E(G), \emptyset) / I \backslash J$. Let $(H, E(H), \emptyset)=(G, E(G), \emptyset) \backslash J$. We may assume that we resign $(H, E(H), \emptyset)$ to obtain $(H, E(H)-B, \emptyset)$ where B is a cut of $E(H), I \subseteq B$ and that $\widetilde{K_{5}}=(H, E(H)-$
$B, \emptyset) / I$. As $\widetilde{K_{5}}$ has no even edge, $I=B$. But then K_{5} is an odd-minor of G, a contradiction. Since all vertices of G have even degree and since $T=\emptyset,(G, E(G), \emptyset)$ is Eulerian. Thus $\tau(G, \Sigma, \emptyset)=\nu(G, \Sigma, \emptyset)$ by theorem 1.3. Since $T=\emptyset$ each odd T-joins contains an odd circuit and the result follows.

A blocking vertex (resp. blocking pair) in a signed graft is a vertex (resp. pair of vertices) that intersects every odd circuit.

Proposition 1.5. Consider a signed graft (G, Σ, T) where $T=\{s, t\}$. If any of (1)-(6) hold, then $(G, \Sigma,\{s, t\})$ does not contain $\widetilde{K_{5}}$ or F_{7} as a minor:
(1) there exists a blocking vertex,
(2) s, t is a blocking pair,
(3) every minimal odd st-join is connected,
(4) G is a plane graph with at most two odd faces,
(5) G is a plane graph and u, v is a blocking pair where s, u, t, v appear on a facial cycle in this order,
(6) G has an embedding on the projective plane where every face is even and s, t are connected by an odd edge.

Proof sketch. Observe that (3) contains (2) and (6). Thus it suffices to show the result for (1), (3), (4) and (5). Suppose that (G, Σ, T) with $T=\{s, t\}$ belongs to one of these classes, and let $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ be a minor of it. Then,

- if (G, Σ, T) belongs to one of (1), (4), then so does $\left(G^{\prime}, \Sigma^{\prime}, T\right)$,
- if (G, Σ, T) belongs to (3) and $T^{\prime}=T$, then $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ belongs to (3),
- if (G, Σ, T) belongs to (5) and $T^{\prime}=T$, then $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ belongs to (5),
- if (G, Σ, T) belongs to (3) and $T^{\prime}=\emptyset$, then $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ belongs to (1),
- if (G, Σ, T) belongs to (5) and $T^{\prime}=\emptyset$, then $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ has a blocking pair.

In all of the aforementioned cases, $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ is not equal to either of $\widetilde{K_{5}}$ or F_{7} (we leave this as a simple exercise), finishing the proof.

Theorem 1.3 implies that an Eulerian signed graft with two terminals that is in any of classes (1)-(6) packs. We will now show that some of these cases lead to classical results.

Proposition 1.5(1) and theorem 1.3 imply,

Corollary 1.6. Let (H, T) be a graft with $|T| \leq 4$. Suppose that every vertex of H not in T has even degree and that all the vertices in T have degrees of the same parity. Then the maximum number of pairwise disjoint T-joins is equal to the minimum size of a T-cut.

Proof. Suppose that $T=\left\{s, t, s^{\prime}, t^{\prime}\right\}$. Let $\Sigma=\delta_{H}\left(s^{\prime}\right)$ and identify s^{\prime}, t^{\prime} to obtain G. Denote by v the vertex corresponding to s^{\prime}, t^{\prime} in G. Then the signed graft $(G, \Sigma,\{s, t\})$ contains a blocking vertex v, so by proposition $1.5(1)$ it has no F_{7} or \widetilde{K}_{5} minor. By construction $(G, \Sigma,\{s, t\})$ is Eulerian. Hence, theorem 1.3 implies that $\tau(G, \Sigma,\{s, t\})=\nu(G, \Sigma,\{s, t\})$. Observe that an odd $s t$-join of $(G, \Sigma,\{s, t\})$ is a T-join of H, and that an st-cut or a signature of (G, Σ) is a T-cut of H. The result now follows.

In fact this result holds as long as $|T| \leq 8[1]$.
Proposition 1.5(2) and theorem 1.3 imply,

Corollary 1.7 (Hu [7], Rothschild and Whinston [10]). Let H be a graph and choose two pairs (s_{1}, t_{1}) and $\left(s_{2}, t_{2}\right)$ of vertices, where $s_{1} \neq t_{1}, s_{2} \neq t_{2}$, the degrees of $s_{1}, t_{1}, s_{2}, t_{2}$ have the same parity, and all the other vertices have even degree. Then the maximum number of pairwise disjoint paths that are between s_{i} and t_{i} for some $i=1,2$, is equal to the minimum size of an edge subset whose deletion removes all $s_{1} t_{1}-$ and $s_{2} t_{2}$-paths.

Proof. Let $\Sigma=\delta_{H}\left(s_{1}\right) \triangle \delta_{H}\left(t_{2}\right)$ and identify s_{1}, s_{2} as well as t_{1}, t_{2} to obtain G. (So all the edges between s_{1} and s_{2} and between t_{1} and t_{2} have turned into loops.) Denote by s (resp. t) the vertex of G corresponding to s_{1}, s_{2} (resp. $\left.t_{1}, t_{2}\right)$ in H. The signed graft $(G, \Sigma,\{s, t\})$ has $\{s, t\}$ as a blocking pair, so by proposition $1.5(2)$ it has no F_{7} or \widetilde{K}_{5} minor. By construction (G, Σ) is Eulerian. Thus, theorem 1.3 implies that $\tau(G, \Sigma,\{s, t\})=\nu(G, \Sigma,\{s, t\})$. Observe that a minimal odd st-join of $(G, \Sigma,\{s, t\})$ is an $s_{i} t_{i}$-path of H, for some $i=1,2$. The result now follows.

Next we shall derive corollaries using duals of plane graphs.

Figure 2. Signed graft. All edges are in the signature and square vertices are terminals.

Note, in the next theorem, the length of a circuit, resp. T-join, is the number of its edges, and a circuit, resp. T-join, is odd, if it contains an odd number of edges in Σ.

Corollary 1.8. Let (G, Σ, T) be a signed graft where G is a plane graph with exactly two odd faces. Suppose that $\Sigma=E(G)$ or that all T-joins have even length. If (G, Σ, T) does not contain the signed
graft in figure 2 as a minor, then the maximum number of pairwise disjoint signatures is equal to the minimum of the following two quantities:

- the length of the shortest odd circuit,
- the length of the shortest odd T-join.

Proof. Denote by s and t the two odd faces of G. Let G^{*} be the plane dual of G and let Γ be an odd T-join of (G, Σ, T). Then $\left(G^{*}, \Gamma,\{s, t\}\right)$ is a signed graft. Notice that if (G, Σ, T) is the signed graft in figure 2 , then $\left(G^{*}, \Gamma,\{s, t\}\right)$ is F_{7}. Recall that a bond is an inclusion-wise minimal cut.

Claim 1. Let $B \subseteq E(G)=E\left(G^{*}\right)$.
(i) If B is an st-cut of $\left(G^{*}, \Gamma,\{s, t\}\right)$ then B is an odd cycle of (G, Σ, T).
(ii) If B is a signature of $\left(G^{*}, \Gamma,\{s, t\}\right)$ then B is an odd T-join of (G, Σ, T).
(iii) If B is an odd st-join of $\left(G^{*}, \Gamma,\{s, t\}\right)$ then B is a signature of (G, Σ, T).

Proof. (i) $B=B_{1} \triangle \ldots \triangle B_{k}$ where B_{k} are bonds of G^{*}. Since B is an st-cut, an odd number of these bonds are $s t$-bonds. Thus an odd number of B_{1}, \ldots, B_{k} are circuits of G separating faces s and t and the remainder are circuits of G with faces s and t on the same side. It follows that B is an odd cycle of (G, Σ, T). (ii) As B is a signature of $\left(G^{*}, \Gamma,\{s, t\}\right), B \triangle \Gamma=\delta_{G^{*}}(U)$ where $s, t \notin U$. Denote by u_{1}, \ldots, u_{k} the elements of U, then $B \triangle \Gamma=\delta_{G^{*}}\left(u_{1}\right) \triangle \ldots \Delta \delta_{G^{*}}\left(u_{k}\right)$. For $i \in[k]^{3}, \delta_{G^{*}}\left(u_{i}\right)$ is a facial even circuit of (G, Σ) and thus $B \triangle \Gamma$ is an even cycle of (G, Σ). As Γ is an odd T-join of (G, Σ, T) so is B. (iii) Since B is an $s t$-join of $G^{*},\left|\delta_{G^{*}}(u) \cap B\right|$ is odd if $u=s, t$ and even otherwise. Thus the facial circuits of G that intersect B with odd parity are the ones separating faces s and t. As the facial circuits span the cycle space of G, for every cycle C of $G,|C \cap B|$ and $|C \cap \Sigma|$ have the same parity. Hence, $B \triangle \Sigma=\delta_{G}(U)$ for some $U \subseteq V(G) .|B \cap \Gamma|$ is odd as B is an odd st-join of $\left(G^{*}, \Gamma,\{s, t\}\right)$. $|\Sigma \cap \Gamma|$ is odd as Γ is an odd T-join of (G, Σ, T). Thus $\left|\delta_{G}(U) \cap \Gamma\right|=|(B \triangle \Sigma) \cap \Gamma|$ is even. It follows that $|U \cap T|$ is even, thus B is a signature of (G, Σ, T).

Claim 2. $\left(G^{*}, \Gamma,\{s, t\}\right)$ is Eulerian.

Proof. Suppose all T-joins of G have even length. Then any circuit of G has even length. Thus all vertices of G^{*} have even degree. We chose Γ to be a T-join of G, thus $|\Gamma|$ is even. It follows by definition that the signed graft $\left(G^{*}, \Gamma,\{s, t\}\right)$ is Eulerian. Suppose that $\Sigma=E(G)$. As s and t are the only two odd faces of G, s and t are the only vertices of G^{*} of odd degree. We chose Γ to be an odd T-join of $(G, \Sigma=E(G), T)$, thus $|\Gamma|$ is odd. It follows by definition that the signed graft $\left(G^{*}, \Gamma,\{s, t\}\right)$ is Eulerian.

[^2]Suppose now that (G, Σ, T) does not contain the signed graft in figure 2 as a minor.
Claim 3. $\left(G^{*}, \Gamma,\{s, t\}\right)$ does not contain either of $\widetilde{K_{5}}$ or F_{7} as a minor.
Proof. Since G^{*} is planar, $\left(G^{*}, \Gamma,\{s, t\}\right)$ does not contain $\widetilde{K_{5}}$ as a minor. Suppose for a contradiction that $\left(G^{*}, \Gamma,\{s, t\}\right) / I \backslash J=F_{7}$. Denote by e_{1}, \ldots, e_{k} the elements of J and let $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ be obtained from (G, Σ, T) by deleting edges in I and contracting e_{1}, \ldots, e_{r} for some $r \leq k$ as large as possible. If $r=k$ then $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ is given in figure 2 , a contradiction. Otherwise, since we could not resign and contract e_{r+1}, e_{r+1} must be in every signature of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$. Thus, by claim 1 (iii), every odd $s t$-join of $\left(G^{*}, \Gamma,\{s, t\}\right) / I \backslash\left\{e_{1}, \ldots, e_{r}\right\}$ uses e_{r+1} and $\left(G^{*}, \Gamma,\{s, t\}\right) / I \backslash J$ has no odd st-join, a contradiction. \diamond

By claim 2, claim 3 and theorem 1.3, $\tau=\tau\left(G^{*}, \Gamma,\{s, t\}\right)=\nu\left(G^{*}, \Gamma,\{s, t\}\right)$. Thus there is a minimal cover B of $\left(G^{*}, \Gamma,\{s, t\}\right)$ with $|B|=\tau$ and pairwise disjoint odd st-joins L_{1}, \ldots, L_{τ} of $\left(G^{*}, \Gamma,\{s, t\}\right)$. By proposition 1.2 and claim $1, B$ is either an odd circuit of (G, Σ, T) or an odd T-join of (G, Σ, T). By claim 1 , for all $i \in[\tau], L_{i}$ is a signature of (G, Σ, T).

Next we will show that in the previous result, the case where T consists of two vertices is of independent interest. Consider H obtained as follows:
(*) start from a plane graph with exactly two faces of odd length and distinct vertices s and t, and identify s and t.

Corollary 1.9. Let H be a graph as in (\star) and suppose that the length of the shortest odd circuit is k. Then there exist cuts B_{1}, \ldots, B_{k} such that every edge e is in at least $k-1$ of B_{1}, \ldots, B_{k}.

Proof. H is obtained as in (\star) from a plane graph G with exactly two faces of odd length and distinct vertices s, t. The signed graft $(G, E(G), T)$ where $T=\{s, t\}$ does not contain the signed graft in figure 2 as $|T|<4$. By corollary 1.8 there exists pairwise disjoint signatures $\Sigma_{1}, \ldots, \Sigma_{p}$ and $C \subseteq E(G)$ with $|C|=p$ where C is an odd circuit or an odd T-join of G. In either case C is an odd circuit of H, thus $p \geq k$. Since $\Sigma_{1}, \ldots, \Sigma_{p}$ are signatures of $(G, E(G),\{s, t\})$ for all $i \in[p]$, $\Sigma_{i}=E(G) \triangle \delta_{G}\left(U_{i}\right)=E(G)-\delta_{G}\left(U_{i}\right)$ where $s, t \notin U_{i}$. Since $\Sigma_{1}, \ldots, \Sigma_{p}$ are pairwise disjoint, every edge of G (resp. H) is in at least $p-1 \geq k-1$ of $B_{i}=\delta_{G}\left(U_{i}\right)=\delta_{H}\left(U_{i}\right)$.

The attentive reader may have noticed that we can also derive corollary 1.9 directly from theorem 1.3 and proposition 1.5(4). Suppose that H is as in (\star) and is loopless. Then by corollary 1.9, there exists cuts $\delta\left(U_{1}\right), \delta\left(U_{2}\right)$ such that every edge is in $\delta\left(U_{1}\right) \cup \delta\left(U_{2}\right)$. It follows that $U_{1} \cap U_{2}, U_{1} \cap(V(H)-$ $\left.U_{2}\right),\left(V(H)-U_{1}\right) \cap U_{2},\left(V(H)-U_{1}\right) \cap\left(V(H)-U_{2}\right)$ are stable sets. Hence, H is 4-colourable.

The following conjecture would generalize the 4-colour theorem,

Conjecture 1.10. Let H be a graph that does not contain K_{5} as an odd minor and suppose that the length of the shortest odd circuit is k. Then there exist cuts B_{1}, \ldots, B_{k} such that every edge e is in at least $k-1$ of B_{1}, \ldots, B_{k}.

Graphs in (\star) do not contain K_{5} as an odd minor [4] and corollary 1.9 implies the previous conjecture for these graphs. We close this section with a sharper version of theorem 1.3.

Theorem 1.11. Let $(G, \Sigma,\{s, t\})$ be an Eulerian signed graft that does not contain $\widetilde{K_{5}}$ or F_{7} as a minor. Let k be the size of the smallest st-cut and let ℓ be the size of the smallest signature. When $k \geq \ell$ one can in fact find a collection of k pairwise disjoint sets, ℓ of which are odd st-join and $k-\ell$ are even st-paths.

Proof. Let $\left(G^{\prime}, \Sigma^{\prime}\right)$ be obtained from (G, Σ) by adding $k-\ell$ odd loops. As F_{7} and $\widetilde{K_{5}}$ have no loops, $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$ does not contain $\widetilde{K_{5}}$ or F_{7} as a minor. Since $(G, \Sigma,\{s, t\})$ is Eulerian, so is $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$. It follows from theorem 1.3 that $k=\tau\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)=\nu\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$. Thus there exists k pairwise disjoint odd st-join in $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$ and exactly $k-\ell$ must contain an odd loop that is in $\left(G^{\prime}, \Sigma^{\prime}\right)$ but not in (G, Σ). The result now follows.
1.2. Cycling and idealness. A clutter \mathcal{C} is a finite collection of sets, over some finite set $E(\mathcal{C})$, with the property that no set in \mathcal{C} is contained in another set of $\mathcal{C} . \mathcal{C}$ is binary if for every $S_{1}, S_{2}, S_{3} \in \mathcal{C}$, $S_{1} \triangle S_{2} \triangle S_{3}$ is contained in a set of \mathcal{C}. A cover of a binary clutter \mathcal{C} is a subset of $E(\mathcal{C})$ that intersects every set in \mathcal{C} with odd parity. ${ }^{4}$ An inclusion-wise minimal set of edges that intersects all sets in \mathcal{C}, is a cover [8]. The maximum number of pairwise disjoint sets in \mathcal{C} is denoted $\nu(\mathcal{C})$. The minimum size of a cover of \mathcal{C} is $\tau(\mathcal{C}) . \mathcal{C}$ packs if $\tau(\mathcal{C})=\nu(\mathcal{C})$. A binary clutter is Eulerian if all minimal covers have the same parity.

Let \mathcal{C} be a clutter and $e \in E(\mathcal{C})$. The contraction \mathcal{C} / e and deletion $\mathcal{C} \backslash e$ are clutters with $E(\mathcal{C} / e)=$ $E(\mathcal{C} \backslash e)=E(\mathcal{C})-\{e\}$ where \mathcal{C} / e is the collection of inclusion-wise minimal sets in $\{C-\{e\}: C \in \mathcal{C}\}$ and $\mathcal{C} \backslash e:=\{C: e \notin C \in \mathcal{C}\}$. A clutter obtained from \mathcal{C} by a sequence of deletions and contractions is a minor of \mathcal{C}. Denote by \mathcal{L}_{7} the clutter of odd T-joins of F_{7}, by \mathcal{O}_{5} the clutter of odd circuits of K_{5}, by $b\left(\mathcal{O}_{5}\right)$ the clutter of complements of cuts of K_{5}, and by \mathcal{P}_{10} the clutter of T-joins of the Petersen graph where T is the set of all vertices.

Conjecture 1.12 (Cycling Conjecture. Seymour [14], see also Schrijver [12]). Eulerian binary clutters that do not contain $\mathcal{L}_{7}, \mathcal{O}_{5}, b\left(\mathcal{O}_{5}\right)$, or \mathcal{P}_{10} as a minor, pack.

Let $(G, \Sigma,\{s, t\})$ be a signed graft and let \mathcal{H} be the clutter of minimal odd $s t$-joins. Note that \mathcal{H} is binary, and it can be readily checked that \mathcal{H} is Eulerian if and only if $(G, \Sigma,\{s, t\})$ is Eulerian.

[^3]Observe also that $\mathcal{L}_{7}\left(\right.$ resp. $\left.\mathcal{O}_{5}\right)$ is a minor of \mathcal{H} if and only if F_{7} (resp. $\widetilde{K_{5}}$) is a minor of $(G, \Sigma,\{s, t\})$. Thus theorem 1.3 can be restated as,

Theorem 1.13. The Cycling Conjecture holds for Eulerian clutters of minimal odd st-joins.

Let \mathcal{H} be a clutter. We define,

$$
\begin{equation*}
\nu^{*}(\mathcal{H})=\max \left\{\sum_{S \in \mathcal{H}} \lambda_{S}: \sum_{S \in \mathcal{H}: e \in S} \lambda_{S} \leq 1, \text { for all } e \in E(\mathcal{H}), \lambda_{S} \geq 0 \text { for all } S \in \mathcal{H}\right\} \tag{1}
\end{equation*}
$$

\mathcal{H} fractionally packs if $\tau(\mathcal{H})=\nu^{*}(\mathcal{H})$.
Conjecture 1.14 (Flowing Conjecture. Seymour [14, 15]). Binary clutters that do not contain \mathcal{L}_{7}, \mathcal{O}_{5}, or $b\left(\mathcal{O}_{5}\right)$ as a minor, fractionally pack.

Corollary 1.15 (Guenin [6]). The Idealness Conjecture holds for clutters of minimal odd st-joins.

Proof. Let \mathcal{H} be the clutter of minimal odd $s t$-joins of the signed graft $(G, \Sigma,\{s, t\})$. Assume that \mathcal{H} has no minor \mathcal{L}_{7} or \mathcal{O}_{5}. Then $(G, \Sigma,\{s, t\})$ has no minor F_{7} or $\widetilde{K_{5}}$. Let $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$ be obtained from $(G, \Sigma,\{s, t\})$ by replacing every even (resp. odd) edge by two parallel even (resp. odd) edges. Note that ($\left.G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$ also has no minor F_{7} or $\widetilde{K_{5}}$. It follows by theorem 1.3 that $\tau\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)=$ $\nu\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$. It can now be readily checked that it implies that $\tau(\mathcal{H})=\nu^{*}(\mathcal{H})$ as required, where in equation (1), $\lambda_{S} \in\left\{0, \frac{1}{2}, 1\right\}$ for all $S \in \mathcal{H}$.

Applying the previous result to the case where $s=t$ we obtain,

Theorem 1.16 (Weakly bipartite graph theorem, Guenin [5]). The Idealness Conjecture holds for clutters of odd circuits of graphs.

2. Organization of the proof

2.1. Extremal counterexample. We start with the following basic result:

Remark 2.1. Let (G, Σ, T) be an Eulerian signed graft. Then the following statements hold:
(1) The cardinality of every signature and every T-cut has the same parity as $\tau(G, \Sigma, T)$.
(2) Take an integer $k \geq 0$ such that $k, \tau(G, \Sigma, T)$ have different parities. If J_{1}, \ldots, J_{k} are disjoint odd T-joins, then $E(G)-\left(\cup_{i=1}^{k} J_{i}\right)$ is also an odd T-join.

Proof. (1) We leave this as an exercise. (2) Let $J:=E(G)-\left(\cup_{i=1}^{k} J_{i}\right)$. For every vertex $v \in V(G)-T$, $|\delta(v)|$ is even as the signed graft is Eulerian, so

$$
|\delta(v) \cap J| \equiv|\delta(v)|-\sum_{i=1}^{k}\left|\delta(v) \cap J_{i}\right| \equiv 0-0 \equiv 0 \quad(\bmod 2)
$$

Moreover, for every terminal $v \in T,|\delta(v)|$ and $\tau(G, \Sigma, T)$ have the same parity by (1), so

$$
|\delta(v) \cap J| \equiv|\delta(v)|-\sum_{i=1}^{k}\left|\delta(v) \cap J_{i}\right| \equiv \tau(G, \Sigma, T)-k \equiv 1 \quad(\bmod 2)
$$

Thus, J is a T-join. By (1), $|\Sigma|, \tau(G, \Sigma, T)$ have the same parity, so

$$
|\Sigma \cap J| \equiv \tau(G, \Sigma, T)-\sum_{i=1}^{k}\left|\Sigma \cap J_{i}\right| \equiv \tau(G, \Sigma, T)-k \equiv 1 \quad(\bmod 2)
$$

it follows that J is an odd T-join, as required.
A counterexample is an Eulerian signed graft with at most two terminals that does not pack and that does not contain $\widetilde{K_{5}}$ or F_{7} as a minor. By remark $2.1(2), \tau(G, \Sigma, T) \geq 3$ for every counterexample (G, Σ, T). A counterexample (G, Σ, T) is extremal if it satisfies the following properties (in this order):
(M1) it minimizes $\tau(G, \Sigma, T)$,
(M2) it minimizes $|V(G)|$, and
(M3) it maximizes $|E(G)|$.
Remark 2.2. If there exists a counterexample then there exists an extremal counterexample.
Proof. Clearly there exists a counterexample (G, Σ, T) that minimizes (M1) and (M2) in that order. It suffices to show that G cannot have an arbitrarily large number of edges. For otherwise some edge $e \in E(G)$ has at least $\tau(G, \Sigma, T)$ parallel edges (all of the same parity). But then $\tau((G, \Sigma, T) / e)=$ $\tau(G, \Sigma, T),(G, \Sigma, T) / e$ does not pack, it does not contain $\widetilde{K_{5}}$ or F_{7} as a minor and $|V(G / e)|=$ $|V(G)|-1$, contradicting our choice of (G, Σ, T).

Let G be a graph, $U \subseteq V(G)$ and $B \subseteq E(G)$. We denote by $G[U]$ the graph with vertices U and edges of G whose ends ${ }^{5}$ are in U. We denote by $V_{G}(B)$ the set of ends of B and we shall omit the subindex G when there is no ambiguity. We write $G[B]$, for the graph with edges B and vertices $V(B)$. We say B is connected if $G[B]$ is a connected graph. Let (G, Σ, T) be a signed graft such that $\tau(G, \Sigma, T) \geq 3$, and let $\Omega \in E(G)$. Choose $k \in[\tau(G, \Sigma, T)]-[2]$ of the same parity as $\tau(G, \Sigma, T)$. An (Ω, k)-packing is a sequence $\left(L_{1}, \ldots, L_{k}\right)$ of odd T-joins where, $\Omega \in L_{1} \cap L_{2} \cap L_{3}$ and $\Omega \notin L_{4} \cup \cdots \cup L_{k}$, and L_{1}, \ldots, L_{k} are pairwise Ω-disjoint ${ }^{6}$. For a subset $L \subseteq E(G)$, we say that a cover B is a k-mate of L if $|B-L| \leq k-3$ and if B is either a signature or a T-cut. Moreover, B is an extremal k-mate for L if, for every other k-mate B^{\prime} of $L, B^{\prime} \cap L$ is not a proper subset of $B \cap L$.

Proposition 2.3. Let (G, Σ, T) be an extremal counterexample with $\tau:=\tau(G, \Sigma, T)$. Then we may assume

[^4](1) G is connected,
(2) there exists $\Omega \in E(G)$ that is not in at least one minimum cover, if $T \neq \emptyset$ we can choose $\Omega \in \delta(v)$ for some $v \in T$,
(3) there do not exist $\tau-1$ pairwise disjoint odd T-joins,
(4) for every Ω as in (2), there exists an (Ω, τ)-packing,
(5) every odd T-join has a τ-mate.

Proof. (1) Identify a vertex of each (connected) component with an arbitrary vertex. (Neither of the obstructions $\widetilde{K_{5}}, F_{7}$ has a cut-vertex.)
(2) Let B be a minimum cover. Note $B \neq E(G)$, for otherwise every edge of B is an odd T-join and so (G, Σ, T) packs, which is not the case. If $T=\emptyset$ then let $\Omega \in E-B$. Otherwise, $T=\{s, t\}$. Then we can pick $\Omega \in(\delta(s) \cup \delta(t))-B$. For otherwise, $\delta(s) \cup \delta(t) \subseteq B$ and thus $\delta(s) \cup \delta(t)=\delta(s)=\delta(t)$, which by (1) implies that $E(G)=\delta(s)$, a contradiction.
(3) Suppose otherwise. Remove some $\tau-1$ pairwise disjoint odd T-join in (G, Σ, T). By remark 2.1 (2), what is left is an odd T-join. Hence, one can actually find τ pairwise disjoint odd T-joins in (G, Σ, T), contradicting the fact that (G, Σ, T) does not pack.
(4) Add two parallel edges Ω_{1}, Ω_{2} to Ω of the same parity as Ω to obtain Eulerian $\left(G^{\prime}, \Sigma^{\prime}, T\right)$. By the choice of Ω, B remains a minimum cover for $\left(G^{\prime}, \Sigma^{\prime}, T\right)$, so $\tau\left(G^{\prime}, \Sigma^{\prime}, T\right)=\tau$. Since $\left|V\left(G^{\prime}\right)\right|=|V(G)|$ and $\left|E\left(G^{\prime}\right)\right|>|E(G)|$ and since (G, Σ, T) is an extremal counterexample, $\left(G^{\prime}, \Sigma^{\prime}, T\right)$ packs. Hence, $\left(G^{\prime}, \Sigma^{\prime}, T\right)$ contains a set $L_{1}, L_{2}, \ldots, L_{\tau}$ of pairwise disjoint odd T-joins. All of Ω, Ω_{1} and Ω_{2} must be used by the odd T-joins in $L_{1}, L_{2}, \ldots, L_{\tau}$, say by L_{1}, L_{2}, L_{3}, since otherwise one finds at least $\tau-1$ disjoint odd T-joins in (G, Σ, T), contradicting (3). Then $\left(L_{1},\left(L_{2} \cup\{\Omega\}\right)-\left\{\Omega_{1}\right\},\left(L_{3} \cup\{\Omega\}\right)-\right.$ $\left.\left\{\Omega_{2}\right\}, L_{4}, \ldots, L_{\tau}\right)$ is the required (Ω, τ)-packing.
(5) Let L be an odd T-join. Then the signed graft $(G, \Sigma, T) \backslash L$ packs, since (G, Σ, T) is an extremal counterexample and $\tau((G, \Sigma, T) \backslash L)<\tau$. Let B^{\prime} be a minimum cover of $(G, \Sigma, T) \backslash L$. Since both (G, Σ, T) and $(G, \Sigma, T) \backslash L$ are Eulerian, it follows that $\tau((G, \Sigma, T) \backslash L)$ and τ have different parities, and so either $\tau((G, \Sigma, T) \backslash L) \leq \tau-3$ or $\tau((G, \Sigma, T) \backslash L)=\tau-1$. However, observe that the latter is not possible, because (G, Σ, T) does not pack and $(G, \Sigma, T) \backslash L$ packs. As a result $\left|B^{\prime}\right|=\tau((G, \Sigma, T) \backslash L) \leq$ $\tau-3$. Let B be a minimal cover contained in $B^{\prime} \cup L$. Then $|B-L| \leq\left|B^{\prime}\right| \leq \tau-3$. Moreover, since B is a minimal cover, proposition 1.2 implies that B is either a signature or a T-cut. Thus B is a τ-mate for L.
2.2. Ω-systems. An edge subset of a signed graph or a signed graft is bipartite if all circuits contained in it are even. From proposition 2.3 it follows that an extremal counterexample (G, Σ, T) has an (Ω, τ) packing $\left(L_{1}, \ldots, L_{\tau}\right)$. We distinguish between the cases where $\left(L_{1} \cup L_{2} \cup L_{3}\right)-\{\Omega\}$ is bipartite or non-bipartite and define the appropriate data structure in each case.

A non-bipartite Ω-system consists of a pair $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right)\right)$ where $\tau(G, \Sigma, T) \geq 3, k \in$ $\{3, \ldots, \tau(G, \Sigma, T)\}, k$ has the same parity as $\tau(G, \Sigma, T)$, and
(N1) (G, Σ, T) is an Eulerian signed graft with $|T| \leq 2$, and if $T=\{s, t\}$, then $\Omega \in \delta(s)$,
(N2) $\left(L_{1}, \ldots, L_{k}\right)$ is an (Ω, k)-packing where L_{1}, \ldots, L_{k} are minimal odd T-joins,
(N3) $\left(L_{1} \cup L_{2} \cup L_{3}\right)-\{\Omega\}$ is non-bipartite, and
(N4) every odd T-join $L \subseteq L_{1} \cup L_{2} \cup L_{3}$ has a k-mate.
To define the other data structures, we need some terminology. Let (G, Σ, T) be a signed graft where $|T| \leq 2$ and let L be a minimal odd T-join. Define $C(L)$ and $P(L)$ as follows:
if $T=\emptyset$, then L is an odd circuit and we define $P(L):=\emptyset$ and $C(L):=L$,
if $T=\{s, t\}$ and L is an odd st-path, we define $P(L):=L$ and $C(L):=\emptyset$,
otherwise, $T=\{s, t\}$ and L is the disjoint union of an even st-path, denoted $P(L)$, and an odd circuit, denoted $C(L)$.

We say that L is simple if $C(L)=\emptyset$ (see figure 3) and it is non-simple otherwise (see figure 4).

Figure 3. An illustration of simple odd T-joins.

A cycle (in a directed graph) is directed if it is the disjoint union of directed circuits. An st-join is directed if it is the disjoint union of some st-dipaths and some directed circuits.

A bipartite Ω-system consists of a tuple $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right), m\right)$ where $\tau(G, \Sigma, T) \geq 3, k \in$ $\{3, \ldots, \tau(G, \Sigma, T)\}, k$ has the same parity as $\tau(G, \Sigma, T)$, and
(B1) (G, Σ, T) is an Eulerian signed graft with $|T| \leq 2$, and if $T=\{s, t\}$, then $\Omega \in \delta(s)$,
(B2) $\left(L_{1}, \ldots, L_{k}\right)$ is an (Ω, k)-packing and $m \in[k]-[2]$ where

Figure 4. An illustration of non-simple odd T-joins.
if $T=\emptyset$, then $m=3$,
if $T=\{s, t\}$, then for each $j \in[m]-[3], L_{j}$ contains an even st-path P_{j} and an odd circuit C_{j} that are (edge-)disjoint,
if $T=\{s, t\}$, then for each $j \in[k]-[m], L_{j}$ is connected,
(B3) $\Sigma \cap\left(L_{1} \cup L_{2} \cup L_{3} \cup P_{4} \cup \ldots \cup P_{m}\right)=\{\Omega\}$.
A non-simple bipartite Ω-system consists of a tuple $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ where
(NS1) $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right), m\right)$ is a bipartite Ω-system,
(NS2) L_{1}, L_{2}, L_{3} are minimal odd T-joins, and at least one of them is non-simple,
(NS3) $\quad H=G\left[L_{1} \cup L_{2} \cup L_{3} \cup P_{4} \cup \ldots \cup P_{m}\right]$,
L_{1}, L_{2}, L_{3} are directed T-joins in \vec{H} (if $T=\{s, t\}$ then they are directed $s t$-joins),
if $T=\{s, t\}, P_{4}, \ldots, P_{m}$ are st-dipaths in \vec{H},
$\vec{H} \backslash \Omega$ is acyclic,
(NS4) in \vec{H}, every odd directed T-join that is Ω-disjoint from some odd directed circuit, has a k-mate.

A simple bipartite Ω-system consists of a tuple $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ where
(S1) $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right), m\right)$ is a bipartite Ω-system,
$H=G\left[L_{1} \cup L_{2} \cup L_{3} \cup P_{4} \cup \ldots \cup P_{m}\right]$,
L_{1}, L_{2}, L_{3} are odd st-dipaths in \vec{H},
P_{4}, \ldots, P_{m} are $s t$-dipaths in \vec{H},
\vec{H} is acyclic,
(S3) in \vec{H}, every odd $s t$-dipath has a k-mate.

Proposition 2.4. An extremal counterexample has a non-bipartite, non-simple bipartite, or simple bipartite Ω-system.

The proof of this proposition is provided in $\S 4$.
Given a bipartite Ω-system $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right), m\right)$, we define two cut structures.
A primary cut structure is a sequence $\left(U_{1}, \ldots, U_{n}\right)$ where
(PC1) L_{2}, L_{3} are odd $s t$-paths,
(PC2) $n \in[m-2]$ and $s \in U_{1} \subset \cdots \subset U_{n} \subseteq V(G)-\{t\}$,
(PC3) for each $i \in[n-1]$, there exist $q_{i} \in U_{i}$, base Q_{3+i} and residue R_{3+i}, where $Q_{3+i} \subset L_{3+i}-C_{3+i}$ is a $q_{i} t$-path such that $V\left(Q_{3+i}\right) \cap U_{i}=\left\{q_{i}\right\}, R_{3+i} \subset L_{3+i}-C_{3+i}$ is a connected $s q_{i}$-join, and $Q_{3+i} \cap R_{3+i}=\emptyset$ (see figure 5),
(PC4) for each $i \in[n-1], \delta\left(U_{i}\right)$ is a k-mate of $R_{3+i} \cup Q_{3+i}$, and for every proper subset W of U_{i} with $s \in W, \delta(W)$ is not a k-mate of $R_{3+i} \cup Q_{3+i}$,
(PC5) $\delta\left(U_{n}\right)$ is a k-mate of L_{1}, and for every proper subset W of U_{n} with $s \in W, \delta(W)$ is not a k-mate of L_{1},
(PC6) there exist $d, q \in U_{n}$ and a partition of L_{1} into base Q, brace D and residue R, where Q is a $q t$-path with $V(Q) \cap U_{n}=\{q\}, D$ is an $s d$-path containing Ω with $V(D) \cap U_{n}=\{s, d\}$ that is vertex-disjoint from Q outside U_{n}, and R is a connected $d q$-join (see figure 6).

For $i \in[m]-[n+2]$, set $Q_{i}:=P_{i}, R_{i}:=\emptyset$, and call Q_{i} the base of L_{i}, and for $i=2,3$, set $Q_{i}:=P_{i}=L_{i}$ and call Q_{i} the base of L_{i}.

A secondary cut structure is a sequence $\left(U_{1}, \ldots, U_{n}\right)$ where
(SC1) L_{1}, L_{2}, L_{3} are odd st-paths,
(SC2) $m \geq 4, n \in[m-3]$ and $s \in U_{1} \subset \cdots \subset U_{n} \subseteq V(G)-\{t\}$,
(SC3) for each $i \in[n]$, there exist $q_{i} \in U_{i}$, base Q_{3+i} and residue R_{3+i}, where $Q_{3+i} \subset L_{3+i}-C_{3+i}$ is a $q_{i} t$-path such that $V\left(Q_{3+i}\right) \cap U_{i}=\left\{q_{i}\right\}, R_{3+i} \subset L_{3+i}-C_{3+i}$ is a connected $s q_{i}$-join, and $Q_{3+i} \cap R_{3+i}=\emptyset$ (see figure 5),
(SC4) for each $i \in[n], \delta\left(U_{i}\right)$ is a k-mate of $R_{3+i} \cup Q_{3+i}$, and for every proper subset W of U_{i} with $s \in W, \delta(W)$ is not a k-mate of $R_{3+i} \cup Q_{3+i}$.

For $i \in[m]-[n+3]$, set $Q_{i}:=P_{i}, R_{i}:=\emptyset$, and call Q_{i} the base of L_{i}, and for $i \in[3]$, set $Q_{i}:=P_{i}=L_{i}$ and call Q_{i} the base of L_{i}.

A cut Ω-system consists of a tuple $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right), m,\left(U_{1}, \ldots, U_{n}\right), \vec{H}\right)$ where
(C1) $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right), m\right)$ is a bipartite Ω-system,
(C2) $\left(U_{1}, \ldots, U_{n}\right)$ is a primary or a secondary cut structure,
(C3) $\quad H$ is the union of all bases and, if it exists, the brace,

Figure 5. Bases and residues of primary $(i \in[n-1])$ and secondary cut structures $(i \in[n])$.

Figure 6. The base, residue and brace of U_{n} for the primary cut structure.
the brace, if it exists, is an $s d$-dipath in \vec{H}, the bases are directed paths in \vec{H} rooted towards t, the following digraph \vec{H}^{+}is acyclic: start from \vec{H}, for each q_{i} add arc $\left(s, q_{i}\right)$, and if d, q existed and $d \neq q$, add arc (d, q),
$\Sigma \cap E(H)=\{\Omega\}$ and Σ has no edge in common with any of the residues.
(C4) for every odd st-dipath P in \vec{H} such that $V(P) \cap U_{n}=\{s\}$, there is a k-mate for P.
Consider a non-bipartite Ω-system $((G, \Sigma, T), \mathcal{L})$. Then \mathcal{L} is the (Ω, k)-packing associated with the Ω-system and (G, Σ, T) is the signed graft associated with the Ω-system. Similarly, one defines the associated (Ω, k)-packing and the associated signed graft for bipartite and cut Ω-systems. We say that an Ω-system has a particular minor when the associated signed graft does. Theorem 1.3 follows from proposition 2.4 and the following three results,

Proposition 2.5. A non-bipartite Ω-system has an F_{7} minor.

Proposition 2.6. A non-simple bipartite Ω-system has an F_{7} or a $\widetilde{K_{5}}$ minor.

Proposition 2.7. A simple bipartite Ω-system has an F_{7} minor.
2.3. Outline of the proof. In this section we discuss the outline of the proofs of propositions 2.5, 2.6 and 2.7.

A non-bipartite Ω-system $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right)\right)$ comes in the following flavours:
(NF1) at least two of L_{1}, L_{2}, L_{3} are non-simple, and for $i \in[3]$, if L_{i} is non-simple then $\Omega \in P\left(L_{i}\right)$.
(NF2) at most one of L_{1}, L_{2}, L_{3} is non-simple, and for $i \in[3]$, if L_{i} is non-simple then $\Omega \in C\left(L_{i}\right)$.
Note that $T \neq \emptyset$ for both flavours (NF1) and (NF2). We will postpone the proof of the next result to Section 5.

Proposition 2.8. Every non-bipartite Ω-system is of flavour (NF1) or (NF2).

A non-bipartite Ω-system $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right)\right)$ is minimal if (a) there is no non-bipartite Ω system whose associated signed graft is a proper minor of $(G, \Sigma,\{s, t\})$, and (b) among all non-bipartite Ω-systems with the same associated signed graft, $\left|L_{1} \cup L_{2} \cup L_{3}\right|$ is minimized. Note that every nonbipartite Ω-system contains as a minor a minimal non-bipartite Ω-system. Proposition 2.5 will follow from the following results,

Proposition 2.9. A minimal non-bipartite Ω-system of flavour (NF1) has an F_{7} minor.

Proposition 2.10. Consider a minimal non-bipartite Ω-system of flavour (NF2) and assume that there is no non-bipartite Ω-system of flavour (NF1) with the same associated signed graft. Then the Ω-system has an F_{7} minor.

A non-simple bipartite Ω-system $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ is minimal if there is no non-simple bipartite Ω-system whose associated signed graft is a proper minor of (G, Σ, T). Proposition 2.6 is proved for minimal non-simple bipartite Ω-systems, which clearly is sufficient.

A simple bipartite Ω-system $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ comes in the following flavours:
(SF1) no odd st-dipath of \vec{H} has an $s t$-cut k-mate,
(SF2) some odd $s t$-dipath of \vec{H} has an $s t$-cut k-mate.
A simple bipartite Ω-system $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ is minimal if there is no simple bipartite Ω-system whose associated signed graft is a proper minor of $(G, \Sigma,\{s, t\})$. Proposition 2.7 will follow from the following results,

Proposition 2.11. Let $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ be a minimal simple bipartite Ω-system of flavour (SF1) and assume that there is no non-simple bipartite Ω-system whose associated signed graft is a minor of $(G, \Sigma,\{s, t\})$. Then the Ω-system has an F_{7} minor.

Proposition 2.12. Let $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ be a minimal simple bipartite Ω-system of flavour (SF2) and assume that there is no non-simple bipartite Ω-system whose associated signed graft is a minor of $(G, \Sigma,\{s, t\})$. Then the Ω-system has an F_{7} minor.

Our proof of proposition 2.12 is more involved.
Proposition 2.13. A simple bipartite Ω-system of flavour (SF2) has a cut Ω-system.
Proof. Let $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ be a simple bipartite Ω-system of flavour (SF2). After redefining \mathcal{L}, if necessary, we may assume that L_{1} has an st-cut k-mate. Choose $U_{1} \subseteq V(G)-\{t\}$ with $s \in U_{1}$ such that $\delta\left(U_{1}\right)$ is a k-mate of L_{1}, and for every proper subset W of U_{1} with $s \in W, \delta(W)$ is not a k-mate of L_{1}. It is easily seen that $\left(U_{1}\right)$ is a primary cut structure. Let R be the residue for L_{1}, and update $\vec{H}:=\vec{H} \backslash R$. It is easily seen that $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right), m,\left(U_{1}\right), \vec{H}\right)$ is a cut Ω-system.

Let $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right), m,\left(U_{1}, \ldots, U_{n}\right), \vec{H}\right)$ be a cut Ω-system. The Ω-system is minimal if, among all cut Ω-systems whose associated signed graft is a minor of $(G, \Sigma,\{s, t\}),|E(\vec{H})|$ is minimized, and the size n of the cut structure is maximized, in this order of priority. The Ω-system is primary (resp. secondary) if $\left(U_{1}, \ldots, U_{n}\right)$ is a primary (resp. secondary) cut structure. Proposition 2.12 will follow from proposition 2.13 and the following results,

Proposition 2.14. Let $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right), m,\left(U_{1}, \ldots, U_{n-1}, U\right), \vec{H}\right)$ be a minimal cut Ω system that is primary and assume there is no non-simple bipartite Ω-system whose associated signed graft is a minor of $(G, \Sigma,\{s, t\})$. Then the Ω-system has an F_{7} minor.

Proposition 2.15. Let $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right), m,\left(U_{1}, \ldots, U_{n}\right), \vec{H}\right)$ be a minimal cut Ω-system that is secondary and assume there is no non-simple bipartite Ω-system whose associated signed graft is a minor of $(G, \Sigma,\{s, t\})$. Then the Ω-system has an F_{7} minor.
2.4. Organization of the paper. Section 5 develops some preliminary results for non-bipartite Ω systems. The proof of proposition 2.9 for Ω-systems of flavour (NF1) is given in $\S 6$. The proof of proposition 2.10 for Ω-systems of flavour (NF2) is given in $\S 7$. Section 8 develops some preliminary results for bipartite Ω-systems. The proof of proposition 2.6 , along with preliminaries, is given in $\S 9$, $\S 10, \S 11$ and $\S 12$. Section 13 describes another preliminary and the proof of proposition 2.11 can be found in $\S 14$. Section 15 develops our last preliminary and the proofs of propositions 2.14 and 2.15 can be found in $\S 16, \S 17$, respectively. The outline is summarized in figure 7 .

3. Covers

In this section, we develop tools that will be helpful in dealing with covers.

Figure 7. Outline of the proof.
3.1. Caps and mates. Let (G, Σ, T) be a signed graft and let $\mathcal{L}=\left(L_{1}, \ldots, L_{k}\right)$ be an (Ω, k)-packing. We say that for $\ell \in[k]$ a set $B \subseteq E(G)$ is a cap of L_{ℓ} in \mathcal{L} if the following hold,
(T1) B is either a signature or a T-cut,
(T2) $\Omega \in B$,
(T3) $B \subseteq L_{1} \cup \ldots \cup L_{k}$, and
(T4) for all $i \in[k]-\{\ell\},\left|B \cap L_{i}\right|=1$, and $\left|B \cap L_{\ell}\right| \geq 3$.
The next result characterizes k-mates of sets in an (Ω, k)-packing.

Proposition 3.1. Let (G, Σ, T) be a signed graft and $\mathcal{L}=\left(L_{1}, \ldots, L_{k}\right)$ be an (Ω, k)-packing. Then for $\ell \in[k], B$ is a k-mate of L_{ℓ} if and only if B is a cap of L_{ℓ} in \mathcal{L}.

Proof. Suppose first that B is a k-mate of L_{ℓ}. By definition of k-mates, (T1) holds and $\left|B-L_{\ell}\right| \leq k-3$. (T2) holds for otherwise, $B \cap L \neq \emptyset$ for all $L \in \mathcal{L}$ which implies $\left|B-L_{\ell}\right| \geq|\mathcal{L}|-1=k-1$, a contradiction. If $\ell \in[3]$, then $B-L_{\ell}$ intersects the $k-3$ pairwise disjoint sets L_{4}, \ldots, L_{k}. If $\ell \in[k]-[3]$, then $B-L_{\ell}$ intersects the $k-3$ pairwise disjoint sets in $\left\{L_{3}, L_{4}, \ldots, L_{k}\right\}-\left\{L_{\ell}\right\}$. In either cases $\left|B-L_{\ell}\right|=k-3$ and (T3) and (T4) hold.

Suppose (T1)-(T4) hold. Suppose $\ell \in[3]$ say $\ell=1$. Then $B-L_{1} \subseteq L_{4} \cup \ldots \cup L_{k}$. Moreover, $\left|B \cap L_{i}\right|=1$ for all $i \in\{4, \ldots, k\}$. Thus $\left|B-L_{1}\right| \leq k-3$, so B is a k-mate of L_{1}. Suppose $\ell \notin[3]$ say $\ell=4$. Then $B-L_{4} \subseteq\{\Omega\} \cup L_{5} \cup \ldots \cup L_{k}$. Thus $\left|B-L_{4}\right| \leq k-3$, so B is a k-mate of L_{4}.

Proposition 3.2. Let (G, Σ, T) be a signed graft and let L_{4}, \ldots, L_{k} be pairwise disjoint odd T-joins. Let L be a subset of $E(G)-\left(L_{4} \cup \ldots \cup L_{k}\right)$ that has ak-mate B. Then $B \subseteq L \cup L_{4} \cup \ldots \cup L_{k}$.

Proof. We have

$$
k-3 \leq \sum_{i=4}^{k}\left|B \cap L_{i}\right| \leq|B-L| \leq k-3
$$

where the first inequality follows from $B \cap L_{i} \neq \emptyset$, the second as $L \cap\left(L_{4} \cup \ldots \cup L_{k}\right)=\emptyset$ and the third because B is a k-mate of L. Hence, equality holds throughout, so $|B-L|=k-3$ and the result follows.

Proposition 3.3. Let (G, Σ, T) be a signed graft and take two (Ω, k)-packings

$$
\mathcal{L}=\left(L_{1}, L_{2}, L_{3}, L_{4}, \ldots, L_{k}\right) \quad \text { and } \quad \mathcal{L}^{\prime}=\left(L_{1}^{\prime}, L_{2}^{\prime}, L_{3}, L_{4}, \ldots, L_{k}\right)
$$

Let B_{1}, B_{1}^{\prime} be k-mates of L_{1}, L_{1}^{\prime}, respectively. Let $B \subseteq B_{1} \cup B_{1}^{\prime}$ be a cover that is either a signature or a T-cut. Then,
(1) $\Omega \in B$,
(2) $B \subseteq L_{1} \cup L_{1}^{\prime} \cup L_{4} \cup \ldots \cup L_{k}$,
(3) $\left|B \cap L_{i}\right|=1$ for all $i \in\{3, \ldots, k\}$,
(4) B is a k-mate of $L_{1} \cup L_{1}^{\prime}$,
(5) $\left|B \cap L_{1}\right| \geq 3$ or $\left|B \cap L_{1}^{\prime}\right| \geq 3$,
(6) if $B \cap\left(L_{1}^{\prime}-L_{1}\right)=\emptyset$ then B is a k-mate of L_{1},
(7) if $B \cap\left(L_{1}^{\prime}-L_{1}\right)=B \cap\left(L_{1}-L_{1}^{\prime}\right)=\emptyset$ then B is a k-mate of $L_{1} \cap L_{1}^{\prime}$.

Proof. By proposition $3.1 B_{1}$ (resp. $\left.B_{1}^{\prime}\right)$ is a cap of L_{1} (resp. L_{1}^{\prime}) in $\mathcal{L}\left(\right.$ resp. $\left.\mathcal{L}^{\prime}\right)$. Thus,
(a)

$$
\begin{array}{r}
B_{1} \cup B_{1}^{\prime} \subseteq L_{1} \cup L_{1}^{\prime} \cup L_{4} \cup \ldots \cup L_{k} \\
\left|B_{1} \cap L_{i}\right|=\left|B_{1}^{\prime} \cap L_{i}\right|=1 \quad \text { for all } \quad i \in\{4, \ldots, k\} \tag{b}
\end{array}
$$

Since $B \subseteq B_{1} \cup B_{1}^{\prime}$, (a) implies that (2) holds. As B is a cover and $B \cap L_{3} \neq \emptyset,(1)$ must hold as well. Let $i \in\{4, \ldots, k\}$. Then by (b)

$$
\left|B \cap L_{i}\right| \leq\left|B_{1} \cap L_{i}\right|+\left|B_{1}^{\prime} \cap L_{i}\right| \leq 2
$$

Hence, as B is a cover, $\left|B \cap L_{i}\right|=1$ so (3) holds. Combining this with (a) yields

$$
\left|B-\left(L_{1} \cup L_{1}^{\prime}\right)\right| \leq \sum_{i=4}^{k}\left|B \cap L_{i}\right|=k-3
$$

and so B is a k-mate of $L_{1} \cup L_{1}^{\prime}$ so (4) holds. It follows (as every cover has cardinality at least $\tau(G, \Sigma) \geq k)$ that $\left|B \cap\left(L_{1} \cup L_{1}^{\prime}\right)\right| \geq 3$. Hence, for some $L \in\left\{L_{1}, L_{1}^{\prime}\right\},|B \cap L|>1$ and so $|B \cap L| \geq 3$ thus (5) holds. (6) and (7) trivially follow from (4).

The following are immediate corollaries.

Proposition 3.4. Let (G, Σ, T) be a signed graft and $\mathcal{L}=\left(L_{1}, \ldots, L_{k}\right)$ be an (Ω, k)-packing. Suppose for $i=1,2, B_{i}$ is a k-mate of L_{i} and let $B \subseteq B_{1} \cup B_{2}$ be a cover that is either a signature or a T-cut. Then
(1) $\Omega \in B$,
(2) $B \subseteq L_{1} \cup L_{2} \cup L_{4} \cup \ldots \cup L_{k}$,
(3) $\left|B \cap L_{i}\right|=1$ for all $i \in\{3, \ldots, k\}$,
(4) $\left|B \cap L_{1}\right| \geq 3$ or $\left|B \cap L_{2}\right| \geq 3$,
(5) for $i=1,2$, if $\left|B \cap L_{i}\right|=1$ then B is a k-mate of L_{3-i}.

Proof. Choose $\mathcal{L}^{\prime}=\left(L_{2}, L_{1}, L_{3}, \ldots, L_{k}\right)$ and apply proposition 3.3 parts (5) and (6).

Proposition 3.5. Let (G, Σ, T) be a signed graft and $\mathcal{L}=\left(L_{1}, \ldots, L_{k}\right)$ be an (Ω, k)-packing. Suppose B_{1} and B_{1}^{\prime} are k-mates of L_{1} and let $B \subseteq B_{1} \cup B_{1}^{\prime}$ be a cover that is either a signature or a T-cut. Then B is also a k-mate of L_{1}.

Proof. Choose $\mathcal{L}^{\prime}=\mathcal{L}$ and apply proposition 3.3(6).

3.2. Signatures versus T-cuts.

Proposition 3.6. Let (G, Σ, T) be a signed graft with $|T| \leq 2$ and let $\left(L_{1}, \ldots, L_{k}\right)$ be an (Ω, k) packing. Suppose that L_{1}, L_{2} are minimal odd T-joins and, for $i=1,2 L_{i}$ is simple or $\Omega \in C\left(L_{i}\right)$. Suppose further that for $i=1,2$ there exists a k-mate B_{i} of L_{i}. Then one of B_{1}, B_{2} is a signature.

Proof. By proposition 3.1, for each $i=1,2, B_{i}$ is a cap of L_{i} in \mathcal{L}. Thus, $B_{1} \cap L_{2}=B_{2} \cap L_{1}=\{\Omega\}$. Hence, if $\Omega \in C\left(L_{1}\right)$ then $B_{2} \cap C\left(L_{1}\right)=\{\Omega\}$, implying that B_{2} is a signature. Similarly, if $\Omega \in C\left(L_{2}\right)$ then B_{1} is a signature. Otherwise, $T=\{s, t\}$ and L_{1}, L_{2} are simple. Suppose for a contradiction that for $i=1,2, B_{i}=\delta\left(U_{i}\right)$ where $U_{i} \subseteq V(G)-\{t\}$. Let $B=\delta\left(U_{1} \cap U_{2}\right) \subseteq B_{1} \cup B_{2}$. By proposition 3.1 $\{\Omega\}=L_{2} \cap B_{1}=L_{2} \cap \delta\left(U_{1}\right)$. Since L_{2} is simple and since $U_{1} \cap U_{2} \subset U_{1}, \delta\left(U_{1} \cap U_{2}\right) \cap L_{2}=\{\Omega\}$, it follows that $L_{2} \cap B=\{\Omega\}$ (recall $\omega \in \delta(s)$). Similarly, we have $L_{1} \cap B=\{\Omega\}$, contradicting proposition 3.4 part (4).

Proposition 3.7. Let (G, Σ, T) be a signed graft with $T=\{s, t\}$ and let $\left(L_{1}, \ldots, L_{k}\right)$ be an (Ω, k) packing, where L_{1}, L_{2}, L_{3} are minimal odd T-joins. Suppose that L_{1} is non-simple and that L_{2}, L_{3} are simple. Suppose that for $i=2,3$ there exists a k-mate B_{i} of L_{i}. Then $\Omega \in C\left(L_{1}\right)$.

Proof. By proposition 3.6 one of B_{2}, B_{3} is a signature, say B_{2}. Thus $B_{2} \cap C\left(L_{1}\right) \neq \emptyset$. But proposition 3.1 implies that $B_{2} \cap L_{1}=\{\Omega\}$ and the result follows.

Proposition 3.8. Let (G, Σ, T) be a signed graft with $|T| \leq 2$ and let $\left(L_{1}, \ldots, L_{k}\right)$ be an (Ω, k) packing. Suppose that L_{2} is a non-simple minimal odd T-join and that there exists a k-mate B_{1} of L_{1}. Then,
(1) if $\Omega \in P\left(L_{2}\right)$ then B_{1} is a T-cut,
(2) if $\Omega \in C\left(L_{2}\right)$ then B_{1} is a signature.

Proof. (1) By proposition 3.1, $B_{1} \cap L_{2}=\{\Omega\}$. Since $\Omega \in P\left(L_{2}\right), B_{1} \cap C\left(L_{2}\right)=\emptyset$. Since $C\left(L_{2}\right)$ is an odd circuit, B_{1} is not a signature. It follows from the definition of k-mate that B_{1} is a T-cut. (2) Proceeding as above we have $B_{1} \cap P\left(L_{2}\right)=\emptyset$. If $T=\emptyset$, then we are done. Otherwise, $T=\{s, t\}$ and $P\left(L_{2}\right)$ is an $s t$-path, so B_{1} is not an st-cut. It follows that B_{1} is a signature.

4. Non-bipartite, non-Simple and simple bipartite Ω-systems

In this section, we prove proposition 2.4, stating that every extremal counterexample has a nonbipartite, non-simple bipartite, or simple bipartite Ω-system.

Proof of proposition 2.4. Let (G, Σ, T) be an extremal counterexample with $\tau:=\tau(G, \Sigma, T)$. By proposition 2.3 parts (2) and (4) there exists an (Ω, τ)-packing $\mathcal{L}=\left(L_{1}, \ldots, L_{\tau}\right)$ of odd T-joins. By proposition 2.3 part (5) every odd T-join has a τ-mate. If ($\left.L_{1} \cup L_{2} \cup L_{3}\right)-\{\Omega\}$ is non-bipartite, then $((G, \Sigma, T), \mathcal{L})$ is a non-bipartite Ω-system. Otherwise, $\left(L_{1} \cup L_{2} \cup L_{3}\right)-\{\Omega\}$ is bipartite. We will show that (G, Σ, T) has a non-simple bipartite or simple bipartite Ω-system.

We can rearrange the elements of the sequence \mathcal{L} to ensure (B2) is satisfied for some $m \in[\tau]-[2]$. For each $i \in[3]$, let B_{i} be a τ-mate of L_{i}. Since $\left(L_{1} \cup L_{2} \cup L_{3}\right)-\{\Omega\}$ is bipartite, it follows that, for each $i \in[3]$, either L_{i} is simple or $\Omega \in C\left(L_{i}\right)$. Therefore, by proposition 3.6, at least two of B_{1}, B_{2}, B_{3}, say B_{1} and B_{2}, are signatures. By proposition $3.1, B_{1}$ (resp. B_{2}) is a cap of L_{1} (resp. L_{2}) in \mathcal{L}. Let U be the subset of $V\left(L_{1}\right)-T$ for which $L_{1} \cap \delta(U)=\left(L_{1} \cap B_{1}\right)-\{\Omega\}$, and let $\Gamma:=B_{1} \triangle \delta(U)$. It is clear that Γ is a signature for (G, Σ, T). We will show that $((G, \Gamma, T), \mathcal{L}, m)$ is a bipartite Ω-system. It is clear that (B1) and (B2) hold. To prove (B3), we need to show that, for $i \in[3], \Gamma \cap L_{i}=\{\Omega\}$, and for $i \in[m]-[3], \Gamma \cap P_{i}=\emptyset$. By definition, $\Gamma \cap L_{1}=\{\Omega\}$.

Claim 1. For $i=2,3, B_{1} \cap P_{i}=\emptyset$ and $\delta(U) \cap L_{i}=\emptyset$.
Proof. Since $B_{1} \cap L_{i}=\{\Omega\}$ and $\Omega \notin P_{i}$, it follows that $B_{1} \cap P_{i}=\emptyset$. To prove the next equation, choose vertices s, s^{\prime}, t as follows: Ω has ends s, s^{\prime}, if $T \neq \emptyset$ then $T=\{s, t\}$, and if $T=\emptyset$ then $t:=s$. Notice that $s, s^{\prime}, t \notin U$ and $Q_{i}:=L_{i}-\{\Omega\}, Q_{1}:=L_{1}-\{\Omega\}$ are $s^{\prime} t$-paths. Suppose for a contradiction that $\delta(U) \cap L_{i} \neq \emptyset$. Then our choice of U implies that L_{i} and L_{1} have a vertex $u \in U$ in common. Consider the cycle $C:=Q_{i}[u, t] \cup Q_{1}[u, t] . .^{7}$ Since $B_{1} \cap L_{i}=\{\Omega\}$ and $\left(B_{1} \cap L_{1}\right)-\{\Omega\}=\delta(U) \cap L_{1}$, it

[^5]follows that $B_{1} \cap C=\delta(U) \cap Q_{1}[u, t]$, implying in turn that $\left|B_{1} \cap C\right|$ is odd. As B_{1} is a signature, it follows that $C \subseteq\left(L_{1} \cup L_{2}\right)-\{\Omega\}$ is an odd cycle, a contradiction as $\left(L_{1} \cup L_{i}\right)-\{\Omega\}$ is bipartite. \diamond

Thus, for $i=2,3$

$$
\Gamma \cap L_{i}=\left(B_{1} \triangle \delta(U)\right) \cap L_{i}=\left(B_{1} \cap L_{i}\right) \triangle\left(\delta(U) \cap L_{i}\right)=\{\Omega\}
$$

Claim 2. For $i \in[m]-[3], \delta(U) \cap P_{i}=\emptyset$.

Proof. As B_{1}, B_{2} are signatures and $\left|B_{1} \cap L_{i}\right|=\left|B_{2} \cap L_{i}\right|=1$, it follows that $B_{1} \cap P_{i}=B_{2} \cap P_{i}=\emptyset$. Hence, $B_{2} \cap\left(L_{1} \cup P_{i}\right)=\{\Omega\}$, implying that $\left(L_{1} \cup P_{i}\right)-\{\Omega\}$ is bipartite. Suppose for a contradiction that $\delta(U) \cap P_{i} \neq \emptyset$. Then L_{1} and P_{i} have a vertex of U in common, and so $\left(L_{1} \cup P_{i}\right)-\{\Omega\}$ is non-bipartite, a contradiction.

Hence, for $i \in[m]-[3]$

$$
\Gamma \cap P_{i}=\left(B_{1} \triangle \delta(U)\right) \cap P_{i}=\left(B_{1} \cap P_{i}\right) \triangle\left(\delta(U) \cap P_{i}\right)=\emptyset
$$

Therefore, (B3) holds and $((G, \Gamma, T), \mathcal{L}, m)$ is a bipartite Ω-system. Among all bipartite Ω-systems whose associated signed graft is (G, Γ, T), we may assume that the (Ω, τ)-packing \mathcal{L} of odd T-joins has the smallest total number of edges.

Let $H:=G\left[L_{1} \cup L_{2} \cup L_{3} \cup P_{4} \cup \cdots \cup P_{m}\right]$. Orient the edges of H so that each of L_{1}, L_{2}, L_{3} is a directed T-join, and if $T=\{s, t\}$ and $\Omega \in \delta(s)$, each of P_{4}, \ldots, P_{m} is an st-dipath; call this digraph \vec{H}.

Claim 3. $\vec{H} \backslash \Omega$ is acyclic.

Proof. Suppose otherwise. Let C be a directed circuit in $\vec{H} \backslash \Omega$. We assume that $\Omega=\left(s, s^{\prime}\right)$ and that either $T=\emptyset$ or $T=\{s, t\}$. When $T=\emptyset$, set $t:=s$. Create $m-3$ copies $\bar{\Omega}_{4}, \ldots, \bar{\Omega}_{m}$ of the arc $\left(s^{\prime}, s\right)$. For each $i \in[3]$, let $Q_{i}:=L_{i}-\{\Omega\}$ and for each $i \in[m]-[3]$, let $Q_{i}:=\left\{\bar{\Omega}_{i}\right\} \cup P_{i}$. Notice that Q_{1}, \ldots, Q_{m} are pairwise arc-disjoint directed $s^{\prime} t$-joins, and Q_{1}, Q_{2}, Q_{3} are $s^{\prime} t$-dipaths. We can now decompose $\left(Q_{1} \cup \cdots \cup Q_{m}\right)-C$ into pairwise arc-disjoint directed $s^{\prime} t$-joins $Q_{1}^{\prime} \cup \cdots \cup Q_{m}^{\prime}$, where

- $Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}^{\prime}$ are $s^{\prime} t$-dipaths, and
- for $i \in[m]-[3], \bar{\Omega}_{i} \in Q_{i}^{\prime}$.

For $i \in[3]$, let $L_{i}^{\prime}:=Q_{i}^{\prime} \cup\{\Omega\}$, and for $i \in[m]-[3]$, let P_{i}^{\prime} be an $s t$-dipath contained in $Q_{i}^{\prime}-\left\{\bar{\Omega}_{i}\right\}$. Then $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are directed odd $s t$-joins and $P_{4}^{\prime}, \ldots, P_{m}^{\prime}$ are even $s t$-dipaths in \vec{H}. Let $\mathcal{L}^{\prime}=\left(L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, C_{4} \cup\right.$ $\left.P_{4}^{\prime}, \ldots, C_{m} \cup P_{m}^{\prime}, L_{m+1}, \ldots, L_{\tau}\right)$. It can now be readily checked that $\left((G, \Gamma, T), \mathcal{L}^{\prime}, m\right)$ is a bipartite Ω-system, a contradiction as \mathcal{L}^{\prime} has fewer edges than \mathcal{L}.

It is now easily seen that $((G, \Gamma, T), \mathcal{L}, m, \vec{H})$ is either a non-simple bipartite or simple bipartite Ω-system, finishing the proof.

5. Preliminaries for non-bipartite Ω-Systems

In this section we prove results required for the proofs of propositions 2.9 and 2.10 . We also prove proposition 2.8, namely, that every non-bipartite Ω-system is of flavour (NF1) or (NF2).
5.1. The two flavours (NF1) and (NF2). Let us start with the following:

Proposition 5.1. Let (G, Σ) be a signed graph whose edges can be partitioned for some distinct vertices x, y into xy-paths $Q_{1}, Q_{2}, \ldots, Q_{n}$. If, for every distinct $i, j \in[n], Q_{i} \cup Q_{j}$ is bipartite, then (G, Σ) is bipartite.

Proof. We will proceed by induction on n. For $n=1$ this is obvious. Suppose $n>1$. By the induction hypothesis, $Q_{1} \cup \ldots \cup Q_{n-1}$ is bipartite, and so by theorem 1.1 , there is a signature Γ of (G, Σ, \emptyset) disjoint from $Q_{1} \cup \cdots \cup Q_{n-1}$, so $\Gamma \subseteq Q_{n}$. As $Q_{1} \cup Q_{n}$ is an even cycle, it follows that $|\Gamma|$ is even. Let U be the vertex subset of $V\left(Q_{n}\right)-\{x, y\}$ for which $\delta(U) \cap Q_{n}=\Gamma \cap Q_{n}$. We claim that $\delta(U)=\Gamma$, and this will imply that (G, Σ, \emptyset), and therefore (G, Σ), is bipartite.

Suppose, for a contradiction, that $\Gamma \subsetneq \delta(U)$. Take an edge $\{v, u\} \in \delta(U)-\Gamma$ with $u \in U$. Then $\{v, u\}$ belongs to some $Q_{j} \in\left\{Q_{1}, \ldots, Q_{n-1}\right\}$. We may assume that $\{v, u\} \in Q_{j}[x, u]$. Let $C=Q_{1}[x, u] \cup Q_{j}[x, u]$. Then $|C \cap \Gamma|=\left|Q_{1}[x, u] \cap \delta(U)\right|$, which is odd as $x \notin U$ and $u \in U$. Hence, C is an odd cycle, but $C \subseteq Q_{1} \cup Q_{j}$, which is a contradiction. Therefore, $\Gamma=\delta(U)$, and this completes the proof.

Next we prove that every non-bipartite Ω-system is of flavour (NF1) or (NF2).

Proof of proposition 2.8. Let $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right)\right)$ be a non-bipartite Ω-system that is not of flavour (NF2). We will show (NF1) holds.

Proposition 3.7 implies that at least two of L_{1}, L_{2}, L_{3} are non-simple. It remains to show that $\Omega \in P\left(L_{1}\right) \cap P\left(L_{2}\right) \cap P\left(L_{3}\right)$. Suppose otherwise. Then, for some $i \in[3], L_{i}$ is non-simple and $\Omega \in C\left(L_{i}\right)$. By proposition $3.8, B_{1}, B_{2}, B_{3}$ are signatures, and whenever $L_{i} \in\left\{L_{1}, L_{2}, L_{3}\right\}$ is nonsimple, $\Omega \in C\left(L_{i}\right)$.

For each $j \in[3]$, let $Q_{j}=L_{j}-\{\Omega\}$. Suppose s, s^{\prime} are the ends of Ω. When $T=\emptyset, Q_{1}, Q_{2}$ and Q_{3} are $s^{\prime} s$-paths, and when $T=\{s, t\}, Q_{1}, Q_{2}$ and Q_{3} are all $s^{\prime} t$-paths. Moreover, for every permutation i, j, k of $1,2,3,\left(Q_{i} \cup Q_{j}\right) \cap B_{k}=\emptyset$, implying that $Q_{i} \cup Q_{j}$ is bipartite. Therefore, from proposition 5.1 we conclude that $Q_{1} \cup Q_{2} \cup Q_{3}=\left(L_{1} \cup L_{2} \cup L_{3}\right)-\{\Omega\}$ is bipartite, which is a contradiction.

5.2. A disentangling lemma.

Lemma 5.2. Let $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right)\right)$ be a minimal non-bipartite Ω-system. For $i=1,2$, let $R_{i} \cup Q_{i}$ be a non-trivial partition of L_{i} such that $\Omega \in Q_{1} \cap Q_{2}, R_{1} \cup Q_{2}$ is a minimal odd st-join and $R_{1} \cup R_{2}$ is an even cycle. Let Q_{3} be a minimal subset of L_{3} such that $Q_{3} \cup R_{1}$ contains a minimal odd st-join. Then one of the following does not hold:
(i) $\left(L_{1} \cup Q_{2} \cup Q_{3}\right)-\{\Omega\}$ is non-bipartite,
(ii) $R_{2} \cup\{\Omega\}$ does not have a k-mate,
(iii) R_{1} is a path whose internal vertices all have degree two in $G\left[L_{1} \cup Q_{2} \cup Q_{3}\right]$.

Proof. Suppose otherwise. We will show that $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right)\right)$ is not a minimal nonbipartite Ω-system, which will yield a contradiction. Let $\left(G^{\prime}, \Sigma^{\prime}\right):=(G, \Sigma) \backslash R_{2} / R_{1}$ and define $L_{1}^{\prime}, \ldots, L_{k}^{\prime}$ as follows: for $i \in[3] L_{i}^{\prime}:=Q_{i}$, and for $i \in\{4, \ldots, k\} L_{i}^{\prime}$ is a minimal odd $s t$-join of $\left(G^{\prime}, \Sigma^{\prime}\right)$ contained in L_{i}. We claim that $\left(\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right),\left(L_{1}^{\prime}, \ldots, L_{k}^{\prime}\right)\right)$ is a non-bipartite Ω-system.
(N1) Since $R_{1} \cup R_{2}$ is an even cycle, every minimal cover of ($G, \Sigma,\{s, t\}$) disjoint from R_{1} has an even number of edges in common with R_{2}. Hence, $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$ is Eulerian and $\tau\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$, $\tau(G, \Sigma,\{s, t\})$ have the same parity. (N3) Observe that (i) implies $\left(L_{1}^{\prime} \cup L_{2}^{\prime} \cup L_{3}^{\prime}\right)-\{\Omega\}$ is non-bipartite. (N4) Let $L^{\prime} \subseteq L_{1}^{\prime} \cup L_{2}^{\prime} \cup L_{3}^{\prime}$ be a minimal odd $s t$-join of ($G^{\prime}, \Sigma^{\prime},\{s, t\}$). By (iii) one of $L^{\prime}, L^{\prime} \cup R_{1}$ is a minimal odd $s t$-join of $(G, \Sigma,\{s, t\})$. In the former case, let B^{\prime} be a k-mate of L^{\prime} in $(G, \Sigma,\{s, t\})$. By definition, $\left|B^{\prime}-L^{\prime}\right| \leq k-3$ and so $B^{\prime}-L^{\prime} \subseteq L_{4} \cup \cdots \cup L_{k}$, implying that $B^{\prime} \cap R_{1}=\emptyset$. Thus B^{\prime} is still a k-mate for L^{\prime} in $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$. In the latter case, when $L^{\prime} \cup R_{1}$ is a minimal odd $s t$-join of $(G, \Sigma,\{s, t\}), L^{\prime} \cup R_{2}$ also contains a minimal odd $s t$-join L. Let B be a k-mate of L in $(G, \Sigma,\{s, t\})$. Once again, $|B-L| \leq k-3$ and so $B-L \subseteq L_{4} \cup \cdots \cup L_{k}$, implying that $B \cap R_{1}=\emptyset$. As a result, $B-R_{2}$ is a k-mate for L^{\prime} in $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$. (N2) As $\tau\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right), \tau(G, \Sigma,\{s, t\})$ have the same parity, $\tau\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right), k$ have the same parity. We need to show $\Omega \in L_{3}^{\prime}$ and $\tau\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right) \geq k$. By (N4) L_{1}^{\prime} has a k-mate B^{\prime} in $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$. Then $\left|B^{\prime}-L_{1}^{\prime}\right| \leq k-3$ and so $B^{\prime}-L_{1}^{\prime} \subseteq L_{4}^{\prime} \cup \cdots \cup L_{k}^{\prime}$. Since $B^{\prime} \cap L_{3}^{\prime} \neq \emptyset, B^{\prime} \cap L_{3}^{\prime}=\{\Omega\}$, and so $\Omega \in L_{3}^{\prime}$. Suppose for a contradiction that $\tau\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)<k$. The parity condition implies that $\tau\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right) \leq k-2$. Let B^{\prime} be a minimum cover in $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$. For $\left|B^{\prime}\right| \leq k-2$ and $L_{1}^{\prime}, L_{4}^{\prime}, \ldots, L_{k}^{\prime}$ are $k-2$ pairwise disjoint odd $s t$-joins, we have $\left|B^{\prime}\right|=k-2$, and as $B^{\prime} \cap L_{2}^{\prime} \neq \emptyset, \Omega \in B^{\prime}$. Let B be a minimal cover of $(G, \Sigma,\{s, t\})$ contained in $B^{\prime} \cup R_{2}$ and containing B^{\prime}. By proposition $1.2, B$ is either a signature or an st-cut. However, $\left|B-\left(R_{2} \cup\{\Omega\}\right)\right|=\left|B^{\prime}-\{\Omega\}\right|=k-3$, implying that B is a k-mate of $R_{2} \cup\{\Omega\}$ in $(G, \Sigma,\{s, t\})$, contradicting (ii).
5.3. Mates and connectivity. Recall that if $(G, \Sigma,\{s, t\})$ is a signed graft with signatures Σ_{1}, Σ_{2} then by definition $\Sigma_{1} \triangle \Sigma_{2}$ is a cut where both s, t are on the same shore. We will require the following easy remark,

Remark 5.3. Let G be a graph with distinct vertices s, t. For $i=1,2$ let $W_{i} \subseteq V(G)-\{t\}$ where $s \in W_{1} \subseteq W_{2}$. Let P be an st-path and let Ω be the edge of P incident to s. If $P \cap \delta\left(W_{2}\right)=\{\Omega\}$ then $P \cap \delta\left(W_{1}\right)=\{\Omega\}$.

Proposition 5.4. Let $(G, \Sigma,\{s, t\})$ be a signed graft and $\left(L_{1}, \ldots, L_{k}\right)$ be an (Ω, k)-packing, where L_{2} is an odd st-path. Suppose there exist an st-cut B_{1} that is a k-mate of L_{1} and a signature B_{2} that is a k-mate of L_{2}. Choose $U_{1} \subseteq V(G)-\{t\}$ such that $B_{1}=\delta\left(U_{1}\right)$ and let $W=\left(V\left(L_{1}\right) \cap U_{1}\right)-\{s\}$. Then there exists a path in $G\left[U_{1}\right]$ between s and W that is disjoint from B_{2}.

Proof. Suppose for a contradiction there is no such path. Then there exists $U^{\prime} \subset U_{1}$ such that $s \in U^{\prime}$ and $W \subseteq U_{1}-U^{\prime}$ and all edges with one end in U^{\prime} and one end in $U_{1}-U^{\prime}$ are in B_{2}. Then the st-cut $B=\delta\left(U^{\prime}\right) \subseteq B_{1} \cup B_{2}$ and by construction $L_{1} \cap B=\{\Omega\}$. By proposition 3.1 $L_{2} \cap B_{1}=L_{2} \cap \delta\left(U_{1}\right)=\{\Omega\}$. Since L_{2} is an odd st-path, and since $U^{\prime} \subset U_{1}$ by remark 5.3, $\delta\left(U^{\prime}\right) \cap L_{2}=\{\Omega\}$. But then $\left|B \cap L_{1}\right|=\left|B \cap L_{2}\right|=1$, contradicting proposition 3.4 part (4).

6. Non-bipartite Ω-system of flavour (NF1)

In this section we prove proposition 2.9 , namely that a minimal non-bipartite Ω-system of flavour (NF1) has an F_{7} minor. For convenience, whenever L_{i} is non-simple, we write $P_{i}:=P\left(L_{i}\right)$ and $C_{i}:=C\left(L_{i}\right)$. Let $(G, \Sigma,\{s, t\})$ be a signed graft and let $\delta(U)$ be an $s t$-cut that is a k-mate of a minimal odd $s t$-join L. We say that $U \subseteq V(G)-\{t\}$ is shore-wise minimal if among all k-mates of L of the form $\delta\left(U^{\prime}\right)$ where $U^{\prime} \subseteq V(G)-\{t\}, U^{\prime}$ is not a proper subset of U.

Proposition 6.1. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right)\right)$ be a non-bipartite Ω-system of flavour (NF1), where $\Omega \in \delta(s)$. Then,
(1) for $i \in[3]$, every k-mate of L_{i} is an st-cut.

Furthermore, for $i \in[3]$, let $\delta\left(U_{i}\right)$ be a k-mate of L_{i} where U_{i} is shore-wise minimal. Then
(2) for $i \in[3]$, if L_{i} is non-simple, then $P_{i} \cap \delta\left(U_{i}\right)=\{\Omega\}$ and $C_{i} \cap \delta\left(U_{i}\right) \neq \emptyset$,
(3) for distinct $i, j \in[3]$, if L_{i}, L_{j} are non-simple, then $U_{i} \subset U_{j}$ or $U_{j} \subset U_{i}$,
(4) for distinct $i, j \in[3]$, if L_{i} is non-simple and L_{j} is simple, then $U_{i} \subset U_{j}$.

Proof. (1) Let $i \in[3]$ and let B be a k-mate of L_{i}. By (NF1) one of $\left\{L_{1}, L_{2}, L_{3}\right\}-\left\{L_{i}\right\}$, say L_{j}, is non-simple and $\Omega \in P_{j}$. Proposition 3.8 then implies that B is an st-cut.

Now for $i \in[3]$, let $B_{i}=\delta\left(U_{i}\right)$ be a k-mate of L_{i} where $U_{i} \subseteq V(G)-\{t\}$ is shore-wise minimal. We need to prove (2)-(4). We may assume L_{1} and L_{2} are non-simple. By proposition 3.1, for $i \in[3]$, B_{i} is a cap of L_{i} in \mathcal{L}.
(2) We may assume $i=1$. Consider the (Ω, k)-packing

$$
\mathcal{L}^{\prime}=\left(C_{1} \cup P_{2}, C_{2} \cup P_{1}, L_{3}, \ldots, L_{k}\right)
$$

As $((G, \Sigma,\{s, t\}), \mathcal{L})$ is a non-bipartite Ω-system, $C_{1} \cup P_{2}$ has a k-mate B_{1}^{\prime}. By proposition $3.1, B_{1}^{\prime}$ is a cap of $C_{1} \cup P_{2}$ in \mathcal{L}^{\prime}, implying that $B_{1}^{\prime} \cap\left(C_{2} \cup P_{1}\right)=\{\Omega\}$ and so $B_{1}^{\prime} \cap C_{2}=\emptyset$. Thus, by proposition 3.8, B_{1}^{\prime} is an st-cut $\delta(U)$ where $U \subseteq V(G)-\{t\}$. Consider the st-cut $B=\delta\left(U_{1} \cap U\right) \subseteq B_{1} \cup B_{1}^{\prime}$. Since B_{1} is a cap of L_{1} in \mathcal{L}, and B_{1}^{\prime} is a cap of $C_{1} \cup P_{2}$ in $\mathcal{L}^{\prime}, P_{2} \cap \delta\left(U_{1}\right)=P_{1} \cap \delta(U)=\{\Omega\}$. Thus $B \cap P_{2}=\delta\left(U_{1} \cap U\right) \cap P_{2}=\{\Omega\}$ and $B \cap P_{1}=\delta\left(U_{1} \cap U\right) \cap P_{1}=\{\Omega\}$ (see remark 5.3). It follows by proposition 3.3 that B is a k-mate of $L_{1} \cap\left(C_{1} \cup P_{2}\right)=C_{1} \cup\{\Omega\}$. In particular, B is a k-mate of L_{1}. Since U_{1} is shore-wise minimal, $U_{1} \subseteq U$. Hence, as $P_{1} \cap \delta(U)=\{\Omega\}$, we have $P_{1} \cap \delta\left(U_{1}\right)=\{\Omega\}$. Also, since B_{1} is a cap of L_{1} in $\mathcal{L}, C_{1} \cap \delta\left(U_{1}\right) \neq \emptyset$.
(3) Since $\delta\left(U_{i}\right), \delta\left(U_{j}\right)$ are, respectively, caps of L_{i}, L_{j} in \mathcal{L},

$$
\delta\left(U_{i}\right) \cap C_{j}=\emptyset \quad \text { and } \quad \delta\left(U_{j}\right) \cap C_{i}=\emptyset .
$$

Thus, either $V\left(C_{i}\right) \subseteq U_{j}$ or $V\left(C_{i}\right) \cap U_{j}=\emptyset$, and either $V\left(C_{j}\right) \subseteq U_{i}$ or $V\left(C_{j}\right) \cap U_{i}=\emptyset$. By (2), $P_{i} \cap \delta\left(U_{i}\right)=P_{j} \cap \delta\left(U_{j}\right)=\{\Omega\}$, and so $\delta\left(U_{i}\right) \cap C_{i} \neq \emptyset$ and $\delta\left(U_{j}\right) \cap C_{j} \neq \emptyset$. By proposition 3.4 (4),

$$
\delta\left(U_{i} \cap U_{j}\right) \cap\left(C_{i} \cup C_{j}\right) \neq \emptyset \quad \text { and } \quad \delta\left(U_{i} \cup U_{j}\right) \cap\left(C_{i} \cup C_{j}\right) \neq \emptyset
$$

It therefore follows that, after possibly interchanging the role of i, j, we have that $V\left(C_{i}\right) \subseteq U_{j}$ and $V\left(C_{j}\right) \cap U_{i}=\emptyset$. But then proposition $3.4(5)$ implies that $\delta\left(U_{i} \cap U_{j}\right)$ is a k-mate of L_{i}. Hence, as U_{i} is shore-wise minimal, $U_{i} \subset U_{j}$ as required.
(4) Since $\delta\left(U_{i}\right)$ is a cap of L_{i} in $\mathcal{L}, \delta\left(U_{i}\right) \cap L_{j}=\{\Omega\}$, and as L_{j} is simple, $L_{j} \cap \delta\left(U_{i} \cap U_{j}\right)=\{\Omega\}$ (see remark 5.3). Therefore, by proposition $3.4(5), \delta\left(U_{i} \cap U_{j}\right)$ is a k-mate of L_{i}. Since U_{i} is shore-wise minimal, $U_{i} \subset U_{j}$ as required.

Lemma 6.2. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right)\right)$ be a minimal non-bipartite Ω-system of flavour (NF1), where $\Omega \in \delta(s)$ and among all non-bipartite Ω-systems with the same associated signed graft, the number of non-simple minimal odd st-joins among L_{1}, L_{2}, L_{3} is maximum. Suppose, for $i \in[3]$, $B_{i}=\delta\left(U_{i}\right)$ is a k-mate of L_{i} where U_{i} is shore-wise minimal and where $U_{1} \subset U_{2} \subset U_{3}$. Then the following hold:
(1) For distinct $i, j \in[3]$, if L_{i} and L_{j} are non-simple, then C_{i} and C_{j} have at most one vertex in common.
(2) For distinct $i, j \in[3]$, if L_{i} is non-simple and L_{j} is simple, then C_{i} and L_{j} have at most one vertex in common.
(3) Suppose L_{3} is simple. If L is a minimal odd st-join contained in $P_{2} \cup L_{3}$, then $L \cap \delta\left(U_{3}\right)=$ $L_{3} \cap \delta\left(U_{3}\right)$.
(4) Let L_{0} be the path with a single vertex s and let $U_{0}:=\emptyset$. For some $j \in[3]$, take $v \in V\left(L_{j}\right) \cap$ $\left(U_{j}-U_{j-1}\right)$. Let U be the component of $G\left[U_{j}-U_{j-1}\right]$ containing v. Then $V\left(L_{j-1}\right) \cap U \neq \emptyset$.
(5) Suppose L_{3} is non-simple. Then there is a path in $G\left[\overline{U_{3}}\right]$ between $V\left(C_{3}\right)$ and t, where $\overline{U_{3}}=$ $V(G)-U_{3}$.

Proof. Observe that L_{1} and L_{2} are non-simple. By proposition 6.1, for each $i \in[3]$, if L_{i} is non-simple then $P_{i} \cap \delta\left(U_{i}\right)=\{\Omega\}$ and $C_{i} \cap \delta\left(U_{i}\right) \neq \emptyset$. Thus $V\left(C_{1}\right) \subseteq U_{2}, V\left(C_{2}\right) \subseteq U_{3}-U_{1}$, and if L_{3} is non-simple, $V\left(C_{3}\right) \cap U_{2}=\emptyset$. Moreover, for $i=1,2, V\left(P_{i}\right) \cap U_{3}=\{s\}$, and if L_{3} is non-simple, $V\left(P_{3}\right) \cap U_{3}=\{s\}$.
(1) We will first prove that C_{1} and C_{2} have at most one vertex in common. Suppose otherwise. We will obtain a contradiction by proving that $((G, \Sigma,\{s, t\}), \mathcal{L})$ is not a minimal non-bipartite Ω-system.

Choose distinct vertices $u, v \in V\left(C_{1}\right) \cap V\left(C_{2}\right)$. Notice that $u, v \in U_{2}-U_{1}$. Let R_{1} be a $u v$-path contained in C_{1} that avoids vertex s. Let R_{2} be the $u v$-path contained in C_{2} such that $R_{1} \cup R_{2}$ is an even cycle (notice that C_{2} is an odd circuit). For $i=1,2$, let $Q_{i}=L_{i}-R_{i}$, and let $Q_{3}=L_{3}$. Observe that $V\left(R_{1}\right) \subset V\left(C_{1}\right) \subseteq U_{2}$, that R_{1} is internally vertex-disjoint from $C_{1}-R_{1}$ as C_{1} is a circuit, and that R_{1} is vertex-disjoint from $P_{1} \cup P_{2} \cup Q_{3}$ as $V\left(P_{1}\right) \cap U_{2}=V\left(P_{2}\right) \cap U_{2}=V\left(Q_{3}\right) \cap U_{2}=\{s\}$. Notice further that R_{1} is internally vertex-disjoint from $C_{2}-R_{2}$. For if not, $C_{2} \triangle\left(R_{1} \cup R_{2}\right)$ can be partitioned into non-empty parts C_{2}^{\prime}, X where C_{2}^{\prime} is an odd circuit and X is an even cycle. But then $\left((G, \Sigma,\{s, t\}) \backslash X,\left(L_{1} \triangle\left(R_{1} \cup R_{2}\right), C_{2}^{\prime} \cup P_{2}, L_{3}, \ldots, L_{k}\right)\right)$ is another non-bipartite Ω-system, contradicting the minimality of the Ω-system $((G, \Sigma,\{s, t\}), \mathcal{L})$. It therefore follows that the internal vertices of R_{1} all have degree two in $G\left[L_{1} \cup Q_{2} \cup Q_{3}\right]$. Observe that $\left(Q_{1} \cup Q_{2} \cup Q_{3} \cup R_{1}\right)-\{\Omega\}$ is non-bipartite as it contains the odd cycle C_{1}. Lemma 5.2 therefore implies $R_{2} \cup\{\Omega\}$ has a k-mate B. Observe that B is also a k-mate of L_{2} and of $L_{1} \triangle\left(R_{1} \cup R_{2}\right)$, as $R_{2} \cup\{\Omega\} \subset L_{2}$ and $R_{2} \cup\{\Omega\} \subset L_{1} \triangle\left(R_{1} \cup R_{2}\right)$. Thus by proposition $6.1 B$ is an st-cut, so $B=\delta(U)$ for some $U \subseteq V(G)-\{t\}$. Then $\delta\left(U_{2} \cap U\right)$ is a cover contained in $B_{2} \cup B$, and so by proposition 3.5 , it is a k-mate of L_{2}. Thus the shorewise minimality of U_{2} implies that $U_{2} \subseteq U$. As $\delta(U)$ is a k-mate of $L_{1} \triangle\left(R_{1} \cup R_{2}\right)$, it follows that $\delta(U) \cap\left(L_{2} \triangle\left(R_{1} \cup R_{2}\right)\right)=\{\Omega\}$. In particular, $\delta(U) \cap\left(C_{2}-R_{2}\right)=\emptyset$ and as $u, v \in U_{2} \subseteq U$, we get that $V\left(C-R_{2}\right) \subseteq U$.

We claim that $s \in V\left(C_{1}-R_{1}\right)$. For if not, similarly as above, $\left(C_{2}-R_{2}\right) \cup\{\Omega\}$ also has a k-mate $\delta(W)$, where $W \subseteq V(G)-\{t\}$ and $U_{2} \subseteq W$ and $V\left(R_{2}\right) \subseteq W$. Since $\delta(U \cup W)$ is contained in $\delta(U) \cup \delta(W)$, and $\delta(U), \delta(W)$ are k-mates for L_{2}, proposition 3.5 implies that $\delta(U \cup W)$ is also a k-mate for L_{2}. Hence, $\delta(U \cup W) \cap C_{2} \neq \emptyset$ and so $V\left(C_{2}\right) \nsubseteq U \cup W$. However, $V\left(C_{2}-R_{2}\right) \subseteq U$ and $V\left(R_{2}\right) \subseteq W$, and so $V\left(C_{2}\right) \subseteq U \cup W$, which is not the case.

Hence, $s \in V\left(C_{1}-R_{1}\right)$. Let $\tilde{C}_{1}=\left(C_{1}-R_{1}\right) \cup R_{2}$ and $\tilde{C}_{2}=\left(C_{2}-R_{2}\right) \cup R_{1}$. Consider the (Ω, k)-packing

$$
\tilde{\mathcal{L}}=\left(\tilde{L}_{1}=\tilde{C}_{1} \cup P_{1}, \tilde{L}_{2}=\tilde{C}_{2} \cup P_{2}, L_{3}, \ldots, L_{k}\right)
$$

The minimality of the non-bipartite Ω-system $((G, \Sigma,\{s, t\}), \mathcal{L})$ implies that \tilde{C}_{1} and \tilde{C}_{2} are odd circuits, and since $V\left(\tilde{C}_{1} \cup \tilde{C}_{2}\right) \subseteq U_{3}$ and $V\left(P_{1} \cup P_{2}\right) \cap U_{3}=\{s\}$, it follows that $\tilde{\mathcal{L}}$ is an (Ω, k)-packing. By proposition 6.1 , for $i=1,2$, there is a k-mate $\delta\left(\tilde{U}_{i}\right)$ for \tilde{L}_{i}, where $\tilde{U}_{i} \subseteq V(G)-\{t\}$ is shore-wise minimal. Since $s \in V\left(\tilde{C}_{1}\right)$ and $u, v \in V\left(\tilde{C}_{1}\right) \cap V\left(\tilde{C}_{2}\right)$, it follows from proposition 6.1 that $\tilde{U}_{1} \subset \tilde{U}_{2} \subset U_{3}$. Hence, in particular, $V\left(\tilde{C}_{1}\right) \subseteq \tilde{U}_{2}$ and in turn $V\left(R_{2}\right) \subset \tilde{U}_{2}$, so R_{2} is vertex-disjoint from C_{3}. Thus, similarly as above, $R_{1} \cup\{\Omega\}$ has a k-mate $\delta\left(U^{\prime}\right), U^{\prime} \subseteq V(G)-\{t\}$.

Note that $\delta(U)$ is a k-mate of \tilde{L}_{1} and $\delta\left(U^{\prime}\right)$ is a k-mate of \tilde{L}_{2}. Since $s \in V\left(C_{1}-R_{1}\right)$ and $\left(C_{1}-R_{1}\right) \cap \delta(U)=\left(C_{1}-R_{1}\right) \cap \delta\left(U^{\prime}\right)=\emptyset$, we have $V\left(C_{1}-R_{1}\right) \subseteq U \cap U^{\prime}$ and in particular, $u, v \in U \cap U^{\prime}$. Consider $\delta\left(U \cup U^{\prime}\right)$ which is contained in $\delta(U) \cup \delta\left(U^{\prime}\right)$. Since $R_{1} \cap \delta(U)=\emptyset$, it follows that $R_{1} \cap \delta\left(U \cup U^{\prime}\right)=\emptyset$, and so by proposition $3.4, \delta\left(U \cup U^{\prime}\right)$ is a k-mate of L_{2}, implying that $R_{2} \cap \delta\left(U \cup U^{\prime}\right) \neq \emptyset$, a contradiction as $R_{2} \cap \delta\left(U^{\prime}\right)=\emptyset$. Hence, C_{1} and C_{2} have at most one vertex in common.

Suppose now that L_{3} is non-simple. Notice first that by proposition $6.1(2), P_{3} \cap \delta\left(U_{3}\right)=\{\Omega\}$, so $V\left(P_{3}\right) \cap U_{3}=\{s\}$. Since $V\left(C_{1}\right) \subseteq U_{2}$ and $V\left(C_{3}\right) \cap U_{2}=\emptyset$, it follows that C_{1} and C_{3} are vertex-disjoint. It remains to show that C_{2} and C_{3} have at most one vertex in common. Suppose otherwise. We will once again obtain a contradiction by proving that $((G, \Sigma,\{s, t\}), \mathcal{L})$ is not a minimal non-bipartite Ω-system. As we just showed, C_{1} and C_{2} have at most one vertex in common. Choose distinct vertices $u, v \in V\left(C_{2}\right) \cap V\left(C_{3}\right)$ and let R_{2} be a $u v$-path contained in C_{2} that is vertex-disjoint from C_{1}. Let R_{3} be the uv-path contained in C_{3} such that $R_{2} \cup R_{3}$ is an even cycle. As before, the minimality of the Ω-system implies that the internal vertices of R_{2} all have degree two in $G\left[L_{1} \cup L_{2} \cup\left(L_{3}-R_{3}\right)\right]$ (recall that $V\left(P_{3}\right) \cap U_{3}=\{s\}$). Lemma 5.2 therefore implies $R_{3} \cup\{\Omega\}$ has a k-mate B. As B is also a k-mate of L_{3}, proposition 6.1 implies that B is an st-cut, so $B=\delta(U)$ for some $U \subseteq V(G)-\{t\}$. Then $\delta\left(U_{3} \cap U\right)$ is a cover contained in $B_{3} \cup B$, and so by proposition 3.5, it is k-mate of L_{3}. Thus the shore-wise minimality of U_{3} implies that $U_{3} \subseteq U$.

We claim $C_{2}-R_{2}$ has a vertex in common with C_{1}. For if not, similarly as above, $\left(C_{3}-R_{3}\right) \cup\{\Omega\}$ also has a k-mate $\delta(W)$, where $W \subseteq V(G)-\{t\}$ and $U_{3} \subseteq W$. Since $\delta(U \cup W)$ is contained in $\delta(U) \cup \delta(W)$, and $\delta(U), \delta(W)$ are k-mates for L_{3}, proposition 3.5 implies that $\delta(U \cup W)$ is also a k-mate for L_{3}. Hence, $\delta(U \cup W) \cap C_{3} \neq \emptyset$ and so $V\left(C_{3}\right) \nsubseteq U \cup W$. However, $u, v \in U_{3} \subseteq U \cup W$, forcing $V\left(R_{3}\right) \subseteq W$ and $V\left(C_{3}-R_{3}\right) \subseteq U$, and so $V\left(C_{3}\right) \subseteq U \cup W$, which is not the case.

Hence, $C_{2}-R_{2}$ has a vertex in common with C_{1}. Let $\tilde{C}_{2}=\left(C_{2}-R_{2}\right) \cup R_{3}$ and $\tilde{C}_{3}=\left(C_{3}-R_{3}\right) \cup R_{2}$. Consider the (Ω, k)-packing

$$
\tilde{\mathcal{L}}=\left(L_{1}, \tilde{L}_{2}=\tilde{C}_{2} \cup P_{2}, \tilde{L}_{3}=\tilde{C}_{3} \cup P_{3}, L_{4}, \ldots, L_{k}\right)
$$

The minimality of the non-bipartite Ω-system $((G, \Sigma,\{s, t\}), \mathcal{L})$ implies that $\tilde{\mathcal{L}}$ is an (Ω, k)-packing. By proposition 6.1 , for $i=2,3$, there is a k-mate $\delta\left(\tilde{U}_{i}\right)$ for \tilde{L}_{i}, where $\tilde{U}_{i} \subseteq V(G)-\{t\}$ is shore-wise minimal. Since \tilde{C}_{2} has vertices in common with the both of C_{1}, \tilde{C}_{3}, it follows from proposition 6.1 that either $U_{1} \subset \tilde{U}_{2} \subset \tilde{U}_{3}$ or $\tilde{U}_{3} \subset \tilde{U}_{2} \subset U_{1}$. Hence, in particular, $V\left(R_{3}\right) \subset U_{1} \cup \tilde{U}_{3}$ and so the internal vertices of R_{3} have degree two in $G\left[L_{1} \cup\left(L_{2}-R_{2}\right) \cup L_{3}\right]$. Thus, similarly as above, $R_{2} \cup\{\Omega\}$ has a k-mate $\delta\left(U^{\prime}\right), U^{\prime} \subseteq V(G)-\{t\}$. Note $\delta\left(U_{2} \cap U^{\prime}\right)$ is a cover contained in $\delta\left(U_{2}\right) \cup \delta\left(U^{\prime}\right)$, and so by proposition 3.5, it is a k-mate of L_{2}. Thus the shore-wise minimality of U_{2} implies that $U_{2} \subseteq U^{\prime}$.

Note that $\delta(U)$ is a k-mate of L_{3} and $\delta\left(U^{\prime}\right)$ is a k-mate of L_{2}. Since $C_{2}-R_{2}$ has a vertex x in common with $C_{1},\left(C_{2}-R_{2}\right) \cap \delta(U)=\left(C_{2}-R_{2}\right) \cap \delta\left(U^{\prime}\right)=\emptyset$, and $x \in U_{2} \subset U \cap U^{\prime}$, we must have $V\left(C_{2}-R_{2}\right) \subseteq U \cap U^{\prime}$ and in particular, $u, v \in U \cap U^{\prime}$. Consider $\delta\left(U \cup U^{\prime}\right)$ which is contained in $\delta(U) \cup \delta\left(U^{\prime}\right)$. Since $R_{2} \cap \delta\left(U^{\prime}\right)=\emptyset$, it follows that $R_{2} \cap \delta\left(U \cup U^{\prime}\right)=\emptyset$, and so by proposition 3.4, $\delta\left(U \cup U^{\prime}\right)$ is a k-mate of L_{3}, implying that $R_{3} \cap \delta\left(U \cup U^{\prime}\right) \neq \emptyset$, a contradiction as $R_{3} \cap \delta(U)=\emptyset$. Hence, C_{2} and C_{3} have at most one vertex in common, thereby finishing the proof.
(2) Suppose that L_{3} is simple. It is clear that C_{1} and L_{3} have at most one vertex (in particular, $s)$ in common. We will show that C_{2} and L_{3} have at most one vertex in common. Suppose otherwise. Choose distinct $u, v \in V\left(C_{2}\right) \cap V\left(L_{3}\right)$, and let R_{3} be the $u v$-path contained in L_{3}. Let R_{2} be the $u v$-path contained in C_{2} such that $R_{2} \cup R_{3}$ is an even cycle.

We claim that R_{2} is vertex-disjoint from C_{1}. Let $\tilde{C}_{2}:=\left(C_{2}-R_{2}\right) \cup R_{3}$ and $\tilde{L}_{3}:=\left(L_{3}-R_{3}\right) \cup R_{2}$. The minimality of our non-bipartite Ω-system implies \tilde{L}_{3} is still simple. Consider the (Ω, k)-packing

$$
\tilde{\mathcal{L}}:=\left(L_{1}, \tilde{L}_{2}=\tilde{C}_{2} \cup P_{2}, \tilde{L}_{3}, L_{4}, \ldots, L_{k}\right)
$$

The minimality of the non-bipartite Ω-system $((G, \Sigma,\{s, t\}), \mathcal{L})$ implies that $\tilde{\mathcal{L}}$ is an (Ω, k)-packing. By proposition 6.1 , for $i=2,3$, there exists a k-mate $\delta\left(\tilde{U}_{i}\right)$ of \tilde{L}_{i}, where $\tilde{U}_{i} \subseteq V(G)-\{t\}$ is shore-wise minimal, and $U_{1} \subset \tilde{U}_{2} \subset \tilde{U}_{3}$. In particular, $V\left(R_{2}\right) \cap \tilde{U}_{2}=\emptyset$ and $V\left(C_{1}\right) \subseteq \tilde{U}_{2}$, so R_{2} is vertex-disjoint from C_{1}.

As a result, the internal vertices of R_{2} all have degree two in $G\left[L_{1} \cup L_{2} \cup\left(L_{3}-R_{3}\right)\right]$. Thus lemma 5.2 implies that $R_{3} \cup\{\Omega\}$ has a k-mate B. As B is also a k-mate of L_{3}, proposition 6.1 implies that $B=\delta(U)$ for some $U \subseteq V(G)-\{t\}$. However, since $\delta(U) \cap C_{2}=\emptyset$ and $u, v \notin U$, it follows that $V\left(C_{2}\right) \cap U=\emptyset$. Consider $\delta\left(U_{2} \cap U\right)$, which is contained in $\delta\left(U_{2}\right) \cup \delta(U)$. Since $\delta\left(U_{2}\right)$ is a k-mate of L_{2}, $\delta(U)$ is a k-mate of L_{3}, and $C_{2} \cap \delta\left(U_{2} \cap U\right)=\emptyset$, it follows from proposition 3.4 that $\delta\left(U_{2} \cap U\right) \cap L_{3} \neq \emptyset$,
implying in turn that $\delta\left(U_{2}\right) \cap L_{3} \neq\{\Omega\}$, a contradiction. Thus, C_{2} and L_{3} have at most one vertex in common.
(3) Among all non-bipartite Ω-systems with the same associated signed graft, the number of nonsimple minimal odd $s t$-joins among L_{1}, L_{2}, L_{3} is maximum. Hence, L must be a simple minimal odd st-join, and the minimality of the Ω-system implies that $P:=L \triangle P_{2} \triangle L_{3}$ is an even st-path. Consider the (Ω, k)-packing

$$
\tilde{\mathcal{L}}=\left(L_{1}, \tilde{L}_{2}:=C_{2} \cup P, \tilde{L}_{3}:=L, L_{4}, \ldots, L_{k}\right)
$$

The minimality of the non-bipartite Ω-system $((G, \Sigma,\{s, t\}), \mathcal{L})$ implies that $\tilde{\mathcal{L}}$ is an (Ω, k)-packing. By proposition 6.1 , for $i=2,3$, there exists a k-mate $\delta\left(\tilde{U}_{i}\right)$ of \tilde{L}_{i} where \tilde{U}_{i} is shore-wise minimal, and $\tilde{U}_{2} \subset \tilde{U}_{3}$. We claim that $U_{3}=\tilde{U}_{3}$, thereby finishing the proof of (3). Let $B:=\delta\left(U_{3} \cap \tilde{U}_{3}\right)$. Since L_{3}, \tilde{L}_{3} are simple, $\delta\left(U_{3}\right) \cap\left(\tilde{L}_{3}-L_{3}\right)=\emptyset$ and $\delta\left(\tilde{U}_{3}\right) \cap\left(L_{3}-\tilde{L}_{3}\right)=\emptyset$, it follows that $B \cap\left(\tilde{L}_{3}-L_{3}\right)=$ $B \cap\left(L_{3}-\tilde{L}_{3}\right)=\emptyset$. Therefore, proposition 3.3 implies that B is a k-mate for the both of L_{3} and \tilde{L}_{3}, and so the shore-wise minimality of U_{3}, \tilde{U}_{3} implies that $U_{3} \subset U_{3} \cap \tilde{U}_{3}$ and $\tilde{U}_{3} \subset U_{3} \cap \tilde{U}_{3}$. Hence, $U_{3}=\tilde{U}_{3}$, as claimed.
(4) Suppose otherwise. Assume first that $j=1$. Observe that $\delta(U) \subseteq \delta\left(U_{1}\right)$. Since $\delta\left(U_{1}-\right.$ $U)=\delta\left(U_{1}\right) \triangle \delta(U)$, it follows that $\delta\left(U_{1}-U\right) \subseteq \delta\left(U_{1}\right)$, implying in turn that $\delta\left(U_{1}-U\right)$ is also a k-mate of L_{1}, contradicting the shore-wise minimality of U_{1}. Assume next that $j \neq 1$. Observe that $\delta(U) \subseteq \delta\left(U_{j-1}\right) \cup \delta\left(U_{j}\right)$ and $\delta(U) \cap L_{j-1}=\emptyset$. However, since $\delta\left(U_{j}-U\right)=\delta\left(U_{j}\right) \triangle \delta(U)$ and $\delta\left(U_{j}\right) \cap L_{j-1}=\{\Omega\}$,

$$
\delta\left(U_{j}-U\right) \subseteq \delta\left(U_{j-1}\right) \cup \delta\left(U_{j}\right) \quad \text { and } \quad \delta\left(U_{j}-U\right) \cap L_{j-1}=\{\Omega\}
$$

Hence, proposition 3.4 implies that $\delta\left(U_{j}-U\right)$ is a k-mate of L_{j}, contradicting the shore-wise minimality of U_{j}.
(5) By proposition $6.1(2), P_{3} \cap \delta\left(U_{3}\right)=\{\Omega\}$, so $V\left(P_{3}\right) \cap U_{3}=\{s\}$. Suppose for a contradiction that (5) does not hold. Then there is a subset $U \subset \overline{U_{3}}$ containing t such that $U \cap V\left(C_{3}\right)=\emptyset$, and such that there is no edge of $G\left[\overline{U_{3}}\right]$ with one end in U and one end not in U. Let $\bar{U}=V(G)-U$. Then $\delta(\bar{U}) \subset \delta\left(U_{3}\right)$ and so $\left|\delta(\bar{U})-L_{3}\right| \leq k-3$. However, $\delta(\bar{U}) \cap L_{3}=\{\Omega\}$, and so $|\delta(\bar{U})| \leq k-2$, a contradiction as $k \leq \tau(G, \Sigma)$.

We are now ready to prove proposition 2.9.

Proof of proposition 2.9. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right)\right)$ be a minimal non-bipartite Ω-system of flavour (NF1), where Ω has ends s, s^{\prime}. Recall that at least two, say L_{1} and L_{2}, of L_{1}, L_{2}, L_{3} are non-simple, and $\Omega \in P_{1} \cap P_{2} \cap P_{3}$.

By proposition 6.1, for each $i \in[3]$, there exists a k-mate $B_{i}=\delta\left(U_{i}\right)$ where $U_{i} \subseteq V(G)-\{t\}$ is shore-wise minimal, and we may assume $U_{1} \subset U_{2} \subset U_{3}$. Moreover, for $i \in[3]$, if L_{i} is non-simple then $B_{i} \cap P_{i}=\{\Omega\}$ and $B_{i} \cap C_{i} \neq \emptyset$. Let $U_{0}=\emptyset$.

In the first case, assume that L_{3} is non-simple. Let $U_{4}:=V(G)$ and let C_{0} (resp. C_{4}) be the path of single vertex s (resp. t). Then by lemma 6.2,
(a) for $j \in[4]$, there exists a shortest path Q_{j} in $G\left[U_{j}-U_{j-1}\right]$ between $V\left(C_{j-1}\right)$ and $V\left(C_{j}\right)$, and
(b) for $j \in[2], C_{j}$ and C_{j+1} have at most one vertex in common.

Moreover, let P_{3}^{\prime} be the shortest path contained in P_{3} connecting s^{\prime} to $V\left(C_{3} \cup Q_{4}\right)-U_{3}$. It is now clear that $C_{1} \cup C_{2} \cup C_{3} \cup Q_{1} \cup Q_{2} \cup Q_{3} \cup Q_{4} \cup P_{3}^{\prime}$ has an F_{7} minor.

In the remaining case, L_{3} is simple. As above, lemma 6.2 implies
(a') for $j \in[2]$, there exists a shortest path Q_{j} in $G\left[U_{j}-U_{j-1}\right]$ between $V\left(C_{j-1}\right)$ and $V\left(C_{j}\right)$,
(b') there exists a shortest path Q_{3} in $G\left[U_{3}-U_{2}\right]$ between $V\left(C_{2}\right)$ and $V\left(L_{3}\right)$,
(c') C_{1} and C_{2} have at most one vertex in common, and C_{2} and L_{3} have at most one vertex in common, and
(d') if P_{2} and L_{3} share a vertex w other than s, s^{\prime}, t, then either (a) $V\left(L_{3}\left[s^{\prime}, w\right]\right) \subseteq V(G)-U_{3}$ and $L_{3}\left[s^{\prime}, w\right] \cup P_{2}\left[s^{\prime}, w\right]$ is an even cycle, or $(\mathrm{b}) V\left(L_{3}[w, t]\right) \subseteq V(G)-U_{3}$ and $L_{3}[w, t] \cup P_{2}[w, t]$ is an even cycle.

It is now clear that $C_{1} \cup C_{2} \cup L_{3} \cup Q_{1} \cup Q_{2} \cup Q_{3} \cup P_{2}$ has an F_{7} minor.

7. Non-Bipartite Ω-System of flavour (NF2)

In this section we prove proposition 2.10 , namely that a minimal non-bipartite Ω-system of flavour (NF2) has an F_{7} minor, as long as there is no non-bipartite Ω-system of flavour (NF1) with the same associated signed graft. Observe that L_{1}, L_{2} and L_{3} are connected. For convenience, whenever L_{i} is non-simple, we write $P_{i}:=P\left(L_{i}\right)$ and $C_{i}:=C\left(L_{i}\right)$.

Proposition 7.1. Let $(G, \Sigma,\{x, y\})$ be a non-bipartite signed graft whose edges can be partitioned into odd xy-paths Q_{1}, Q_{2}. For each $i=1,2$, direct the edges of Q_{i} from x to y, and assume that every directed circuit in $Q_{1} \cup Q_{2}$ is even. Let \vec{H} be the directed signed graft obtained by contracting all arcs that belong to at least one directed circuit. Then \vec{H} is a non-bipartite and acyclic directed signed graft whose edges can be partitioned into two odd xy-dipaths.

Proof. Let A be the set of all arcs that belong to at least one directed circuit. It is clear by construction that \vec{H} is acyclic and can be partitioned as the union of two $x y$-dipaths $Q_{1}^{\prime}, Q_{2}^{\prime}$ where for $i=1,2$, $Q_{i}^{\prime}=Q_{i}-A\left(Q_{i}^{\prime}\right.$ is equal to $\left.Q_{i} / A\right)$. Since every directed circuit is even, it follows that $Q_{1}^{\prime}, Q_{2}^{\prime}$ are odd $x y$-dipaths. To show \vec{H} is non-bipartite, let C be an odd circuit of $Q_{1} \cup Q_{2}$. Clearly, $C-A$ is a cycle
of \vec{H}, and again, since every directed circuit is even, it follows that $C-A$ is an odd cycle of \vec{H}. In particular, \vec{H} is non-bipartite.

Proposition 7.2. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right)\right)$ be a non-bipartite Ω-system of flavour (NF2), where Ω has ends s, s^{\prime}. For $i \in[3]$, let B_{i} be a k-mate of L_{i}. Then,
(1) exactly one of B_{1}, B_{2}, B_{3}, say B_{3}, is an st-cut,
(2) L_{1} and L_{2} are simple,
(3) $\left(L_{1} \cup L_{2}\right)-\{\Omega\}$ is non-bipartite and $\left(L_{1} \cup L_{3}\right)-\{\Omega\},\left(L_{2} \cup L_{3}\right)-\{\Omega\}$ are bipartite.

Furthermore, choose $U \subseteq V(G)-\{s, t\}$ such that $B_{1} \triangle B_{2}=\delta(U)$. Then,
(4) for every $L \subseteq L_{1} \cup L_{2} \cup L_{3}$, $\left(L \cap B_{1}\right)-\{\Omega\}=\left(L \cap L_{1}\right) \cap \delta(U)$,
(5) L_{1} and L_{2} have at least one vertex of U in common.

Proof. (1) Proposition 3.6 implies that at least two of B_{1}, B_{2}, B_{3} are signatures. Suppose for a contradiction that each of B_{1}, B_{2}, B_{3} is a signature. For $i \in[3]$, note that $L_{i}-\{\Omega\}$ is an $s^{\prime} t$-path (recall that if $C\left(L_{i}\right) \neq \emptyset$, then $\Omega \in C\left(L_{i}\right)$ and the only vertex common to $C\left(L_{i}\right), P\left(L_{i}\right)$ is s), so let $Q_{i}:=L_{i}-\{\Omega\}$. Since

$$
B_{1} \cap\left(Q_{2} \cup Q_{3}\right)=B_{2} \cap\left(Q_{3} \cup Q_{1}\right)=B_{3} \cap\left(Q_{1} \cup Q_{2}\right)=\emptyset
$$

and B_{1}, B_{2}, B_{3} are signatures, it follows that $Q_{1} \cup Q_{2}, Q_{2} \cup Q_{3}$ and $Q_{3} \cup Q_{1}$ are bipartite. Thus by proposition 5.1, $Q_{1} \cup Q_{2} \cup Q_{3}=\left(L_{1} \cup L_{2} \cup L_{3}\right)-\{\Omega\}$ is bipartite, a contradiction. (2) Suppose, for $j \in[3], L_{j}$ is non-simple. Then $\Omega \in C_{j}$ and so by proposition 3.8 , the covers in $\left\{B_{1}, B_{2}, B_{3}\right\}-\left\{B_{j}\right\}$ are signatures, and so by (1), $j=3$. (3) Since B_{1} and B_{2} are signatures, it follows that $Q_{2} \cup Q_{3}$ and $Q_{1} \cup Q_{3}$ are bipartite. Then by proposition 5.1, $Q_{1} \cup Q_{2}$ must be non-bipartite. (4) By proposition 3.4, $B_{1} \subseteq L_{1} \cup L_{4} \cup \ldots \cup L_{k}$. Thus, $L \cap B_{1} \subseteq L_{1} \cap B_{1}$, and so $L \cap B_{1}=L \cap\left(L_{1} \cap B_{1}\right)$. Hence, it suffices to show that $\left(L_{1} \cap B_{1}\right)-\{\Omega\}=L_{1} \cap \delta(U)$. Again, by proposition 3.4, $L_{1} \cap B_{2}=\{\Omega\}$ and $\Omega \in L_{1} \cap B_{1}$, so

$$
L_{1} \cap \delta(U)=L_{1} \cap\left(B_{1} \triangle B_{2}\right)=\left(L_{1} \cap B_{1}\right) \triangle\left(L_{1} \cap B_{2}\right)=\left(L_{1} \cap B_{1}\right)-\{\Omega\}
$$

as required. (5) By (3) $\left(L_{1} \cup L_{2}\right)-\{\Omega\}$ contains an odd circuit C. Since B_{1} is a signature, $\left|B_{1} \cap C\right|$ is odd. By (4) $C \cap B_{1}=\left(C \cap L_{1}\right) \cap \delta(U)$. Decompose $C \cap L_{1}$ into pairwise vertex-disjoint paths Q_{1}, \ldots, Q_{ℓ}. Then, for some $i \in[\ell],\left|Q_{i} \cap \delta(U)\right|$ is odd, and so Q_{i} has one end, say y, in U and the other in $V(G)-U$. Since $y \in V\left(L_{1}\right) \cap V\left(L_{2}\right)$, the result follows.

Proposition 7.3. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right)\right)$ be a non-bipartite Ω-system of flavour (NF2), where $\Omega \in \delta(s)$. Suppose there exist $C_{1}^{\prime}, P_{1}^{\prime}, L_{2}^{\prime}$ and L_{3}^{\prime} such that
(1) $C_{1}^{\prime} \cup P_{1}^{\prime} \cup L_{2}^{\prime} \cup L_{3}^{\prime} \subseteq L_{1} \cup L_{2} \cup L_{3}$,
(2) C_{1}^{\prime} is an odd cycle, P_{1}^{\prime} is an even st-join, and $L_{2}^{\prime}, L_{3}^{\prime}$ are odd st-joins,
(3) $\Omega \in P_{1}^{\prime} \cap L_{2}^{\prime} \cap L_{3}^{\prime}$ and $\Omega \notin C_{1}^{\prime}$,
(4) the four sets $C_{1}^{\prime}, P_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are pairwise Ω-disjoint.

Let $L_{1}^{\prime}:=C_{1}^{\prime} \cup P_{1}^{\prime}$, and for each $j \in[3]$, let \tilde{L}_{j} be a minimal odd st-join contained in L_{j}^{\prime}. Then $\left((G, \Sigma,\{s, t\}), \tilde{\mathcal{L}}=\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}, L_{4}, \ldots, L_{k}\right)\right)$ is a non-bipartite Ω-system of flavour (NF1).

Proof. We will first show that $\Omega \in \tilde{L}_{1} \cap \tilde{L}_{2} \cap \tilde{L}_{3}$. For $j \in[3]$, let \tilde{B}_{j} be a k-mate of \tilde{L}_{j}. By proposition 3.2, for $j \in[3], \tilde{B}_{j} \subseteq \tilde{L}_{j} \cup L_{4} \cup \ldots \cup L_{k}$. Hence, for distinct $i, j \in[3], \tilde{L}_{i} \cap \tilde{B}_{j} \subseteq\{\Omega\}$ and so $\tilde{L}_{i} \cap \tilde{B}_{j}=\{\Omega\}$, implying that $\Omega \in \tilde{L}_{1} \cap \tilde{L}_{2} \cap \tilde{L}_{3}$.

As $C_{1}^{\prime} \cap\left(\tilde{L}_{2} \cup \tilde{L}_{3} \cup L_{4} \cup \cdots \cup L_{k}\right)=\emptyset$, we have $\tilde{B}_{2} \cap C_{1}^{\prime}=\tilde{B}_{3} \cap C_{1}^{\prime}=\emptyset$. Since C_{1}^{\prime} is an odd cycle, $\tilde{B}_{2}, \tilde{B}_{3}$ are st-cuts. So by proposition 3.6 one of $\tilde{L}_{2}, \tilde{L}_{3}$, say \tilde{L}_{2}, is non-simple and $\Omega \in P\left(\tilde{L}_{2}\right)$. Hence, $((G, \Sigma,\{s, t\}), \tilde{\mathcal{L}})$ is a non-bipartite Ω-system of flavour (NF1) (because it is not of flavour (NF2)).

Lemma 7.4. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right)\right)$ be a minimal non-bipartite Ω-system of flavour (NF2), where Ω has ends s, s^{\prime}, and assume there is no non-bipartite Ω-system of flavour (NF1) with the same associated signed graft. Suppose that L_{1}, L_{2} are simple and $\left(L_{1} \cup L_{2}\right)-\{\Omega\}$ is non-bipartite. Then the following hold:
(1) For $i=1,2$, the only vertices L_{i} and L_{3} have in common are s, s^{\prime}, t.
(2) For $i=1,2$, direct the edges of L_{i} from s to t. Then every directed circuit in $L_{1} \cup L_{2}$ is even.

Proof. For $i \in[3]$, let B_{i} be a k-mate of L_{i}. Since $\left(L_{1} \cup L_{2}\right)-\{\Omega\}$ is non-bipartite, proposition 7.2 implies that for $i=1,2,\left(L_{i} \cup L_{3}\right)-\{\Omega\}$ is bipartite, B_{3} is an st-cut and B_{1}, B_{2} are signatures. Thus there exists $U \subseteq V(G)-\{s, t\}$ such that $B_{1} \triangle B_{2}=\delta(U)$. By proposition 7.2, L_{1} and L_{2} have a vertex y in common in U, and the two cycles $L_{1}\left[s^{\prime}, y\right] \cup L_{2}\left[s^{\prime}, y\right], L_{1}[y, t] \cup L_{2}[y, t]$ are odd.
(1) In the first case, assume L_{3} is simple. Suppose for a contradiction that L_{3} has a vertex other than s, s^{\prime}, t in common with one of L_{1}, L_{2}. Let $v_{1}\left(\right.$ resp. $\left.v_{2}\right)$ be the closest vertex to s (resp. furthest vertex from s) of L_{3} different from s, s^{\prime}, t that also belongs to one of L_{1}, L_{2}. We may assume that $v_{2} \in V\left(L_{2}\right) \cap V\left(L_{3}\right)$, and choose $j \in\{1,2\}$ so that $v_{1} \in V\left(L_{j}\right) \cap V\left(L_{3}\right)$.

Claim 1. There exists an odd cycle C in $\left(L_{1} \cup L_{2}\right)-\{\Omega\}$ that is disjoint from either $L_{j}\left[s^{\prime}, v_{1}\right]$ or $L_{2}\left[v_{2}, t\right]$.

Proof. Suppose otherwise. Then $j=1$ and y must belong to the interior of the both of $L_{1}\left[s^{\prime}, v_{1}\right], L_{2}\left[v_{2}, t\right]$. Let

$$
\begin{aligned}
P_{1}^{\prime} & =L_{1}[s, y] \cup L_{2}[y, t] \\
C_{1}^{\prime} & =L_{1}\left[y, v_{1}\right] \cup L_{3}\left[v_{1}, v_{2}\right] \cup L_{2}\left[v_{2}, y\right] \\
L_{1}^{\prime} & =C_{1}^{\prime} \cup P_{1}^{\prime} \\
L_{2}^{\prime} & =L_{3}\left[s, v_{1}\right] \cup L_{1}\left[v_{1}, t\right] \\
L_{3}^{\prime} & =L_{2}\left[s, v_{2}\right] \cup L_{2}\left[v_{2}, t\right] .
\end{aligned}
$$

By proposition $7.2, P_{1}^{\prime}$ is an even $s t$-join, C_{1}^{\prime} is an odd cycle, and for $j \in[3], L_{j}^{\prime}$ is an odd $s t$-join. Therefore, for $j \in[3]$, there is a minimal odd $s t$-join \tilde{L}_{j} contained in L_{j}^{\prime}. Proposition 7.3 implies that $\left((G, \Sigma,\{s, t\}),\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}, L_{4}, \ldots, L_{k}\right)\right)$ is a non-bipartite Ω-system of flavour (NF1), contrary to our hypothesis.

Observe that $L_{3}\left[s^{\prime}, v_{1}\right]$ and $L_{3}\left[v_{2}, t\right]$ are paths whose internal vertices by definition have degree two in $G\left[L_{1} \cup L_{2} \cup L_{3}\right]$, and the two cycles $L_{3}\left[s^{\prime}, v_{1}\right] \cup L_{j}\left[s^{\prime}, v_{1}\right], L_{3}\left[v_{2}, t\right] \cup L_{2}\left[v_{2}, t\right]$ are even. Lemma 5.2 implies that either $L_{j}\left[s^{\prime}, v_{1}\right] \cup\{\Omega\}$ or $L_{2}\left[v_{2}, t\right] \cup\{\Omega\}$ has a k-mate B. Since $B \cap C=\emptyset$, it follows that B is an st-cut. However, B is also a k-mate for one of L_{j}, L_{2}. Hence, since B_{3} is also an st-cut, proposition 3.6 implies that one of L_{j}, L_{2}, L_{3} is non-simple and Ω lies in its even $s t$-path, a contradiction.

In the remaining case, L_{3} is non-simple and $\Omega \in C_{3}$. We will first show that C_{3} has no vertex other than s, s^{\prime} in common with either of L_{1}, L_{2}. Suppose otherwise. Choose a vertex $v \in V\left(C_{3}\right)-\left\{s, s^{\prime}\right\}$ that also belongs to one of L_{1}, L_{2}, and such that all the internal vertices of the subpath $C_{3}\left[s^{\prime}, v\right]$ in $C_{3}-\{\Omega\}$ have degree two in $G\left[L_{1} \cup L_{2} \cup L_{3}\right]$. Let $C_{3}[s, v]:=\{\Omega\} \cup C_{3}\left[s^{\prime}, v\right]$ and $C_{3}[v, s]:=C_{3}-C_{3}[s, v]$. By symmetry between L_{1} and L_{2}, we may assume that $v \in V\left(L_{1}\right) \cap V\left(C_{3}\right)$.

Claim 2. There exists an odd cycle C in $\left(L_{1} \cup L_{2}\right)-\{\Omega\}$ that is disjoint from $L_{1}\left[s^{\prime}, v\right]$.

Proof. Suppose otherwise. Then y must belong to the interior of $L_{1}\left[s^{\prime}, v\right]$. Let

$$
\begin{aligned}
C_{3}^{\prime} & =L_{1}[s, v] \cup C_{3}[v, s] \\
L_{3}^{\prime} & =C_{3}^{\prime} \cup P_{3} \\
L_{1}^{\prime} & =C_{1}[s, v] \cup L_{1}[v, t] \\
C^{\prime} & =L_{1}\left[s^{\prime}, y\right] \cup L_{2}\left[s^{\prime}, y\right] .
\end{aligned}
$$

By proposition $7.2, C_{3}^{\prime}, C^{\prime}$ are odd cycles and $L_{1}^{\prime}, L_{3}^{\prime}$ are odd $s t$-joins. Therefore, L_{1}^{\prime} has a k-mate B. Since $L_{1}^{\prime} \cap C^{\prime}=\emptyset$, it follows that $B \cap C^{\prime}=\emptyset$ and so B is an st-cut. However, $B \cap L_{3}^{\prime}=\{\Omega\}$, implying that $B \cap C_{3}^{\prime}=\{\Omega\}$, a contradiction.

Recall that $C_{3}\left[s^{\prime}, v\right]$ is a path whose internal vertices have degree two in $G\left[L_{1} \cup L_{2} \cup L_{3}\right]$, and the cycle $C_{3}\left[s^{\prime}, v\right] \cup L_{1}\left[s^{\prime}, v\right]$ is even. Lemma 5.2 therefore implies that $L_{1}[s, v]=L_{1}\left[s^{\prime}, v\right] \cup\{\Omega\}$ has a k-mate B. Since $B \cap C=\emptyset$, it follows that B is an st-cut. However, $B \cap\left(L_{1}[s, v] \cup C_{3}[v, s]\right)=\{\Omega\}$, a contradiction (as $L_{1}[s, v] \cup C_{3}[v, s]$ is an odd cycle).

We next show that P_{3} has no vertex other than s, t in common with either of L_{1}, L_{2}. Suppose otherwise. Choose a vertex $v \in V\left(P_{3}\right)-\{s, t\}$ that also belongs to one of L_{1}, L_{2}, and such that all the internal vertices of the subpath $P_{3}[v, t]$ have degree two in $G\left[L_{1} \cup L_{2} \cup L_{3}\right]$. By symmetry between L_{1} and L_{2}, we may assume that $v \in V\left(L_{1}\right) \cap V\left(P_{3}\right)$.

Claim 3. There exists an odd cycle C in $\left(L_{1} \cup L_{2}\right)-\{\Omega\}$ that is disjoint from $L_{1}[v, t]$.

Proof. Suppose otherwise. Then y must belong to the interior of $L_{1}[v, t]$. Let

$$
\begin{aligned}
L_{1}^{\prime} & =L_{1}[s, v] \cup P_{3}[v, t] \\
C^{\prime} & =L_{1}[y, t] \cup L_{2}[y, t]
\end{aligned}
$$

By proposition $7.2, C^{\prime}$ is an odd cycle, and L_{1}^{\prime} is an odd $s t$-join. Therefore, L_{1}^{\prime} has a k-mate B. Since $L_{1}^{\prime} \cap C^{\prime}=\emptyset$, it follows that $B \cap C^{\prime}=\emptyset$ and so B is an st-cut. However, $B \cap C_{3}=\{\Omega\}$, a contradiction.

Recall that $P_{3}[v, t]$ is a path whose internal vertices have degree two in $G\left[L_{1} \cup L_{2} \cup L_{3}\right]$, and the cycle $P_{3}[v, t] \cup L_{1}[v, t]$ is even. Lemma 5.2 therefore implies that $L_{1}[v, t] \cup\{\Omega\}=L_{1}-L_{1}\left[s^{\prime}, v\right]$ has a k-mate B. Since $B \cap C=\emptyset$, it follows that B is an st-cut. However, $B \cap C_{3}=\{\Omega\}$, a contradiction.
(2) Suppose otherwise. Let C be a directed odd circuit contained in $L_{1} \cup L_{2}$, and let $P_{1}^{\prime} \cup P_{2}^{\prime}$ be two st-joins in $\left(L_{1} \cup L_{2}\right)-C$ such that $P_{1}^{\prime} \cup P_{2}^{\prime}=\left(L_{1} \cup L_{2}\right)-C$ and $P_{1}^{\prime} \cap P_{2}^{\prime}=\{\Omega\}$. Then one of $P_{1}^{\prime}, P_{2}^{\prime}$ is odd and the other is even, say P_{1}^{\prime} is even and P_{2}^{\prime} is odd. Let $L_{1}^{\prime}:=C \cup P_{1}^{\prime}, L_{2}^{\prime}:=P_{2}^{\prime}$ and $L_{3}^{\prime}:=L_{3}$. For $j \in[3]$, let \tilde{L}_{j} be a minimal odd $s t$-join contained in L_{i}^{\prime}. Then proposition 7.3 implies that $\left((G, \Sigma,\{s, t\}),\left(\tilde{L}_{1}, \tilde{L}_{2}, \tilde{L}_{3}, L_{4}, \ldots, L_{k}\right)\right)$ is a non-bipartite Ω-system of flavour (NF1), contrary to our hypothesis.

We are now ready to prove proposition 2.10.

Proof of proposition 2.10. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right)\right)$ be a minimal non-bipartite Ω-system of flavour (NF2), where Ω has ends s, s^{\prime}, and assume there is no non-bipartite Ω-system of flavour
(NF1) with the same associated signed graft. Proposition 7.2 allows us to assume L_{1}, L_{2} are simple and $\left(L_{1} \cup L_{2}\right)-\{\Omega\}$ is non-bipartite, and in turn, lemma 7.4 implies that, for $i=1,2$, the only vertices L_{i} and L_{3} have in common are s, s^{\prime}, t. For $i \in\{2,3\}$, let B_{i} be a k-mate of L_{i}. By proposition 7.2, L_{3} is an st-cut $\delta(U), U \subseteq V(G)-\{t\}$.

If L_{3} is non-simple, then it is easily follows from proposition 7.1 and lemma 7.4 that $L_{1} \cup L_{2} \cup L_{3}$ has an F_{7} minor. Otherwise, when L_{3} is simple, proposition 5.4 implies the existence of a shortest path P in $G[U]$ between s and some vertex, say v, of $\left(V\left(L_{3}\right) \cap U\right)-\{s\}$ that is disjoint from B_{2}. Note that $L_{3}[s, v] \cup P$ is an odd cycle. It now easily follows from proposition 7.1 and lemma 7.4 that $L_{1} \cup L_{2} \cup L_{3} \cup P$ has an F_{7} minor.

8. Preliminaries for bipartite Ω-systems

8.1. Basic properties.

Remark 8.1. Let $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right), m\right)$ be a bipartite Ω-system, where L_{1}, L_{2}, L_{3} are minimal odd T-joins. Since $\left(L_{1} \cup L_{2} \cup L_{3}\right)-\{\Omega\}$ is bipartite, for each $i \in[3]$, either L_{i} is simple or $\Omega \in C\left(L_{i}\right)$.

Proposition 8.2. Let $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right), m\right)$ be a bipartite Ω-system, where L_{1}, L_{2}, L_{3} are minimal odd T-joins. For $i \in[3]$, let B_{i} be a k-mate of L_{i}. Then at least two of B_{1}, B_{2}, B_{3} are signatures.

Proof. By remark 8.1, for every $i \in[3], L_{i}$ is either simple or $\Omega \in C\left(L_{i}\right)$. The result now follows immediately from proposition 3.6.

Proposition 8.3. Let $\left((G, \Sigma, T),\left(L_{1}, \ldots, L_{k}\right), m\right)$ be a bipartite Ω-system. Suppose $L \subseteq L_{1} \cup L_{2} \cup$ $L_{3} \cup P\left(L_{4}\right) \cup \cdots \cup P\left(L_{m}\right)$ has a signature k-mate B. Then $B \cap\left(L_{1} \cup L_{2} \cup L_{3} \cup P_{4} \cup \cdots \cup P_{m}\right)=B \cap L$.

Proof. As B is a signature, it intersects each of $C_{4}, \ldots, C_{m}, L_{m+1}, \ldots, L_{k}$. Hence,

$$
k-3 \geq|B-L| \geq \sum_{j=4}^{m}\left|B \cap C_{j}\right|+\sum_{j=m+1}^{k}\left|B \cap L_{j}\right| \geq k-3
$$

so equality holds throughout, implying that $B-L \subseteq C_{4} \cup \cdots \cup C_{m} \cup L_{m+1} \cup \cdots \cup L_{k}$, implying the result.

8.2. The mate proposition.

Proposition 8.4. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m\right)$ be a bipartite Ω-system, where $\Omega \in \delta(s)$. For each $i \in[m]$, let $\widetilde{P}_{i} \subseteq L_{i}$ be a connected st-join such that $\widetilde{P}_{i} \cap \Sigma \subseteq\{\Omega\}$, and if $\Omega \in \widetilde{P}_{i}$, then $\widetilde{P}_{i} \cap \delta(s)=\{\Omega\}$. Suppose, for each $i \in[m]$, there exists a k-mate B_{i} of $\widetilde{P}_{i} \cup\{\Omega\}$. Then one of B_{1}, \ldots, B_{m} is not a signature.

To prove this proposition, we will need a lemma, for which we introduce some notations. For $i \in[m]$, let $Q_{i}:=\widetilde{P}_{i} \cup\{\Omega\}$. Given two signatures B_{i}, B_{ℓ}, we choose $U_{i \ell} \subseteq V(G)-\{s, t\}$ such that $\delta\left(U_{i \ell}\right)=B_{i} \triangle B_{\ell}$. For each $i \in[m]$, define $\widetilde{C_{i}}$ as follows: if \widetilde{P}_{i} is odd then $\widetilde{C_{i}}:=\emptyset$, and otherwise $\widetilde{C_{i}}$ is an odd circuit contained in the odd cycle $L_{i} \triangle \widetilde{P}_{i}=L_{i}-\widetilde{P}_{i}$.

Lemma 8.5. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m\right)$ be a bipartite Ω-system, where G is connected and Ω has ends s, s^{\prime}. Let $J \subseteq[m]$ be an index subset of size at least three. Suppose, for each $i \in J$, there exists a signature k-mate B_{i} for Q_{i}. Then, for each $i \in J$, the following hold:
(1) B_{i} is a k-mate of L_{i}, and so B_{i} is a cap of L_{i} in \mathcal{L},
(2) for $\ell \in[m]$ such that $\widetilde{C_{\ell}} \neq \emptyset,\left|B_{i} \cap \widetilde{C_{\ell}}\right|=1$,
(3) for $\ell \in[m]-\{i\}, B_{i} \cap Q_{\ell}=\{\Omega\}$.

Now pick $j \in J$ and let $S:=\bigcap\left(U_{i j}: i \in J, i<j\right)$. Then,
(4) $\Omega \notin \delta(S)$,
(5) $\delta(S) \subseteq \bigcup\left(B_{i}: i \in J, i \leq j\right)$,
(6) for distinct $i, \ell \in J-\{j\}, S \cap U_{i \ell}=\emptyset$,
(7) $Q_{j} \cap \delta(S)=\left(Q_{j} \cap B_{j}\right)-\{\Omega\}$,
(8) for $\ell \in[m]-\{j\}, Q_{\ell} \cap \delta(S)=\emptyset$.

Next take $L \in\left\{L_{m+1}, \ldots, L_{k}\right\}$ and $C \in\left\{\widetilde{C_{1}}, \ldots, \widetilde{C_{m}}\right\}$. Then,
(9) if $L \cap \delta(S) \neq \emptyset$, then $|L \cap \delta(S)|=2$ and $\left|L \cap \delta(S) \cap B_{j}\right|=1$,
(10) if $C \cap \delta(S) \neq \emptyset$, then $|C \cap \delta(S)|=2$,
(11) if $C \cap \delta(S) \neq \emptyset$ and, for some $i, \ell \in J$ such that $i<\ell<j, C \cap \delta(S) \subseteq B_{i} \cup B_{\ell}$, then $V(C) \subseteq U_{i j} \cup U_{\ell j}$.

Proof. (1) If $i \in J \cap[3]$, then $Q_{i} \subseteq L_{i}$, and so B_{i} is clearly a k-mate of L_{i}. Otherwise, when $i \in J-[3]$, $B_{i} \cap \widetilde{C_{i}} \neq \emptyset$ as B_{i} is a signature, and so

$$
\left|B_{i}-L_{i}\right| \leq\left|B_{i}-\widetilde{P}_{i}\right|-\left|B_{i} \cap \widetilde{C_{i}}\right| \leq(k-2)-1=k-3
$$

implying that B_{i} is a k-mate of L_{i}. Hence, by proposition 3.1, B_{i} is a cap of L_{i} in \mathcal{L}. (2) Thus, if $\ell \neq i$ then $\left|B_{i} \cap \widetilde{C_{\ell}}\right|=1$ (note B_{i} is a signature and $\widetilde{C_{\ell}}$ is an odd circuit). If $\ell=i$ and $i \notin[3]$, we have

$$
k-3 \leq\left|B_{i} \cap \widetilde{C_{4}}\right|+\cdots+\left|B_{i} \cap \widetilde{C_{m}}\right|+\left|B_{i} \cap L_{m+1}\right|+\cdots+\left|B_{i} \cap L_{k}\right| \leq\left|B_{i}-Q_{i}\right| \leq k-3
$$

so equality holds throughout, in particular, $\left|B_{i} \cap \widetilde{C_{i}}\right|=1$. Otherwise, when $\ell=i$ and $i \in[3]$, then

$$
k-3 \leq\left|B_{i} \cap L_{4}\right|+\cdots+\left|B_{i} \cap L_{k}\right| \leq\left|B_{i}-Q_{i}\right| \leq k-3
$$

so equality holds throughout, in particular, the middle equality implies that $B_{i} \cap \widetilde{C_{i}}=\{\Omega\}$.
(3) Note $\left|B_{i} \cap L_{\ell}\right|=1$. If $\ell \in[3]$, then $B_{i} \cap L_{\ell}=\{\Omega\}$ and so $B_{i} \cap Q_{\ell}=\{\Omega\}$. Otherwise, $\ell \in[m]-[3]$. By (2), $\left|B_{i} \cap \widetilde{C_{\ell}}\right|=1$ and so $B_{i} \cap P_{\ell}=\emptyset$, implying that $B_{i} \cap Q_{\ell}=\{\Omega\}$.
(4) Note $\Omega \in B_{i}, i \in J$. In particular, for all $i \in J$ such that $i<j, \Omega \notin \delta\left(U_{i j}\right)$ and so $s^{\prime} \notin U_{i j}$. Thus $s^{\prime} \notin S$, and since $s \notin S$, it follows that $\Omega \notin \delta(S)$.
(5) We have

$$
\delta(S) \subseteq \bigcup\left(\delta\left(U_{i j}\right): i \in J, i<j\right) \subseteq \bigcup\left(B_{i}: i \in J, i \leq j\right)
$$

(6) Observe that

$$
\delta\left(U_{i \ell} \triangle U_{\ell j} \triangle U_{j i}\right)=\delta\left(U_{i \ell}\right) \triangle \delta\left(U_{\ell j}\right) \triangle \delta\left(U_{j i}\right)=\left(B_{i} \triangle B_{\ell}\right) \triangle\left(B_{\ell} \triangle B_{j}\right) \triangle\left(B_{j} \triangle B_{i}\right)=\emptyset
$$

As G is connected, it follows that $U_{i \ell} \triangle U_{\ell j} \triangle U_{j i}$ is either \emptyset or $V(G)$. However, as $s, t \notin U_{i \ell} \triangle U_{\ell j} \triangle U_{j i}$, it must be that $U_{i \ell} \triangle U_{\ell j} \triangle U_{j i}=\emptyset$. Hence, $U_{i \ell} \cap U_{\ell j} \cap U_{j i}=\emptyset$, and so in particular, $U_{i \ell} \cap S=\emptyset$.
(7) Since $\Omega \in Q_{j} \cap B_{j}$, we have

$$
Q_{j} \cap \delta\left(U_{i j}\right)=Q_{j} \cap\left(B_{j} \triangle B_{i}\right)=\left(Q_{j} \cap B_{j}\right) \triangle\left(Q_{j} \cap B_{i}\right)=\left(Q_{j} \cap B_{j}\right) \triangle\{\Omega\}=\left(Q_{j} \cap B_{j}\right)-\{\Omega\}
$$

Thus,

$$
Q_{j} \cap \delta(S) \subseteq \bigcup\left(Q_{j} \cap \delta\left(U_{i j}\right): i \in J, i<j\right)=\left(Q_{j} \cap B_{j}\right)-\{\Omega\}
$$

Since $s, t \notin U_{i j}$ for all $i \in J$ with $i<j$ and since Q_{1}, \ldots, Q_{m} are all connected, equality holds above.
(8) As $|J| \geq 3$, there exists $i \in J-\{j, \ell\}$. By (4) $B_{i} \cap Q_{\ell}=B_{j} \cap Q_{\ell}=\{\Omega\}$, and so as Q_{ℓ} is connected, $V\left(Q_{\ell}\right) \cap U_{i j}=\emptyset$. In particular, $V\left(Q_{\ell}\right) \cap S=\emptyset$, so $Q_{\ell} \cap \delta(S)=\emptyset$.
(9) Since L is connected, we can traverse its vertices in some order $s=v_{0}, v_{1}, v_{2}, \ldots, v_{p}=t$, where $L=\left\{e_{x}:=\left\{v_{x-1}, v_{x}\right\}: 1 \leq x \leq p\right\}$. Choose $1 \leq x<y \leq p$ such that $e_{x}, e_{y} \in \delta(S)$ with $v_{x}, v_{y-1} \in S$. Either $B_{j} \cap L\left[s, v_{x}\right]=\emptyset$ or $B_{j} \cap L\left[v_{y-1}, t\right]=\emptyset\left(\right.$ as $\left|B_{j} \cap L\right|=1$. We assume $B_{j} \cap L\left[s, v_{x}\right]=\emptyset$, and the other case can be dealt with similarly. For $i \in J$ such that $i<j$, as $v_{x} \in U_{i j}$ and $s \notin U_{i j}$, it follows that $\delta\left(U_{i j}\right) \cap L\left[s, v_{x}\right] \neq \emptyset$, but $B_{j} \cap L\left[s, v_{x}\right]=\emptyset$, implying that $B_{i} \cap L\left[s, v_{x}\right] \neq \emptyset$. We claim that $e_{y} \in B_{j}$. As $v_{y} \notin S$, there exists $i \in J$ such that $i<j$ and $v_{y} \notin U_{i j}$ and so $e_{y} \in \delta\left(U_{i j}\right)$. However, as $\left|B_{i} \cap L\right|=1$ and $B_{i} \cap L\left[s, v_{x}\right] \neq \emptyset$, we get $B_{i} \cap L\left[v_{y-1}, t\right]=\emptyset$. In particular, $e_{y} \notin B_{i}$ and so $e_{y} \in B_{j}$. Since for all $i \in J$ such that $i \leq j,\left|B_{i} \cap L\right|=1$, it follows that $L \cap \delta(S)=\left\{e_{x}, e_{y}\right\}$ and $L \cap \delta(S) \cap B_{j}=\left\{e_{y}\right\}$.
(10) As above, we traverse the vertices of C in some order $v_{0}, v_{1}, \ldots, v_{p-1}, v_{p}=v_{0}$, where $v_{0} \in S$ and $C=\left\{e_{x}:=\left\{v_{x-1}, v_{x}\right\}: 1 \leq x \leq p\right\}$. Assume there exist $1 \leq x<y \leq p$ such that $e_{x}, e_{y} \in \delta(S)-B_{j}$ with $v_{x}, v_{y-1} \notin S$. Then, for some $i \in J$ such that $i<j, v_{x} \notin U_{i j}$ and $e_{x} \in \delta\left(U_{i j}\right)$. Since $e_{x} \notin B_{j}$, it follows that $e_{x} \in B_{i}$. Thus, as $\left|C \cap B_{i}\right|=1$ and $e_{y} \notin B_{j}, e_{y} \notin \delta\left(U_{i j}\right)$ and $v_{y-1} \in U_{i j}$. Let $C\left[v_{x}, v_{y-1}\right]$ be the $v_{x} v_{y-1}$-subpath of C not containing either of e_{x}, e_{y-1}. Then $C\left[v_{x}, v_{y-1}\right] \cap \delta\left(U_{i j}\right) \neq \emptyset$. Since
$C \cap B_{i}=\left\{e_{x}\right\}$, we get that $C\left[v_{x}, v_{y-1}\right] \cap B_{j} \neq \emptyset$. To summarize, if there exist $1 \leq x<y \leq p$ such that $e_{x}, e_{y} \in \delta(S)-B_{j}$ with $v_{x}, v_{y-1} \notin S$, then $C\left[v_{x}, v_{y-1}\right] \cap B_{j} \neq \emptyset$. Therefore, as $\left|C \cap B_{j}\right|=1$, we get that $|C \cap \delta(S)|=2$.
(11) By (10) $C \cap \delta(S)=\left\{e_{x}, e_{y}\right\}$ where $e_{x} \in B_{i}$ and $e_{y} \in B_{\ell}$. If $e_{x} \in B_{j}$ then $C \cap \delta\left(U_{i j}\right)=\emptyset$, but $V(C) \cap S \neq \emptyset$ and $S \subseteq U_{i j}$, implying that $V(C) \subseteq U_{i j} \subseteq U_{i j} \cup U_{\ell j}$, and we are done. Similarly, if $e_{y} \in B_{j}$ then $V(C) \subseteq U_{\ell j} \subseteq U_{i j} \cup U_{\ell j}$, and we are again done. Otherwise, $\left\{e_{x}, e_{y}\right\} \cap B_{j}=\emptyset$. As $e_{x} \in B_{i}-B_{j}$, it follows that $e_{x} \in \delta\left(U_{i j}\right)$, and since $v_{x-1} \in S \subseteq U_{i j}$, we get $v_{x} \notin U_{i j}$. Also, as $\left|C \cap B_{i}\right|=1$, we have $e_{y} \notin B_{i}$. This, together with the facts that $e_{y} \notin B_{j}$ and $v_{y} \in S \subseteq U_{i j}$, implies that $v_{y-1} \in U_{i j}$. Since $C \cap B_{i}=\left\{e_{x}\right\}$ and $\left|C \cap B_{j}\right|=1$, there exists $z \in[y-1]-[x]$ such that

$$
C \cap B_{j}=\left\{e_{z}\right\} \quad \text { and } \quad v_{z}, v_{z+1}, \ldots, v_{y-1} \in U_{i j} .
$$

Similarly, we have

$$
C \cap B_{\ell}=\left\{e_{z}\right\} \quad \text { and } \quad v_{x}, v_{x+1}, \ldots, v_{z-1} \in U_{\ell j} .
$$

As a result, since $v_{0}, v_{1}, \ldots, v_{x-1}, v_{y}, v_{y+1}, \ldots, v_{p-1} \in S \subseteq U_{i j} \cap U_{\ell j}$, it follows that $V(C) \subseteq U_{i j} \cup$ $U_{\ell j}$.

We are now ready to prove the mate proposition 8.4.

Proof of proposition 8.4. We assume that Ω has ends s, s^{\prime}. By identifying a vertex of each component with s, if necessary, we may assume that G is connected. Suppose, for a contradiction, that B_{1}, \ldots, B_{m} are all signatures. We will be applying lemma 8.5 to the index set $[m]$. Notice first that as a corollary of parts (1)-(3), we have that $B_{j} \cap L_{i} \subseteq \widetilde{C}_{i} \cup \widetilde{P}_{i}$ for all $i, j \in[m]$. For distinct $i, j \in[m]$, choose $U_{i j} \subseteq V(G)-\{s, t\}$ such that $\delta\left(U_{i j}\right)=B_{i} \triangle B_{j}$. For each $j \in\{3, \ldots, m\}$, let

$$
S_{j}:=\bigcap\left(U_{i j}: 1 \leq i<j\right)
$$

Let $C \in\left\{\widetilde{C_{1}}, \ldots, \widetilde{C_{m}}\right\}$ and $S_{j} \in\left\{S_{3}, \ldots, S_{m}\right\}$. We say C is bad for S_{j} if

$$
\left|C \cap \delta\left(S_{j}\right)\right|=2 \quad \text { and } \quad C \cap \delta\left(S_{j}\right) \cap B_{j}=\emptyset
$$

Claim 1. One of S_{3}, \ldots, S_{m} has no bad circuit.

Proof. Let C be a bad circuit for some $S_{j}, 3 \leq j \leq m$. Then by lemma 8.5 parts (2) and (5),

$$
C \cap \delta\left(S_{j}\right) \subseteq B_{i} \cup B_{\ell}, \quad \text { for some } 1 \leq i<\ell<j
$$

Therefore, by lemma $8.5(11), V(C) \subseteq U_{i j} \cup U_{\ell j}$. In particular, $s \notin V(C)$ and

$$
V(C) \cap S_{j+1}=V(C) \cap S_{j+2}=\cdots=V(C) \cap S_{m}=\emptyset
$$

since by lemma $8.5(6),\left(U_{i j} \cup U_{\ell j}\right) \cap S=\emptyset$, for all $S \in\left\{S_{j+1}, \ldots, S_{m}\right\}$. As a result, $C \notin\left\{\widetilde{C_{1}}, \widetilde{C_{2}}, \widetilde{C_{3}}\right\}$ and C is not bad for any of S_{j+1}, \ldots, S_{m}. Thus every circuit is bad for at most one of S_{3}, \ldots, S_{m} and every bad circuit is one of $\widetilde{C_{4}}, \ldots, \widetilde{C_{m}}$. Thus, one of S_{3}, \ldots, S_{m} has no bad circuit.

Choose $j \in\{3, \ldots, m\}$ so that S_{j} has no bad circuit, and let $B:=B_{j} \triangle \delta\left(S_{j}\right)$. Notice that for each $i \in[m], B \cap L_{i} \subseteq \widetilde{C_{i}} \cup \widetilde{P}_{i}$.

Claim 2. B is a cover of size $k-2$.

Proof. It is clear that B is a cover. It remains to show that $|B|=k-2$. By lemma 8.5 ,

$$
B \subseteq \bigcup\left(B_{i}: 1 \leq i \leq j\right) \subseteq \bigcup_{i=1}^{k} L_{i}
$$

The first inclusion follows from part (5) and the second inclusion follows from part (1). Therefore, as $\Omega \in B$, it suffices to show that, for all $i \in[k],\left|B \cap L_{i}\right|=1$. Observe that, for all $i \in[k]-\{j\}$, $\left|B_{j} \cap L_{i}\right|=1$.

Take $i \in[k]-[m]$. If $L_{i} \cap \delta\left(S_{j}\right)=\emptyset$, then $\left|L_{i} \cap B\right|=\left|L_{i} \cap B_{j}\right|=1$. Otherwise, when $L_{i} \cap \delta\left(S_{j}\right) \neq \emptyset$, lemma 8.5(9) implies $\left|L_{i} \cap \delta\left(S_{j}\right)\right|=2$ and $\left|L_{i} \cap \delta\left(S_{j}\right) \cap B_{j}\right|=1$, so $\left|L_{i} \cap B\right|=\left|L_{i} \cap\left(B_{j} \triangle \delta\left(S_{j}\right)\right)\right|=1$.

Next take $i \in[m]$. We will first consider $\widetilde{C_{i}} \cap B$, given that $\widetilde{C_{i}} \neq \emptyset$. If $\widetilde{C_{i}} \cap \delta\left(S_{j}\right)=\emptyset$, then $\left|\widetilde{C_{i}} \cap B\right|=\left|\widetilde{C_{i}} \cap B_{j}\right|=1$. Otherwise, $\widetilde{C_{i}} \cap \delta\left(S_{j}\right) \neq \emptyset$. Then, by lemma 8.5(10), $\left|\widetilde{C_{i}} \cap \delta\left(S_{j}\right)\right|=2$. By our choice of $S_{j}, \widetilde{C_{i}}$ is not bad for S_{j}, and so $\left|\widetilde{C_{i}} \cap \delta\left(S_{j}\right) \cap B_{j}\right|=1$. Thus, $\left|\widetilde{C_{i}} \cap B\right|=\left|\widetilde{C_{i}} \cap\left(B_{j} \triangle \delta\left(S_{j}\right)\right)\right|=1$. We next consider $\left(\{\Omega\} \cup \widetilde{P}_{i}\right) \cap B$. If $i \neq j$, then by lemma 8.5,

$$
\begin{aligned}
\left(\{\Omega\} \cup \widetilde{P}_{i}\right) \cap B & =\left(\{\Omega\} \cup \widetilde{P}_{i}\right) \cap\left(B_{j} \triangle \delta\left(S_{j}\right)\right) \\
& =\left(\{\Omega\} \cup \widetilde{P}_{i}\right) \cap B_{j} \quad \text { by part }(8) \\
& =\{\Omega\} \quad \text { by part }(3)
\end{aligned}
$$

On the other hand, if $i=j$, then by lemma 8.5 ,

$$
\begin{aligned}
\left(\{\Omega\} \cup \widetilde{P_{j}}\right) \cap B & =\left(\{\Omega\} \cup \widetilde{P_{j}}\right) \cap\left(B_{j} \triangle \delta\left(S_{j}\right)\right) \\
& =\left[\left(\{\Omega\} \cup \widetilde{P_{j}}\right) \cap B_{j}\right] \triangle\left[\left(\{\Omega\} \cup \widetilde{P_{j}}\right) \cap \delta\left(S_{j}\right)\right] \\
& =\{\Omega\} \quad \text { by part }(7) .
\end{aligned}
$$

Since whenever $\Omega \in \widetilde{P}_{i}$ then $\widetilde{C_{i}}=\emptyset$,

$$
\left|L_{i} \cap B\right|=\left|\widetilde{C_{i}} \cap B\right|+\left|\widetilde{P}_{i} \cap B\right|=1
$$

as $L_{i} \cap B \subseteq \widetilde{C_{i}} \cup \widetilde{P}_{i}$.

By claim $2,|B|=k-2$. However, B is cover and so $|B| \geq \tau(G, \Sigma) \geq k$, a contradiction.
8.3. The odd- K_{5} lemma. The following lemma is essentially due to Schrijver [11], and the presentation follows Geelen and Guenin [3].

Lemma $8.6([11,3])$. Let $G=(V, E)$ be a graph and let Ω be an edge of G with ends s, s^{\prime}. Let $U_{0}, U_{1}, U_{2}, U_{3}$ be a partition of $V(G)$, and let P_{1}, P_{2}, P_{3} be internally vertex-disjoint ss'-paths in $G \backslash \Omega$ such that
(i) $s, s^{\prime} \in U_{0}$, and for $i \in\{0,1,2,3\}, U_{i}$ is a stable set in $G \backslash \Omega$,
(ii) for $i \in[3], V\left(P_{i}\right) \subseteq U_{0} \cup U_{i}$, and
(iii) for distinct $i, j \in[3]$, there is a path between P_{i} and P_{j} in $G\left[U_{i} \cup U_{j}\right]$.

Then $(G, E(G))$ has a $\widetilde{K_{5}}$ minor.

8.4. Mates and connectivity.

Proposition 8.7. Let $(G, \Sigma,\{s, t\})$ be a signed graft and $\left(L_{1}, \ldots, L_{k}\right)$ be an (Ω, k)-packing, where $\Omega \in \delta(s)$. Suppose that for $i=1,2$ there exists a signature B_{i} that is a k-mate of L_{i}. Let $U \subseteq$ $V(G)-\{s, t\}$ such that $B_{1} \triangle B_{2}=\delta(U)$. For $i=1,2$ let $W_{i}=V\left(L_{i}\right) \cap U$. Then there exists a path P in $G[U]$ between a vertex in W_{1} and a vertex in W_{2} such that $P \cap\left(B_{1} \cup B_{2}\right)=\emptyset$.

Proof. Suppose first that there is no path in $G[U]$ between W_{1} and W_{2}. Then there exists $U^{\prime} \subset U$ such that $W_{1} \subseteq U^{\prime}, W_{2} \subseteq U-U^{\prime}$ and there is no edge of G with one end in U^{\prime} and one end in $U-U^{\prime}$. Then $B=B_{1} \triangle \delta\left(U^{\prime}\right)$ is a signature of $(G, \Sigma,\{s, t\})$ where $B \subseteq B_{1} \cup B_{2}$ and $B \cap\left(L_{1} \cup L_{2}\right)=\{\Omega\}$, contradicting proposition 3.4 part (4).

Thus there exists a path P in $G[U]$ between W_{1} and W_{2} with minimum number of edges in $B_{1} \cup B_{2}$. Suppose P has an edge $e \in B_{i}$ for some $i \in[2]$. Then $e \in B_{1} \cap B_{2}$ as $e \notin \delta(U)$. Since $s \notin U, e \neq \Omega$. Proposition 3.1 implies that for some $j \in[k]-[3], e \in L_{j}$ and $B_{1} \cap L_{j}=B_{2} \cap L_{j}=\{e\}$. Hence, since $e \in E(G[U])$ and $s, t \notin U$, e must belong to an odd circuit C contained in $L_{j} \cap E(G[U])$. But then replacing P by $P \triangle C$ we obtain a new walk in $G[U]$ between W_{1} and W_{2} with fewer edges in $B_{1} \cup B_{2}$, contradicting our choice of P.

8.5. Acyclicity and flows.

Proposition 8.8. Consider an acyclic digraph whose edges can be written as the union of dipaths Q_{1}, \ldots, Q_{n} rooted from some vertex x. Suppose that Q_{1}, \ldots, Q_{n} use distinct arcs incident with x. Consider the following partial ordering defined on the vertices: for vertices $u, v, u \leq v$ if there is a uv-dipath. For every $i \in[n]$, let v_{i} be the second smallest vertex of Q_{i} that also lies on a dipath in
$\left\{Q_{1}, \ldots, Q_{n}\right\}-\left\{Q_{i}\right\}$ (assuming v_{i} exists). Then there exists an index subset $I \subseteq[n]$ of size at least two such that, for each $i \in I$, the following hold:

- $v_{i} \leq v_{1}$, and there is no $j \in[n]$ such that $v_{j}<v_{i}$, and
- for each $j \in[n], v_{i}=v_{j}$ if and only if $j \in I$.

Proof. Suppose such an index subset does not exist. In particular, for any index $i \in[n]$ such that $v_{i} \leq v_{1}$, there exists $\pi(i) \in[n]-\{i\}$ such that $v_{i} \in V\left(Q_{\pi(i)}\right)$ and $v_{i}>v_{\pi(i)}$. Then one can construct the infinite chain $v_{1}>v_{\pi(1)}>v_{\pi(\pi(1))}>\ldots$, a contradiction as $>$ is a partial ordering on the vertices of the acyclic digraph.

Remark 8.9. Let $(\vec{H},\{\Omega\},\{s, t\})$ be a directed signed graft, where $\Omega \in \delta(s)$ and $\vec{H} \backslash \Omega$ is acyclic. Suppose $E(\vec{H})$ can be written as the union of pairwise Ω-disjoint edge sets $L_{1}, L_{2}, L_{3}, P_{4}, \ldots, P_{m}$ where $m \geq 3, L_{1}, L_{2}, L_{3}$ are directed minimal odd st-joins and P_{4}, \ldots, P_{m} are even st-dipaths. Let L be a directed minimal odd st-join. Then the following hold:
(1) there exist pairwise Ω-disjoint edge sets $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, \ldots, P_{m}^{\prime}$ where $L_{1}^{\prime}=L, L_{2}^{\prime}, L_{3}^{\prime}$ are directed minimal odd st-joins, $P_{4}^{\prime}, \ldots, P_{m}^{\prime}$ are even st-dipaths, and the number of non-simple minimal odd st-joins among $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ is equal to that of L_{1}, L_{2}, L_{3},
(2) if exactly one of L_{1}, L_{2}, L_{3} is non-simple, then L is simple if and only if L is Ω-disjoint from a directed odd circuit,
(3) if at least two of L_{1}, L_{2}, L_{3} are non-simple, then L is Ω-disjoint from a directed odd circuit.

9. Preliminaries for non-Simple bipartite Ω-SYstems

In this section, we lay the groundwork to prove proposition 2.6 , namely that a minimal non-simple bipartite Ω-system has an F_{7} or $\widetilde{K_{5}}$ minor.

9.1. Signature mates.

Proposition 9.1. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ be a non-simple bipartite Ω-system. Let $L \subseteq E(\vec{H})$ be a directed minimal odd st-join that is Ω-disjoint from a directed circuit $C \subseteq E(\vec{H})$. Let B be a k-mate of L. Then B is not an st-cut and $B \cap E(\vec{H})=B \cap L$.

Proof. Since $\vec{H} \backslash \Omega$ is acyclic, we can write $E(\vec{H})$ as the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, \ldots, P_{m}^{\prime}$ such that, for

$$
\mathcal{L}^{\prime}=\left(L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, L_{4}^{\prime}:=P_{4}^{\prime} \cup C_{4}, \ldots, L_{m}^{\prime}:=P_{m}^{\prime} \cup C_{m}, L_{m+1}, \ldots, L_{k}\right),
$$

$\left((G, \Sigma,\{s, t\}), \mathcal{L}^{\prime}, m, \vec{H}\right)$ is a non-simple bipartite Ω-system, $L_{1}^{\prime}=L$ and $C\left(L_{2}^{\prime}\right)=C$. By proposition 3.2, $B \subseteq L \cup L_{4}^{\prime} \cup \cdots \cup L_{m}^{\prime} \cup L_{m+1} \cup \cdots \cup L_{k}$. Since $B \cap L_{2}^{\prime} \neq \emptyset$ and $B \cap L_{2}^{\prime} \subseteq\{\Omega\}$, it follows
that $B \cap L_{2}^{\prime}=\{\Omega\}$, so $B \cap C=\{\Omega\}$. Hence, B is not an st-cut, so it is a signature. Moreover, by proposition 8.3, $B \cap E(\vec{H})=B \cap L$.

Proposition 9.2. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ be a non-simple bipartite Ω-system. Choose an even st-dipath P of \vec{H} such that $P \cup\{\Omega\}$ has a k-mate B. Then B is not an st-cut and $B \cap E(\vec{H})=\{\Omega\} \cup(B \cap P)$.

Proof. Since $\vec{H} \backslash \Omega$ is acyclic, we can write $E(\vec{H})$ as the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, \ldots, P_{m}^{\prime}$ such that, for

$$
\mathcal{L}^{\prime}=\left(L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, L_{4}^{\prime}:=P_{4}^{\prime} \cup C_{4}, \ldots, L_{m}^{\prime}:=P_{m}^{\prime} \cup C_{m}, L_{m+1}, \ldots, L_{k}\right)
$$

$\left((G, \Sigma,\{s, t\}), \mathcal{L}^{\prime}, m, \vec{H}\right)$ is a non-simple bipartite Ω-system and $P\left(L_{1}^{\prime}\right)=P$. By proposition 3.2, $B \subseteq\{\Omega\} \cup P \cup L_{4}^{\prime} \cup \cdots \cup L_{m}^{\prime} \cup L_{m+1} \cup \cdots \cup L_{k}$, and $\Omega \in B$ as B intersects L_{2}^{\prime}. Then $B \cap C\left(L_{1}^{\prime}\right)=\{\Omega\}$, implying that B is not an st-cut, so it is a signature. Moreover, by proposition 8.3 and the fact that $\Omega \in B$, it follows that $B \cap E(\vec{H})=\{\Omega\} \cup(B \cap P)$.

9.2. Two disentangling lemmas.

Lemma 9.3. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ be a minimal non-simple bipartite Ω-system. Take disjoint subsets $I_{d}, I_{c} \subseteq E(\vec{H} \backslash \Omega)$ and $T^{\prime} \subseteq\{s, t\}$ where
(1) I_{c} is non-empty, if I_{c} contains an st-path then $T^{\prime}=\emptyset$, and if not then $T^{\prime}=\{s, t\}$,
(2) every signature or st-cut disjoint from I_{c} intersects I_{d} in an even number of edges,
(3) if $T^{\prime}=\emptyset$, there is a directed subgraph $\overrightarrow{H^{\prime}}$ of $\vec{H} / I_{c} \backslash I_{d}$ that is the union of directed odd circuits $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ where
$\Omega \in L_{1}^{\prime} \cap L_{2}^{\prime} \cap L_{3}^{\prime}$ and $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are pairwise Ω-disjoint, $\overrightarrow{H^{\prime}} \backslash \Omega$ is acyclic.
(4) if $T^{\prime}=\{s, t\}$, there is a directed subgraph $\overrightarrow{H^{\prime}}$ of $\vec{H} / I_{c} \backslash I_{d}$ that is the union of directed minimal odd st-joins $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ and even st-dipaths $P_{4}^{\prime}, \ldots, P_{m}^{\prime}$, where
$\Omega \in L_{1}^{\prime} \cap L_{2}^{\prime} \cap L_{3}^{\prime}, \Omega \notin P_{4}^{\prime} \cup \ldots \cup P_{m}^{\prime}$ and $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, \ldots, P_{m}^{\prime}$ are pairwise Ω-disjoint, one of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ is non-simple,
$\overrightarrow{H^{\prime}} \backslash \Omega$ is acyclic.
Then one of the following does not hold:
(i) $I_{d} \cup\{\Omega\}$ does not have a k-mate,
(ii) for every directed odd T^{\prime}-join L^{\prime} of $\overrightarrow{H^{\prime}} \Omega$-disjoint from a directed odd circuit, either $L^{\prime} \cup I_{d}$ contains a directed odd st-join of $\vec{H} \Omega$-disjoint from a directed odd circuit or $L^{\prime} \cup I_{d}$ has a k-mate in $(G, \Sigma,\{s, t\})$ disjoint from I_{c}.

Proof. Suppose otherwise. Let $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right):=(G, \Sigma,\{s, t\}) / I_{c} \backslash I_{d}$ where $\Sigma^{\prime}=\Sigma$; this signed graft is well-defined by (1). For $i \in[m]-[3]$, let $L_{i}^{\prime}:=L_{i}-P_{i}$ if $T^{\prime}=\emptyset$, and let $L_{i}^{\prime}:=\left(L_{i}-P_{i}\right) \cup P_{i}^{\prime}$ otherwise. Let $\mathcal{L}^{\prime}:=\left(L_{1}^{\prime}, \ldots, L_{m}^{\prime}, L_{m+1}, \ldots, L_{k}\right)$. If $T^{\prime}=\emptyset$, let $m^{\prime}:=3$, and if not, let $m^{\prime}:=m$. We will show that $\left(\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right), \mathcal{L}^{\prime}, m^{\prime}, \overrightarrow{H^{\prime}}\right)$ is a non-simple bipartite Ω-system, and this will yield a contradiction with the minimality of the original non-simple bipartite Ω-system, thereby finishing the proof.
(NS1) We first show that $\left(\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right), \mathcal{L}^{\prime}, m^{\prime}\right)$ is a bipartite Ω-system. (B1) By (2) every signature or T^{\prime}-cut of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ has the same parity as $\tau\left(G, \Sigma,\{s, t\}\right.$), implying that $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ is an Eulerian signed graft. (B2) It also implies that $k, \tau(G, \Sigma,\{s, t\}), \tau\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ have the same parity, so every minimal cover of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ has the same size parity as k. We claim that $\tau\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right) \geq k$. Let B^{\prime} be a minimal cover of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$. If $\Omega \notin B^{\prime}$, then

$$
\left|B^{\prime}\right| \geq \sum\left(\left|B^{\prime} \cap L^{\prime}\right|: L^{\prime} \in \mathcal{L}^{\prime}\right) \geq k
$$

Otherwise, $\Omega \in B^{\prime}$. In this case, $B^{\prime} \cup I_{d}$ contains a cover B of $(G, \Sigma,\{s, t\})$. By (i), $I_{d} \cup\{\Omega\}$ does not have a k-mate, so

$$
k-2 \leq\left|B-\left(I_{d} \cup\{\Omega\}\right)\right| \leq\left|B-I_{d}\right|-1 \leq\left|B^{\prime}\right|-1,
$$

and since $\left|B^{\prime}\right|, k$ have the same parity, it follows that $\left|B^{\prime}\right| \geq k$. Thus, \mathcal{L}^{\prime} is an (Ω, k)-packing. When $T^{\prime}=\emptyset, m^{\prime}=3$. When $T^{\prime}=\{s, t\}$, then $m^{\prime}=m$ and for $j \in\left[m^{\prime}\right]-[3], L_{j}^{\prime}$ contains even st-path P_{j}^{\prime} and some odd circuit in $L_{j}^{\prime}-P_{j}^{\prime}$, and for $j \in[k]-\left[m^{\prime}\right], L_{j}$ remains connected in G^{\prime}. (B3) is clear from construction.
(NS2) and (NS3) follow from (3) and (4). (NS4) Let L^{\prime} be a directed odd T^{\prime}-join of $\overrightarrow{H^{\prime}}$ that is Ω-disjoint from a directed odd circuit. We claim that $L^{\prime} \cup I_{d}$ has a k-mate in $(G, \Sigma,\{s, t\})$ disjoint from I_{c}. By (ii), we may assume that $L^{\prime} \cup I_{d}$ contains a directed odd st-join L of \vec{H} that is Ω-disjoint from a directed odd circuit. Since $((G, \Sigma,\{s, t\}), \mathcal{L}, m, \vec{H})$ is a non-simple bipartite Ω-system, it follows that L has a k-mate B. By proposition 9.1, $B \cap E(\vec{H})=B \cap L$, implying that $B \cap I_{c}=\emptyset$, as claimed. So B is a k-mate of $L^{\prime} \cup I_{d}$ disjoint from $I_{c} . B-I_{d}$ contains a minimal cover B^{\prime} of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$, and since

$$
\left|B^{\prime}-L^{\prime}\right| \leq\left|\left(B-I_{d}\right)-L^{\prime}\right| \leq|B-L| \leq k-3
$$

it follows that B^{\prime} is a k-mate of L^{\prime}.

We will need an analogue of this lemma for the case $T=\emptyset$. As the proof is almost the same (and less intricate), we leave the proof as an exercise:

Lemma 9.4. Let $\left((G, \Sigma, \emptyset), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), 3, \vec{H}\right)$ be a minimal non-simple bipartite Ω-system, where $\Omega \in \delta(s)$. Take disjoint subsets $I_{d}, I_{c} \subseteq E(\vec{H} \backslash \Omega)$ where
(1) I_{c} is non-empty,
(2) every signature disjoint from I_{c} intersects I_{d} in an even number of edges,
(3) there is a directed subgraph $\overrightarrow{H^{\prime}}$ of $\vec{H} / I_{c} \backslash I_{d}$ that is the union of directed odd circuits $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ where
$\Omega \in L_{1}^{\prime} \cap L_{2}^{\prime} \cap L_{3}^{\prime}$ and $L_{1}^{\prime}, L_{2}^{\prime}$, L_{3}^{\prime} are pairwise Ω-disjoint, $\overrightarrow{H^{\prime}} \backslash \Omega$ is acyclic.

Then one of the following does not hold:
(i) $I_{d} \cup\{\Omega\}$ does not have a signature k-mate,
(ii) for every directed odd cycle L^{\prime} of $\overrightarrow{H^{\prime}} \Omega$-disjoint from a directed odd circuit, either $L^{\prime} \cup I_{d}$ contains a directed odd cycle of $\vec{H} \Omega$-disjoint from a directed odd circuit or $L^{\prime} \cup I_{d}$ has a signature k-mate in (G, Σ, \emptyset) disjoint from I_{c}.
9.3. Setup for the proof of proposition 2.6. Let $\left((G, \Sigma, T), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ be a minimal non-simple bipartite Ω-system. We know that $\vec{H} \backslash \Omega$ is acyclic, and by (B3), every odd circuit in \vec{H} contains Ω and no even st-path in \vec{H} contains Ω. Hence,

Remark 9.5. Let C be a directed odd circuit and let P be an even st-dipath in \vec{H}. Then C and P share exactly one vertex, namely s.

There are three possibilities:
I: all three of L_{1}, L_{2}, L_{3} are non-simple (see $\S 10$),
II: exactly two of L_{1}, L_{2}, L_{3} are non-simple (see $\S 11$),
III: exactly one of L_{1}, L_{2}, L_{3} is non-simple (see $\S 12$).
We will assume throughout this section that Ω has ends s, s^{\prime}.

10. Non-Simple bipartite Ω-System - part I

Here we prove proposition 2.6 when all of L_{1}, L_{2}, L_{3} are non-simple. By remark 9.5 , for $i \in[3]$ and $j \in[m], C_{i}$ and P_{j} share exactly one vertex, namely s.

Claim 1. There exists $j \in[m]$ such that $P_{j} \cup\{\Omega\}$ has no k-mate.
Proof. Suppose otherwise. Then $T=\{s, t\}$, as $\tau(G, \Sigma, T) \geq k$ (so $\{\Omega\}$ has no k-mate). Then by the mate proposition 8.4 there exists $i \in[m]$ such that the k-mate of $P_{i} \cup\{\Omega\}$ is an st-cut, contradicting proposition 9.2.

By swapping the roles of P_{1} and P_{j} in \mathcal{L}, if necessary, we may assume that $j=1$.
Claim 2. $T=\emptyset$.

Proof. Suppose for a contradiction that $T=\{s, t\}$. Let $I_{d}:=P_{1}$ and $I_{c}:=P_{2} \cup \ldots \cup P_{m}$. Let $T^{\prime}:=\emptyset$, and for $j \in[3]$ let $L_{j}^{\prime}:=C_{j}$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$. It is clear that (1)-(4) of the disentangling lemma 9.3 hold. By claim $1, P_{1} \cup\{\Omega\}=I_{d} \cup\{\Omega\}$ has no k-mate, so (i) holds. Let L^{\prime} be a directed odd cycle of $\overrightarrow{H^{\prime}}$. Then it is clear that $L^{\prime} \cup I_{d}$ contains a directed minimal odd st-join L of \vec{H} such that $L^{\prime} \subseteq L$. By remark $8.9(3), L$ and so L^{\prime} is Ω-disjoint from a directed odd circuit, and since I_{d} is Ω-disjoint from every directed odd circuit by remark 9.5 , we get that $L^{\prime} \cup I_{d}$ is Ω-disjoint from a directed odd circuit, so (ii) holds as well, a contradiction with the disentangling lemma 9.3.

The rest of this part is dedicated to finding a $\widetilde{K_{5}}$ minor in $(G, \Sigma, T=\emptyset)$, and our arguments are very similar to the treatment of Geelen and Guenin [3], except for our use of Menger's theorem in claim 4.

We may assume that in \vec{H}, Ω is directed from s to s^{\prime}, and for $i \in[3], L_{i}-\{\Omega\}$ is an $s^{\prime} s$-dipath. Consider the following partial ordering defined on the vertices of \vec{H} : for $u, v \in V(\vec{H}), u \leq v$ if there is a $u v$-dipath in $\vec{H} \backslash \Omega$; this partial ordering is well-defined as $\vec{H} \backslash \Omega$, by (NS3). For each $i \in[3]$, let v_{i} be the second smallest vertex of $L_{i}-\{\Omega\}$ that lies on a dipath in $\left\{L_{1}, L_{2}, L_{3}\right\}-\left\{L_{i}\right\}$ By proposition 8.8, there exists an index subset $I \subseteq[3]$ of size at least two such that, for each $i \in I$ and $j \in[3], v_{j}=v_{i}$ if and only if $j \in I$. We may assume that $1 \in I$.

Claim 3. For each $i \in I, L_{i}\left[s^{\prime}, v_{i}\right] \cup\{\Omega\}$ has a signature k-mate.

Proof. Suppose otherwise. Let $I_{d}:=L_{i}\left[s^{\prime}, v_{i}\right]$ and $I_{c}:=\bigcup\left(L_{j}\left[s^{\prime}, v_{j}\right]: j \in I, j \neq i\right)$. For $i \in[3]$ let $L_{i}^{\prime}:=L_{i}-\left(I_{c} \cup I_{d}\right)$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$. It is easily seen that (1)-(3) of the disentangling lemma 9.4 hold. By our hypothesis, (i) holds. Let L^{\prime} be a directed odd cycle of $\overrightarrow{H^{\prime}}$. Then $L^{\prime} \cup I_{c}$ contains a directed odd circuit of \vec{H}, implying that $L^{\prime} \cup I_{d}$ also contains a directed odd circuit of \vec{H}, which by remark $8.9(3)$ is Ω-disjoint from a directed odd circuit. Hence, (ii) holds as well, a contradiction to the disentangling lemma 9.4.

Claim 4. There exist an $s^{\prime} s$-dipath P and a $v_{1} s$-dipath Q in $\vec{H} \backslash\{\Omega\}$ that are internally vertex-disjoint.

Proof. Suppose otherwise. Then $s \neq v_{1}$ and there exists a vertex $v \in V(\vec{H})-\left\{s, s^{\prime}\right\}$ such that there is no $s^{\prime} s$-dipath in $\vec{H} \backslash v$. One of the following holds:
(a) there exists an $s^{\prime} v$-dipath R in \vec{H} such that $R \cup\{\Omega\}$ has no k-mate:

Let $I_{d}:=R, I_{c}:=\bigcup\left(L_{i}\left[s^{\prime}, v\right]: i \in[3]\right)-R$, for $i \in[3]$ let $L_{i}^{\prime}:=L_{i}-\left(I_{c} \cup I_{d}\right)$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$.
(b) for every $s^{\prime} v$-dipath R in $\vec{H}, R \cup\{\Omega\}$ has a (signature) k-mate:

Let $I_{d}:=\emptyset, I_{c}:=\bigcup\left(L_{i}[v, s]: i \in[3]\right)$, for $i \in[3]$ let $L_{i}^{\prime}:=L_{i}\left[s^{\prime}, v\right] \cup\{\Omega\}$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$.
It is not difficult to check that in either of the cases above, (1)-(3) and (i)-(ii) of the disentangling lemma 9.4 hold, a contradiction.

After redefining \mathcal{L}, if necessary, we may assume that $\{1,2\} \subseteq I$ and $P=L_{3}-\{\Omega\}$.
Claim 5. ($\left.L_{i}-\{\Omega\}: i \in[3]\right)$ are pairwise internally vertex-disjoint.
Proof. It suffices to prove that $Q=\emptyset$. Suppose not. Let $I_{c}:=Q, I_{d}:=\emptyset$, for $i \in[2]$ let $L_{i}^{\prime}:=$ $L_{i}\left[s^{\prime}, v_{i}\right] \cup\{\Omega\}$, and let $L_{3}^{\prime}:=L_{3}$. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$. Note that ($\left.L_{i}^{\prime}-\{\Omega\}: i \in[3]\right)$ are pairwise internally vertex-disjoint. By our hypothesis, claim 3, (NS4), and proposition 8.3, (1)-(3) and (i)-(ii) of the disentangling lemma 9.4 hold, a contradiction.

Claim 6. $(G, \Sigma, T=\emptyset)$ has a $\widetilde{K_{5}}$ minor.
Proof. By identifying a vertex of each component with s, if necessary, we may assume that G is connected. By (NS4), for each $i \in[3]$, there exists a signature k-mate B_{i} of L_{i}. For distinct $i, j \in[3]$, let $U_{i j} \subseteq V(G)-\{s, t\}$ such that $\delta\left(U_{i j}\right)=B_{i} \triangle B_{j}$; by proposition 8.7, there exists a shortest path $P_{i j}$ between L_{i} and L_{j} in $G\left[U_{i j}\right] \backslash\left(B_{i} \cup B_{j}\right)$. To finish proving the claim, we will use the odd- K_{5} lemma 8.6 to prove that $L_{1} \cup L_{2} \cup L_{3} \cup P_{12} \cup P_{23} \cup P_{31}$ has a $\widetilde{K_{5}}$ minor.

Observe that

$$
\emptyset=\left(B_{1} \triangle B_{2}\right) \Delta\left(B_{2} \triangle B_{3}\right) \triangle\left(B_{3} \triangle B_{1}\right)=\delta\left(U_{12}\right) \triangle \delta\left(U_{23}\right) \triangle \delta\left(U_{31}\right)=\delta\left(U_{12} \triangle U_{23} \triangle U_{31}\right),
$$

implying that $U_{12} \Delta U_{23} \Delta U_{31}$ is either \emptyset or $V(G)$, as G is connected. However, $s, t \notin U_{12} \Delta U_{23} \Delta U_{31}$, implying that $U_{12} \triangle U_{23} \Delta U_{31}=\emptyset$. As a result, there exist pairwise disjoint subsets $U_{1}, U_{2}, U_{3} \subseteq$ $V(G)$ such that, for distinct $i, j \in[3], U_{i j}=U_{i} \cup U_{j}$. Let $U_{0}:=V(G)-\left(U_{1} \cup U_{2} \cup U_{3}\right)$. Since $L_{1} \cap\left(B_{2} \cup B_{3}\right)=\{\Omega\}$, it follows that $L_{1} \cap \delta\left(U_{23}\right)=\emptyset$, and since L_{1} is connected, it must be that $V\left(L_{1}\right) \subseteq U_{0} \cup U_{1}$. Similarly, $V\left(L_{2}\right) \subseteq U_{0} \cup U_{2}$ and $V\left(L_{3}\right) \subseteq U_{0} \cup U_{3}$. Let $B:=B_{1} \triangle B_{2} \triangle B_{3}$, which is a signature for (G, Σ, T). Observe that the edges in B are precisely those with ends in different sets among $U_{0}, U_{1}, U_{2}, U_{3}$. Now contract all the edges of G not in B and apply the odd- K_{5} lemma 8.6 to conclude that $L_{1} \cup L_{2} \cup L_{3} \cup P_{12} \cup P_{23} \cup P_{31}$, and in turn (G, Σ, T), has a $\widetilde{K_{5}}$ minor.

11. Non-simple bipartite Ω-system - part II

Here we prove proposition 2.6 when exactly two of L_{1}, L_{2}, L_{3}, say L_{1} and L_{2}, are non-simple. Observe that $T \neq \emptyset$. Recall that $T=\{s, t\}$ and Ω has ends s, s^{\prime}.
Claim 1. There exists $j \in[m]-\{3\}$ such that $P_{j} \cup\{\Omega\}$ has no k-mate.

Proof. Suppose otherwise. As P_{3} is a directed odd $s t$-join of \vec{H} that is Ω-disjoint from directed odd circuit C_{1}, it has a k-mate. Thus by the mate proposition 8.4 there exists $i \in[m]$ such that the k-mate of $P_{i} \cup\{\Omega\}$ is an st-cut, contradicting propositions 9.1 and 9.2.

By swapping the roles of P_{1} and P_{j} in \mathcal{L}, if necessary, we may assume that $j=1$. Observe that $P_{1} \cup \cdots \cup P_{m}$ is acyclic, as $\vec{H} \backslash \Omega$ is so. Consider the following partial ordering: for $u, v \in V\left(P_{1} \cup \cdots \cup P_{m}\right)$, $u \leq v$ if there is a $u v$-dipath in $P_{1} \cup \cdots \cup P_{m}$. For $i \in[m]$ let v_{i} be the second largest vertex of P_{i} that lies on another st-dipath in $\left\{P_{1}, \ldots, P_{m}\right\}-\left\{P_{i}\right\}$.

Claim 2. $s<v_{3}$.

Proof. Suppose otherwise. In other words, P_{3} is internally vertex-disjoint from each one of P_{1}, P_{2}, P_{4}, \ldots, P_{m}. Let $I_{d}:=P_{1}$ and $I_{c}:=P_{2} \cup P_{4} \cup P_{5} \cup \ldots \cup P_{m}$. Let $T^{\prime}:=\emptyset$, for $j \in[2]$ let $L_{j}^{\prime}:=C_{j}$, let $L_{3}^{\prime}:=P_{3}$, and let $\vec{H}^{\prime} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$. It is clear that (1)-(4) of the disentangling lemma 9.3 hold. By claim $1, P_{1} \cup\{\Omega\}=I_{d} \cup\{\Omega\}$ has no k-mate, so (i) holds. Let L^{\prime} be a directed odd cycle of \vec{H}^{\prime}. Then it is clear that $L^{\prime} \cup I_{d}$ contains a directed minimal odd st-join L of \vec{H} such that $L^{\prime} \subseteq L$. By remark $8.9(3), L$ is Ω-disjoint from a directed odd circuit, so by remark $9.5, L^{\prime} \cup I_{d}$ is Ω-disjoint from a directed odd circuit, implying in turn that (ii) holds, a contradiction with the disentangling lemma 9.3.

By proposition 8.8 there exists an index subset $I \subseteq[m]$ of size at least two such that, for each $i \in I$,

- $v_{i} \geq v_{3}$, and there is no $j \in[m]$ such that $v_{j}>v_{i}$,
- for each $j \in[m], v_{i}=v_{j}$ if and only if $j \in I$.

For $i \in I$, since $v_{i} \geq v_{3}>s$ by claim $2, P_{i}\left[v_{i}, t\right]$ is contained in an odd $s t$-dipath of \vec{H}, and since $I \cap([m]-\{3\}) \neq \emptyset, P_{i}\left[v_{i}, t\right]$ is also contained in an even st-dipath of \vec{H}

Claim 3. For each $i \in I$ and $j \in[2], P_{i}\left[v_{i}, t\right]$ and C_{j} have no vertex in common.
Proof. Since $P_{i}\left[v_{i}, t\right]$ is contained in an even st-dipath of \vec{H}, the claim follows from remark 9.5 and the fact that $v_{i}>s$.

As a result, for each $i \in I$, the internal vertices of $P_{i}\left[v_{i}, t\right]$ have degree two in \vec{H}.
Claim 4. For each $i \in I, P_{i}\left[v_{i}, t\right] \cup\{\Omega\}$ has a k-mate. In particular, $1 \notin I$.
Proof. Suppose otherwise. Let $I_{d}:=P_{i}\left[v_{i}, t\right]$ and $I_{c}:=\bigcup\left(P_{j}\left[v_{j}, t\right]: j \in I-\{i\}\right)$. Let $T^{\prime}:=\{s, t\}$, for $j \in[3]$ let $L_{j}^{\prime}:=L_{j}-\left(I_{c} \cup I_{d}\right)$, and for $j \in[m]-[3]$ let $P_{j}^{\prime}:=P_{j}-\left(I_{c} \cup I_{d}\right)$. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, \ldots, P_{m}^{\prime}$. It is clear that (1)-(4) of the disentangling lemma 9.3 hold. By assumption, $I_{d} \cup\{\Omega\}$ has no k-mate, so (i) holds. Let L^{\prime} be a directed odd st-join of $\overrightarrow{H^{\prime}}$. Then it is
clear that $L^{\prime} \cup I_{d}$ contains a directed minimal odd $s t$-join L of \vec{H} such that $L^{\prime} \subseteq L$. By remark 8.9(3), L is Ω-disjoint from a directed odd circuit, so by remark $9.5, L^{\prime} \cup I_{d}$ is also Ω-disjoint from a directed odd circuit, so (ii) holds as well, a contradiction with the disentangling lemma 9.3.

Claim 5. Fix $i \in I$. Then there exists an s' v_{i}-dipath in $\vec{H} \backslash\left(C_{1} \cup C_{2}\right)$ that is vertex-disjoint from P_{1}.
Proof. Let v be the smallest vertex on P_{1} for which there exists a $v v_{i}$-dipath R in $\vec{H} \backslash \Omega$ such that $V(R) \cap V\left(P_{1}\right)=\{v\}$. Since R is contained in an even st-dipath, namely $P_{1}[s, v] \cup R \cup P_{i}\left[v_{i}, t\right]$, it follows from remark 9.5 that R and $C_{1} \cup C_{2}$ have at most one vertex in common, namely s. Our choice of v and R implies the following:
(\star) if $w \in V(R)$ and Q is an sw-dipath in $\vec{H} \backslash \Omega$, then Q and $P_{1}[v, t]$ have a vertex in common.

Suppose for a contradiction that there is no $s^{\prime} v_{i}$-dipath in $\vec{H} \backslash\left(C_{1} \cup C_{2}\right)$ that is vertex-disjoint from P_{1}. This fact, together with (\star) and remark 9.5 , implies the following:
$(\star \star)$ if $w \in V(R)$ and Q is an $s^{\prime} w$-dipath in \vec{H}, then Q and $P_{1}[v, t]$ have a vertex in common.

Let $I_{d}:=P_{1}[v, t]$ and $I_{c}:=R \cup\left[\bigcup\left(P_{j}\left[v_{j}, t\right]: j \in I\right)\right]$. For $i \in[3]$ let L_{i}^{\prime} be $L_{i}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit that does not use Ω, and for $i \in[m]-[3]$ let P_{i}^{\prime} be $P_{i}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit that does not use Ω. If $v=s$, let $T^{\prime}:=\emptyset$ and $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$. Otherwise, when $v \neq s$, let $T^{\prime}:=\{s, t\}$ and $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, \ldots, P_{m}^{\prime}$. It is not hard to see that (1)-(4) of the disentangling lemma 9.3 hold. By claim $1, P_{1}[v, t] \cup\{\Omega\}=I_{d} \cup\{\Omega\}$ has no k-mate, so (i) holds. Let L^{\prime} be a directed odd T^{\prime}-join of $\overrightarrow{H^{\prime}}$. Then $L^{\prime} \cup I_{c}$ contains a directed odd st-join L of \vec{H} such that $L^{\prime} \subseteq L$. Choose $w \in V(R)$ (if any) such that L contains an $s^{\prime} w$-dipath Q in \vec{H} and $V(Q) \cap V(R)=\{w\}$. Then $(\star \star)$ implies that $\left(L-I_{c}\right) \cup I_{d}$, and therefore $L^{\prime} \cup I_{d}$, contains a directed minimal odd $s t$-join of \vec{H}. By remark $8.9(3), L$ is Ω-disjoint from a directed odd circuit, so by remark 9.5, $L^{\prime} \cup I_{d}$ is Ω-disjoint from a directed odd circuit, and so (ii) holds as well, a contradiction with the disentangling lemma 9.3.

After redefining \mathcal{L}, if necessary, we may assume that $3 \in I$ and that $P_{3}\left[s^{\prime}, v_{3}\right]$ is vertex-disjoint from P_{1}. (See remark $8.9(1)$.)

Claim 6. ($G, \Sigma,\{s, t\}$) has an F_{7} minor.

Proof. For $i \in I$ let B_{i} be a k-mate of $P_{i}\left[v_{i}, t\right] \cup\{\Omega\}$, whose existence is guaranteed by claim 4. For each $i \in I$, since B_{i} is also a k-mate for odd $s t$-dipath $P_{3}\left[s, v_{3}\right] \cup P_{i}\left[v_{i}, t\right]$, proposition 9.1 implies that B_{i} is a signature. Take $j \in I-\{3\}$. Choose $U \subseteq V(G)-\{s, t\}$ such that $B_{3} \triangle B_{j}=\delta(U)$. Then by
proposition 8.7 there exists a path P in $G[U]$ between $V\left(P_{3}\left[v_{3}, t\right]\right) \cap U$ and $V\left(P_{j}\left[v_{j}, t\right]\right) \cap U$ such that $P \cap\left(B_{3} \cup B_{j}\right)=\emptyset$, and P is minimal subject to this property. Observe that $L_{1} \cup P_{3}\left[s^{\prime}, v_{3}\right]$ has no vertex in common with U. It is easy (and is left as an exercise) to see that $C_{1} \cup P_{1} \cup P_{3} \cup P_{j}\left[v_{j}, t\right] \cup P$ has an F_{7} minor.

12. Non-Simple bipartite Ω-System - part III

Here we prove proposition 2.6 when exactly one of L_{1}, L_{2}, L_{3}, say L_{1}, is non-simple. This will complete the proof of proposition 2.6. Observe that $T \neq \emptyset$, so $T=\{s, t\}$, and recall that Ω has ends s, s^{\prime}.

Observe that $P_{1} \cup \cdots \cup P_{m}$ is acyclic, as $\vec{H} \backslash \Omega$ is so. Consider the following partial ordering: for $u, v \in V\left(P_{1} \cup \cdots \cup P_{m}\right), u \leq v$ if there is a $u v$-dipath in $P_{1} \cup \cdots \cup P_{m}$. For $i \in[m]$ let v_{i} be the second largest vertex of P_{i} that lies on another st-dipath in $\left\{P_{1}, \ldots, P_{m}\right\}-\left\{P_{i}\right\}$. By proposition 8.8 there exists an index subset $I \subseteq[m]$ of size at least two such that, for each $i \in I$,

- $v_{i} \geq v_{3}$, and there is no $j \in[m]$ such that $v_{j}>v_{i}$,
- for each $j \in[m], v_{i}=v_{j}$ if and only if $j \in I$.

Claim 1. For each $i \in I, C_{1}$ and $P_{i}\left[v_{i}, t\right]$ have no vertex of $V(G)-\left\{s^{\prime}\right\}$ in common.

Proof. Suppose otherwise. Then it follows from remark 9.5 that

$$
(\diamond) \quad I=\{2,3\} \quad \text { and } \quad V\left(P_{i}\right) \cap V\left(P_{j}\right)=\{s, t\} \quad \forall i \in I, \forall j \in[m]-I .
$$

Let $Q_{1}:=C_{1}-\{\Omega\}, Q_{2}:=P_{2}-\{\Omega\}$ and $Q_{3}:=P_{3}-\{\Omega\}$. For each $i \in[3]$, let u_{i} be the second smallest (not largest) vertex of Q_{i} that also lies on one of $\left\{Q_{1}, Q_{2}, Q_{3}\right\}-\left\{Q_{i}\right\}$. Then by proposition 8.8, there exists an index subset J of $\{1,2,3\}$ of size at least two such that, for each $j \in J$ and $i \in[3], u_{i}=u_{j}$ if and only if $i \in J$.

Subclaim 1. For each $j \in J, Q_{j}\left[s^{\prime}, u_{j}\right] \cup\{\Omega\}$ has a k-mate.

Proof of Subclaim. Suppose otherwise. Let $I_{d}:=Q_{j}\left[s^{\prime}, u_{j}\right]$ and $I_{c}:=\bigcup\left(Q_{i}\left[s^{\prime}, u_{i}\right]: i \in J-\{j\}\right)$. Let $T^{\prime}:=\{s, t\}$, and for $i \in[3]$, let $L_{i}^{\prime}:=L_{i}-\left(I_{c} \cup I_{d}\right)$. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}, \ldots, P_{m}$. It is clear that (1)-(4) of the disentangling lemma 9.3 hold. By assumption, $I_{d} \cup\{\Omega\}$ has no k-mate, so (i) holds. Let L^{\prime} be a directed odd $s t$-join of $\overrightarrow{H^{\prime}}$ that is Ω-disjoint from a directed odd circuit, i.e. L^{\prime} is an odd st-dipath of $\overrightarrow{H^{\prime}}$ by remark $8.9(2)$. Then it is clear that $L^{\prime} \cup I_{d}$ contains an odd st-dipath of \vec{H}, which by remark $8.9(2)$ is Ω-disjoint from a directed odd circuit, so (ii) holds as well, a contradiction with the disentangling lemma 9.3.

Subclaim 2. Fix $j \in J$. Then there exist an $s^{\prime} t$-dipath P and a $u_{j} t$-dipath Q in $\vec{H} \backslash s$ that are internally vertex-disjoint.

Proof of Subclaim. Suppose otherwise. Then by Menger's theorem there exists a vertex $v \in V(\vec{H} \backslash$ $s)-\left\{s^{\prime}, t\right\}$ such that there is no $s^{\prime} t$-dipath in $\vec{H} \backslash\{s, v\}$. Note that $v \in V\left(C_{1}\right)$, since C_{1} and $P_{2}\left[v_{2}, t\right]$ have a vertex in common. One of the following holds:
(a) there exists an $s^{\prime} v$-dipath R in $\vec{H} \backslash s$ such that $R \cup\{\Omega\}$ has no k-mate:

Let $I_{d}:=R, I_{c}:=\bigcup\left(Q_{i}\left[s^{\prime}, v\right]: i \in[3]\right)-R, T^{\prime}:=\{s, t\}$, for $i \in[3]$ let $L_{i}^{\prime}:=L_{i}-\left(I_{c} \cup I_{d}\right)$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}, \ldots, P_{m}$.
(b) for every $s^{\prime} v$-dipath R in $\vec{H} \backslash s, R \cup\{\Omega\}$ has a k-mate:

Let $I_{d}:=\emptyset, I_{c}:=P_{1} \cup P_{2}[v, t] \cup P_{3}[v, t] \cup P_{4} \cup \cdots \cup P_{m}, T^{\prime}:=\emptyset$, for $i \in$ [3] let $L_{i}^{\prime}:=Q_{i}\left[s^{\prime}, v\right] \cup\{\Omega\}$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$.

It is not difficult to check that in either of the cases above, (1)-(4) and (i), (ii) of the disentangling lemma 9.3 hold, which is the desired contradiction.

Together with (\diamond), subclaim 2 implies that $J \neq\{1,2,3\}$, so because $|J| \geq 2$, we get that $|J|=2$. We may assume that $J=\{1,2\}$. Let $I_{d}:=\emptyset, I_{c}:=P_{1} \cup Q \cup P_{4} \cup \cdots \cup P_{m}, T^{\prime}:=\emptyset, L_{1}^{\prime}:=Q_{1}\left[s^{\prime}, u_{1}\right] \cup\{\Omega\}$, $L_{2}^{\prime}:=Q_{2}\left[s^{\prime}, u_{2}\right] \cup\{\Omega\}, L_{3}^{\prime}:=P \cup\{\Omega\}$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$. It is not difficult to check that (1)-(4) and (i), (ii) of the disentangling lemma 9.3 hold, which is a contradiction. \diamond

Claim 2. There exists $j \in[m]-\{2,3\}$ such that $P_{j} \cup\{\Omega\}$ has no k-mate.
Proof. Suppose otherwise. Observe that P_{2}, P_{3}, being odd $s t$-dipaths in $\vec{H} \Omega$-disjoint from C_{1}, have k-mates. Thus by the mate proposition 8.4 there exists $i \in[m]$ such that the k-mate of $P_{i} \cup\{\Omega\}$ is an $s t$-cut, contradicting propositions 9.1 and 9.2 .

By swapping the roles of P_{1} and P_{j} in \mathcal{L}, if necessary, we may assume that $j=1$.

Claim 3. For each $i \in I, P_{i}\left[v_{i}, t\right] \cup\{\Omega\}$ has a k-mate. In particular, $1 \notin I$.

Proof. Suppose otherwise. Let $I_{d}:=P_{i}\left[v_{i}, t\right]$ and $I_{c}:=\bigcup\left(P_{j}\left[v_{j}, t\right]: j \in I-\{i\}\right)$. Let $T^{\prime}:=\{s, t\}$, for $j \in[3]$ let $L_{j}^{\prime}:=L_{j}-\left(I_{c} \cup I_{d}\right)$, and for $j \in[m]-[3]$ let $P_{j}^{\prime}:=P_{j}-\left(I_{c} \cup I_{d}\right)$. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, \ldots, P_{m}^{\prime}$. It is clear that (1)-(4) of the disentangling lemma 9.3 hold. By assumption, $I_{d} \cup\{\Omega\}$ has no k-mate, so (i) holds. Let L^{\prime} be a directed odd $s t$-join of $\overrightarrow{H^{\prime}}$ that is Ω-disjoint from a directed odd circuit, i.e. L^{\prime} is an odd $s t$-dipath of $\overrightarrow{H^{\prime}}$ by remark $8.9(2)$. Then it is clear that $L^{\prime} \cup I_{d}$ contains an odd st-dipath of \vec{H}, which by remark $8.9(2)$ is Ω-disjoint from a directed odd circuit, so (ii) holds as well, a contradiction with the disentangling lemma 9.3.

Claim 4. Fix $i \in I$. Then there exists an $s^{\prime} v_{i}$-dipath in $\vec{H} \backslash C_{1}$ that is vertex-disjoint from P_{1}.

Proof. Let v be the second smallest vertex in P_{1} for which there exists a $v v_{i}$-dipath R in \vec{H} such that $V(R) \cap V\left(P_{1}\right)=\{v\}$. Since R is contained in an even st-dipath, namely $P_{1}[s, v] \cup R \cup P_{i}\left[v_{i}, t\right]$, it follows from remark 9.5 that R and C_{1} have no vertex in common. Suppose for a contradiction that there is no $s^{\prime} v_{i}$-dipath in $\vec{H} \backslash C_{1}$ that is vertex-disjoint from P_{1}. This fact, together with our choice of v and R, implies the following:
(\star) if $w \in V(R)$ and Q is an $s^{\prime} w$-dipath in $\vec{H} \backslash s$, then Q and $P_{1}[v, t]$ have a vertex in common.

Let $I_{d}:=P_{1}[v, t]$ and $I_{c}:=R \cup\left[\bigcup\left(P_{j}\left[v_{j}, t\right]: j \in I\right)\right]$. For $i \in[3]$ let L_{i}^{\prime} be $L_{i}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit that does not use Ω, and for $i \in[m]-[3]$ let P_{i}^{\prime} be $P_{i}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit that does not use Ω. Let $T^{\prime}:=\{s, t\}$ and $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, \ldots, P_{m}^{\prime}$. It is not hard to see that (1)-(4) of the disentangling lemma 9.3 hold. By claim $2, I_{d} \cup\{\Omega\}$ has no k-mate, so (i) holds. Let L^{\prime} be a directed odd T^{\prime}-join of $\overrightarrow{H^{\prime}}$ that is Ω-disjoint from a directed odd circuit, i.e. L^{\prime} is an odd st-dipath of $\overrightarrow{H^{\prime}}$ by remark $8.9(2)$. Then $L^{\prime} \cup I_{c}$ contains an odd st-dipath L of \vec{H}. Choose $w \in V(R)$ (if any) such that L contains an $s^{\prime} w$-dipath Q in \vec{H} and $V(Q) \cap V(R)=\{w\}$. Then (\star) implies that $\left(L-I_{c}\right) \cup I_{d}$, and therefore $L^{\prime} \cup I_{d}$, contains an odd st-dipath of \vec{H}, which by remark $8.9(2)$ is Ω-disjoint from a directed odd circuit, so (ii) holds as well, a contradiction with the disentangling lemma 9.3.

After redefining \mathcal{L}, if necessary, we may assume that $3 \in I$ and that $P_{3}\left[s^{\prime}, v_{3}\right]$ is vertex-disjoint from P_{1}. (See remark 8.9(1).)

Claim 5. ($G, \Sigma,\{s, t\})$ has an F_{7} minor.

Proof. For $i \in I$, let B_{i} be a k-mate of $P_{i}\left[v_{i}, t\right] \cup\{\Omega\}$, whose existence is guaranteed by claim 3. For each $i \in I$, since B_{i} is also a k-mate for odd st-dipath $P_{3}\left[s, v_{3}\right] \cup P_{i}\left[v_{i}, t\right]$, proposition 9.1 implies that B_{i} is a signature. Take $j \in I-\{3\}$. Choose $U \subseteq V(G)-\{s, t\}$ such that $B_{3} \triangle B_{j}=\delta(U)$. Then by proposition 8.7 there exists a path P in $G[U]$ between $V\left(P_{3}\left[v_{3}, t\right]\right) \cap U$ and $V\left(P_{j}\left[v_{j}, t\right]\right) \cap U$ such that $P \cap\left(B_{3} \cup B_{j}\right)=\emptyset$, and P is minimal subject to this property. Observe that $L_{1} \cup P_{3}\left[s^{\prime}, v_{3}\right]$ has no vertex in common with U. It is easy (and is left as an exercise) to see that $C_{1} \cup P_{1} \cup P_{3} \cup P_{j}\left[v_{j}, t\right] \cup P$ has an F_{7} minor.

13. A preliminary for simple bipartite and cut Ω-Systems: The linkage lemma

The presentation of this section follows Thomassen [17]. Let H_{0} be a plane graph such that the unbounded face is bounded by a circuit C_{0} on four vertices $s_{1}, s_{2}, t_{1}, t_{2}$, in this cyclic order. Suppose
further that every other face is bounded by a triangle, and every triangle is a facial circuit. For each triangle Δ of H_{0} we add K^{Δ}, a possibly empty complete graph disjoint from H_{0}, and we join all its vertices to all the vertices of Δ. The resulting graph is called an $\left(s_{1}, s_{2}, t_{1}, t_{2}\right)$-web with frame C_{0} and rib H_{0}.

Lemma 13.1 ($[13,17])$. Let H be a graph and take four distinct vertices $s_{1}, s_{2}, t_{1}, t_{2}$. Suppose there are no two vertex-disjoint paths P_{1}, P_{2} such that, for $i=1,2, P_{i}$ is an $s_{i} t_{i}$-path. Then H is a spanning subgraph of an $\left(s_{1}, s_{2}, t_{1}, t_{2}\right)$-web.

14. Simple bipartite Ω-system of flavour (SF1)

In this section, we prove proposition 2.11.

14.1. A disentangling lemma.

Lemma 14.1. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ be a minimal simple bipartite Ω-system of flavour (SF1), where $\Omega \in \delta(s)$, and assume there is no non-simple bipartite Ω-system whose associated signed graft is a minor of $(G, \Sigma,\{s, t\})$. Take disjoint subsets $I_{d}, I_{c} \subseteq E(\vec{H} \backslash \Omega)$ and $T^{\prime} \subseteq\{s, t\}$ where
(1) I_{c} is non-empty, if I_{c} contains an st-path then $T^{\prime}=\emptyset$, and if not then $T^{\prime}=\{s, t\}$,
(2) every signature or st-cut disjoint from I_{c} intersects I_{d} in an even number of edges,
(3) if $T^{\prime}=\emptyset$, there is a directed subgraph $\overrightarrow{H^{\prime}}$ of $\vec{H} / I_{c} \backslash I_{d}$ that is the union of directed odd circuits $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ where
$\Omega \in L_{1}^{\prime} \cap L_{2}^{\prime} \cap L_{3}^{\prime}$ and $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are pairwise Ω-disjoint, $\overrightarrow{H^{\prime}} \backslash \Omega$ is acyclic,
(4) if $T^{\prime}=\{s, t\}$, there is a directed subgraph $\overrightarrow{H^{\prime}}$ of $\vec{H} / I_{c} \backslash I_{d}$ that is the union of odd st-dipaths $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ and even st-dipaths $P_{4}^{\prime}, \ldots, P_{m}^{\prime}$, where $\Omega \in L_{1}^{\prime} \cap L_{2}^{\prime} \cap L_{3}^{\prime}, \Omega \notin P_{4}^{\prime} \cup \ldots \cup P_{m}^{\prime}$ and $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, \ldots, P_{m}^{\prime}$ are pairwise Ω-disjoint, $\overrightarrow{H^{\prime}}$ is acyclic.

Then one of the following does not hold:
(i) $I_{d} \cup\{\Omega\}$ does not have a k-mate,
(ii) for every directed odd T^{\prime}-join L^{\prime} of $\overrightarrow{H^{\prime}}, L^{\prime} \cup I_{d}$ contains an odd st-dipath of \vec{H}.

Proof. Suppose otherwise. Let $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right):=(G, \Sigma,\{s, t\}) / I_{c} \backslash I_{d}$ where $\Sigma^{\prime}=\Sigma$; this signed graft is well-defined by (1). For $i \in[m]-[3]$, let $L_{i}^{\prime}:=L_{i}-P_{i}$ if $T^{\prime}=\emptyset$, and let $L_{i}^{\prime}:=\left(L_{i}-P_{i}\right) \cup P_{i}^{\prime}$ otherwise. Let $\mathcal{L}^{\prime}:=\left(L_{1}^{\prime}, \ldots, L_{m}^{\prime}, L_{m+1}, \ldots, L_{k}\right)$. If $T^{\prime}=\emptyset$, let $m^{\prime}:=3$, and if not, let $m^{\prime}:=m$. We will show that $\left(\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right), \mathcal{L}^{\prime}, m^{\prime}, \overrightarrow{H^{\prime}}\right)$ is either a non-simple bipartite Ω-system or a simple bipartite Ω-system, and this will yield a contradiction, thereby finishing the proof.
(B1) By (2), every signature or T^{\prime}-cut of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ has the same parity as $\tau(G, \Sigma,\{s, t\})$, implying that $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ is an Eulerian signed graft. (B2) It also implies that $k, \tau(G, \Sigma,\{s, t\})$ and $\tau\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ have the same parity, so every minimal cover of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ has the same size parity as k. We claim that $\tau\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right) \geq k$. Let B^{\prime} be a minimal cover of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$. If $\Omega \notin B^{\prime}$, then

$$
\left|B^{\prime}\right| \geq \sum\left(\left|B^{\prime} \cap L^{\prime}\right|: L^{\prime} \in \mathcal{L}^{\prime}\right) \geq k
$$

Otherwise, $\Omega \in B^{\prime}$. In this case, $B^{\prime} \cup I_{d}$ contains a cover B of $(G, \Sigma,\{s, t\})$. By (i), $I_{d} \cup\{\Omega\}$ does not have a k-mate, so

$$
k-2 \leq\left|B-\left(I_{d} \cup\{\Omega\}\right)\right| \leq\left|B-I_{d}\right|-1 \leq\left|B^{\prime}\right|-1
$$

and since $\left|B^{\prime}\right|, k$ have the same parity, it follows that $\left|B^{\prime}\right| \geq k$. Thus, \mathcal{L}^{\prime} is an (Ω, k)-packing. When $T^{\prime}=\emptyset, m^{\prime}=3$. When $T^{\prime}=\{s, t\}$, then $m^{\prime}=m$ and for $j \in\left[m^{\prime}\right]-[3], L_{j}^{\prime}$ contains even st-path P_{j}^{\prime} and some odd circuit in $L_{j}^{\prime}-P_{j}^{\prime}$, and for $j \in[k]-\left[m^{\prime}\right], L_{j}$ remains connected in G^{\prime}. (B3) follows from construction.

Suppose first that $T^{\prime}=\emptyset$. We will show that $\left(\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right), \mathcal{L}^{\prime}, m^{\prime}, \overrightarrow{H^{\prime}}\right)$ is a non-simple bipartite Ω-system. (NS1) holds as (B1)-(B3) hold. (NS2) holds as $T^{\prime}=\emptyset$. (NS3) follows from (3). (NS4) Let L^{\prime} be a directed odd T^{\prime}-join of $\overrightarrow{H^{\prime}}$ that is Ω-disjoint from a directed odd circuit. By (ii), $L^{\prime} \cup I_{d}$ contains an odd $s t$-dipath L of \vec{H}. Since $((G, \Sigma,\{s, t\}), \mathcal{L}, m, \vec{H})$ is of flavour (SF1), L has a signature k-mate B. By proposition $8.3, B \cap E(\vec{H})=B \cap L$, implying that $B \cap I_{c}=\emptyset$. Thus, $B-I_{d}$ contains a minimal cover B^{\prime} of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$, and since

$$
\left|B^{\prime}-L^{\prime}\right| \leq\left|\left(B-I_{d}\right)-L^{\prime}\right| \leq|B-L| \leq k-3
$$

it follows that B^{\prime} is a k-mate of L^{\prime}.
Suppose now that $T^{\prime}=\{s, t\}$. We will show that $\left(\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right), \mathcal{L}^{\prime}, m, \overrightarrow{H^{\prime}}\right)$ is a simple bipartite Ω system. (S1) holds as (B1)-(B4) hold. (S2) follows from (4). (S3) Let L^{\prime} be an odd $s t$-dipath in $\overrightarrow{H^{\prime}}$. By (ii), $L^{\prime} \cup I_{d}$ contains an odd $s t$-dipath L of \vec{H}. Since $((G, \Sigma,\{s, t\}), \mathcal{L}, m, \vec{H})$ is a simple bipartite Ω-system of flavour (SF1), L has a signature k-mate B. By proposition $8.3, B \cap E(\vec{H})=B \cap L$, implying that $B \cap I_{c}=\emptyset$. Then $B-I_{d}$ contains a minimal cover B^{\prime} of $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$, and since

$$
\left|B^{\prime}-L^{\prime}\right| \leq\left|\left(B-I_{d}\right)-L^{\prime}\right| \leq|B-L| \leq k-3
$$

it follows that B^{\prime} is a k-mate of L^{\prime}.
14.2. The proof of proposition 2.11. Let $\left((G, \Sigma,\{s, t\}),\left(L_{1}, \ldots, L_{k}\right), m, \vec{H}\right)$ be a minimal simple bipartite Ω-system of flavour (SF1), where Ω has ends s, s^{\prime}, and assume there is no non-simple bipartite Ω-system whose associated signed graft is a minor of $(G, \Sigma,\{s, t\})$.

Claim 1. $m \geq 4$.

Proof. By (SF1), each one of P_{1}, P_{2}, P_{3} has a signature k-mate, so the result follows from the mate proposition 8.4.

Claim 2. There is an odd circuit C in $\vec{H} \backslash t$.
Proof. Suppose otherwise. Let $I_{c}:=P_{4}$ and $I_{d}:=\emptyset$. Let $T^{\prime}:=\emptyset$, for $i \in[3]$ let $L_{i}^{\prime}:=P_{i}$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$. It is clear that (1)-(4) of the disentangling lemma 14.1 hold. As $\tau(G, \Sigma,\{s, t\}) \geq k$, it follows that $I_{d} \cup\{\Omega\}=\{\Omega\}$ does not have a k-mate, so (i) holds. Moreover, our assumption implies that P_{4} is internally vertex-disjoint from each of P_{1}, P_{2}, P_{3}. This implies that every directed odd circuit of \vec{H}^{\prime} is an odd $s t$-dipath in \vec{H}, so (ii) holds, a contradiction with the disentangling lemma 14.1.

Consider the following partial ordering on $V(\vec{H}): u \leq v$ if there exists a $u v$-dipath in \vec{H}. For $j \in[m]$ let v_{j} be the second largest vertex of P_{j} that lies on another st-dipath in $\left\{P_{1}, \ldots, P_{m}\right\}-\left\{P_{j}\right\}$. By proposition 8.8 there exists an index subset $I \subseteq[m]$ of size at least two such that, for each $i \in I$,

- $v_{i} \geq v_{1}$, and there is no $j \in[m]$ such that $v_{j}>v_{i}$,
- for each $j \in[m], v_{i}=v_{j}$ if and only if $j \in I$.

After redefining \mathcal{L}, if necessary, we may assume that $1 \in I$.

Claim 3. For each $i \in I, P_{i}\left[v_{i}, t\right] \cup\{\Omega\}$ has a k-mate.

Proof. Let $I_{d}:=P_{i}\left[v_{i}, t\right]$ and $I_{c}:=\bigcup\left(P_{j}\left[v_{j}, t\right]: j \in I-\{i\}\right)$. Let $T^{\prime}:=\{s, t\}$, for $j \in[3]$ let $L_{j}^{\prime}:=P_{j}-\left(I_{c} \cup I_{d}\right)$, and for $j \in[m]-[3]$ let $P_{i}^{\prime}:=P_{i}-\left(I_{c} \cup I_{d}\right)$. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, \ldots, P_{m}^{\prime}$. Clearly, (1)-(4) and (ii) of the disentangling lemma 14.1 hold. Hence the lemma implies that (i) does not hold, proving the claim.

Claim 4. There are two vertex-disjoint paths P, Q in H, where P is between s, t and Q is between s^{\prime}, v_{1}.

Proof. Suppose otherwise.
Assume first that $s^{\prime}=v_{1}$. Then, for each $j \in[m], s^{\prime} \in V\left(P_{j}\right)$. By (SF1), for each $j \in[m]$, $P_{j}\left[s^{\prime}, t\right] \cup\{\Omega\}$ has a signature k-mate B_{j}. However, for each $j \in[m], B_{j}$ is also a signature k-mate for $P_{j} \cup\{\Omega\}$. This is a contradiction with the mate proposition 8.4.

Thus, $s^{\prime} \neq v_{1}$. By the linkage lemma $13.1, H$ is a spanning subgraph of an $\left(s, v_{1}, t, s^{\prime}\right)$-web with frame C_{0} and rib H_{0}. Fix a plane drawing of H_{0}, where the unbounded face is bounded by C_{0}. After redefining \mathcal{L}, if necessary, we may assume the following:
(\star) for every $s^{\prime} v_{1}$-dipath P of \vec{H}, the number of rib vertices that are on the same side of P as s is at least as large as that of $P_{1}\left[s^{\prime}, v_{1}\right]$.

For $j \in[m]-[3]$, let u_{j} be the largest rib vertex on P_{j} that also lies on $P_{1}\left[s^{\prime}, v_{1}\right]$. Observe that if $j \in I \cap([m]-[3])$, then $u_{j}=v_{j}$. For $j \in[m]-[3]$ let $R_{j}:=P_{j}\left[u_{j}, t\right]$, for $j \in[3] \cap I$ let $R_{j}:=P_{j}\left[v_{j}, t\right]$, and for $j \in[3]-I$ let $R_{j}:=P_{j}\left[s^{\prime}, t\right]$. Observe that a k-mate for $R_{j} \cup\{\Omega\}, j \in[m]$ is also a k-mate for any odd st-dipath of \vec{H} containing $R_{j} \cup\{\Omega\}$. Hence, by (SF1), every k-mate for $R_{j} \cup\{\Omega\}, j \in[m]$ must be a signature. However, every k-mate for $R_{j} \cup\{\Omega\}, j \in[m]$ is also a k-mate for $P_{j} \cup\{\Omega\}$. Hence, by the mate proposition 8.4, there exists $i \in[m]$ such that $R_{i} \cup\{\Omega\}$ has no k-mate. By (S3) and claim $3, i \notin I \cup[3]$. Observe that (\star) implies the following:
$(\star \star)$ if $w \in V\left(P_{1}\left[u_{i}, t\right]\right)$ and Q is an $s^{\prime} w$-dipath, then Q and R_{i} have a vertex in common.

Let $I_{d}:=R_{i}$ and $I_{c}:=P_{1}\left[u_{i}, t\right]$. For $j \in[3]$ let L_{j}^{\prime} be $P_{j}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit that does not use Ω, and for $j \in[m]-[3]$ let P_{j}^{\prime} be $P_{j}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit that does not use Ω. Let $T^{\prime}:=\{s, t\}$ and $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, \ldots, P_{m}^{\prime}$. It is clear that (1)-(4) of the disentangling lemma 14.1 hold. By the choice of R_{i}, (i) holds as well. To show (ii) holds, let L^{\prime} be an odd $s t$-dipath of $\overrightarrow{H^{\prime}}$. Then $L^{\prime} \cup I_{c}$ contains an odd $s t$-dipath of \vec{H}, and by ($\star \star$), $L^{\prime} \cup I_{d}$ also contains an odd $s t$-dipath of \vec{H}, so (ii) holds, a contradiction with lemma 14.1.

Claim 5. ($G, \Sigma,\{s, t\})$ has an F_{7} minor.

Proof. For $i \in I$, let B_{i} be a k-mate of $P_{i}\left[v_{i}, t\right] \cup\{\Omega\}$, whose existence is guaranteed by claim 3 . For each $i \in I$, since B_{i} is also a k-mate for odd st-dipath $P_{1}\left[s, v_{1}\right] \cup P_{i}\left[v_{i}, t\right]$, (SF1) implies that B_{i} is a signature. Take $j \in I-\{1\}$. Choose $U \subseteq V(G)-\{s, t\}$ such that $B_{1} \triangle B_{j}=\delta(U)$. Then by proposition 8.7 there exists a path R in $G[U]$ between $V\left(P_{1}\left[v_{1}, t\right]\right) \cap U$ and $V\left(P_{j}\left[v_{j}, t\right]\right) \cap U$ such that $R \cap\left(B_{1} \cup B_{j}\right)=\emptyset$, and R is minimal subject to this property. Observe that $P \cup Q \cup C$ has no vertex in common with U. It is easy (and is left as an exercise) to see that $C \cup P \cup Q \cup P_{1}\left[v_{1}, t\right] \cup P_{j}\left[v_{j}, t\right] \cup R$ has an F_{7} minor.

15. A PRELIMINARY FOR CUT Ω-SYSTEMS: THE SHORE PROPOSITION

The following proposition can be the thought of as the second half of the mate proposition 8.4:

Proposition 15.1. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m, H\right)$ be a bipartite Ω-system, where Ω has ends s, s^{\prime}. For each $i \in[m]$, let $\widetilde{P}_{i} \subseteq L_{i}$ be a connected st-join such that $\widetilde{P}_{i} \cap \Sigma \subseteq\{\Omega\}$, and if $i \in[3]$, $\Omega \in \widetilde{P}_{i}$ and $\widetilde{P}_{i} \cap \delta(s)=\{\Omega\}$. Suppose there exist B_{1}, \ldots, B_{m} and $U \subseteq V(G)-\{t\}$ with $s \in U$ such that
(i) for $i \in[m], B_{i}$ is a k-mate of $\widetilde{P}_{i} \cup\{\Omega\}$,
(ii) exactly one of B_{1}, \ldots, B_{m}, say B_{ℓ}, is not a signature, and $B_{\ell}=\delta(U)$,
(iii) there is no proper subset W of U with $s \in W$ such that $\delta(W)$ is a k-mate of $\widetilde{P_{\ell}} \cup\{\Omega\}$,
(iv) for $i \in[m], B_{i} \cap P_{i}$ has no edge in $G[U]$.

Then, for every component of $\widetilde{P_{\ell}}$ in $G[U]$, there is a path P in $G[U]$ between s and a vertex of the component such that $P \cap\left(B_{1} \cup \cdots \cup B_{\ell-1} \cup B_{\ell+1} \cup \cdots \cup B_{m}\right)=\emptyset$.

Proof. For each $i \in[3]$, let $\widetilde{C_{i}}:=\emptyset$, and for each $i \in[m]-[3]$, let $\widetilde{C_{i}}$ be an odd circuit contained in the odd cycle $L_{i} \triangle \widetilde{P}_{i}=L_{i}-\widetilde{P}_{i}$. By identifying a vertex of each component with s, if necessary, we may assume that G is connected. For $n \geq 1$, let $[n]^{\prime}:=[n]-\{\ell\}$. We will be applying lemma 8.5 to the index set $[m]^{\prime}$. For distinct $i, j \in[m]^{\prime}$, choose $U_{i j} \subseteq V(G)-\{s, t\}$ such that $\delta\left(U_{i j}\right)=B_{i} \triangle B_{j}$. Observe that $[m]^{\prime}$ contains $m-1$ ordered indices; for every index j other than the two smallest indices in $[m]^{\prime}$, let

$$
S_{j}:=\bigcap\left(U_{i j}: i \in[m]^{\prime}, i<j\right)
$$

By definition, each S_{j} is the intersection of at least two sets. Take $C \in\left\{\widetilde{C_{4}}, \ldots, \widetilde{C_{m}}\right\}$ and an S_{j}. We say C is bad for S_{j} if

$$
\left|C \cap \delta\left(S_{j}\right)\right|=2 \quad \text { and } \quad C \cap \delta\left(S_{j}\right) \cap B_{j}=\emptyset
$$

We need a few preliminaries.

Claim 1. Each circuit in $\left\{C_{4}, \ldots, C_{m}\right\}$ is bad for at most one S_{j}.

Proof. Suppose that $C \in\left\{C_{4}, \ldots, C_{m}\right\}$ is bad for S_{j} and that it is not bad for any S_{i} with $i<j$. By lemma $8.5(5)$, there exist distinct $p, q \in[j-1]^{\prime}$ such that $C \cap \delta\left(S_{j}\right) \subseteq B_{p} \cup B_{q}$. By lemma 8.5(11), $V(C) \subseteq U_{j p} \cup U_{j q}$, and subsequently by lemma $8.5(6), V(C) \cap S_{r}=\emptyset$ for $r>j$. As a result, C cannot be bad for any S_{r} with $r>j$.

Claim 2. Each S_{j} has a bad circuit.

Proof. Suppose for a contradiction that some S_{j} has no bad circuit, and let $B:=B_{j} \triangle \delta\left(S_{j}\right)$. We will prove that B is a cover of size $k-2$, which will yield a contradiction as $|B| \geq \tau(G, \Sigma) \geq k$. It is clear that B is a cover. By lemma 8.5,

$$
B \subseteq \bigcup\left(B_{i}: i \in[m]^{\prime}, i \leq j\right) \subseteq \bigcup\left(L_{i}: i \in[k]^{\prime}\right)
$$

The first inclusion follows from part (5), and the second inclusion follows from part (1) together with the fact that for each $i \in[m]^{\prime}, B_{i} \cap \widetilde{P_{\ell}} \subseteq\{\Omega\}$. Therefore, as $\Omega \in B$ and $\left|L_{\ell} \cap B\right|=1$, it suffices to show that, for all $i \in[k]^{\prime},\left|L_{i} \cap B\right|=1$. Keep in mind that, for all $i \in[k]-\{j\},\left|L_{i} \cap B_{j}\right|=1$.

Take $i \in[k]-[m]$. If $L_{i} \cap \delta\left(S_{j}\right)=\emptyset$, then $\left|L_{i} \cap B\right|=\left|L_{i} \cap B_{j}\right|=1$. Otherwise, when $L_{i} \cap \delta\left(S_{j}\right) \neq \emptyset$, lemma 8.5 part (9) implies $\left|L_{i} \cap \delta\left(S_{j}\right)\right|=2$ and $\left|L_{i} \cap \delta\left(S_{j}\right) \cap B_{j}\right|=1$, so $\left|L_{i} \cap B\right|=\left|L_{i} \cap\left(B_{j} \triangle \delta\left(S_{j}\right)\right)\right|=1$.

Next take $i \in[m]^{\prime}$. We will first consider $\widetilde{C_{i}} \cap B$, given that $\widetilde{C_{i}} \neq \emptyset$. If $\widetilde{C_{i}} \cap \delta\left(S_{j}\right)=\emptyset$, then $\left|\widetilde{C_{i}} \cap B\right|=\left|\widetilde{C_{i}} \cap B_{j}\right|=1$. Otherwise, $\widetilde{C_{i}} \cap \delta\left(S_{j}\right) \neq \emptyset$. Then, by lemma 8.5(10), $\left|\widetilde{C_{i}} \cap \delta\left(S_{j}\right)\right|=2$. By our choice of $S_{j}, \widetilde{C_{i}}$ is not bad for S_{j}, so $\left|\widetilde{C_{i}} \cap \delta\left(S_{j}\right) \cap B_{j}\right|=1$. Thus, $\left|\widetilde{C_{i}} \cap B\right|=\left|\widetilde{C_{i}} \cap\left(B_{j} \triangle \delta\left(S_{j}\right)\right)\right|=1$. We next consider $\left(\{\Omega\} \cup \widetilde{P}_{i}\right) \cap B$. If $i \neq j$, then by lemma 8.5 ,

$$
\begin{aligned}
\left(\{\Omega\} \cup \widetilde{P}_{i}\right) \cap B & =\left(\{\Omega\} \cup \widetilde{P}_{i}\right) \cap\left(B_{j} \triangle \delta\left(S_{j}\right)\right) \\
& =\left(\{\Omega\} \cup \widetilde{P}_{i}\right) \cap B_{j} \quad \text { by part }(8) \\
& =\{\Omega\} \quad \text { by part }(3)
\end{aligned}
$$

On the other hand, if $i=j$, then by lemma 8.5,

$$
\begin{aligned}
\left(\{\Omega\} \cup \widetilde{P_{j}}\right) \cap B & =\left(\{\Omega\} \cup \widetilde{P_{j}}\right) \cap\left(B_{j} \triangle \delta\left(S_{j}\right)\right) \\
& =\left[\left(\{\Omega\} \cup \widetilde{P_{j}}\right) \cap B_{j}\right] \triangle\left[\left(\{\Omega\} \cup \widetilde{P_{j}}\right) \cap \delta\left(S_{j}\right)\right] \\
& =\{\Omega\} \quad \text { by part }(7) .
\end{aligned}
$$

Since whenever $\Omega \in \widetilde{P}_{i}$ then $\widetilde{C_{i}}=\emptyset,\left|L_{i} \cap B\right|=\left|\widetilde{C_{i}} \cap B\right|+\left|\widetilde{P}_{i} \cap B\right|=1$.
Let $\mathfrak{U}:=\bigcup\left(U_{i j}: i, j \in[m]^{\prime}, i \neq j\right)$.
Claim 3. For each $j \in[m]-[3], V\left(\widetilde{C_{j}}\right) \subseteq \mathfrak{U}$
Proof. Claims 1 and 2 imply that each circuit of $\widetilde{C_{4}}, \ldots, \widetilde{C_{m}}$ is bad for an S_{j} (of which there are $m-3$ many). The claim now follows from lemma 8.5(11).

Claim 4. Let $e \in E(G)$ be an edge with both ends in $V(G)-\mathfrak{U}$, and let $i \in[m]^{\prime}$. If $e \in B_{i}$, then $e \in B_{1} \cap \cdots \cap B_{\ell-1} \cap B_{\ell+1} \cap \cdots \cap B_{m}$.

Proof. As e has both ends in $V(G)-\mathfrak{U}$, for each distinct $p, q \in[m]^{\prime}$, we have $e \notin \delta\left(U_{p q}\right)=B_{p} \triangle B_{q}$, proving the claim.

Claim 5. Let $e \in E(G)$ be an edge with both ends in $U-\mathfrak{U}$ such that $e \in B_{1} \cup \cdots \cup B_{\ell-1} \cup B_{\ell+1} \cup \cdots \cup B_{m}$. Then $e \in L_{m+1} \cup \cdots \cup L_{k}$.

Proof. As $e \neq \Omega, e \notin L_{1} \cup L_{2} \cup L_{3}$. By (iv), $e \notin \widetilde{P_{4}} \cup \cdots \cup \widetilde{P_{m}}$. By claim $3, e \notin \widetilde{C_{4}} \cup \cdots \cup \widetilde{C_{m}}$. The claim now follows from proposition 3.1.

Claim 6. For each $i \in[m], \widetilde{P}_{i}$ has no vertex in common with $U \cap \mathfrak{U}$.

Proof. Observe that $\widetilde{P_{\ell}}$ has no vertex in common with \mathfrak{U}, for $\widetilde{P_{\ell}} \cap \delta(\mathfrak{U})=\emptyset$ and $\widetilde{P_{\ell}}$ is connected. We may therefore assume $i \in[m]^{\prime}$, and for a contradiction, assume \widetilde{P}_{i} has a vertex v in common with $U \cap \mathfrak{U}$. Since Since $\left|\widetilde{P}_{i} \cap \delta(U)\right|=1$, the edges of $\widetilde{P}_{i}[s, v]$ belong to $G[U]$, so by (iv), $\widetilde{P}_{i}[s, v] \cap B_{i}=\emptyset$. Since $u \in \mathfrak{U}$, there exist distinct $p, q \in[m]^{\prime}$ such that $u \in U_{p q}$. Since $\widetilde{P}_{i}[s, v] \cap B_{i}=\emptyset$, we may assume that $p \neq i$ and $\widetilde{P}_{i}[s, v] \cap B_{p} \neq \emptyset$. However, as B_{p} is a signature, $\widetilde{P}_{i} \cap B_{p} \subseteq\{\Omega\}$, a contradiction as $\Omega \in \delta(U)$.

Claim 7. For every component of $\widetilde{P_{\ell}}$ in $G[U]$, there is a path P in $G[U-\mathfrak{U}]$ between s and a vertex of the component such that $P \cap\left(B_{1} \cup \cdots \cup B_{\ell-1} \cup B_{\ell+1} \cup \cdots \cup B_{m}\right)=\emptyset$.

Proof. Suppose otherwise. By claim 4, there exists $W \subseteq(U-\mathfrak{U})-\{s\}$ where $\widetilde{P_{\ell}} \cap \delta(W) \neq \emptyset$ such that, for every edge $e \in E(G)$ with one end in W and another in $(U-\mathfrak{U})-W$, we have $e \in B_{1} \cap \cdots \cap B_{\ell-1} \cap B_{\ell+1} \cap \cdots \cap B_{m}$. Let $U^{\prime}:=U-W$. We will show that $\delta\left(U^{\prime}\right)$ is a cap of L_{ℓ} in \mathcal{L}.
(T1) and (T2) clearly hold. (T3) We have

$$
\delta\left(U^{\prime}\right) \subseteq \delta(U) \cup \delta(W) \subseteq\left(B_{1} \cup \cdots \cup B_{m}\right) \cup \delta(\mathfrak{U}) \subseteq B_{1} \cup \cdots \cup B_{m} \subseteq L_{1} \cup \cdots \cup L_{k}
$$

In fact, the argument of the last inclusion can be replaced with

$$
\left(\widetilde{P_{1}} \cup \cdots \cup \widetilde{P_{m}}\right) \cup\left(\widetilde{C_{4}} \cup \cdots \cup \widetilde{C_{m}}\right) \cup\left(L_{m+1} \cup \cdots \cup L_{k}\right)
$$

(T4) Let $i \in[m]^{\prime}$. When $i \in[3]$, we have $V\left(L_{i}\right) \cap U=\{s\}$, implying that $L_{i} \cap \delta\left(U^{\prime}\right)=\{\Omega\}$. Otherwise, when $i \in[m]-[3]$, claim 3 implies that $\widetilde{C_{i}} \cap \delta\left(U^{\prime}\right)=\emptyset$ and claims 5 and 6 imply that $\left|\widetilde{P}_{i} \cap \delta\left(U^{\prime}\right)\right|=\left|\widetilde{P}_{i} \cap \delta(U)\right|=1$, so $\left|L_{i} \cap \delta\left(U^{\prime}\right)\right|=1$.

Let $i \in[k]-[m]$. Recall that L_{i} is a connected odd st-join. If $L_{i} \cap \delta(W)=\emptyset$, then $\left|L_{i} \cap \delta\left(U^{\prime}\right)\right|=\mid L_{i} \cap$ $\delta(U) \mid=1$. We may therefore assume that $L_{i} \cap \delta(W) \neq \emptyset$. We claim that $\left|L_{i} \cap \delta(W)\right|=2$ and that one of the edges in $L_{i} \cap \delta(W)$ belongs to $\delta(U)$. Note that this will prove that $\left|L_{i} \cap \delta\left(U^{\prime}\right)\right|=1$. If $L_{i} \cap \delta(W)$ contains an edge e with one end in W and another in $U^{\prime}-\mathfrak{U}$, then $e \in B_{1} \cap \cdots \cap B_{\ell-1} \cap B_{\ell+1} \cap \cdots \cap B_{m}$. However, $\left|L_{i} \cap B_{1}\right|=\cdots=\left|L_{i} \cap B_{\ell-1}\right|=\left|L_{i} \cap B_{\ell+1}\right|=\cdots=\left|L_{i} \cap B_{m}\right|=1$, so $\left|L_{i} \cap \delta(W)\right|=2$ and the edge in $\left(L_{i} \cap \delta(W)\right)-\{e\}$ belongs to $\delta(U)$, and we are done. Otherwise, it suffices to show that L_{i} does not contain two edges e, f, each with one end in $U \cap \mathfrak{U}$ and another in W. Suppose otherwise. Let v_{e}, v_{f} be the ends of e, f in $U \cap \mathfrak{U}$, respectively, and let u_{e}, u_{f} be the ends of e, f in W, respectively.

Since $e, f \in \delta(\mathfrak{U})$, each of e, f belongs to $\cup_{j \in[m]^{\prime}} B_{j}$. Since L_{i} intersects each one of $B_{j}, j \in[m]^{\prime}$ exactly once, there are distinct $p, q \in[m]^{\prime}$ such that $e \in B_{p}, f \in B_{q}$ and $\{e, f\} \subseteq B_{p} \triangle B_{q}=\delta\left(U_{p q}\right)$. Since $\left|L_{i} \cap \delta(U)\right|=1$ and L_{i} is connected, we get that L_{i} contains a path Q in $G[U]$ containing the vertex s and edges e, f. Since $L_{i} \cap \delta(W)$ does not contain an edge with one end in W and another in $U^{\prime}-\mathfrak{U}$, it follows that $Q \cap \delta(W)$ does not contain an edge with one end in W and another in $U^{\prime}-\mathfrak{U}$, implying in turn that $\left|Q \cap \delta\left(U_{p q}\right)\right| \geq 3$, so $\left|L_{i} \cap \delta\left(U_{p q}\right)\right| \geq 3$, a contradiction. Hence, $\left|L_{i} \cap \delta\left(U^{\prime}\right)\right|=1$.

Moreover, $L_{\ell} \cap \delta\left(U^{\prime}\right) \subsetneq L_{\ell} \cap \delta(U)$, and since $\tau(G, \Sigma) \geq k$, it follows that $\left|L_{\ell} \cap \delta\left(U^{\prime}\right)\right| \geq 3$. As a result, (T4) holds, so $\delta\left(U^{\prime}\right)$ is a cap of L_{ℓ} in \mathcal{L}. Proposition 3.1 therefore implies that $\delta\left(U^{\prime}\right)$ is a k-mate of L_{ℓ}, but $\delta\left(U^{\prime}\right) \cap L_{\ell}=\delta\left(U^{\prime}\right) \cap \widetilde{P_{\ell}}$, so $\delta\left(U^{\prime}\right)$ is a k-mate for \widetilde{P}_{ℓ}, a contradiction with (iii). .

Note that claim 7 finishes the proof of the shore proposition.

16. Primary cut Ω-system

16.1. Signature mates and the brace proposition.

Proposition 16.1. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m,\left(U_{1}, \ldots, U_{n}\right), \vec{H}\right)$ be a primary cut Ω system. Let P be an odd st-dipath with $V(P) \cap U_{n}=\{s\}$, and let B be ak-mate of it. Then B is not an st-cut.

Proof. After redefining \mathcal{L}, if necessary, we may assume that $P=P_{2}=L_{2}$. (Note the acyclicity condition in (C3).) Suppose, for a contradiction, that B is an st-cut. Choose $W \subseteq V(G)-\{t\}$ with $s \in W$ such that $B=\delta(W)$. Since L_{2} is simple, it follows that $\delta\left(U_{n} \cap W\right) \cap L_{2}=\{\Omega\}$. As the brace and the base of L_{1} intersect $\delta(W)$ at only Ω, it follows that $q, d \in U_{n}-W$, and since the residue of L_{1} is a connected $q d$-join, it follows that $\delta\left(U_{n} \cap W\right) \cap L_{1}=\{\Omega\}$, contradicting proposition 3.4 part (4).

Proposition 16.2. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m, \mathcal{U}=\left(U_{1}, \ldots, U_{n}\right), \vec{H}\right)$ be a minimal cut Ω-system that is primary. Let P^{+}be an st-dipath in $\vec{H}^{+} \backslash \Omega$. Then P^{+}and the brace share no vertex outside U_{n}.

Proof. After redefining \mathcal{L}, if necessary, we may assume that $P:=P^{+} \cap E(\vec{H})$ is the base for one of P_{4}, \ldots, P_{m}. (Note the acyclicity condition in (C3).) Suppose for a contradiction that P^{+}and the brace share a vertex outside U_{n}.

In the first case, assume that P is the base for one of L_{n+3}, \ldots, L_{m}, say $P=Q_{n+3}$. Let x be the closest vertex to t on Q_{n+3} that belongs to the both of D and $V(G)-U_{n}$. Let $L_{1}^{\prime}:=D[s, x] \cup Q_{n+3}[x, t]$ and $L_{n+3}^{\prime}:=\left(Q_{n+3}[s, x] \cup D[x, d] \cup R \cup Q\right) \cup C_{n+3}$. Let

$$
\mathcal{L}^{\prime}:=\left(L_{1}^{\prime}, L_{2}, L_{3}, \ldots, L_{n+2}, L_{n+3}^{\prime}, L_{n+4}, \ldots, L_{k}\right)
$$

Note that \mathcal{U} is a secondary cut structure for $\left((G, \Sigma,\{s, t\}), \mathcal{L}^{\prime}, m\right)$, where the base for L_{n+3}^{\prime} is Q. Let $\overrightarrow{H^{\prime}}:=\vec{H} \backslash\left(Q_{n+3}[s, x] \cup D[x, d]\right)$. Then it is easily seen that $\left((G, \Sigma,\{s, t\}), \mathcal{L}^{\prime}, m, \mathcal{U}, \overrightarrow{H^{\prime}}\right)$ is a secondary cut structure, contradicting the minimality of the original Ω-system.

In the remaining case, assume that $P=Q_{j}$ for some $j \in[n+2]-[3]$. Let x be the closest vertex to t on Q_{j} that belongs to the both of D and $V(G)-U_{n}$. Let $L_{1}^{\prime}:=D[s, x] \cup Q_{j}[x, t]$ and $L_{j}^{\prime}:=\left(R_{j} \cup P\left[q_{j}, x\right] \cup D[x, d] \cup R \cup Q\right) \cup C_{j}$. Let

$$
\begin{aligned}
\mathcal{L}^{\prime} & :=\left(L_{1}^{\prime}, L_{2}, \ldots, L_{j-1}, L_{j+1}, \ldots, L_{n+2}, L_{j}^{\prime}, L_{n+3}, \ldots, L_{k}\right) \\
\mathcal{U}^{\prime} & :=\left(U_{1}, \ldots, U_{j-4}, U_{j-2}, \ldots, U_{n}\right)
\end{aligned}
$$

Then \mathcal{U}^{\prime} is a secondary cut structure for $\left((G, \Sigma,\{s, t\}), \mathcal{L}^{\prime}, m\right)$, where the base for L_{j}^{\prime} is Q, and $\delta\left(U_{n}\right)$ is a k-mate for $L_{j}^{\prime}-C_{j}$. Let $\overrightarrow{H^{\prime}}:=\vec{H} \backslash\left(Q_{j}\left[q_{j}, x\right] \cup D[x, d]\right)$. Then it is easily seen that $\left((G, \Sigma,\{s, t\}), \mathcal{L}^{\prime}, m, \mathcal{U}^{\prime}, \overrightarrow{H^{\prime}}\right)$ is a secondary cut structure, contradicting the minimality of the original Ω-system.

16.2. A disentangling lemma.

Lemma 16.3. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m, \mathcal{U}=\left(U_{1}, \ldots, U_{n-1}, U\right), \vec{H}\right)$ be a minimal cut Ω-system that is primary, and assume there is no non-simple bipartite Ω-system whose associated signed graft is a minor of $(G, \Sigma,\{s, t\})$. Take disjoint subsets $I_{d}, I_{c} \subseteq E(\vec{H} \backslash \Omega)$ and $T^{\prime} \subseteq\{s, t\}$ where
(1) I_{c} is non-empty, if I_{c} contains an st-path then $T^{\prime}=\emptyset$, and if not then $T^{\prime}=\{s, t\}$,
(2) every signature or st-cut disjoint from I_{c} intersects I_{d} in an even number of edges,
(3) if $T^{\prime}=\emptyset$, there is a directed subgraph $\overrightarrow{H^{\prime}}$ of $\vec{H} / I_{c} \backslash I_{d}$ that is the union of directed odd circuits $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ where
$\Omega \in L_{1}^{\prime} \cap L_{2}^{\prime} \cap L_{3}^{\prime}$ and $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are pairwise Ω-disjoint,

$$
\overrightarrow{H^{\prime}} \backslash \Omega \text { is acyclic }
$$

(4) if $T^{\prime}=\{s, t\}$, then $I_{d}, I_{c} \subseteq E(\vec{H} \backslash U)$ and there is a directed subgraph $\overrightarrow{H^{\prime}}$ of $\vec{H} / I_{c} \backslash I_{d}$ that is the union of D^{\prime}, Q^{\prime}, odd st-dipaths $L_{2}^{\prime}, L_{3}^{\prime}$, and dipaths $Q_{4}^{\prime}, \ldots, Q_{m}^{\prime}$, where

- D^{\prime} is an sd-dipath containing Ω with $V\left(D^{\prime}\right) \cap U=\{s, d\}, Q^{\prime}$ is a qt-dipath with $V\left(Q^{\prime}\right) \cap U=$ $\{q\}$, and D^{\prime}, Q^{\prime} have no vertex outside U in common,
- for $i=4, \ldots, n+2, Q_{i}^{\prime}$ is a $q_{i-3} t$-dipath with $V\left(Q_{i}^{\prime}\right) \cap U_{i-3}=\left\{q_{i-3}\right\}$, and for $i=n+3, \ldots, m$, Q_{i}^{\prime} is an even st-dipath,
- $D^{\prime}, Q^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}^{\prime}, \ldots, Q_{m}^{\prime}$ are pairwise Ω-disjoint,
- $D^{\prime}, Q^{\prime}, Q_{4}^{\prime}, \ldots, Q_{m}^{\prime}$ coincide with $D, Q, Q_{4}, \ldots, Q_{m}$ on $E(G[U]) \cup \delta(U)$, respectively,
- the following digraph is acyclic: start from $\overrightarrow{H^{\prime}}$, for each q_{i} add arc $\left(s, q_{i}\right)$, and if $d \neq q$, add $\operatorname{arc}(d, q)$.

Then one of the following does not hold:
(i) $I_{d} \cup\{\Omega\}$ does not have a k-mate,
(ii) if $T^{\prime}=\emptyset$, then for every directed odd circuit L^{\prime} of $\overrightarrow{H^{\prime}}$, either $L^{\prime} \cup I_{d}$ contains an odd st-dipath P of \vec{H} with $V(P) \cap U=\{s\}$, or $L^{\prime} \cup I_{d}$ has a k-mate in $(G, \Sigma,\{s, t\})$ disjoint from I_{c},
(iii) if $T^{\prime}=\{s, t\}$, then for every odd st-dipath P^{\prime} of $\overrightarrow{H^{\prime}}$ with $V\left(P^{\prime}\right) \cap U=\{s\}$, either $P^{\prime} \cup I_{d}$ contains an odd st-dipath of \vec{H}, or $P^{\prime} \cup I_{d}$ has a k-mate in $(G, \Sigma,\{s, t\})$ disjoint from I_{c}.

Proof. Suppose otherwise. Let $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right):=(G, \Sigma,\{s, t\}) / I_{c} \backslash I_{d}$ where $\Sigma^{\prime}=\Sigma$; this signed graft is well-defined by (1). Let $\mathcal{L}^{\prime}:=\left(L_{1}^{\prime}, \ldots, L_{m}^{\prime}, L_{m+1}, \ldots, L_{k}\right)$, where $L_{1}^{\prime}, \ldots, L_{m}^{\prime}$ are defined as follows. If $T^{\prime}=\emptyset$, let $m^{\prime}:=3$, and for $i \in[m]-[3]$, let $L_{i}^{\prime}:=L_{i}-P_{i}$. Otherwise, when $T^{\prime}=\{s, t\}$, let $m^{\prime}:=m$, $L_{1}^{\prime}:=D^{\prime} \cup Q^{\prime} \cup R$, and for $i \in[m]-[3]$, let $L_{i}^{\prime}:=\left(L_{i}-Q_{i}\right) \cup Q_{i}^{\prime}$.

We will first show that $\left(\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right), \mathcal{L}^{\prime}, m^{\prime}\right)$ is a bipartite Ω-system. (B1) By (2), every signature of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ has the same parity as $\tau(G, \Sigma,\{s, t\})$, implying that $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ is an Eulerian signed graft. (B2) It also implies that $k, \tau(G, \Sigma,\{s, t\})$ and $\tau\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ have the same parity, so every minimal cover of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ has the same size parity as k. We claim that $\tau\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right) \geq k$. Let B^{\prime} be a minimal cover of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$. If $\Omega \notin B^{\prime}$, then

$$
\left|B^{\prime}\right| \geq \sum\left(\left|B^{\prime} \cap L^{\prime}\right|: L^{\prime} \in \mathcal{L}^{\prime}\right) \geq k
$$

Otherwise, $\Omega \in B^{\prime}$. In this case, $B^{\prime} \cup I_{d}$ contains a cover B of $(G, \Sigma,\{s, t\})$. By (i), $I_{d} \cup\{\Omega\}$ does not have a k-mate, so

$$
k-2 \leq\left|B-\left(I_{d} \cup\{\Omega\}\right)\right| \leq\left|B-I_{d}\right|-1 \leq\left|B^{\prime}\right|-1
$$

and since $\left|B^{\prime}\right|, k$ have the same parity, it follows that $\left|B^{\prime}\right| \geq k$. Thus, \mathcal{L}^{\prime} is an (Ω, k)-packing. When $T^{\prime}=\emptyset$ then $m^{\prime}=3$. When $T=\{s, t\}$, then $m^{\prime}=m$ and for $j \in\left[m^{\prime}\right]-[3], L_{j}^{\prime}$ contains an even $s t$-path in the bipartite $s t$-join $L_{j}^{\prime}-C_{j}$ and some odd circuit in C_{j}, and for $j \in[k]-\left[m^{\prime}\right], L_{j}$ remains connected in G^{\prime}. (B3) follows from construction.

Suppose first that $T^{\prime}=\emptyset$. We will show that $\left(\left(G^{\prime}, \Sigma^{\prime}, \emptyset\right), \mathcal{L}^{\prime}, 3, \overrightarrow{H^{\prime}}\right)$ is a non-simple bipartite Ω system, yielding a contradiction. (NS1) holds as (B1)-(B3) hold. (NS2) holds as $T^{\prime}=\emptyset$. (NS3) follows from (3). (NS4) Let L^{\prime} be a directed odd circuit of $\overrightarrow{H^{\prime}}$. If $L^{\prime} \cup I_{d}$ has a k-mate B in $(G, \Sigma,\{s, t\})$ disjoint from I_{c}, then $B-I_{d}$ contains a minimal cover B^{\prime} of $\left(G^{\prime}, \Sigma^{\prime}, \emptyset\right)$, and since

$$
\left|B^{\prime}-L^{\prime}\right| \leq\left|\left(B-I_{d}\right)-L^{\prime}\right|=\left|B-\left(L^{\prime} \cup I_{d}\right)\right| \leq k-3,
$$

it follows that B^{\prime} is a k-mate of L^{\prime}. Otherwise by (ii) $L^{\prime} \cup I_{d}$ contains an odd st-dipath P of \vec{H} with $V(P) \cap U=\{s\}$. Since $((G, \Sigma,\{s, t\}), \mathcal{L}, m, \mathcal{U}, \vec{H})$ is a primary cut Ω-system, P has a k-mate B which by proposition 16.1 is a signature. By proposition $8.3, B \cap E(\vec{H})=B \cap P$, implying that $B \cap I_{c}=\emptyset$. Thus, $B-I_{d}$ contains a minimal cover B^{\prime} of $\left(G^{\prime}, \Sigma^{\prime}, \emptyset\right)$, and since

$$
\left|B^{\prime}-L^{\prime}\right| \leq\left|\left(B-I_{d}\right)-L^{\prime}\right| \leq|B-P| \leq k-3
$$

it follows that B^{\prime} is a k-mate of L^{\prime}.
Suppose otherwise that $T^{\prime}=\{s, t\}$. To obtain a contradiction, we will show that $\left(\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right), \mathcal{L}^{\prime}\right.$, $m, \mathcal{U}, \overrightarrow{H^{\prime}}$) is a primary cut Ω-system. ($\mathbf{C 1}$) holds because (B1)-(B3) are true. (C2)-(C3) follow from (4). ($\mathbf{C 4}$) Let P^{\prime} be an odd st-dipath in $\overrightarrow{H^{\prime}}$ with $V\left(P^{\prime}\right) \cap U=\{s\}$. If $P^{\prime} \cup I_{d}$ has a k-mate B in $(G, \Sigma,\{s, t\})$ disjoint from I_{c}, then $B-I_{d}$ contains a minimal cover B^{\prime} of $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$, and since

$$
\left|B^{\prime}-P^{\prime}\right| \leq\left|\left(B-I_{d}\right)-P^{\prime}\right|=\left|B-\left(P^{\prime} \cup I_{d}\right)\right| \leq k-3,
$$

it follows that B^{\prime} is a k-mate of P^{\prime}. Otherwise by (iii) $P^{\prime} \cup I_{d}$ contains an odd st-dipath P of \vec{H}. As $I_{d} \subseteq E(\vec{H} \backslash U)$, it follows that $V(P) \cap U=\{s\}$. Since $((G, \Sigma,\{s, t\}), \mathcal{L}, m, \mathcal{U}, \vec{H})$ is a primary cut Ω-system, P has a k-mate B. By proposition $16.1, B$ is a signature, so by proposition 8.3 , $B \cap E(\vec{H})=B \cap P$, implying that $B \cap I_{c}=\emptyset$. Thus $B-I_{d}$ contains a minimal cover B^{\prime} of $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$, and since

$$
\left|B^{\prime}-P^{\prime}\right| \leq\left|\left(B-I_{d}\right)-P^{\prime}\right| \leq|B-P| \leq k-3,
$$

it follows that B^{\prime} is a k-mate of P^{\prime}.
16.3. The proof of proposition 2.14. In this section, we prove proposition 2.14 . We assume Ω has ends s, s^{\prime}. Reset $C_{1}:=D$ and $Q_{1}:=Q$. Let Q_{1}^{+}be the $s t$-dipath obtained from Q_{1} after adding arc (s, q). For $i=4, \ldots, n+2$, let Q_{i}^{+}be the $s t$-dipath obtained from Q_{i} after adding $\left(s, q_{i-3}\right)$ to it. Let \vec{H}^{+}be the union of C_{1}, arc (d, q) if $d \neq q$, and $s t$-dipaths $Q_{1}^{+}, Q_{2}, Q_{3}, Q_{4}^{+}, \ldots, Q_{n+2}^{+}, Q_{n+3}, \ldots, Q_{m}$. For $u, v \in V\left(Q_{1}^{+} \cup Q_{2} \cup Q_{3} \cup Q_{4}^{+} \cup \ldots \cup Q_{n+2}^{+} \cup Q_{n+3} \cup \ldots \cup Q_{m}\right), u \leq v$ if there is a uv-dipath in $Q_{1}^{+} \cup Q_{2} \cup Q_{3} \cup Q_{4}^{+} \cup \ldots \cup Q_{n+2}^{+} \cup Q_{n+3} \cup \ldots \cup Q_{m}$; this partial ordering is well-defined as \vec{H}^{+}is
acyclic, by (C3). For $i \in[m]$, let v_{i} be the second largest vertex of the $i^{\text {th }} s t$-dipath that lies on one of the other st-dipaths. By proposition 8.8 there exists an index subset $I \subseteq[m]$ of size at least two such that, for each $i \in I$,

- $v_{i} \geq v_{3}$, and there is no $j \in[m]$ such that $v_{j}>v_{i}$,
- for each $j \in[m], v_{i}=v_{j}$ if and only if $j \in I$.

Claim 1. For each $i \in I, U$ and $Q_{i}\left[v_{i}, t\right]$ have no vertex in common.
Proof. Suppose otherwise. Among the arcs of \vec{H} in $\delta(U)$, there is only one arc, say e, entering U, and e is the arc in $\left(C_{1} \cap \delta(U)\right)-\{\Omega\}$. However, $\left(Q_{1} \cup \cdots \cup Q_{m}\right) \cap C_{1}=\{\Omega\}$, implying that $e \notin \bigcup\left(Q_{j}: j \in[m]\right)$. In particular, $Q_{i}\left[v_{i}, t\right]$ does not enter U, so $v_{i} \in U$. As $v_{i} \geq v_{3}$, there is a $v_{3} v_{i}$-dipath $P \subset \bigcup\left(Q_{j}: j \in[m]\right)$. However, $v_{3} \in V\left(Q_{3}\left[s^{\prime}, t\right]\right)$, so $v_{3} \notin U$, implying that $e \in P \subset \bigcup\left(Q_{j}: j \in[m]\right)$, a contradiction.

Claim 2. For each $i \in I, C_{1}$ and $Q_{i}\left[v_{i}, t\right]$ have no vertex of $V(G)-\left\{s^{\prime}\right\}$ in common.
Proof. Suppose otherwise. Then it follows from the brace proposition 16.2 and the acyclicity of \vec{H}^{+} that

$$
(\diamond) \quad I=\{2,3\} \quad \text { and } \quad V\left(Q_{i}\right) \cap V\left(Q_{j}\right) \subseteq\{s, t\} \quad \forall i \in I, \forall j \in[m]-I
$$

Let $X_{1}:=C_{1}-\{\Omega\}, X_{2}:=Q_{2}-\{\Omega\}$ and $X_{3}:=Q_{3}-\{\Omega\}$. For each $i \in[3]$, let u_{i} be the second smallest vertex of X_{i} that also lies on one of $\left\{X_{1}, X_{2}, X_{3}\right\}-\left\{X_{i}\right\}$. Then by proposition 8.8, there exists an index subset $J \subseteq[3]$ of size at least two such that, for each $j \in J$ and $i \in[3], u_{i}=u_{j}$ if and only if $i \in J$. Observe that, for each $j \in J, X_{j}\left[s^{\prime}, u_{j}\right] \subseteq E(\vec{H} \backslash U)$, and as (\diamond) holds, each internal vertex of $X_{i}\left[s^{\prime}, u_{i}\right]$ has degree 2 .

Subclaim 1. For each $j \in J, X_{j}\left[s^{\prime}, u_{j}\right] \cup\{\Omega\}$ has a k-mate.

Proof of Subclaim. Suppose otherwise. Let $I_{d}:=X_{j}\left[s^{\prime}, u_{j}\right]$ and $I_{c}:=\bigcup\left(X_{i}\left[s^{\prime}, u_{i}\right]: i \in J-\{j\}\right)$. Let $T^{\prime}:=\{s, t\}, D^{\prime}:=C_{1}-\left(I_{c} \cup I_{d}\right)$, and for $i=2,3$, let $L_{i}^{\prime}:=L_{i}-\left(I_{c} \cup I_{d}\right)$. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $D^{\prime}, Q, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}, \ldots, Q_{m}$. It is clear that (1)-(4) of the disentangling lemma 16.3 hold. By assumption, $I_{d} \cup\{\Omega\}$ has no k-mate, so (i) holds. However, since each internal vertex of $X_{i}\left[s^{\prime}, u_{i}\right]$ has degree 2, so (ii) and (iii) hold as well, a contradiction with the disentangling lemma 16.3. $\quad \nabla$

Subclaim 2. Fix $j \in J$. Then there exist an $s^{\prime} t$-dipath X and $a u_{j} t$-dipath Y in \vec{H} that are internally vertex-disjoint.

Proof of Subclaim. Suppose otherwise. Then there exists a vertex $v \in V(\vec{H})-\left\{s^{\prime}, t\right\}$ such that there is no $s^{\prime} t$-dipath in $\vec{H} \backslash v$. Note that $v \in V\left(C_{1}\right)$. By proposition 16.1, one of the following holds:
(a) there exists an $s^{\prime} v$-dipath Z in \vec{H} such that $Z \cup\{\Omega\}$ has no k-mate:

Let $I_{d}:=Z, I_{c}:=\bigcup\left(X_{i}\left[s^{\prime}, v\right]: i \in[3]\right)-Z, T^{\prime}:=\{s, t\}, D^{\prime}:=C_{1}-\left(I_{c} \cup I_{d}\right)$, for $i=2,3$ let $L_{i}^{\prime}:=L_{i}-\left(I_{c} \cup I_{d}\right)$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $D^{\prime}, Q, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}, \ldots, Q_{m}$.
(b) for every $s^{\prime} v$-dipath Z in $\vec{H}, Z \cup\{\Omega\}$ has a signature k-mate, and $m>3$:

Let $I_{d}:=\emptyset, I_{c}:=Q_{2}[v, t] \cup Q_{3}[v, t] \cup Q_{4} \cup R_{4}, T^{\prime}:=\emptyset$, for $i \in[3]$ let $L_{i}^{\prime}:=Q_{i}\left[s^{\prime}, v\right] \cup\{\Omega\}$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$.
(c) for every $s^{\prime} v$-dipath Z in $\vec{H}, Z \cup\{\Omega\}$ has a signature k-mate, and $m=3$.

It is not difficult to check that in either of the cases (a), (b) above, (1)-(4) and (i) of the disentangling lemma 16.3 hold, and as $(\diamond$) holds, (ii) and (iii) hold as well, which cannot be the case. (For (b), note that $V\left(R_{4}\right) \subseteq U$.) Hence, (c) holds. For each $j \in[3]$, let B_{j} be a signature k-mate for $Q_{j}\left[s^{\prime}, v\right] \cup\{\Omega\}$, which is also a signature k-mate for L_{j}. However, this is in contradiction with the mate proposition 8.4. (Observe that L_{1} is a connected odd $s t$-join with $L_{1} \cap \delta(s)=\{\Omega\}$.)

Hence, in particular, $|J|=2$ and after redefining \mathcal{L}, if necessary, we may assume $J=\{1,2\}$ and $X=X_{3}$.

Subclaim 3. $m>3$.
Proof of Subclaim. By subclaim 1, for $j=1,2$, there exists a k-mate B_{j} of $Q_{j}\left[s^{\prime}, u_{j}\right] \cup\{\Omega\}$, and by $(\mathrm{C} 4), Q_{3}$ has a k-mate B_{3}. By proposition $16.1, B_{1}, B_{2}, B_{3}$ are signatures, and for $j \in[3], B_{j}$ is also a k-mate for L_{j}. The result now follows from the mate proposition 8.4.

Now let $I_{d}:=\emptyset, I_{c}:=Y \cup Q_{4} \cup R_{4}, T^{\prime}:=\emptyset, L_{1}^{\prime}:=Q_{1}\left[s^{\prime}, u_{1}\right] \cup\{\Omega\}, L_{2}^{\prime}:=Q_{2}\left[s^{\prime}, u_{2}\right] \cup\{\Omega\}, L_{3}^{\prime}:=P_{3}$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$. (Note that $V\left(R_{4}\right) \subseteq U$.) It is easy to check that (1)-(4) and (i)-(iii) of the disentangling lemma 16.3 hold, which is a contradiction.

Claim 3. For each $i \in I, Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$ has a signature k-mate.
Proof. Suppose otherwise. Since $v_{i} \geq v_{3}, Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$ is contained in an odd st-dipath P such that $V(P) \cap U=\{s\}$. Hence, by proposition $16.1, Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$ has no k-mate at all. Let $I_{d}:=Q_{i}\left[v_{i}, t\right]$ and $I_{c}:=\bigcup\left(Q_{j}\left[v_{j}, t\right]: j \in I-\{i\}\right)$. Let $T^{\prime}:=\{s, t\}, Q^{\prime}:=Q_{1}-\left(I_{c} \cup I_{d}\right)$, for $j=2,3$ let $L_{j}^{\prime}:=L_{j}-\left(I_{c} \cup I_{d}\right)$, and for $j \in[m]-[3]$ let $Q_{j}^{\prime}:=Q_{j}-\left(I_{c} \cup I_{d}\right)$. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $D, Q^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}^{\prime}, \ldots, Q_{m}^{\prime}$. It is clear that (1)-(4) and (ii), (iii) of the disentangling lemma 16.3 hold. However, $I_{d} \cup\{\Omega\}$ has no k-mate, so (i) holds, contradicting the disentangling lemma 16.3.

After redefining \mathcal{L}, if necessary, we may assume that $3 \in I$.
Claim 4. There exist vertex-disjoint paths X and Y in \vec{H} such that X is an $s^{\prime} v_{3}$-path in $\vec{H} \backslash U$ and Y connects a vertex of U to t.

Proof. Suppose otherwise.

Assume first that $s^{\prime}=v_{3}$. Then, for each $j \in[m], s^{\prime} \in V\left(Q_{j}\right)$ and by claim $1, Q_{j}\left[s^{\prime}, t\right]$ has no vertex in common with U. Hence, for each $j \in[m]$, by (C4) and proposition 16.1, $Q_{j}\left[s^{\prime}, t\right] \cup\{\Omega\}$ has a signature k-mate B_{j}. However, B_{1} is also a signature k-mate for L_{1}, and for each $j \in[m]-[1], B_{j}$ is also a signature k-mate for $P_{j} \cup\{\Omega\}$. (Note $P_{j}-E(G[U])$ contains all the edges of $Q_{j}-E(G[U])$.) This is a contradiction with the mate proposition 8.4.

Thus, $s^{\prime} \neq v_{3}$. Let \vec{H}^{\star} be the digraph obtained from \vec{H} after shrinking U to a single vertex u^{\star} and removing all loops. Notice that every odd $s t$-dipath in \vec{H} whose intersection with U is $\{s\}$, is a $u^{\star} t$-dipath in \vec{H}^{\star} that uses Ω, and vice-versa. Also, note that the acyclicity condition in (C3) implies that $\vec{H}^{\star} \backslash u^{\star}$ is acyclic. By the linkage lemma $13.1, H^{\star}$ is a spanning subgraph of a $\left(u^{\star}, v_{3}, t, s^{\prime}\right)$-web with frame C_{0} and rib H_{0}^{\star}. Fix a plane drawing of H_{0}^{\star}, where the unbounded face is bounded by C_{0}. After redefining \mathcal{L}, if necessary, we may assume the following:
(\star) for every $s^{\prime} v_{3}$-dipath P of $\vec{H}^{\star} \backslash u^{\star}$, the number of rib vertices that are on the same side of P as u^{*} is at least as large as that of $Q_{3}\left[s^{\prime}, v_{3}\right]$.

For $j \in[m]-\{2,3\}$, let u_{j} be the largest rib vertex on Q_{j} that also lies on $Q_{3}\left[s^{\prime}, v_{3}\right]$. Observe that if $j \in I \cap([m]-\{2,3\})$, then $u_{j}=v_{j}$. For $j \in[m]-\{2,3\}$ let $X_{j}:=Q_{j}\left[u_{j}, t\right]$, for $j \in\{2,3\} \cap I$ let $X_{j}:=Q_{j}\left[v_{j}, t\right]$, and for $j \in\{2,3\}-I$ let $X_{j}:=Q_{j}\left[s^{\prime}, t\right]$. For each $j \in[m]$, since $X_{j} \cup\{\Omega\}$ is contained in a $u^{\star} t$-dipath of \vec{H}^{\star}, proposition 16.1 implies that every k-mate for $X_{j} \cup\{\Omega\}$ (if any) must be a signature. However, every k-mate for $X_{j} \cup\{\Omega\}, j \in[m]$ is also a k-mate for $P_{j} \cup\{\Omega\}$. Hence, by the mate proposition 8.4, there exists $i \in[m]$ such that $X_{i} \cup\{\Omega\}$ has no k-mate. By (C 4) and claim 3, $i \notin I \cup\{2,3\}$. Observe that (\star) implies the following:
$(\star \star)$ if $w \in V\left(Q_{3}\left[u_{i}, t\right]\right)$ and P is an $s^{\prime} w$-dipath in $\vec{H}^{\star} \backslash u^{\star}$, then P and X_{i} have a vertex in common.

Observe that $(\star \star)$, together with the brace proposition 16.2 , implies that $D=C_{1}$ is vertex-disjoint from $Q_{3}\left[u_{i}, t\right]$.

Let $I_{d}:=X_{i}$ and $I_{c}:=Q_{3}\left[u_{i}, t\right]$. Let $T^{\prime}:=\{s, t\}$, let Q^{\prime} be $Q_{1}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit (of \vec{H}) it contains, for $j \in\{2,3\}$ let L_{j}^{\prime} be $Q_{j}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit it contains, and for $j \in[m]-[3]$ let Q_{j}^{\prime} be $Q_{j}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit it contains. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $D, Q^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}^{\prime}, \ldots, Q_{m}^{\prime}$. It is clear that (1)-(4) and (ii) of the disentangling lemma 16.3 hold. By the choice of X_{i}, (i) holds as well. To show (iii) holds, let P^{\prime} be an odd st-dipath of $\overrightarrow{H^{\prime}}$ with $V\left(P^{\prime}\right) \cap U=\{s\}$. Then $P^{\prime} \cup I_{c}$ contains an odd st-dipath of \vec{H}, so $P^{\prime} \cup I_{c}$ contains a $u^{\star} t$-dipath of \vec{H}^{\star} containing Ω and by $(\star \star), P^{\prime} \cup I_{d}$ also contains a $u^{\star} t$-dipath of \vec{H}^{\star} containing Ω, implying in turn
that $P^{\prime} \cup I_{d}$ contains an odd st-dipath of \vec{H}. Hence, (iii) holds, a contradiction with the disentangling lemma 16.3.

For each $i \in I$, let B_{i} be an extremal k-mate of $Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$. Note that $B_{i} \cap Q_{i}\left[v_{i}, t\right] \neq \emptyset$. As $v_{i} \geq v_{3}, Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$ is contained in an odd st-dipath P such that $V(P) \cap U=\{s\}$. Note that B_{i} is also a k-mate for P, so by proposition 16.1, B_{i} is a signature. Fix $z \in I-\{3\}$. Choose $W \subseteq V(G)-\{s, t\}$ such that $\delta(W)=B_{3} \triangle B_{z}$. By proposition 8.7 , there is a path in $G[W] \backslash B_{3}$ between Q_{3} and Q_{z}. Moreover, by proposition 5.4, there is a path between s and each of d, q in $G[U] \backslash B_{3}$. We say that property (S) holds if there exist paths S_{d}, S_{q}, S in G such that
S_{d} is an $s d$-path and S_{q} is an $s q$-path, and they are contained in $G[U] \backslash B_{3}$,
S connects a vertex of Q_{3} to a vertex of Q_{z} in $G[W] \backslash B_{3}$, and each of S_{d}, S_{q} is vertex-disjoint from S.

Claim 5. If property (S) holds, then $(G, \Sigma,\{s, t\})$ has an F_{7} minor.
Proof. Take X and Y from claim 4. Notice that each edge in $Y \cap \delta(U)$ belongs to either of D, Q, P_{4}, \ldots, P_{m}, so we may assume that, for some $u \in\{s, d, q\}, Y$ is a $u t$-path. It is now easy (and is left as an exercise) to see that $C_{1} \cup X \cup Y \cup S_{d} \cup S_{q} \cup Q_{3}\left[v_{3}, t\right] \cup Q_{z}\left[v_{z}, t\right] \cup S$ has an F_{7} minor.

Claim 6. Suppose property (S) does not hold. Then $m \geq 4$.

Proof. Suppose for a contradiction that $m=3$. By proposition 16.1, L_{2} and L_{3} have signature k-mates. As $m=3$, the mate proposition 8.4 therefore implies that L_{1} does not have a signature k-mate. Hence, by claim $3,1 \notin I$ and so $I=\{2,3\}$. Since property (S) does not hold, there is $u \in\{d, q\}$ for which there is no su-path contained in $G[U] \backslash\left(B_{2} \cup B_{3}\right)$. Let $B_{1}:=\delta(U)$. Clearly, (i) and (ii) of the shore proposition 15.1 hold. By (PC5), (iii) also holds. Moreover, for $i \in\{2,3\}$, $B_{i} \cap P_{i}=B_{i} \cap\left(Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}\right)$, so by claim $1, B_{i} \cap P_{i}$ has no edge in $G[U]$, so (iv) holds. Thus, by the shore proposition 15.1 , there is an su-path contained in $G[U] \backslash\left(B_{2} \cup B_{3}\right)$, a contradiction.

Claim 7. Suppose property (S) does not hold. Then there exist vertex-disjoint paths X and Y in \vec{H} where X is an $s^{\prime} v_{3}$-path and Y is an st-path.

Proof. Suppose otherwise. By claim $6, m \geq 4$ and by the brace proposition 16.2 , none of Q_{4}, \ldots, Q_{m} contains vertex s^{\prime}. Thus, $s^{\prime} \neq v_{3}$. By the linkage lemma $13.1, H$ is a spanning subgraph of an $\left(s, v_{3}, t, s^{\prime}\right)$-web with frame C_{0} and rib H_{0}. Fix a plane drawing of H_{0}, where the unbounded face is bounded by C_{0}. After redefining \mathcal{L}, if necessary, we may assume the following:
(\star) for every $s^{\prime} v_{3}$-dipath P of \vec{H} with $V(P) \cap U=\emptyset$, the number of rib vertices that are on the same side of P as s is at least as large as that of $Q_{3}\left[s^{\prime}, v_{3}\right]$.

For $j \in[m]-[3]$, let u_{j} be the largest rib vertex on Q_{j} that also lies on $Q_{3}\left[s^{\prime}, v_{3}\right]$. Observe that if $j \in I \cap([m]-[3])$, then $u_{j}=v_{j}$. For $j \in[m]-[3]$ let $X_{j}:=Q_{j}\left[u_{j}, t\right]$, for $j \in\{2,3\} \cap I$ let $X_{j}:=Q_{j}\left[v_{j}, t\right]$, and for $j \in\{2,3\}-I$ let $X_{j}:=Q_{j}\left[s^{\prime}, t\right]$. Observe that each $X_{j}, j \in[m]-\{1\}$ is contained in an odd st-dipath whose intersection with U is $\{s\}$. As a result, by proposition 16.1, every k-mate for $X_{j} \cup\{\Omega\}, j \in[m]-\{1\}$ (if any) must be a signature. However, every k-mate for $X_{j} \cup\{\Omega\}, j \in[m]-\{1\}$ is also a k-mate for $P_{j} \cup\{\Omega\}$. Hence, since property (S) does not hold, the (contrapositive equivalent of the) shore proposition 15.1 implies that, for some $i \in[m]-\{1\}, X_{i} \cup\{\Omega\}$ has no k-mate. By (C 4) and claim $3, i \notin I \cup\{2,3\}$. Observe that (\star) implies the following:
$(\star \star)$ if $w \in V\left(Q_{3}\left[u_{i}, t\right]\right)$ and P is an $s^{\prime} w$-dipath in $\vec{H} \backslash U$, then P and X_{i} have a vertex in common.

Note that $(\star \star)$, together with the brace proposition 16.2 , implies that $C_{1}=D$ is vertex-disjoint from $Q_{3}\left[u_{i}, t\right]$.

Let $I_{d}:=X_{i}$ and $I_{c}:=Q_{3}\left[u_{i}, t\right]$. Let $T^{\prime}:=\{s, t\}$, let Q^{\prime} be $Q_{1}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit it contains, for $j \in\{2,3\}$ let L_{j}^{\prime} be $Q_{j}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit it contains, and for $j \in[m]-[3]$ let Q_{j}^{\prime} be $Q_{j}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit it contains. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $D, Q^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}^{\prime}, \ldots, Q_{m}^{\prime}$. It is clear that (1)-(4) and (ii) of the disentangling lemma 16.3 hold. By the choice of X_{i}, (i) holds as well. To show (iii) holds, let P^{\prime} be an odd st-dipath of $\overrightarrow{H^{\prime}}$ with $V\left(P^{\prime}\right) \cap U=\{s\}$. Then $P^{\prime} \cup I_{c}$ contains an odd st-dipath of \vec{H} whose intersection with U is $\{s\}$, so by $(\star \star), P^{\prime} \cup I_{d}$ also contains an st-dipath of \vec{H}. Hence, (iii) holds, a contradiction with the disentangling lemma 16.3.

Claim 8. Suppose property (S) does not hold. If $\vec{H} \backslash t$ is non-bipartite, then $(G, \Sigma,\{s, t\})$ has an F_{7} minor.

Proof. Take X and Y from claim 7, and let C be an odd circuit in $\vec{H} \backslash t$. Note that $\Omega \in C$. By proposition 8.7, there is a shortest path S in $G[W] \backslash B_{3}$ between P_{3} and P_{z}. Note that $S \cap E(H)=\emptyset$. It is easy (and is left as an exercise) to see that $C \cup X \cup Y \cup P_{3}\left[v_{3}, t\right] \cup P_{z}\left[v_{z}, t\right] \cup S$ has an F_{7} minor. \diamond

Notice that if $\vec{H} \backslash t$ is bipartite, then for all $i \in\{2,3\}$ and $j \in[m]-[3], Q_{i}$ and $Q_{j} \cup R_{j}$ are internally vertex-disjoint.

We say that property $\left(S^{\prime}\right)$ holds if there exist vertex-disjoint paths S_{d}, S in G such that
S_{d} is an $s d$-path in $G[U] \backslash B_{3}$,
S connects a vertex of P_{3} to a vertex of P_{z} in $G[W] \backslash B_{3}$.
Notice that if property (S^{\prime}) does not hold, then neither does property (S).

Claim 9. Suppose property (S) does not hold, $\vec{H} \backslash t$ is bipartite, and property (S^{\prime}) holds. Then ($G, \Sigma,\{s, t\}$) has an F_{7} minor.

Proof. By claim 6, $m \geq 4$. Note that $Q_{4} \cup R_{4}$ is internally vertex-disjoint from Q_{3}. It is easy to see that $C_{1} \cup S_{d} \cup Q_{3} \cup Q_{z}\left[v_{z}, t\right] \cup S \cup Q_{4} \cup R_{4}$ has an F_{7} minor.

Claim 10. Suppose property $\left(S^{\prime}\right)$ does not hold and that $\vec{H} \backslash t$ is bipartite. Then $(G, \Sigma,\{s, t\})$ has an F_{7} minor.

Proof. We will find an F_{7} minor in a different way than we have done so far, by using edges from L_{m+1}, \ldots, L_{k}.

Since property (S^{\prime}) does not hold, there does not exist a path connecting a vertex of Q_{3} to a vertex of Q_{z} in $G[W-U] \backslash B_{3}$. So there is a partition of $W-U$ into two parts W_{3}, W_{z} such that W_{3} shares no vertex with Q_{z}, W_{z} shares no vertex with Q_{3}, and every edge with one end in W_{3} and another in W_{z} belongs to B_{3}. Observe that $\delta\left(W_{3}\right) \cup \delta\left(W_{z}\right) \subseteq B_{3} \cup B_{z} \cup \delta(U)$.

Subclaim 1. There is no edge with one end in W_{3} and another in W_{z}.

Proof of Subclaim. Suppose otherwise, and let e be such an edge. Then $e \in B_{3}$, and since $e \notin \delta(W)$, it follows that $e \in B_{z}$. Note $e \in C_{4} \cup \cdots \cup C_{m} \cup L_{m+1} \cup \cdots \cup L_{k}$, and since each of L_{m+1}, \ldots, L_{k} is a connected odd $s t$-join intersecting each of B_{3}, B_{z} exactly once, it follows that $e \in C_{4} \cup \cdots \cup C_{m}$. We may assume $e \in C_{4}$. However, $C_{4} \cap \delta(U)=\emptyset$, implying that there is another edge f of C_{4} with one end in W_{3} and another in W_{z}. But then $\{e, f\} \subseteq C_{4} \cap B_{3}$, a contradiction as $\left|C_{4} \cap B_{3}\right|=1$. ∇

Given $L \in\left\{L_{m+1}, \ldots, L_{k}\right\}$ and $Q_{j} \in\left\{Q_{3}, Q_{z}\right\}$, we say that L is bad for Q_{j} if $\left|L \cap \delta\left(W_{j}\right)\right|=2$, $L \cap \delta\left(W_{j}\right) \cap B_{j}=\emptyset$, and there exists a path in $G\left[W_{j}\right] \backslash B_{3}$ between Q_{j} and L.

Subclaim 2. Each $L \in\left\{L_{m+1}, \ldots, L_{k}\right\}$ is bad for at most one of Q_{3}, Q_{z}.

Proof of Subclaim. Suppose otherwise. Then $\left|L \cap \delta\left(W_{3}\right)\right|=\left|L \cap \delta\left(W_{z}\right)\right|=2$, and by subclaim 1, L shares exactly four edges with $\delta\left(W_{3}\right) \cup \delta\left(W_{z}\right)$. However, $\delta\left(W_{3}\right) \cup \delta\left(W_{z}\right) \subseteq B_{3} \cup B_{z} \cup \delta(U)$, implying that L shares at least two edges with one of $B_{3}, B_{z}, \delta(U)$, a contradiction.

Subclaim 3. Each of Q_{3}, Q_{z} has a bad odd st-join.

Proof of Subclaim. We prove that Q_{3} has a bad odd st-join, and proving Q_{z} has a bad odd st-join can be done similarly. Suppose for a contradiction that Q_{3} has no bad odd $s t$-join. Let W_{3}^{\prime} be the set of all vertices in W_{3} that are reachable from a vertex of Q_{3} in $G\left[W_{3}\right] \backslash B_{3}$. A similar argument as in
subclaim 1 shows that there is no edge with one end in W_{3}^{\prime} and another in $W_{3}-W_{3}^{\prime}$. Moreover, our contrary assumption implies that, for every $L \in\left\{L_{m+1}, \ldots, L_{k}\right\}$ such that $L \cap \delta\left(W_{3}^{\prime}\right) \neq \emptyset$, we have

$$
\left|L \cap \delta\left(W_{3}^{\prime}\right)\right|=2 \quad \text { and } \quad\left|L \cap \delta\left(W_{3}^{\prime}\right) \cap B_{3}\right|=1
$$

This implies that $B_{3} \triangle \delta\left(W_{3}^{\prime}\right)$ is also a k-mate of $Q_{3}\left[v_{3}, t\right] \cup\{\Omega\}$. However, $\left(B_{3} \triangle \delta\left(W_{3}^{\prime}\right)\right) \cap Q_{3}\left[v_{3}, t\right]=\emptyset$, contradicting the extremality of B_{3}.

Subclaim 4. $(G, \Sigma,\{s, t\})$ has an F_{7} minor.

Proof of Subclaim. Since property (S^{\prime}) does not hold, there is no path in $G[U-W] \backslash B_{3}$ between s and d. So there is a partition U_{s}, U_{d} of $U-W$ such that U_{s} contains s, U_{d} contains d, and every edge with one end in U_{s} and another in U_{d} belongs to B_{3}.

By proposition 5.4, there is a path S_{d} between s and d in $G[U] \backslash B_{3}$. By proposition 8.7 , there is a shortest path S in $G[W] \backslash B_{3}$ between Q_{3} and Q_{z}. Suppose S has ends $r_{3} \in V\left(Q_{3}\right)$ and $r_{z} \in V\left(Q_{z}\right)$. Since property (S^{\prime}) does not hold, S and S_{d} have a vertex in common in $U \cap W$. After contracting edges in $G\left[U_{s}\right] \backslash B_{3}$, if necessary, we may assume that S_{d} and P_{4} share only the vertex s. (We may assume $P_{4} \subseteq Q_{4} \cup R_{4}$.)

By subclaims 2 and 3, we may assume that L_{m+1} is bad for Q_{3} and that L_{m+2} is bad for Q_{z}. After contracting the path between L_{m+1}, Q_{3} in $G\left[W_{3}\right] \backslash B_{3}$ and the path between L_{m+2}, Q_{z} in $G\left[W_{z}\right] \backslash B_{3}$, we may assume that $r_{3} \in V\left(L_{m+1}\right)$ and $r_{z} \in V\left(L_{m+2}\right)$. After contracting edges in $G\left[U_{s}\right] \backslash B_{3}$, if necessary, we may assume that L_{m+1} and each one of P_{4}, S_{d} share only the vertex s in U_{s}. Similarly, we may assume that L_{m+2} and S share only the vertex r_{z} in W_{z}.

To construct the desired F_{7} minor, we will need three odd circuits and an even st-path, described as follows.

Even $s t$-path: Our even st-path will be P_{4}. Recall that P_{4} is internally vertex-disjoint from each one of $Q_{2}, Q_{3}, Q_{z}\left[v_{z}, t\right]$. Moreover, by the brace proposition 16.2, $V\left(P_{4}\right) \cap V\left(C_{1}\right) \subseteq\{s, d\}$. In fact, since property (S') does not hold, $V\left(P_{4}\right) \cap V\left(C_{1}\right)=\{s\}$. In fact, notice that P_{4} has no vertex in common with $U_{d} \cup W$.

Middle odd circuit: Along S_{d}, let x be the closest vertex to d that also lies on S. Note that $x \in U \cap W$. Our middle circuit will be

$$
C_{\text {middle }}:=S_{d}[d, x] \cup S\left[x, r_{3}\right] \cup Q_{3}\left[r_{3}, s^{\prime}\right] \cup C_{1}\left[s^{\prime}, d\right] .
$$

Observe that the even st-path P_{4} is vertex-disjoint from $C_{\text {middle }}$. Moreover, $C_{\text {middle }} \cap B_{3}=Q_{3}\left[r_{3}, s^{\prime}\right] \cap$ B_{3}, so $C_{\text {middle }}$ is an odd circuit.

First odd circuit: Our first odd circuit $C_{\text {first }}$ will be one contained in the odd cycle

$$
S_{d}[s, x] \cup S\left[x, r_{3}\right] \cup L_{m+1}\left[r_{3}, s\right]
$$

(The intersection of this cycle with B_{3} is $L_{m+1}\left[r_{3}, s\right] \cap B_{3}$, so the cycle is indeed odd.) Note that $C_{\text {first }}$ is contained in $G[U \cup W]$.

Last odd circuit: Our last odd circuit $C_{\text {last }}$ will be one contained in the set

$$
L_{m+2}\left[r_{z}, t\right] \cup Q_{3}\left[s^{\prime}, v_{3}\right] \cup Q_{z}\left[v_{3}, t\right]
$$

whose intersection with B_{3} is $B_{3} \cap L_{m+2}\left[r_{z}, t\right]$, which has odd cardinality. Note that $V\left(C_{\text {last }}\right)$ is contained in $(V(G)-(U \cup W)) \cup W_{z}$. However, as can be easily seen, $C_{\text {first }}$ and $C_{\text {last }}$ share no vertex in W_{z}. Hence, $C_{\text {first }}$ and $C_{\text {last }}$ have no vertex in common.

It is now quite easy to see that $(G, \Sigma,\{s, t\})$ has an F_{7} minor, finishing the proof.

Observe that claims 5, 8, 9 and 10 finish the proof of proposition 2.14.

17. SECONDARY Cut Ω-System

17.1. Signature mates.

Proposition 17.1. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m,\left(U_{1}, \ldots, U_{n}\right), \vec{H}\right)$ be a minimal cut Ω system that is secondary. Let P be an odd st-dipath with $V(P) \cap U_{n}=\{s\}$, and let B be a k-mate of it. Then B is not an st-cut.

Proof. After redefining \mathcal{L}, if necessary, we may assume that $P=Q_{1}$. Suppose for a contradiction that B is an st-cut. Choose $W \subseteq V(G)-\{t\}$ with $s \in W$ such that $B=\delta(W)$, and assume that there is no proper subset W^{\prime} of W with $s \in W^{\prime}$ such that $\delta\left(W^{\prime}\right)$ is a k-mate for $Q_{1}=L_{1}$. Observe that $Q_{1} \cap \delta\left(U_{n}\right)=\{\Omega\}$, and since Q_{1} is an odd st-dipath, it follows that $Q_{1} \cap \delta\left(U_{n} \cap W\right)=\{\Omega\}$. It now follows that $\delta\left(U_{n} \cap W\right)$ is also a k-mate for $L_{n+3}-C_{n+3}$. Hence, by the minimality condition of (SC3), it follows that $U_{n} \subset W$. Let $\mathcal{U}:=\left(U_{1}, \ldots, U_{n}, W\right)$. Let d (resp. q) be the closest (resp. furthest) vertex to (resp. from) s on Q_{1} that also belongs to $W-U_{n}$. It is easily seen that \mathcal{U} is a primary cut structure for $((G, \Sigma,\{s, t\}), \mathcal{L}, m)$, where L_{1} has brace $Q_{1}[s, d]$, residue $Q_{1}[d, q]$ and base $Q_{1}[q, t]$. Let $\overrightarrow{H^{\prime}}:=\vec{H} \backslash Q_{1}[d, q]$. Then it is easily seen that $\left((G, \Sigma,\{s, t\}), \mathcal{L}, m, \mathcal{U}, \overrightarrow{H^{\prime}}\right)$ is a primary cut structure, contradicting the minimality of the original Ω-system.

17.2. A disentangling lemma.

Lemma 17.2. Let $\left((G, \Sigma,\{s, t\}), \mathcal{L}=\left(L_{1}, \ldots, L_{k}\right), m, \mathcal{U}=\left(U_{1}, \ldots, U_{n}\right), \vec{H}\right)$ be a minimal cut Ω system that is secondary, and assume there is no non-simple bipartite Ω-system whose associated signed graft is a minor of $(G, \Sigma,\{s, t\})$. Take disjoint subsets $I_{d}, I_{c} \subseteq E(\vec{H} \backslash \Omega)$ and $T^{\prime} \subseteq\{s, t\}$ where
(1) I_{c} is non-empty, if I_{c} contains an st-path then $T^{\prime}=\emptyset$, and if not then $T^{\prime}=\{s, t\}$,
(2) every signature or st-cut disjoint from I_{c} intersects I_{d} in an even number of edges,
(3) if $T^{\prime}=\emptyset$, there is a directed subgraph $\overrightarrow{H^{\prime}}$ of $\vec{H} / I_{c} \backslash I_{d}$ that is the union of directed odd circuits $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ where
$\Omega \in L_{1}^{\prime} \cap L_{2}^{\prime} \cap L_{3}^{\prime}$ and $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are pairwise Ω-disjoint, $\overrightarrow{H^{\prime}} \backslash \Omega$ is acyclic,
(4) if $T^{\prime}=\{s, t\}$, then $I_{d}, I_{c} \subseteq E\left(\vec{H} \backslash U_{n}\right)$ and there is a directed subgraph $\overrightarrow{H^{\prime}}$ of $\vec{H} / I_{c} \backslash I_{d}$ that is the union of odd st-dipaths $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ and dipaths $Q_{4}^{\prime}, \ldots, Q_{m}^{\prime}$, where

- for $i=4, \ldots, n+3, Q_{i}^{\prime}$ is a $q_{i-3} t$-dipath with $V\left(Q_{i}^{\prime}\right) \cap U_{i-3}=\left\{q_{i-3}\right\}$, and for $i=n+4, \ldots, m$, Q_{i}^{\prime} is an even st-dipath,
- $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}^{\prime}, \ldots, Q_{m}^{\prime}$ are pairwise Ω-disjoint,
- $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}^{\prime}, \ldots, Q_{m}^{\prime}$ coincide with $L_{1}, L_{2}, L_{3}, Q_{4}, \ldots, Q_{m}$ on $E\left(G\left[U_{n}\right]\right) \cup \delta\left(U_{n}\right)$, respectively, - the following digraph is acyclic: start from $\overrightarrow{H^{\prime}}$, and for each q_{i} add arc $\left(s, q_{i}\right)$.

Then one of the following does not hold:
(i) $I_{d} \cup\{\Omega\}$ does not have a k-mate,
(ii) if $T^{\prime}=\emptyset$, then for every directed odd circuit L^{\prime} of $\overrightarrow{H^{\prime}}$, either $L^{\prime} \cup I_{d}$ contains an odd st-dipath P of \vec{H} with $V(P) \cap U_{n}=\{s\}$, or $L^{\prime} \cup I_{d}$ has a k-mate in $(G, \Sigma,\{s, t\})$ disjoint from I_{c},
(iii) if $T^{\prime}=\{s, t\}$, then for every odd st-dipath P^{\prime} of $\overrightarrow{H^{\prime}}$ with $V\left(P^{\prime}\right) \cap U_{n}=\{s\}$, either $P^{\prime} \cup I_{d}$ contains an odd st-dipath of \vec{H}, or $P^{\prime} \cup I_{d}$ has a k-mate in $(G, \Sigma,\{s, t\})$ disjoint from I_{c}.

Proof. Suppose otherwise. Let $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right):=(G, \Sigma,\{s, t\}) / I_{c} \backslash I_{d}$ where $\Sigma^{\prime}=\Sigma$; this signed graft is well-defined by (1). Let $\mathcal{L}^{\prime}:=\left(L_{1}^{\prime}, \ldots, L_{m}^{\prime}, L_{m+1}, \ldots, L_{k}\right)$, where $L_{1}^{\prime}, \ldots, L_{m}^{\prime}$ are defined as follows. If $T^{\prime}=\emptyset$, let $m^{\prime}:=3$, and for $i \in[m]-[3]$, let $L_{i}^{\prime}:=L_{i}-P_{i}$. Otherwise, when $T^{\prime}=\{s, t\}$, let $m^{\prime}:=m$, and for $i \in[m]-[3]$, let $L_{i}^{\prime}:=\left(L_{i}-Q_{i}\right) \cup Q_{i}^{\prime}$.

We will first show that $\left(\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right), \mathcal{L}^{\prime}, m^{\prime}\right)$ is a bipartite Ω-system. (B1) By (2), every signature of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ has the same parity as $\tau(G, \Sigma,\{s, t\})$, implying that $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ is an Eulerian signed graft. (B2) It also implies that $k, \tau(G, \Sigma,\{s, t\})$ and $\tau\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ have the same parity, so every minimal cover of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$ has the same size parity as k. We claim that $\tau\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right) \geq k$. Let B^{\prime} be a minimal cover of $\left(G^{\prime}, \Sigma^{\prime}, T^{\prime}\right)$. If $\Omega \notin B^{\prime}$, then

$$
\left|B^{\prime}\right| \geq \sum\left(\left|B^{\prime} \cap L^{\prime}\right|: L^{\prime} \in \mathcal{L}^{\prime}\right) \geq k
$$

Otherwise, $\Omega \in B^{\prime}$. In this case, $B^{\prime} \cup I_{d}$ contains a cover B of $(G, \Sigma,\{s, t\})$. By (i), $I_{d} \cup\{\Omega\}$ does not have a k-mate, so

$$
k-2 \leq\left|B-\left(I_{d} \cup\{\Omega\}\right)\right| \leq\left|B-I_{d}\right|-1 \leq\left|B^{\prime}\right|-1
$$

and since $\left|B^{\prime}\right|, k$ have the same parity, it follows that $\left|B^{\prime}\right| \geq k$. Thus, \mathcal{L}^{\prime} is an (Ω, k)-packing. When $T^{\prime}=\emptyset$ then $m^{\prime}=3$. When $T=\{s, t\}$, then $m^{\prime}=m$ and for $j \in\left[m^{\prime}\right]-[3], L_{j}^{\prime}$ contains an even $s t$-path in the bipartite $s t$-join $L_{j}^{\prime}-C_{j}$ and some odd circuit in C_{j}, and for $j \in[k]-\left[m^{\prime}\right], L_{j}$ remains connected in G^{\prime}. (B3) follows from construction.

Suppose first that $T^{\prime}=\emptyset$. We will show that $\left(\left(G^{\prime}, \Sigma^{\prime}, \emptyset\right), \mathcal{L}^{\prime}, 3, \overrightarrow{H^{\prime}}\right)$ is a non-simple bipartite Ω system, yielding a contradiction. (NS1) holds as (B1)-(B3) hold. (NS2) holds as $T^{\prime}=\emptyset$. (NS3) follows from (3). (NS4) Let L^{\prime} be a directed odd circuit of $\overrightarrow{H^{\prime}}$. If $L^{\prime} \cup I_{d}$ has a k-mate B in $(G, \Sigma,\{s, t\})$ disjoint from I_{c}, then $B-I_{d}$ contains a minimal cover B^{\prime} of $\left(G^{\prime}, \Sigma^{\prime}, \emptyset\right)$, and since

$$
\left|B^{\prime}-L^{\prime}\right| \leq\left|\left(B-I_{d}\right)-L^{\prime}\right|=\left|B-\left(L^{\prime} \cup I_{d}\right)\right| \leq k-3,
$$

it follows that B^{\prime} is a k-mate of L^{\prime}. Otherwise by (ii) $L^{\prime} \cup I_{d}$ contains an odd st-dipath P of \vec{H} with $V(P) \cap U_{n}=\{s\}$. Since $((G, \Sigma,\{s, t\}), \mathcal{L}, m, \mathcal{U}, \vec{H})$ is a minimal secondary cut Ω-system, P has a k-mate B which by proposition 17.1 is a signature. By proposition $8.3, B \cap E(\vec{H})=B \cap P$, implying that $B \cap I_{c}=\emptyset$. Thus, $B-I_{d}$ contains a minimal cover B^{\prime} of $\left(G^{\prime}, \Sigma^{\prime}, \emptyset\right)$, and since

$$
\left|B^{\prime}-L^{\prime}\right| \leq\left|\left(B-I_{d}\right)-L^{\prime}\right| \leq|B-P| \leq k-3
$$

it follows that B^{\prime} is a k-mate of L^{\prime}.
Suppose otherwise that $T^{\prime}=\{s, t\}$. To obtain a contradiction, we will show that $\left(\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right), \mathcal{L}^{\prime}\right.$, $m, \mathcal{U}, \overrightarrow{H^{\prime}}$) is a secondary cut Ω-system. (C1) holds because (B1)-(B3) are true. (C2)-(C3) follow from (4). (C4) Let P^{\prime} be an odd $s t$-dipath in \vec{H}^{\prime} with $V\left(P^{\prime}\right) \cap U=\{s\}$. If $P^{\prime} \cup I_{d}$ has a k-mate B in $(G, \Sigma,\{s, t\})$ disjoint from I_{c}, then $B-I_{d}$ contains a minimal cover B^{\prime} of $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$, and since

$$
\left|B^{\prime}-P^{\prime}\right| \leq\left|\left(B-I_{d}\right)-P^{\prime}\right|=\left|B-\left(P^{\prime} \cup I_{d}\right)\right| \leq k-3
$$

it follows that B^{\prime} is a k-mate of P^{\prime}. Otherwise by (iii) $P^{\prime} \cup I_{d}$ contains an odd st-dipath P of \vec{H}. As $I_{d} \subseteq E(\vec{H} \backslash U)$, it follows that $V(P) \cap U=\{s\}$. Since $((G, \Sigma,\{s, t\}), \mathcal{L}, m, \mathcal{U}, \vec{H})$ is a minimal secondary cut Ω-system, P has a k-mate B. By proposition $17.1, B$ is a signature, so by proposition 8.3 , $B \cap E(\vec{H})=B \cap P$, implying that $B \cap I_{c}=\emptyset$. Thus $B-I_{d}$ contains a minimal cover B^{\prime} of $\left(G^{\prime}, \Sigma^{\prime},\{s, t\}\right)$, and since

$$
\left|B^{\prime}-P^{\prime}\right| \leq\left|\left(B-I_{d}\right)-P^{\prime}\right| \leq|B-P| \leq k-3
$$

it follows that B^{\prime} is a k-mate of P^{\prime}.
17.3. The proof of proposition 2.15. In this section, we prove proposition 2.15 . We assume Ω has ends s, s^{\prime}. For $i=4, \ldots, n+3$, let Q_{i}^{+}be the $s t$-dipath obtained from Q_{i} after adding $\operatorname{arc}\left(s, q_{i-3}\right)$ to it. Let \vec{H}^{+}be the union of $Q_{1}, Q_{2}, Q_{3}, Q_{4}^{+}, \ldots, Q_{n+3}^{+}, Q_{n+4}, \ldots, Q_{m}$. For $u, v \in V\left(\vec{H}^{+}\right), u \leq v$ if there is a $u v$-dipath in \vec{H}^{+}. This partial ordering is well-defined as \vec{H}^{+}is acyclic, by (C3). For $i \in[m]$, let v_{i} be the second largest vertex of the $i^{\text {th }}$ dipath that lies on one of the other $s t$-dipaths. By proposition 8.8 , there exists an index subset $I \subseteq[m]$ of size at least two such that, for each $i \in I$,

- $v_{i} \geq v_{1}$, and there is no $j \in[m]$ such that $v_{j}>v_{i}$,
- for each $j \in[m], v_{i}=v_{j}$ if and only if $j \in I$.

Claim 1. For each $i \in I, Q_{i}\left[v_{i}, t\right]$ and U_{n} have no vertex in common.
Proof. Suppose otherwise. Since \vec{H} has no arc entering U_{n}, it follows that $v_{i} \in U_{n}$. As $v_{i} \geq v_{1}$, there is a $v_{1} v_{i}$-dipath $P \subset E(\vec{H})$. However, as $v_{1} \in V\left(Q_{1}\left[s^{\prime}, t\right]\right)$, so $v_{1} \notin U$, implying that P has an arc that enters U_{n}, a contradiction.

Claim 2. For each $i \in I, Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$ has a signature k-mate.

Proof. Suppose otherwise. Since $v_{i} \geq v_{1}, Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$ is contained in an odd st-dipath P such that $V(P) \cap U_{n}=\{s\}$. Hence, by proposition 17.1, $Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$ has no k-mate at all. Let $I_{d}:=Q_{i}\left[v_{i}, t\right]$ and $I_{c}:=\bigcup\left(Q_{j}\left[v_{j}, t\right]: j \in I-\{i\}\right)$. Let $T^{\prime}:=\{s, t\}$, for $j \in[3]$ let $L_{j}^{\prime}:=Q_{j}-\left(I_{c} \cup I_{d}\right)$, and for $j \in[m]-[3]$ let $Q_{j}^{\prime}:=Q_{j}-\left(I_{c} \cup I_{d}\right)$. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}^{\prime}, \ldots, Q_{m}^{\prime}$. It is clear that (1)-(4) and (ii), (iii) of the disentangling lemma 17.2 hold. However, $I_{d} \cup\{\Omega\}$ has no k-mate, so (i) holds, contradicting the disentangling lemma 17.2.

After redefining \mathcal{L}, if necessary, we may assume that $1 \in I$.

Claim 3. If $m=4$, then $I \subseteq[3]$.

Proof. Suppose otherwise. By claim 2, there exists a signature k-mate B_{4} for $Q_{4}\left[v_{4}, t\right] \cup\{\Omega\}$. By $(\mathrm{C} 4)$ and proposition 17.1, for each $i \in[3]$, there exists a signature k-mate B_{i} for Q_{i}. However, $B_{1}, B_{2}, B_{3}, B_{4}$ contradict the mate proposition 8.4.

Claim 4. Suppose $m=4$. Then there exists $i \in[3]$ such that Q_{i} and Q_{4} are not internally vertexdisjoint.

Proof. Suppose for a contradiction that Q_{4} is internally vertex-disjoint from $Q_{1} \cup Q_{2} \cup Q_{3}$. Notice that $I \subseteq[3]$, by claim 3 .

Subclaim 1. There exist an $s^{\prime} v_{1}$-dipath X and an $s^{\prime} t$-dipath Y in \vec{H} that are internally vertex-disjoint.

Proof of Subclaim. Suppose otherwise. Then $s^{\prime} \neq v_{1}$ and there exists a vertex $v \in V(\vec{H})-\left\{s^{\prime}, t\right\}$ such that there is no $s^{\prime} t$-dipath in $\vec{H} \backslash v$. By proposition 17.1, one of the following holds:
(a) there exists an $s^{\prime} v$-dipath Z in \vec{H} such that $Z \cup\{\Omega\}$ has no k-mate:

Let $I_{d}:=Z, I_{c}:=\bigcup\left(Q_{i}\left[s^{\prime}, v\right]: i \in[3]\right)-Z, T^{\prime}:=\{s, t\}$, for $i \in[3]$ let $L_{i}^{\prime}:=Q_{i}-\left(I_{c} \cup I_{d}\right)$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}$.
(b) for every $s^{\prime} v$-dipath Z in $\vec{H}, Z \cup\{\Omega\}$ has a signature k-mate:

Let $I_{d}:=\emptyset, I_{c}:=\bigcup\left(Q_{i}[v, t]: i \in[3]\right), T^{\prime}:=\{s, t\}$, for $i \in[3]$ let $L_{i}^{\prime}:=Q_{i}\left[s^{\prime}, v\right] \cup\{\Omega\}$, and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}$.

It is not difficult to check that in either of the cases above, (1)-(4) and (i)-(iii) of the disentangling lemma 17.2 hold, a contradiction.

After redefining \mathcal{L}, if necessary, we may assume that $\{1,2\} \subseteq I$ and $Y=Q_{3}\left[s^{\prime}, t\right]$. For $i=1,2$, let B_{i} be a signature k-mate for $Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$, whose existence is guaranteed by claim 2. Moreover, by $(\mathrm{C} 4)$ and proposition $17.1, Q_{3}$ has a signature k-mate B_{3}. Observe that by proposition 8.3 , for each $i \in[3], B_{i} \cap\left(Q_{4} \cup X\right)=\emptyset$.

Subclaim 2. There exists a path R between s and Q_{4} in $G\left[U_{n}\right] \backslash\left(B_{1} \cup B_{2} \cup B_{3}\right)$.

Proof of Subclaim. This is an immediate consequence of the shore proposition 15.1 and the fact that $m=4$.

Let $I_{c}:=R \cup Q_{4} \cup X$ and $I_{d}:=\emptyset$. Let $T^{\prime}:=\emptyset$, for $i=1,2$ let $L_{i}^{\prime}:=Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$, and let $L_{3}^{\prime}:=Q_{3}$. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$. Note that $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are internally vertex-disjoint in $\overrightarrow{H^{\prime}}$ and have signature k-mates B_{1}, B_{2}, B_{3}, respectively. It is now clear that (1)-(4) and (i)-(iii) of the disentangling lemma 17.2 hold, a contradiction.

Claim 5. Suppose $m=4$. Then there exists an $s^{\prime} v_{1}$-dipath P in \vec{H} that is vertex-disjoint from Q_{4}.
Proof. By claim $3, I \subseteq[3]$. Suppose for a contradiction that there is no $s^{\prime} v_{1}$-dipath in \vec{H} that is vertex-disjoint from Q_{4}. Let v be the smallest vertex of Q_{4} outside U_{n} for which there exists a $v v_{1}-$ dipath R in \vec{H} such that $V(R) \cap V\left(Q_{4}\right)=\{v\}$. Our contrary assumption together with the choice of v and R, implies the following:
(\star) if $w \in V(R)$ and Q is an $s^{\prime} w$-dipath in \vec{H}, then Q and $Q_{4}[v, t]$ have a vertex in common.

Let $I_{d}:=Q_{4}[v, t]$ and $I_{c}:=R \cup\left[\bigcup\left(Q_{j}\left[v_{j}, t\right]: j \in I\right)\right]$. For $i \in[3]$ let L_{i}^{\prime} be $Q_{i}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit, and let $Q_{4}^{\prime}:=Q_{4}\left[q_{n}, t\right]$. Let $T^{\prime}:=\{s, t\}$ and $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}^{\prime}$. It is not hard to see that (1)-(4) and (ii) of the disentangling lemma 17.2 hold. By
proposition 17.1 and the mate proposition $8.4, I_{d} \cup\{\Omega\}$ has no k-mate, so (i) holds. Let P^{\prime} be an odd st-dipath of $\overrightarrow{H^{\prime}}$ for which $V\left(P^{\prime}\right) \cap U_{n}=\{s\}$. Then $P^{\prime} \cup I_{c}$ contains an odd st-dipath P of \vec{H}. Choose $w \in V(R)$ (if any) such that P contains an $s^{\prime} w$-dipath Q in \vec{H} and $V(Q) \cap V(R)=\{w\}$. Then (\star) implies that $\left(P-I_{c}\right) \cup I_{d}$, and therefore $P^{\prime} \cup I_{d}$, contains an odd st-dipath of \vec{H}, so (iii) holds as well, a contradiction with the disentangling lemma 17.2

Claim 6. Suppose $m=4$. Then $(G, \Sigma,\{s, t\})$ has an F_{7} minor.

Proof. Take P from claim 5. By claim 3, $I \subseteq[3]$. After redefining \mathcal{L}, if necessary, we may assume that $\{1,2\} \subseteq I$ and that $P=Q_{1}\left[s^{\prime}, v_{1}\right]$. For each $i \in\{1,2\}$, by claim 2 , there exists a signature k-mate B_{i} for $Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$. Choose $W \subseteq V(G)-\{s, t\}$ such that $\delta(W)=B_{1} \triangle B_{2}$. By proposition 8.7, there exists a shortest path R in $G[W] \backslash B_{1}$ between Q_{1} and Q_{2}. By the shore proposition 15.1, there exists a path R_{q} in $G\left[U_{n}\right] \backslash\left(B_{1} \cup B_{2}\right)$ between s and Q_{4}. By claim 4, there exists $i \in\{2,3\}$ and vertex $v \in V\left(Q_{i}\right) \cap V\left(Q_{4}\right)$ such that $Q_{i}\left[s^{\prime}, v\right]$ is vertex-disjoint from $Q_{1} \cup Q_{2}\left[v_{2}, t\right] \cup Q_{4}$. It is now easy (and is left as an exercise) to see that $R_{q} \cup Q_{4} \cup Q_{i}\left[s^{\prime}, v\right] \cup Q_{1} \cup Q_{2}\left[v_{2}, t\right] \cup R$ has an F_{7} minor.

Claim 7. There exist vertex-disjoint paths X and Y in \vec{H} such that X is an $s^{\prime} v_{1}$-path in $\vec{H} \backslash U_{n}$ and Y connects a vertex of U_{n} to t.

Proof. Suppose otherwise.
Assume first that $s^{\prime}=v_{1}$. Then, for each $j \in[m], s^{\prime} \in V\left(Q_{j}\right)$ and by claim $1, Q_{j}\left[s^{\prime}, t\right]$ has no vertex in common with U_{n}. Hence, for each $j \in[m]$, by (C4) and proposition 17.1, $Q_{j}\left[s^{\prime}, t\right] \cup\{\Omega\}$ has a signature k-mate B_{j}. However, B_{1} is also a signature k-mate for L_{1}, and for each $j \in[m]-[1], B_{j}$ is also a signature k-mate for $Q_{j} \cup\{\Omega\}$. This is a contradiction with the mate proposition 8.4.

Thus, $s^{\prime} \neq v_{1}$. Let \vec{H}^{\star} be the digraph obtained from \vec{H} after shrinking U_{n} to a single vertex u^{\star} and removing all loops. Notice that every odd $s t$-dipath in \vec{H} whose intersection with U_{n} is $\{s\}$, is a $u^{\star} t$-dipath in \vec{H}^{\star} that uses Ω, and vice-versa. Also, note that the acyclicity condition in (C3) implies that $\vec{H}^{\star} \backslash u^{\star}$ is acyclic. By the linkage lemma $13.1, H^{\star}$ is a spanning subgraph of a $\left(u^{\star}, v_{1}, t, s^{\prime}\right)$-web with frame C_{0} and rib H_{0}^{\star}. Fix a plane drawing of H_{0}^{\star}, where the unbounded face is bounded by C_{0}. After redefining \mathcal{L}, if necessary, we may assume the following:
(\star) for every $s^{\prime} v_{3}$-dipath P of $\vec{H}^{\star} \backslash u^{\star}$, the number of rib vertices that are on the same side of P as u^{*} is at least as large as that of $Q_{1}\left[s^{\prime}, v_{1}\right]$.

For $j \in[m]-[3]$, let u_{j} be the largest rib vertex on Q_{j} that also lies on $Q_{1}\left[s^{\prime}, v_{1}\right]$. Observe that if $j \in I \cap([m]-[3])$, then $u_{j}=v_{j}$. For $j \in[m]-[3]$ let $X_{j}:=Q_{j}\left[u_{j}, t\right]$, for $j \in[3] \cap I$ let $X_{j}:=Q_{j}\left[v_{j}, t\right]$, and for $j \in[3]-I$ let $X_{j}:=Q_{j}\left[s^{\prime}, t\right]$. For each $j \in[m]$, since $X_{j} \cup\{\Omega\}$ is contained in a $u^{\star} t$-dipath of \vec{H}^{\star}, proposition 17.1 implies that every k-mate for $X_{j} \cup\{\Omega\}$ (if any) must be a signature. However,
every k-mate for $X_{j} \cup\{\Omega\}, j \in[m]$ is also a k-mate for $Q_{j} \cup\{\Omega\}$. Hence, by the mate proposition 8.4, there exists $i \in[m]$ such that $X_{i} \cup\{\Omega\}$ has no k-mate. By (C4) and claim $2, i \notin I \cup[3]$. Observe that (\star) implies the following:
$(\star \star)$ if $w \in V\left(Q_{1}\left[u_{i}, t\right]\right)$ and P is an $s^{\prime} w$-dipath in $\vec{H}^{\star} \backslash u^{\star}$, then P and X_{i} have a vertex in common.

Let $I_{d}:=X_{i}$ and $I_{c}:=Q_{1}\left[u_{i}, t\right]$. Let $T^{\prime}:=\{s, t\}$, for $j \in[3]$ let L_{j}^{\prime} be $Q_{j}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit it contains, and for $j \in[m]-[3]$ let Q_{j}^{\prime} be $Q_{j}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit it contains. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $D, Q^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}^{\prime}, \ldots, Q_{m}^{\prime}$. It is clear that (1)-(4) and (ii) of the disentangling lemma 17.2 hold. By the choice of X_{i}, (i) holds as well. To show (iii) holds, let P^{\prime} be an odd st-dipath of $\overrightarrow{H^{\prime}}$ with $V\left(P^{\prime}\right) \cap U_{n}=\{s\}$. Then $P^{\prime} \cup I_{c}$ contains an odd $s t$-dipath of \vec{H}, so $P^{\prime} \cup I_{c}$ contains a $u^{\star} t$-dipath of \vec{H}^{\star} containing Ω and by $(\star \star), P^{\prime} \cup I_{d}$ also contains a $u^{\star} t$-dipath of \vec{H}^{\star} containing Ω, implying in turn that $P^{\prime} \cup I_{d}$ contains an odd st-dipath of \vec{H}. Hence, (iii) holds, a contradiction with the disentangling lemma 17.2.

Claim 8. Suppose $m \geq 5$. Then there exists $i \in[3]$ and $j \in[m]-\{1,2,3, n+3\}$ such that Q_{i} and Q_{j} are not internally vertex-disjoint.

Proof. Suppose otherwise. Choose $j \in[m]-\{1,2,3, n+3\}$. Observe that $R_{j} \cup Q_{j}$ is internally vertex-disjoint from each of Q_{1}, Q_{2}, Q_{3}, and that by (C 4) and propositions 17.1 and 8.3 , every odd $s t$-dipath contained in $Q_{1} \cup Q_{2} \cup Q_{3}$ has a signature k-mate disjoint from $R_{j} \cup Q_{j}$. With this in mind, let $I_{c}:=R_{j} \cup Q_{j}$ and $I_{d}:=\emptyset$. Let $T^{\prime}:=\emptyset$ and let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of L_{1}, L_{2}, L_{3}. It can be readily checked that (1)-(4) and (i)-(iii) of the disentangling lemma 17.2 hold, a contradiction. \diamond

For each $i \in I$, let B_{i} be an extremal k-mate of $Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$. Note that $B_{i} \cap Q_{i}\left[v_{i}, t\right] \neq \emptyset$. As $v_{i} \geq v_{1}, Q_{i}\left[v_{i}, t\right] \cup\{\Omega\}$ is contained in an odd st-dipath P such that $V(P) \cap U_{n}=\{s\}$. Note that B_{i} is also a k-mate for P, so by proposition $17.1, B_{i}$ is a signature. Fix $z \in I-\{1\}$. Choose $W \subseteq V(G)-\{s, t\}$ such that $\delta(W)=B_{1} \triangle B_{z}$. By proposition 8.7 , there is a path in $G[W] \backslash B_{1}$ between Q_{1} and Q_{z}. Moreover, by proposition 5.4 , there is a path between s and q_{n} in $G\left[U_{n}\right] \backslash B_{1}$. We say that property (S) holds if there exist paths S_{n}, S in G such that
S_{n} is an $s q_{n}$-path contained in $G\left[U_{n}\right] \backslash B_{1}$,
S connects a vertex of Q_{1} to a vertex of Q_{z} in $G[W] \backslash B_{1}$, and
S_{n} and S are vertex-disjoint.
Claim 9. Suppose $m \geq 5$ and property (S) holds. Then $(G, \Sigma,\{s, t\})$ has an F_{7} minor.
Proof. Take X and Y from claim 7. Notice that each edge in $Y \cap \delta\left(U_{n}\right)$ belongs to either of Q_{4}, \ldots, Q_{m}, so we may assume that, for some $u \in\left\{s, q_{1}, \ldots, q_{n}\right\}, Y$ is a $u t$-path. By claim 8 , there is an odd circuit
C in $\left(\vec{H} \cup R_{1} \cup \cdots \cup R_{m}\right) \backslash R_{n+3}$ that shares no vertex with $Q_{1}\left[v_{1}, t\right] \cup Q_{z}\left[v_{z}, t\right]$ in $V(G)-\left\{v_{1}\right\}$. It is now easy (and is left as an exercise) to see that $\left(C \cup S_{n} \cup X \cup Y \cup Q_{1}\left[v_{1}, t\right] \cup Q_{z}\left[v_{z}, t\right] \cup S \cup R_{1} \cup \ldots \cup R_{m}\right)-R_{n+3}$ has an F_{7} minor.

Claim 10. Suppose $m \geq 5$ and property (S) does not hold. Then there exist vertex-disjoint paths X and Y in $\left(H \cup R_{1} \cup \cdots \cup R_{m}\right) \backslash R_{n+3}$ where X is an $s^{\prime} v_{1}$-path and Y is an st-path.

Proof. Suppose otherwise. Since property (S) does not hold, the (contrapositive equivalent of the) shore proposition 15.1 implies that $s^{\prime} \neq v_{1}$. Hence, by the linkage lemma 13.1, $\left(H \cup R_{1} \cup \cdots \cup R_{m}\right) \backslash R_{n+3}$ is a spanning subgraph of an $\left(s, v_{1}, t, s^{\prime}\right)$-web with frame C_{0} and rib H_{0}. Fix a plane drawing of H_{0}, where the unbounded face is bounded by C_{0}. After redefining \mathcal{L}, if necessary, we may assume the following:
(\star) for every $s^{\prime} v_{1}$-dipath P of \vec{H} with $V(P) \cap U_{n}=\emptyset$, the number of rib vertices that are on the same side of P as s is at least as large as that of $Q_{1}\left[s^{\prime}, v_{1}\right]$.

For $j \in[m]-\{1,2,3, n+3\}$, let u_{j} be the largest rib vertex on Q_{j} that also lies on $Q_{1}\left[s^{\prime}, v_{1}\right]$; such u_{j} exists as $R_{j} \cup Q_{j}$ intersects $Q_{1}\left[s^{\prime}, v_{1}\right]$, but R_{j} cannot have any vertex in common with $Q_{1}\left[s^{\prime}, v_{1}\right]$. Observe that if $j \in I \cap([m]-[3])$, then $u_{j}=v_{j}$. For $j \in[m]-\{1,2,3, n+3\}$ let $X_{j}:=Q_{j}\left[u_{j}, t\right]$, for $j \in[3] \cap I$ let $X_{j}:=Q_{j}\left[v_{j}, t\right]$, and for $j \in[3]-I$ let $X_{j}:=Q_{j}\left[s^{\prime}, t\right]$. Observe that each $X_{j}, j \in[m]-\{n+3\}$ is contained in an odd st-dipath whose intersection with U_{n} is $\{s\}$. As a result, by proposition 17.1, every k-mate for $X_{j} \cup\{\Omega\}, j \in[m]-\{n+3\}$ (if any) must be a signature. However, every k-mate for $X_{j} \cup\{\Omega\}, j \in[m]-\{n+3\}$ is also a k-mate for $P_{j} \cup\{\Omega\}$. Hence, since property (S) does not hold, the (contrapositive equivalent of the) shore proposition 15.1 implies that, for some $i \in[m]-\{n+3\}, X_{i} \cup\{\Omega\}$ has no k-mate. By $(\mathrm{C} 4)$ and claim 2, $i \notin I \cup[3]$. Observe that (\star) implies the following:
$(\star \star)$ if $w \in V\left(Q_{1}\left[u_{i}, t\right]\right)$ and P is an $s^{\prime} w$-dipath in $\vec{H} \backslash U_{n}$, then P and X_{i} have a vertex in common.

Let $I_{d}:=X_{i}$ and $I_{c}:=Q_{1}\left[u_{i}, t\right]$. Let $T^{\prime}:=\{s, t\}$, for $j \in[3]$ let L_{j}^{\prime} be $Q_{j}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit it contains, and for $j \in[m]-[3]$ let Q_{j}^{\prime} be $Q_{j}-\left(I_{c} \cup I_{d}\right)$ minus any directed circuit it contains. Let $\overrightarrow{H^{\prime}} \subseteq \vec{H} \backslash I_{d} / I_{c}$ be the union of $D, Q^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, Q_{4}^{\prime}, \ldots, Q_{m}^{\prime}$. It is clear that (1)-(4) and (ii) of the disentangling lemma 17.2 hold. By the choice of X_{i}, (i) holds as well. To show (iii) holds, let P^{\prime} be an odd st-dipath of $\overrightarrow{H^{\prime}}$ with $V\left(P^{\prime}\right) \cap U_{n}=\{s\}$. Then $P^{\prime} \cup I_{c}$ contains an odd $s t$-dipath of \vec{H} whose intersection with U_{n} is $\{s\}$, so by $(\star \star), P^{\prime} \cup I_{d}$ also contains an st-dipath of \vec{H}. Hence, (iii) holds, a contradiction with the disentangling lemma 17.2.

Claim 11. Suppose $m \geq 5$ and property (S) does not hold. Then $\left(G, \Sigma,\{s, t\}\right.$) has an F_{7} minor.

Proof. Take X and Y from claim 10. By proposition 8.7 , there is a path S in $G[W] \backslash B_{1}$ between Q_{1} and Q_{z}. By claim 8, there is an odd circuit C in $\left(\vec{H} \cup R_{1} \cup \cdots \cup R_{m}\right) \backslash R_{n+3}$ that shares no vertex with $Q_{1}\left[v_{1}, t\right] \cup Q_{z}\left[v_{z}, t\right]$ in $V(G)-\left\{v_{1}\right\}$. It is now easy (and is left as an exercise) to see that $C \cup X \cup Y \cup Q_{1}\left[v_{1}, t\right] \cup Q_{z}\left[v_{z}, t\right] \cup S$ has an F_{7} minor.

Observe that claims 6, 9 and 11 finish the proof of proposition 2.15.

Acknowledgements

The first author was supported partially by an NSERC grant while the second author was supported by a Discovery Grant from NSERC and ONR grant N00014-12-1-0049. We are grateful to three anonymous referees who carefully read the paper and helped us improve the presentation of the paper.

References

[1] Cohen, J. and Lucchesi, C.: Minimax relations for T-join packing problems. Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems (ISTCS '97), 38-44 (1997)
[2] Edmonds, J. and Fulkerson, D.R.: Bottleneck Extrema. J. Combin. Theory Ser. B 8, 299-306 (1970)
[3] Geelen, J.F. and Guenin, B.: Packing odd circuits in Eulerian graphs. J. Combin. Theory Ser. B 86, 280-295 (2002)
[4] Gerards, A.M.H.: Multicommodity flows and polyhedra. CWI Quart. 6, 281-296 (1993)
[5] Guenin, B.: A characterization of weakly bipartite graphs. J. Combin. Theory Ser. B 83, 112-168 (2001)
[6] Guenin, B.: Integral polyhedra related to even-cycle and even-cut matroids. Math. Oper. Res. 27(4), 693-710 (2002)
[7] Hu, T.C.: Multicommodity network flows. Oper. Res. 11, 344-360 (1963)
[8] Lehman, A.: A solution of the Shannon switching game. J. Soc. Indust. Appl. Math. 12(4), 687-725 (1964)
[9] Lehman, A.: On the width-length inequality. Math. Program. 17(1), 403-417 (1979)
[10] Rothschild, B. and Whinston, A.: Feasibility of two-commodity network flows. Oper. Res. 14, 1121-1129 (1966)
[11] Schrijver, A.: A short proof of Guenin's characterization of weakly bipartite graphs. J. Combin. Theory Ser. B 85, 255-260 (2002)
[12] Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Springer, 1408-1409 (2003)
[13] Seymour, P.D.: Disjoint paths in graphs. Discrete Math. 29, 293-309 (1980)
[14] Seymour, P.D.: Matroids and multicommodity flows. Europ. J. Combinatorics 2, 257-290 (1981)
[15] Seymour, P.D.: The forbidden minors of binary matrices. J. London Math. Society 2(12), 356-360 (1976)
[16] Seymour, P.D.: The matroids with the max-flow min-cut property. J. Combin. Theory Ser. B 23, 189-222 (1977)
[17] Thomassen, C.: 2-Linked graphs. European J. Combin. 1, 371-378 (1980)
[18] Zaslavsky, T.: Signed graphs. Discrete Appl. Math. 4, 47-74 (1982)

[^0]: Date: September 9, 2017.
 ${ }^{1}$ Given sets A, B the set $A-B=\{a \in A: a \notin B\}$, and the set $A \triangle B=(A \cup B)-(A \cap B)$.

[^1]: ${ }^{2}$ This definition is not standard!

[^2]: ${ }^{3}[k]:=\{1,2, \ldots, k\}$

[^3]: ${ }^{4}$ This is not standard!

[^4]: ${ }^{5}$ An end of an edge is a vertex incident to the edge.
 ${ }^{6}$ Two sets A and B are Ω-disjoint if $A \cap B \subseteq\{\Omega\}$.

[^5]: ${ }^{7}$ Given a path P and vertices $a, b \in V(P), P[a, b]$ denotes the subpath between a and b.

