A RELAXATION OF THE STRONG BORDEAUX CONJECTURE

ZIWEN HUANG XIANGWEN LI ${ }^{\dagger}$
Department of Mathematics, Huazhong Normal University, Wuhan, 430079, China

GEXIN YU
Department of Mathematics, The College of William and Mary, Williamsburg, VA, 23185, USA. Department of Mathematics, Huazhong Normal University, Wuhan, 430079, China

Abstract

Let $c_{1}, c_{2}, \cdots, c_{k}$ be k non-negative integers. A graph G is $\left(c_{1}, c_{2}, \cdots, c_{k}\right)$-colorable if the vertex set can be partitioned into k sets $V_{1}, V_{2}, \ldots, V_{k}$, such that the subgraph $G\left[V_{i}\right]$, induced by V_{i}, has maximum degree at most c_{i} for $i=1,2, \ldots, k$. Let \mathcal{F} denote the family of plane graphs with neither adjacent 3 -cycles nor 5 -cycle. Borodin and Raspaud (2003) conjectured that each graph in \mathcal{F} is $(0,0,0)$-colorable. In this paper, we prove that each graph in \mathcal{F} is $(1,1,0)$-colorable, which improves the results by Xu (2009) and Liu-Li-Yu (2014+).

Key words: Planar graph, relaxed coloring, superextandable, Strong Bordeaux Conjecture AMS 2000 Subject Classifications: 05C10, 05C15.

1. Introduction

All graphs considered in this paper are finite, simple, and undirected. Call a graph G planar if it can be embedded into the plane so that its edges meet only at their ends. As proved by Graey et al [8], the problem of deciding whether a planar graph is properly 3-colorable is NP-complete. In 1959, Grötzsch 9 showed that every triangle-free planar graph is 3 -colorable. A lot of research was devoted to find sufficient conditions for a planar graph to be 3-colorable, by allowing a triangle together with some other conditions. The well-known Steinberg's conjecture [15] stated below is one of such numerous efforts.

Conjecture 1.1 (Steinberg, [15). All planar graphs without 4-cycles and 5-cycles are 3-colorable.
Towards this conjecture, Erdős suggested to find a constant c such that a planar graph without cycles of length from 4 to c is 3 -colorable. The best constant people so far is $c=7$, found by Borodin, Glebov, Raspaud, and Salavatipour 4]. For more results, see the recent nice survey by Borodin [1].

[^0]Another relaxation of the conjecture is to allow some defects in the color classes. A graph is $\left(c_{1}, c_{2}, \cdots, c_{k}\right)$-colorable if the vertex set can be partitioned into k sets $V_{1}, V_{2}, \ldots, V_{k}$, such that for every $i \in[k]:=\{1,2, \ldots, k\}$ the subgraph $G\left[V_{i}\right]$ has maximum degree at most c_{i}. With this notion, a properly 3 -colorable graph is $(0,0,0)$-colorable. Chang, Havet, Montassier, and Raspaud [6] proved that all planar graphs without 4 -cycles or 5 -cycles are ($2,1,0$)-colorable and $(4,0,0)$-colorable. It is shown in [11, [12, 18] that planar graphs without 4 -cycles or 5 -cycles are $(3,0,0)$ - and ($1,1,0$)-colorable. Wang and his coauthors (private communication) further proved such graphs are ($2,0,0$)-colorable.

As usual, a 3 -cycle is also called a triangle. Havel (1969, [10]) asked if each planar graph with large enough distances between triangles is ($0,0,0$)-colorable. This was resolved by Dvö̈ák, Král and Thomas [7]. We say that two cycles are adjacent if they have at least one edge in common and intersecting if they have at least one common vertex. Borodin and Raspaud in 2003 made the following two conjectures, which have common features with Havel's and Steinberg's 3-color problems.

Conjecture 1.2 (Bordeaux Conjecture, [5]). Every planar graph without intersecting 3-cycles and without 5 -cycles is 3 -colorable.

Conjecture 1.3 (Strong Bordeaux Conjecture, 5). Every planar graph without adjacent 3-cycles and without 5 -cycles is 3 -colorable.

Let $d \nabla$ denote the minimal distance between triangles. Towards the conjectures, Borodin and Raspaud [5] showed that planar graphs with $d \nabla \geq 4$ and without 5 -cycles are ($0,0,0$)-colorable. This result was later improved to $d \nabla \geq 3$ by Borodin and Glebov [2], and independently by Xu [16]. Borodin and Glebov [3] further improved this result to $d \nabla \geq 2$.

With the relaxed coloring notation, Xu [17] showed that all planar graphs without adjacent 3 -cycles and without 5 -cycles are ($1,1,1$)-colorable. Recently, Liu, Li and Yu [13, 14 proved that every planar graph without intersecting 3 -cycles and without 5 -cycles is ($2,0,0$)-colorable and $(1,1,0)$-colorable. In this paper, we improve the results by Xu [17] and by Liu-Li-Yu [13], and prove the following result.

Theorem 1.4. Every planar graph without 5 -cycles and adjacent 3-cycles is ($1,1,0$)-colorable.
We actually prove a stronger result. To state it, we introduce the following notion. Let H be a subgraph of G. Then (G, H) is superextendable if every $(1,1,0)$-coloring of H can be extended to a ($1,1,0$)-coloring of G such that each vertex $u \in G-H$ is coloured differently from its neighbors in H. If (G, H) is superextendable, then we call H a superextendable sugraph of G. Let \mathcal{F} be the family of planar graphs without 5 -cycles and adjacent 3 -cycles.

Theorem 1.5. Every triangle or 7 -cycle of a graph in \mathcal{F} is superextendable.
Proof of Theorem 1.4 from Theorem 1.5 Let G be a graph in \mathcal{F}. If G is triangle-free, then G is 3-colorable by the Gröztch Theorem, and is naturally ($1,1,0$)-colorable; if G has a triangle, then every ($1,1,0$)-coloring of this triangle can be superextended to the whole graph G by Theorem 1.5. So Theorem 1.4 follows.

Like many of the results of this kind, we also use a discharging argument to prove Theorem 1.5 , The main difficulty still lies on the cases when a 4 -vertex or a 5 -vertex is incident with many
triangles or many 4-faces. Fortunately, we could utilize many of the lemmas from Xu [17] and Liu-Li- $\mathrm{Yu}[13$ to handle those difficult situations.

We use $G=(V, E, F)$ to denote a plane graph with vertex set $V(G)$, edge set $E(G)$, and face set $F(G)$. For a face $f \in F(G)$, let $b(f)$ denote the boundary of a face f. A k-vertex (k^{+}-vertex, k^{-}-vertex) is a vertex of degree k (at least k, at most k). The same notation will apply to faces and cycles. An $\left(l_{1}, l_{2}, \ldots, l_{k}\right)$-face is a k-face $v_{1} v_{2} \ldots v_{k}$ with $d\left(v_{i}\right)=l_{i}$, respectively. If a 3 -vertex is incident with a triangle, then its neighbor not on the triangle is called its outer neighbor, and the 3 -face is a pendant 3 -face of its outer neighbor. Let C be a cycle of a plane graph G. We use $\operatorname{int}(C)$ and $\operatorname{ext}(C)$ to denote the sets of vertices located inside and outside C, respectively. A cycle C is called a separating cycle if $\operatorname{int}(C) \neq \emptyset \neq \operatorname{ext}(C)$, and is called a nonseparating cycle otherwise. We also use C to denote the set of vertices of C.

Let $S_{1}, S_{2}, \ldots, S_{l}$ be pairwise disjoint subsets of $V(G)$. We use $G\left[S_{1}, S_{2}, \ldots, S_{l}\right]$ to denote the graph obtained from G by contracting all the vertices in S_{i} to a single vertex for each $i \in\{1,2, \ldots, l\}$. Let $x(y)$ be the resulting vertex by identifying x and y in G.

The paper is organized as follows. In Section 2, we show the reducible structures useful in our proof. In Section 3, we are devoted to the proof of Theorem 1.5 by a discharging procedure.

2. Reducible configurations

Suppose that $\left(G, C_{0}\right)$ is a counterexample to Theorem 1.5 with minimum $\sigma(G)=|V(G)|+|E(G)|$, where C_{0} is a triangle or a 7 -cycle in G.

If C_{0} is a separating cycle, then C_{0} is superextendable in both $G \backslash \operatorname{ext}\left(C_{0}\right)$ and $G \backslash \operatorname{int}\left(C_{0}\right)$. Hence, C_{0} is superextendable in G, contrary to the choice of C_{0}. Thus we assume that C_{0} is the boundary of the outer face of G.

Let $F_{k}=\left\{f: f\right.$ is a k-face and $\left.b(f) \cap C_{0}=\emptyset\right\}, F_{k}^{\prime}=\left\{f: f\right.$ is a k-face and $\left.\left|b(f) \cap C_{0}\right|=1\right\}$, and $F_{k}^{\prime \prime}=\left\{f: f\right.$ is a k-face and $\left.\left|b(f) \cap C_{0}\right|=2\right\}$.

Since $G \in \mathcal{F}$, the following is immediate.
Proposition 2.1. Every vertex not on C_{0} has degree at least 3, and no 3-face shares an edge with a 4-face in G.

The following is a summary of some basic properties of G when we consider superextendablity of a 3 -cycle or a 7 -cycle. The proofs of those results can be found, for example, in [17] or [14].

Lemma 2.2 ($\mathrm{Xu}, ~[17]$; Liu-Li-Yu, [14]). The following are true about G :
(1) The graph G contains neither separating triangles nor separating 7 -cycles.
(2) If G has a separating 4-cycle $C_{1}=v_{1} v_{2} v_{3} v_{4} v_{1}$, then $\operatorname{ext}\left(C_{1}\right)=\{b, c\}$ such that $v_{1} b c$ is a 3 -cycle. Furthermore, the 4 -cycle is the unique separating 4-cycle.
(3) Let x, y be two nonadjacent vertices on C_{0}. Then $x y \notin E(G)$ and $N(x) \cap N(y) \subseteq C_{0}$.
(4) Let f be a 4 -face with $b(f)=v_{1} v_{2} v_{3} v_{4} v_{1}$ and let $v_{1} \in C_{0}$. Then, $v_{3} \notin C_{0}$. Moreover, $\mid N\left(v_{3}\right) \cap$ $C_{0} \mid=1$ if $f \in F_{4}^{\prime \prime}$, and $\left|N\left(v_{3}\right) \cap C_{0}\right|=0$ if $f \in F_{4}^{\prime}$.
(5) Let u, w be a pair of diagonal vertices on a 4 -face. Then $G[\{u, w\}] \in \mathcal{F}$.

The following holds for minimum graphs that are not ($1,1,0$)-colorable.
Lemma 2.3. The following are true in G.
(1) (Lemma 2.5 from [12]) No 3-vertex $v \notin C_{0}$ is adjacent to two 3-vertices in int $\left(C_{0}\right)$.
(2) (Lemma 2.3 from [12]) G has no (3, 3, 4-)-face $f \in F_{3}$.
(3) (Lemma 2.8 from [12]) If $v \in \operatorname{int}\left(C_{0}\right)$ be a 4-vertex incident with exactly one 3-face that is a $(3,4,4)$-face in F_{3}, then a neighbor of v not on the face is either in C_{0} or a 4^{+}-vertex.
(4) (Lemma 2.6 from [12]) Let $v \in \operatorname{int}\left(C_{0}\right)$ be the 3 -vertex on a $(3,4,4)$-face $f \in F_{3}$. Then the neighbor of v not on f is either on C_{0} or a 4^{+}-vertex.
(5) (Lemma 3(3) from [18]) Suppose that $v \in \operatorname{int}\left(C_{0}\right)$ is a 4-vertex incident with two faces from F_{3}. If one of the faces is a $(3,4,4)$-face, then v has a 5^{+}-neighbor on the other face.

A 4 -vertex $v \in \operatorname{int}\left(C_{0}\right)$ is bad if it is incident with a $(3,4,4)$-face from F_{3}, A $\left(3,4,5^{+}\right)$-face from F_{3} is bad if the 4 -vertex on it is bad. A 5 -vertex bad if it is incident with a bad $(3,4,5)$-face or a $(3,3,5)$-face.
Lemma 2.4. Suppose that $v \in \operatorname{int}\left(C_{0}\right)$ is a 5-vertex incident with two 3 -faces f_{1} and f_{3} from F_{3}. Let v_{5} be the remaining neighbor of v. Then each of the followings holds.
(1) (Lemma 5 from [18]) If both f_{1} and f_{3} are $\left(3,4^{-}, 5\right)$-faces, then v_{5} is either on C_{0} or a 4^{+}-vertex.
(2) (Lemma 4(1) from [18]) At most one of f_{1} and f_{3} is bad.
(3) (Lemma 4(2) from [18]) If f_{1} is a bad (3,4,5)-face and f_{3} is a $(3,4,5)$-face, then the outer neighbor of the 3-vertex on $b\left(f_{3}\right)$ is either on C_{0} or a 4^{+}-vertex.
(4) If f_{1} is a bad $(3,4,5)$-face and f_{3} is a $(4,4,5)$-face, then at most one 4-vertex on $b\left(f_{3}\right)$ is bad.
(5) (Lemma 8 from [18]) No 6-vertex in int $\left(C_{0}\right)$ is incident with three $\left(3,4^{-}, 6\right)$-faces from F_{3}.

Proof. We only prove (4). Let $f_{1}=v v_{1} v_{2}$ with $d\left(v_{1}\right)=4$ and $d\left(v_{2}\right)=3$, and $f_{3}=v v_{3} v_{4}$ with $d\left(v_{3}\right)=d\left(v_{4}\right)=4$. And let v_{i}^{\prime} and $v_{i}^{\prime \prime}$ (if any) be the other neighbors of v_{i} for $i=1,2,3,4$. Suppose that both 4 -vertices on $b\left(f_{3}\right)$ are bad.

Let $S=\left\{v, v_{1}, v_{2}, v_{3}, v_{4}, v_{1}^{\prime}, v_{1}^{\prime \prime}, v_{3}^{\prime}, v_{3}^{\prime \prime}, v_{4}^{\prime}, v_{4}^{\prime \prime}\right\}$, where $d\left(v_{1}^{\prime \prime}\right)=d\left(v_{3}^{\prime \prime}\right)=d\left(v_{4}^{\prime \prime}\right)=4$, and let $H=$ $G \backslash S$. Since $\sigma(H)<\sigma(G), C_{0}$ has a superextension c on H. Based on c, we properly color $\left\{v_{1}^{\prime \prime}, v_{1}^{\prime}, v_{3}^{\prime \prime}, v_{3}^{\prime}, v_{3}, v_{4}^{\prime \prime}, v_{4}^{\prime}, v, v_{2}\right\}$ in order. Now v_{4} can be colored as it has four properly colored neighbors. If v, v_{4} are colored differently, then v_{1} can also be colored, as it has four properly colored neighbors as well. Thus, $c(v)=c\left(v_{4}\right)=1$, and v_{1} cannot be colored. It follows that $\left\{c\left(v_{1}^{\prime}\right), c\left(v_{1}^{\prime \prime}\right)\right\}=\left\{c\left(v_{4}^{\prime}\right), c\left(v_{4}^{\prime \prime}\right)\right\}=\{2,3\}$. If $c\left(v_{3}\right)=3$, then we can recolor v_{4} with 2 , and color v_{1}, so let $c\left(v_{3}\right)=2$. If $c\left(v_{5}\right)=2$, then we recolor v with 3 and color v_{1} with 1 and recolor v_{2} accordingly, so let $c\left(v_{5}\right)=3$. Recolor v with 2 and color v_{1} with 1 . Now we can recolor v_{2} with 1 (if $c\left(v_{2}^{\prime}\right)=3$) or 3 (if $c\left(v_{2}^{\prime}\right) \neq 3$).

For a 3 -vertex in a 3 -face $f \in F_{3}$, it is weak if it is adjacent to a 3 -vertex not on f or C_{0}, and strong if it is adjacent to a vertex on C_{0} or a 4^{+}-vertex not on f. For a vertex $v \in \operatorname{int}\left(C_{0}\right)$ with $d(v) \in\{5,6\}, v$ is weak if v is incident with two $\left(5,5^{-}, 3\right)$-faces from F_{3} one of which is bad and adjacent to a pendant 3 -face in F_{3} when $d(v)=5$, or v is incident to two bad (6,4,3)-faces and one $\left(3,5^{+}, 6\right)$-face from F_{3} when $d(v)=6$.
Lemma 2.5. (1) There is no $\left(3,5^{+}, 5^{+}\right)$-face with three weak vertices.
(2) (Lemma 11 in [12]) There is no $\left(3,5^{+}, 5\right)$-face $f=u v w$ such that u, v are weak and w is incident with a (5, 3, 3)-face.
Proof. We only give the proof of (1) here. Suppose that a $\left(3,5^{+}, 5^{+}\right)$-face $f=u v w$ contains three weak vertices. When $d(v)=5$, we label $N(v)-\{u, w\}$ as v_{1}, v_{2}, v_{3} such that $d\left(v_{2}\right)=d\left(v_{3}\right)=3$ and v_{1}
is a bad 4 -vertex whose neighbors are $v_{2}, v_{1}^{\prime}, v_{1}^{\prime \prime}$ with $d\left(v_{1}^{\prime}\right)=4$; when $d(v)=6$, we label $N(v)-\{u, w\}$ as $v_{1}, v_{2}, v_{4}, v_{5}$ such that v_{1}, v_{4} are bad 4 -vertices with $N\left(v_{1}\right)=\left\{v_{2}, v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}, N\left(v_{4}\right)=\left\{v_{5}, v_{4}^{\prime}, v_{4}^{\prime \prime}\right\}$ and $d\left(v_{1}^{\prime}\right)=d\left(v_{4}^{\prime}\right)=4$. Similarly, label $N(w)-\{u, v\}$ as w_{1}, w_{2}, w_{3}. Let $S_{1}=N(v) \cup\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}$ if $d(v)=5$, and $S_{1}=N(v) \cup\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}, v_{4}^{\prime}, v_{4}^{\prime \prime}\right\}$ if $d(v)=6$.

We first have the following claim:
In a $(1,1,0)$-coloring of $G-S_{1}, w$ can be properly colored.
Proof of the claim: Consider a ($1,1,0$)-coloring c of $G-S_{1}$.
First let $d(w)=5$. We may assume that w_{1}, w_{2}, w_{3} are colored differently. Note that we may recolor $w_{3}, w_{1}^{\prime}, w_{1}^{\prime \prime}, w_{1}, w_{2}$ in the order so that they are all properly colored. If $c\left(w_{3}\right)=3$, then $\left\{c\left(w_{1}\right), c\left(w_{2}\right)\right\}=\{1,2\}$, thus we can recolor w_{2} so that it has the same color with w_{1}. Then w can be properly colored. If $c\left(w_{3}\right)=1$ (or 2 by symmetry), then $\left\{c\left(w_{1}\right), c\left(w_{2}\right)\right\}=\{2,3\}$; when $c\left(w_{1}\right)=2$, we can recolor w_{2} with 2 , and color w properly; when $c\left(w_{1}\right)=3, w_{1}^{\prime}, w_{2}^{\prime \prime}$ are colored 1 and 2 , respectively, and we can recolor w_{1} with 1 , then color w properly.

Now assume that $d(w)=6$. Again, we may recolor $w_{1}^{\prime}, w_{1}^{\prime \prime}, w_{1}, w_{2}, w_{4}^{\prime}, w_{4}^{\prime \prime}, w_{4}, w_{5}$ properly in the order. If there are only two colors on $w_{1}, w_{2}, w_{4}, w_{5}$, then w can be properly colored. If w_{2} (or w_{5}) is colored with 3 , then we can recolor it with 1 or 2 ; if $c\left(w_{1}\right)=3$, then we can recolor w_{1} with 1 or 2 so that it is different from the color of w_{2}. By doing this, we may assume that 3 is not on the four neighbors of w, so w can be properly color with 3 . Thus we have the claim.

The following claim now gives a contradiction:
A ($1,1,0$)-coloring of $G-S_{1}$ with w being properly colored can be extended to a $(1,1,0)$-coloring of G.
Proof of the claim: Let c be a $(1,1,0)$-coloring of $G-S_{1}$ in which w is properly colored.
First assume that $d(v)=5$. We color u, v_{3} properly in the order. If v can be properly colored, then we color $v_{2}, v_{1}^{\prime}, v_{1}^{\prime \prime}$ properly in the order, and finally color v_{1}, which can be color as it has only four properly colored neighbors. If v cannot be properly colored, then w, u, v_{3} have different colors, thus v can be colored 1 or 2 . Color v with 1 for a moment. Color $v_{2}, v_{1}^{\prime}, v_{1}^{\prime \prime}$ properly in the order. Now try to color v_{1}. If v_{1} is not colorable, then it must be $\left(c\left(v_{1}^{\prime}\right), c\left(v_{1}^{\prime \prime}\right), c\left(v_{2}\right)\right)=(3,2,2)$, in which case, we can color v_{1} with 1 and color v with 2 .

Now assume that $d(v)=6$. We color $u, v, v_{2}, v_{5}, v_{1}^{\prime}, v_{1}^{\prime \prime}, v_{4}^{\prime}, v_{4}^{\prime \prime}$ properly in the order. Now v_{1}, v_{4} can be colored, unless that both of them have the same color, say 1 , with v. In the bad case, we can recolor v_{2}, v_{5} with 1 or 3 , then color v with 2 . Thus the claim is true and we have a contraction.

Now we discuss the configurations about 4-faces from F_{4}. Some of Lemmas 2.6 2.10 have their initial forms in [17, 14].

Lemma 2.6. (Adapted from Lemma 3.6 in [13)
(1) No 4-face is from F_{4}^{\prime} in G.
(2) Let $f \in F_{4}$ and let v, x be a pair of diagonal vertices on $b(f)$. Then $d(v) \geq 4$ or $d(x) \geq 4$.

Lemma 2.7. Let $v \in \operatorname{int}\left(C_{0}\right)$ be a bad 4-vertex, or a 5 -vertex incident with a bad (5,4,3)-face, or a 5 -vertex incident with a $(5,3,3)$-face from F_{3}. If v is incident to $a 4$-face f, then its diagonal vertex on $b(f)$ is a 4^{+}-vertex.

Proof. We consider the case when $d(v)=5$. The other cases are very similar and simpler. Let $f_{1}=v v_{1} v_{2}$ be a bad $(5,4,3)$-face with $d\left(v_{1}\right)=4$, and let $f_{3}=v v_{3} u_{3} v_{4}$ be a 4 -face with $d\left(u_{3}\right)=3$ in G. Let $v_{1}^{\prime}, v_{1}^{\prime \prime}$ be the two other neighbors of v_{1} with $d\left(v_{1}^{\prime}\right)=4$ and $d\left(v_{1}^{\prime \prime}\right)=3$. Let $G^{\prime}=G \backslash S$ and $H=G^{\prime}\left[\left\{v_{3}, v_{4}\right\}\right]$, where $S=\left\{v, v_{1}, v_{2}, v_{1}^{\prime}, v_{1}^{\prime \prime}\right\}$. Let v_{3}^{*} be the resulting vertex by identifying v_{3} with v_{4}. By Lemma 2.2 (5), H \mathcal{F}. Since $\sigma(H)<\sigma(G), C_{0}$ has a superextension ϕ_{H} on H. Based on ϕ_{H}, we color v_{3}, v_{4} with the color $\phi_{H}\left(v_{3}^{*}\right)$ and recolor properly u_{3} with a color in $\{1,2,3\} \backslash\left\{\phi_{H}\left(v_{3}^{*}\right), \phi_{H}\left(u_{3}^{\prime}\right)\right\}$, where u_{3}^{\prime} is the other neighbor of u_{3} in G. Next, properly color v with a color in $\{1,2,3\} \backslash\left\{\phi_{H}\left(v_{3}^{*}\right), \phi_{H}\left(v_{5}\right)\right\}$, and properly color $v_{2}, v_{1}^{\prime}, v_{1}^{\prime \prime}$ in order, and finally color v_{1} as it has four properly colored neighbors. Thus, C_{0} has a superextension ϕ_{G} on G, a contradiction.

For a positive integer n, let $[n]=\{1,2, \ldots, n\}$. For a vertex $v \in \operatorname{int}\left(C_{0}\right)$ with $d(v)=k$, let $v_{1}, v_{1}, \ldots, v_{k}$ denote the neighbors of v in a cyclic order. Let f_{i} be the face with $v v_{i}$ and $v v_{i+1}$ as two boundary edges for $i=1,2, \ldots, k$, where the subscripts are taken modulo k. A k-vertex $v \in \operatorname{int}\left(C_{0}\right)$ is poor if it is incident with k 4-faces from F_{4}, and rich otherwise.

The following is a very useful lemma in the remaining proofs.
Lemma 2.8. ((Lemma 3. 10 from [14]) Let $v \in \operatorname{int}\left(C_{0}\right)$ be a 4-vertex with $N(v)=\left\{v_{i}: i \in[4]\right\}$. If v is incident with two 4 -faces that share exactly an edge, then no t-path joins v_{i} and v_{i+2} in G for $t \in\{1,2,3,5\}$, where the subscripts of v are taken modulo 4 .

Lemma 2.9. Let $v \in \operatorname{int}\left(C_{0}\right)$ be a 4-vertex incident with a 4 -face $f_{i}=v v_{i} u_{i} v_{i+1}$. Then each of the followings holds, where the subscripts are taken modulo 4.
(1) If $d\left(v_{i}\right)=d\left(u_{i}\right)=3$, then f_{i-1} and f_{i+1} are 6^{+}-faces. Consequently, if v is poor, then v is not incident with $\left(3,3,4,4^{+}\right)$-faces.
(2) (Lemma 3.11 (1) in [14]) If $f_{i+1}=v v_{i+1} u_{i+1} v_{i+2}$, then $d\left(u_{i}\right) \geq 4$ or $d\left(u_{i+1}\right) \geq 4$.
(3) (Lemma 3.11 (2) in [14]) If $f_{i+2}=v v_{i+2} u_{i+2} v_{i+3}$, then $d\left(u_{i}\right) \geq 4$ or $d\left(u_{i+2}\right) \geq 4$.
(4) (Lemma 3.12 from [14]) If v is a poor 4 -vertex, then either $d\left(v_{i}\right) \geq 5$ or $d\left(v_{i+2}\right) \geq 5$.

Proof. (1) Suppose that f_{i-1} and f_{i} are 4-faces with $d\left(u_{i}\right)=d\left(v_{i}\right)=3$, where v_{i} 's are neighbors of 4 -vertex v. Identify v_{i-1}, v_{i}, and v_{i+1} into one vertex, we get a new graph in \mathcal{F}, so the new graph is $(1,1,0)$-colorable. Now the original graph has a ($1,1,0$)-coloring, unless u_{i-1} has the same color (1 or 2), which by symmetry we assume to be 1 , as v_{i-1}, v_{i} and v_{i+1}. We uncolor v_{i} and v, and then color u_{i} and v properly. Clearly, u_{i} and v are colored 2 or 3 . If u_{i} and v are colored differently, color v_{i} with 2 ; if u_{i} and v are colored the same, color v_{i} with an available color.

Let v be a 5^{+}-vertex in $\operatorname{int}\left(C_{0}\right)$. For convenience, we use $Q_{4}(v)$ to denote the set of poor 4-vertices in $N(v) \backslash C_{0}$ that are incident with $(3,4,4,4)$-faces from F_{4}.

Lemma 2.10. Let v be a poor 5 -vertex in G. Then
(1) (Lemma 3.13(2) from [14]) At most two vertices in $\left\{u_{i}: i \in[5]\right\}$ are 3-vertices.
(2) (Lemma 3.13(3) from [14]) If $d\left(u_{i}\right)=3$, then either $d\left(v_{i-1}\right) \geq 5$ or $d\left(v_{i+2}\right) \geq 5$.
(3) (Lemma 3.13(1) from [14]) If $d\left(u_{i}\right)=d\left(v_{i}\right)=3$, then $d\left(u_{j}\right) \geq 4$ for $j \in[5] \backslash\{i\}$.
(4) If f_{i} is a $(5,4,3,4)$-face, then at most one of v_{i}, v_{i+1} is in $Q_{4}(v)$.
(5) If $d\left(v_{i}\right)=d\left(u_{i}\right)=d\left(v_{i+2}\right)=3$, then $d\left(v_{j}\right) \geq 5$ for $j \in[5] \backslash\{i, i+2\}$.
(6) If f_{i} is a $(5,3,4,4)$-face such that u_{i} and v_{i+1} are poor 4 -vertices, then $v_{i+1} \notin Q_{4}(v)$.

Proof. (4) Without loss of generality, assume that $f_{1}=v v_{1} u_{1} v_{2}$ is a $(5,4,3,4)$-face. Assume further that v_{1}, v_{2} are in $Q_{4}(v)$. By Lemma 2.9(4), $d\left(u_{2}\right) \geq 5$ and $d\left(u_{5}\right) \geq 5$ as $d\left(u_{1}\right)=3$. Let $N\left(u_{1}\right)=$ $\left\{v_{1}, v_{2}, w\right\}$ and $N(w) \cap N\left(v_{1}\right)=\left\{v_{1}^{\prime}\right\}$ and $N(w) \cap N\left(v_{2}\right)=\left\{v_{2}^{\prime}\right\}$. It implies that $u_{1} v_{1} v_{1} w$ and $u_{1} v_{2} v_{2}^{\prime} w$ are $(3,4,4,4)$-faces. So $d\left(v_{1}^{\prime}\right)=d\left(v_{2}^{\prime}\right)=d(w)=d\left(v_{1}\right)=d\left(v_{2}\right)=4$. Let $H=G\left[\left\{u_{1}, v_{1}^{\prime}, v_{2}^{\prime}, v\right\}\right]$. By Lemmas 2.2 (5) and 2.8, $H \in \mathcal{F}$. Let c be a coloring of $\left(H, C_{0}\right)$. Let v^{\prime} be the resulting vertex of the identification. In G, color u_{1}, u_{2}, u_{3} with $c\left(v^{\prime}\right)$, and properly color v_{1}, v_{2}, w in the order, and finally color u_{1}. Thus, $\left(G, C_{0}\right)$ is superextendable, a contradiction.
(5) By symmetry, assume that $d\left(v_{1}\right)=d\left(u_{1}\right)=d\left(v_{3}\right)=3$. By Lemma 2.7 (2), $d\left(v_{2}\right) \geq 4$, and furthermore, by Lemma $2.9(2), d\left(v_{2}\right) \geq 5$.

We show that $d\left(v_{5}\right) \geq 5$. Suppose otherwise that $d\left(v_{5}\right) \leq 4$. Then by Lemma 2.6(2), $d\left(v_{5}\right)=4$. Let $G^{\prime}=G-\left\{v, v_{5}\right\}$ and $H=G^{\prime}\left[\left\{u_{4}, u_{5}\right\},\left\{v_{2}, v_{4}\right\}\right]$. By Lemmas 2.2 (5) and 2.8, $H \in \mathcal{F}$. Then $\left(H, C_{0}\right)$ is superextendable, and let c be a coloring of $\left(H, C_{0}\right)$. In G, color v_{2}, v_{4} and u_{4}, u_{5} with the colors of the identified vertices, respectively, then properly recolor $v_{5}, u_{1}, v_{1}, v_{3}$ in the order. Let c^{\prime} be the resulting coloring of $G-v$. Now we color v. If $c^{\prime}\left(v_{2}\right)=c^{\prime}\left(v_{4}\right)=3$, then v can be colored, as the other three colored neighbors are all properly colored, so we may assume that $c^{\prime}\left(v_{2}\right)=c^{\prime}\left(v_{4}\right)=1$. If $c^{\prime}\left(v_{1}\right)=1$, then clearly v can be colored; If $c^{\prime}\left(v_{1}\right)=3$, then we uncolor v_{1} and color v with 3 (if $c^{\prime}\left(v_{3}\right), c^{\prime}\left(v_{5}\right) \neq 3$) or with 2 (if $c^{\prime}\left(v_{3}\right)=3$ or $c^{\prime}\left(v_{5}\right)=3$), and now v_{1} can be colored, as $c^{\prime}\left(u_{1}\right) \in\{1,2\}$ and u_{1} is properly colored, a contradiction.

Similarly, we have $d\left(v_{4}\right) \geq 5$.
(6) As v_{i+1} is a poor 4-vertex and $d\left(u_{i}\right)=4$, by Lemma $2.9(4), d\left(u^{\prime}\right) \geq 5$, where u^{\prime} is the diagonal vertex to v on the 4 -face incident with v_{i+1}; similarly, u_{i} is a poor 4 -vertex and $d\left(v_{i}\right)=3$, by Lemma $2.9(4), d\left(u_{1}^{\prime}\right) \geq 5$, where u_{1}^{\prime} is the diagonal vertex to v_{2} on the 4 -face incident with u_{1}. It follows that no 4-face incident with v_{i+1} is a $(3,4,4,4)$-face, so $v_{i+1} \notin Q_{4}(v)$.

3. Discharging procedure

In this section, we prove the main theorem by a discharging argument.
Let the initial charge of a vertex v be $\mu(v)=2 d(v)-6$, the initial charge of a face $f \neq C_{0}$ be $\mu(f)=d(f)-6$, and $\mu\left(C_{0}\right)=d\left(C_{0}\right)+6$. By Euler's formula, $\sum_{x \in V \cup F} \mu(x)=0$.

A $\left(3,4,4,5^{+}\right)$- or $\left(3,4,5^{+}, 4\right)$-face $f \in F_{4}$ is superlight if both 4 -vertices on $b(f)$ are poor and light otherwise.

The following are the discharging rules:
(R1) Let $v \in \operatorname{int}\left(C_{0}\right)$ with $d(v)=4$ and $f \in F_{3} \cup F_{4}$ be a face incident with v.
(R1.1) When $f \in F_{3}, f$ gets 1 from v, unless v is incident with f and a $(3,4,4)$-face $f^{\prime} \in F_{3}$, in which case, v gives $\frac{5}{4}$ to f^{\prime} and $\frac{3}{4}$ to f.
(R1.2) When $f \in F_{4}, f$ gets 1 from v if it is a $\left(4,3,3,4^{+}\right)$-face, $\frac{2}{3}$ if it is a $(4,4,4,3)$-face or v is rich, and $\frac{1}{2}$ otherwise.
(R2) Let $v \in \operatorname{int}\left(C_{0}\right)$ with $d(v) \geq 5$.
(R2.1) Let $f=v u w$ be a 3 -face in F_{3} incident with v.
(R2a) Let f be a $\left(5^{+}, 3,3\right)$-face. Then v gives 2 to f.
(R2b) Let f be a $\left(5^{+}, 4,3\right)$-face. Then v gives $\frac{9}{4}$ to f if u is bad and w is weak; 2 to f if u is not bad and w is weak; $\frac{7}{4}$ to f if u is bad and w is strong; $\frac{3}{2}$ to f if u is not bad and w is strong.
(R2c) Let f be a $\left(5^{+}, 5^{+}, 3\right)$-face. Then v gives $\frac{5}{4}$ to f if v is weak, and $\frac{7}{4}$ otherwise.
(R2d) Let f be a $\left(5^{+}, 4^{+}, 4^{+}\right)$-face. Then v gives $\frac{3}{2}$ to f if both u, w are bad 4 -vertices; $\frac{5}{4}$ to f if exactly one of u and w is a bad 4 -vertex; 1 to other $\left(5^{+}, 4^{+}, 4^{+}\right)$-faces.
(R2.2) For each 4-face $f \in F_{4}$ incident with v, v gives 1 to f if f is a $\left(5^{+}, 4^{+}, 3,3\right)$-face or a superlight $\left(3,4,4,5^{+}\right)$- or $\left(3,4,5^{+}, 4\right)$-face; $\frac{5}{6}$ to f if f is a light $\left(3,4,4,5^{+}\right)$- or $\left(3,4,5^{+}, 4\right)$-face; $\frac{3}{4}$ to f if f is a $\left(3,4,5^{+}, 5^{+}\right)$-face or a $\left(3,5^{+}, 4,5^{+}\right)$-face; $\frac{1}{2}$ to f if f is a $\left(4^{+}, 4^{+}, 4^{+}, 5^{+}\right)$-face.
(R2.3) If $Q_{4}(v) \neq \emptyset$, then v gives $\frac{1}{6}$ to each 4 -vertex in $Q_{4}(v)$.
(R3) Each 4^{+}-vertex sends $\frac{1}{2}$ to each of its pendant 3-faces in F_{3}.
(R4) Let $v \in C_{0}$. Then v gives 3 to each incident 3 -face from $F_{3}^{\prime} ; \frac{3}{2}$ to each incident face from $F_{3}^{\prime \prime}$; 1 to each incident 4-face from $F_{4}^{\prime \prime}$.
(R5) C_{0} gives 2 to each 2-vertex on $C_{0} ; \frac{3}{2}$ to each 3 -vertex on $C_{0} ; 1$ to each 4 -vertex on C_{0}; and $\frac{1}{2}$ to each 5 -vertex on C_{0}. In addition, if C_{0} is a 7 -face with six 2 -vertices, then it gets 1 from the incident face.
We will show that each $x \in F(G) \cup V(G)$ has final charge $\mu^{*}(x) \geq 0$ and at least one face has positive charge, to reach a contradiction.

As G contains no 5 -faces, and 6^{+}-faces other than C_{0} are not involved in the discharging procedure, we will check the final charge of the 3 - and 4 -faces other than C_{0} first.

Lemma 3.1. Let f be a i-face in $F(G) \backslash C_{0}$ for $i=3,4$. Then $\mu^{*}(f) \geq 0$.
Proof. Suppose that $d(f)=3$ and $f=$ vuw with $d(v) \leq d(u) \leq d(w)$. By Lemma 2.2 (3), $\left|b(f) \cap C_{0}\right| \leq 2$. If $\left|b(f) \cap C_{0}\right|=2$, then $f \in F_{3}^{\prime \prime}$, by $(\mathrm{R} 4), \mu^{*}(f) \geq-3+2 \times \frac{3}{2}=0$; if $\left|b(f) \cap C_{0}\right|=1$, then $f \in F_{3}^{\prime}$, by $(\mathrm{R} 4), \mu^{*}(f) \geq-3+3=0$. Hence, let $\left|b(f) \cap C_{0}\right|=0$. By Proposition 2.1, $d(v) \geq 3$.

Assume first that $d(v)=3$. If f is a $(3,3, a)$-face, by Lemma $2.3(2), a \geq 5$ and the outer neighbors of u, v are of degree at least 4 or on C_{0}, then by (R2a) and $(\mathrm{R} 3), \mu^{*}(f) \geq-3+2 \times \frac{1}{2}+2=0$. If f is a $(3,4,4)$-face, by Lemma 2.3 (4), the third neighbor of v is a 4^{+}-vertex or on C_{0}, then by (R1.1) and (R3), $\mu^{*}(f) \geq-3+2 \times \frac{5}{4}+\frac{1}{2}=0$. Now let f be a $\left(3,4,5^{+}\right)$-face. Then by (R1.1) and (R2b), $\mu^{*}(f) \geq-3+\frac{9}{4}+\frac{3}{4}=0$ if v is weak and u is bad; $\mu^{*}(f) \geq-3+\frac{7}{4}+\frac{3}{4}+\frac{1}{2}=0$ if v is strong and u is $\operatorname{bad} ; \mu^{*}(f) \geq-3+2+1=0$ if v is weak and u is not $\operatorname{bad} ; \mu^{*}(f) \geq-3+\frac{3}{2}+1+\frac{1}{2}=0$ if v is strong and u is not bad.

Assume that $d(v)=4$. Then $d(w) \geq d(u) \geq 4$. If f is a (4,4,4)-face, then by Lemma 2.3 (5), none of the 4 -vertices on f can be bad, thus by (R1.1), $\mu^{*}(f) \geq-3+3 \times 1=0$. Now assume that f is a $\left(4,4^{+}, 5^{+}\right)$-face. In this case, if v, u are two bad 4 -vertices, then by (R1.1) and (R2c), f receives at least $\frac{3}{2}$ from w and at least $\frac{3}{4}$ from each of v and u, thus $\mu^{*}(f) \geq-3+2 \times \frac{3}{4}+\frac{3}{2}=0$; if one of v, u is not bad, then by (R1.1) and (R2c), w gives at least $\frac{5}{4}$ to f and u, v give at least $\left(\frac{3}{4}+1\right)$ to f, then $\mu^{*}(f) \geq-3+\left(\frac{3}{4}+1\right)+\frac{5}{4}=0$; for other cases, by (R1.1), and (R2c), f receives at least 1 from each vertex on $b(f)$, thus $\mu^{*}(f) \geq-3+3 \times 1=0$.

Finally, let $d(v) \geq 5$. It follows that f is a $\left(5^{+}, 5^{+}, 3\right)$-face, then by Lemma 2.5 (1), at most two of the three vertices are weak, so by (R2c) and (R3), $\mu^{*}(f) \geq-3+\min \left\{\frac{5}{4}+\frac{7}{4}, 2 \times \frac{7}{4}, 2 \times \frac{5}{4}+\frac{1}{2}\right\} \geq 0$.

Suppose that $d(f)=4$ and $f=v u w x$. By Lemma 2.2 $(4),\left|b(f) \cap C_{0}\right| \leq 2$. If $\left|b(f) \cap C_{0}\right|=2$, then $f \in F_{4}^{\prime \prime}$, by $(\mathrm{R} 4), \mu^{*}(f) \geq-2+2 \times 1=0$. By Lemma 2.6(1) $F_{4}^{\prime}=\emptyset$. Hence, assume that $\left|b(f) \cap C_{0}\right|=0$. By Proposition 2.1, $d(z) \geq 3$ for each $z \in b(f)$. By Lemma $2.6(2)$, if $d(z)=3$ for some $z \in b(f)$, then its diagonal vertex on $b(f)$ is a 4^{+}-vertex.

If f is a $\left(3,3,4^{+}, 4^{+}\right)$-face, then by $(\mathrm{R} 1.2)$ and $(\mathrm{R} 2.2), \mu^{*}(f) \geq-2+2 \times 1=0$. If f is a $(3,4,4,4)$ face, then by $(\mathrm{R} 1.2), \mu^{*}(f) \geq-2+3 \times \frac{2}{3}=0$. If f is a $\left(3,4^{+}, 5^{+}, 5^{+}\right)$-face or $\left(3,5^{+}, 4^{+}, 5^{+}\right)$-face, then by $(\mathrm{R} 2.2), \mu^{*}(f) \geq-2+2 \cdot \frac{3}{4}+\frac{1}{2}=0$. If f is a $\left(4^{+}, 4^{+}, 4^{+}, 4^{+}\right)$-face, then by (R1.2) and (R2.2), $\mu^{*}(f) \geq-2+4 \times \frac{1}{2}=0$. Finally, let f be a $\left(3,4,4,5^{+}\right)$-face or $\left(3,4,5^{+}, 4\right)$-face. If f is superlight, then f gets 1 from the 5^{+}-vertex on $b(f)$ and at least $\frac{1}{2}$ from each 4 -vertex on $b(f)$, thus $\mu^{*}(f) \geq-2+1+2 \times \frac{1}{2}=0$. Otherwise, f is light, by (R2.2), f receives $\frac{5}{6}$ from the 5^{+}-vertex, $\frac{2}{3}$ from a rich 4 -vertex and at least $\frac{1}{2}$ from the other 4 -vertex on $b(f)$, then $\mu^{*}(f) \geq-2+\frac{5}{6}+\frac{2}{3}+\frac{1}{2}=0$.

Let v be a k-vertex in $\operatorname{int}\left(C_{0}\right)$. Let t_{i} be the number of i-faces incident with v in F_{i} for $i \in\{3,4\}$. Let t_{p} be the number of pendant 3 -faces adjacent to v. By Proposition 2.1,

$$
\begin{equation*}
t_{3} \leq\left\lfloor\frac{k}{2}\right\rfloor, \text { and } t_{4} \leq \max \left\{0, k-2 t_{3}-t_{p}-1\right\} \text { if } t_{4}>0 \tag{1}
\end{equation*}
$$

Lemma 3.2. Let $v \in \operatorname{int}\left(C_{0}\right)$ be a 4-vertex. Then $\mu^{*}(v) \geq 0$.
Proof. If $N(v) \cap C_{0} \neq \emptyset$, then $t_{3} \leq 1$, thus $\mu^{*}(v) \geq 2-\max \left\{\frac{5}{4}+\frac{1}{2}, 2 \cdot 1,3 \cdot \frac{1}{2}\right\} \geq 0$. So, let $N(v) \cap C_{0}=\emptyset$. Clearly, $t_{3} \leq 2$.

If $t_{3}=2$, then by Lemma 2.3 (5), at most one of the triangles is a $(3,4,4)$-face, thus by (R1.1), $\mu^{*}(v) \geq 2-\max \left\{\frac{5}{4}+\frac{3}{4}, 2 \cdot 1\right\}=0$. If $\left(t_{3}, t_{4}\right)=(1,1)$, then when v is not bad, by (R1.1) and (R1.2), v gives at most one to each of the incident faces, thus $\mu^{*}(v) \geq 2-2 \cdot 1=0$, and when v is bad, v cannot be incident with a $\left(3,3,4,4^{+}\right)$-face by Lemma 2.7, then by (R1.1) and (R1.2), $\mu^{*}(v) \geq 2-\frac{5}{4}-\frac{2}{3}=\frac{1}{12}>0$. Let $\left(t_{3}, t_{4}\right)=(1,0)$. Then $0 \leq t_{p} \leq 2$. By Lemma 2.3 (3), at least one of the other neighbors of v is a 4^{+}-vertex or in C_{0} when v is bad, thus by (R1.1) and (R3), $\mu^{*}(v) \geq 2-\max \left\{\frac{5}{4}+\frac{1}{2}, 1+2 \times \frac{1}{2}\right\}=0$.

Now, we assume that $t_{3}=0$. If $t_{p} \geq 2$, then $t_{4} \leq 1$, so by (R1.2) and (R3), $\mu^{*}(v) \geq 2-\max \{4$. $\left.\frac{1}{2}, 1+2 \times \frac{1}{2}\right\}=0$. Assume that $t_{p}=1$ and $t_{4}=2$. Let v be incident with 4 -faces $f_{3}=v v_{2} u_{2} v_{3}$ and $f_{4}=v v_{3} u_{3} v_{4}$ in F_{4}. By Lemmas 2.6 (2) and 2.9, at most two of the vertices in $\left\{v_{2}, u_{2}, v_{3}, u_{3}, v_{4}\right\}$ are 3 -vertices, and when $d\left(v_{3}\right)=3$, none of the other vertices is a 3 -vertex, then by (R1.2) and $(\mathrm{R} 3), v$ gives at $\operatorname{most} \max \left\{2 \cdot \frac{2}{3}, 1+\frac{1}{2}\right\}=\frac{3}{2}$ to f_{3} and f_{4}, thus $\mu^{*}(v) \geq 2-\frac{3}{2}-\frac{1}{2}=0$.

Lastly, let $t_{3}=t_{p}=0$. If $t_{4} \leq 2$, by $(\mathrm{R} 1.2), \mu^{*}(v) \geq 2-2 \times 1=0$. Let $t_{4}=3$. If v is not incident with a $\left(4,3,3,4^{+}\right)$-face, then by $(\mathrm{R} 1.2), \mu^{*}(v) \geq 2-3 \times \frac{2}{3}=0$; If v is incident with a $\left(4,3,3,4^{+}\right)$-face, then by Lemma 2.9 the other incident 4 -faces are $\left(4,4^{+}, 4^{+}, 4^{+}\right)$-faces, so by (R1.2), $\mu^{*}(v) \geq 2-1-2 \times \frac{1}{2}=0$. Hence assume that $t_{4}=4$, that is, v is poor. By Lemma 2.9 (4), v is adjacent to at least two 5^{+}-vertices, and without loss of generality, let $d\left(v_{3}\right), d\left(v_{4}\right) \geq 5$. By Lemma $2.9(1), v$ is not incident with $\left(3,3,4,4^{+}\right)$-faces. Thus, if v is not incident with $(3,4,4,4)$ faces, then by $(\mathrm{R} 1), \mu^{*}(v) \geq 2-4 \times \frac{1}{2}=0$, and if v is incident with a $(3,4,4,4)$-face, then by (R2.3), v gets $\frac{1}{6}$ from each of its 5^{+}-neighbors, so by (R1) and (R2.3), $\mu^{*}(v) \geq 2-3 \times \frac{1}{2}-\frac{2}{3}+2 \cdot \frac{1}{6}>0$.
Lemma 3.3. Let $v \in \operatorname{int}\left(C_{0}\right)$ be a k-vertex with $k \geq 5$. If $u \in Q_{4}(v)$, then one of the 4 -faces that contain uv as an edge contains no 3 -vertices or is a $\left(3,5^{+}, 4,5^{+}\right)$-face.

Proof. As $u \in Q_{4}(v), u$ is a poor 4 -vertex and incident with one (3,4,4,4)-face. Suppose that $f_{i}=u v_{i} u_{i} v_{i+1}$ for $i \in[4]$, where $v=v_{4}$ and the subscripts are taken modulo 4 . We show that f_{3} or f_{4} contains no 3 -vertices or is a $\left(3,5^{+}, 4,5^{+}\right)$.

If $d\left(u_{3}\right) \geq 4$ and $d\left(u_{4}\right) \geq 4$, then by Lemma 2.9(4), either $d\left(v_{1}\right) \geq 5$ or $d\left(v_{3}\right) \geq 5$, so f_{3} or f_{4} cannot contain 3 -vertices. Thus, by symmetry, let $d\left(u_{3}\right)=3$. By Lemma 2.9 (1)-(3), $d\left(v_{3}\right) \geq 4$ and
$d\left(u_{j}\right) \geq 4$ for $j \in[4] \backslash\{3\}$. So f_{4} contains no 3 -vertices if $d\left(v_{1}\right) \neq 3$. Let $d\left(v_{1}\right)=3$. Then $v_{1} u v_{2} u_{1}$ is the $(3,4,4,4)$-face. By Lemma 2.9(4), $d\left(v_{3}\right) \geq 5$, so f_{3} is a $\left(3,5^{+}, 4,5^{+}\right)$-face, as desired.

Let $v \in \operatorname{int}\left(C_{0}\right)$ with $d(v)=k \geq 5$. By Lemma 3.3, a vertex in $Q_{4}(v)$ must either share a 4 -face without 3 -vertices with v, or is on a $\left(3,5^{+}, 4,5^{+}\right)$-face. In the former case, the 4 -face could contain at most two vertices from $Q_{4}(v)$, then the charges from v to the vertices and the 4 -face are at most $\frac{1}{2}+2 \cdot \frac{1}{6}<1$. In the latter case, the face contains exactly one vertex from $Q_{4}(v)$, then by (R2), the charges from v to the vertex and the 4 -face are at most $\frac{3}{4}+\frac{1}{6}<1$. Thus, by (R2),

$$
\begin{align*}
\mu^{*}(v) & \geq 2 k-6-\frac{9}{4} t_{3}-t_{4}-\frac{1}{2} t_{p} \tag{2}\\
& \geq\left(k-2 t_{3}-t_{4}-t_{p}\right)+\left(\frac{7}{8} k-6\right) \geq \frac{7}{8} k-6 \quad\left(\text { as } t_{3} \leq\left\lfloor\frac{k}{2}\right\rfloor\right) . \tag{3}
\end{align*}
$$

Lemma 3.4. Suppose that $v \in \operatorname{int}\left(C_{0}\right)$ is a 5-vertex with $t_{3}>0$. Then $\mu^{*}(v) \geq 0$.
Proof. If $\left|N(v) \cap C_{0}\right| \geq 2$, then $t_{3}+t_{p} \leq 2$ and $t_{4}=0$, as $t_{3}>0$, so by (R1)-(R5), $\mu^{*}(v) \geq$ $4-9 / 4-1 / 2>0$. If $\left|N(v) \cap C_{0}\right|=1$, then v cannot be incident with two bad 3 -faces in F_{3} by Lemma 2.4 (2), and when v is incident with a bad 3 -face and a (3,4,5)-face, the 3 -vertex is strong on the $(3,4,5)$-face by Lemma $2.4(3)$, so $\mu^{*}(v) \geq 4-\max \left\{\frac{9}{4}+\frac{1}{2}, \frac{9}{4}+\frac{7}{4}, 2 \times 2\right\}=0$ by (R2.1)-(R2.3) and (R3). Therefore, we assume that $\left|N(v) \cap C_{0}\right|=0$.

Assume first that $t_{3}=2$. Let $f_{1}=v v_{1} v_{2}$ and $f_{3}=v v_{3} v_{4}$ be the incident 3 -faces and v_{5} be the fifth neighbor of v. By Lemma 2.4 (2), at most one of f_{1}, f_{3} is bad. If both f_{1} and f_{3} are $\left(3,4^{-}, 5\right)$-faces, then by Lemma[2.4 (1), $d\left(v_{5}\right) \geq 4$ or $v_{5} \in C_{0}$, and by Lemma[2.4(3), if one is bad, then the 3 -vertex on the other one is strong, thus by (R2b), $\mu^{*}(v) \geq 4-\max \left\{\frac{9}{4}+\frac{7}{4}, 2 \times 2\right\}=0$. If f_{1} is a $(3,4,5)$-face and f_{3} is a $\left(3,5,5^{+}\right)$-face, then by (R2) and (R3), $\mu^{*}(v) \geq 4-\left(\frac{9}{4}+\frac{5}{4}+\frac{1}{2}\right)=0$ if v is weak, and $\mu^{*}(v) \geq 4-\max \left\{\frac{9}{4}+\frac{7}{4}, \frac{7}{4}+\frac{7}{4}+\frac{1}{2}\right\} \geq 0$ if v is not weak. If none of f_{1}, f_{3} is a $(3,4,5)$-face, then by (R2), $\mu^{*}(v) \geq 4-2 \cdot \frac{7}{4}-\frac{1}{2}=0$.

Finally, let $t_{3}=1$. Then $t_{4} \leq 2$. If $t_{4} \leq 1$, then $\left|Q_{4}(v)\right|=0$, thus, by (R2a), (R2.2) and (R3), $\mu^{*}(v) \geq 4-\frac{9}{4}-1-\frac{1}{2}=\frac{1}{4}>0$. Thus assume that $t_{4}=2$ and let $f_{1}=v v_{1} v_{2}, f_{3}=v v_{3} u_{3} v_{4}$ and $f_{4}=v v_{4} u_{4} v_{5}$ be the incident faces. Note that v_{3}, v_{5} are rich and $\left|Q_{4}(v)\right| \leq 1$. If f_{1} is not bad, then by Lemma 3.3 and by (R2.1), (R2.2) and (R2.3), $\mu^{*}(v) \geq 4-2-\max \left\{1+\frac{3}{4}+\frac{1}{6}, 2 \cdot 1\right\}=0$. Therefore, let f_{1} be a bad (5,4,3)-face. By Lemma 2.7, $d\left(u_{3}\right) \geq 4$ and $d\left(u_{4}\right) \geq 4$. Consider $d\left(v_{4}\right)=3$ first. Then $\left|Q_{4}(v)\right|=0$, and by Lemma 2.6, $d\left(v_{3}\right) \geq 4$ and $d\left(v_{5}\right) \geq 4$. Therefore, if $d\left(v_{3}\right)=d\left(v_{5}\right)=4$, then as v_{3}, v_{5} are rich, by (R2a) and (R2.2), v gives at most $\frac{5}{6}$ to each of f_{3}, f_{4}, thus, $\mu^{*}(v) \geq 4-\frac{9}{4}-2 \times \frac{5}{6}=\frac{1}{12}>0$; if $d\left(v_{3}\right) \geq 5$ or $d\left(v_{5}\right) \geq 5$, then there are at least two 5^{+}-vertices in $b\left(f_{3}\right)$ or $b\left(f_{4}\right)$, thus, by (R2a) and (R2.2), $\mu^{*}(v) \geq 4-\frac{9}{4}-1-\frac{3}{4}=0$. Assume next that $d\left(v_{4}\right)=4$. Then $\left|Q_{4}(v)\right| \leq 1$. By Lemma 2.9 (2), either $d\left(v_{3}\right) \geq 4$ or $d\left(v_{5}\right) \geq 4$. It means that f_{3} or f_{4} is a $\left(5,4,4^{+}, 4^{+}\right)$-face, by (R2a), (R2.2) and (R2.3), $\mu^{*}(v) \geq 4-\frac{9}{4}-1-\frac{1}{2}-\frac{1}{6}=\frac{1}{12}>0$. Assume that $d\left(v_{4}\right) \geq 5$. Then $\left|Q_{4}(v)\right|=0$, and f_{3}, f_{4} are ($5,5^{+}, 4^{+}, 3^{+}$)-faces, by (R2a) and (R2.2), v gives at most $\frac{3}{4}$ to each of f_{3}, f_{4}, then $\mu^{*}(v) \geq 4-\frac{9}{4}-2 \times \frac{3}{4}=\frac{1}{4}>0$.

For a poor 5 -vertex $v \in \operatorname{int}\left(C_{0}\right)$, let $f(v)=\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$, where $f_{i}=v v_{i} u_{i} v_{i+1}$ with $i \in \mathcal{Z}_{5}$, the cyclic group of order 5 . We say that v gives a charge sequence $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ to $f(v)$ if v gives at most a_{i} to f_{i} by (R2.2).

Lemma 3.5. For each 5 -vertex $v \in \operatorname{int}\left(C_{0}\right), \mu^{*}(v) \geq 0$.

Proof. By Lemma 3.4, we may assume that $t_{3}=0$. By (11), $\mu^{*}(v) \geq 4-t_{4}-t_{p} / 2 \geq 0$ if $t_{4} \leq 4$. Thus, we let $t_{4}=5$, that is, v is poor. Let $M(v)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$. By Lemma 2.10(1), M(v) has at most two 3 -vertices, and by Lemma 2.6 (2), there are at most two 3 -vertices in $N(v)$.

Case 1. $N(v)$ has exactly two 3 -vertices.
By symmetry and Lemma 2.6 (2), we may assume that $d\left(v_{1}\right)=d\left(v_{3}\right)=3$. By Lemma 2.6 (2), $d\left(v_{2}\right), d\left(v_{4}\right), d\left(v_{5}\right) \geq 4$. Furthermore, by Lemma 2.9 (2), $d\left(v_{2}\right) \neq 4$, thus $d\left(v_{2}\right) \geq 5$.

Assume that some vertex, say u_{1}, in $M(v)$ has degree 3 . Then by Lemma 2.10 (3), $d\left(u_{j}\right) \geq 4$ for $j \in[5] \backslash\{1\}$, and by Lemma 2.10(5), $d\left(v_{j}\right) \geq 5$ for $j \in[5] \backslash\{1,3\}$, thus $\left|Q_{4}(v)\right|=0$, and $f_{2}, f_{3}, f_{4}, f_{5}$ are $\left(5,5^{+}, 4^{+}, 3\right)-\left(5,3,4^{+}, 5^{+}\right)$-, $\left(5,4^{+}, 4^{+}, 5^{+}\right)$-, and $\left(5,5^{+}, 4^{+}, 3\right)$-faces, respectively. By (R2.2) and (R2.3), v gives a charge sequence $\left(1, \frac{3}{4}, \frac{3}{4}, \frac{1}{2}, \frac{3}{4}\right)$ to $f(v)$, thus $\mu^{*}(v) \geq 4-1-3 \times \frac{3}{4}-\frac{1}{2}=\frac{1}{4}>0$. Hence we assume that $M(v)$ has no 3 -vertex.

As f_{1}, f_{2} are $\left(3,4^{+}, 5^{+}, 5\right)$-faces and f_{4} is a $\left(4^{+}, 4^{+}, 4^{+}, 5\right)$-face, by (R2.2), v gives $2 \cdot \frac{3}{4}+\frac{1}{2}=2$ to them. Consider f_{3} (and similarly f_{5}), which is a $\left(3,4^{+}, 4^{+}, 5\right)$-face. We claim that
v gives at most 1 to the face and the vertex in $Q_{4}(v) \cap b\left(f_{3}\right)$,
which shows that $\mu^{*}(v) \geq 4-2-2 \cdot 1=0$. In fact, if it contains another 5^{+}-vertex, then by (R2.2) and (R2.3), v gives at most $\frac{3}{4}+\frac{1}{6}<1$, as desired. So let it be a (3, 4, 4,5)-face. If it contains two poor 4 -vertices, then it is superlight and by Lemma 2.10(4), it contains no vertex in $Q_{4}(v)$, thus by (R2.2), v gives 1 to it; otherwise, it is light, thus by (R2.2) and (R2.3), v gives $\frac{5}{6}+\frac{1}{6}=1$ to it.

Case 2. $N(v)$ has exactly one 3 -vertex. By symmetry, we assume that $d\left(v_{1}\right)=3$.
Assume first that $M(v)$ contains no 3 -vertex. Then each of f_{2}, f_{3}, f_{4} is a $\left(5,4^{+}, 4^{+}, 4^{+}\right)$-face, and f_{1} is a $\left(5,3,4^{+}, 4^{+}\right)$-face and f_{5} is a $\left(5,4^{+}, 4^{+}, 3\right)$-face. By (R2.2) and (R2.3), v gives a charge sequence $\left(1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1\right)$ to $f(v)$, thus $\mu^{*}(v) \geq 4-2 \times 1-3 \times \frac{1}{2}-3 \times \frac{1}{6}=0$ if $\left|Q_{4}(v)\right| \leq 3$. Thus, assume that $v_{j} \in Q_{4}(v)$ for $j \in[5] \backslash\{1\}$. If u_{1} is a poor 4 -vertex, then $f_{1}=v v_{1} u_{1} v_{2}$ is a $(5,3,4,4)$ face such that u_{1}, v_{2} are poor and $v_{2} \in Q_{4}(v)$, a contradiction to Lemma 2.10(6). Thus, assume that u_{1} is not a poor 4 -vertex. In this case, f_{1} is light. By (R2.2), v gives $\frac{5}{6}$ to f_{1}. Thus, $\mu^{*}(v) \geq 4-1-\frac{5}{6}-3 \times \frac{1}{2}-4 \times \frac{1}{6}=0$.

Next, assume that $M(v)$ contains exactly one 3 -vertex. Let $d\left(u_{1}\right)=3$ (or by symmetry $d\left(u_{5}\right)=$ 3). By our assumption, $d\left(u_{j}\right) \geq 4$ for $j \neq 1$ and $j \in[5]$. Thus, each of f_{2}, f_{3}, f_{4} is a $\left(5,4^{+}, 4^{+}, 4^{+}\right)$face, f_{5} is a $\left(5,4^{+}, 4^{+}, 3\right)$-face. Note that if $d\left(v_{2}\right) \geq 5$, then $\left|Q_{4}(v)\right| \leq 3$; if $d\left(v_{2}\right)=4$, then by Lemma 2.9(1), v_{2} is rich, which implies that $v_{2} \notin Q_{4}(v)$, then $\left|Q_{4}(v)\right| \leq 3$. By (R2.2) and (R2.3), v gives a charge sequence $\left(1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1\right)$ to $f(v)$, and $\mu^{*}(v) \geq 4-2 \times 1-3 \times \frac{1}{2}-3 \times \frac{1}{6}=0$. Hence, we may assume, by symmetry, that either $d\left(u_{3}\right)=3$ or $d\left(u_{2}\right)=3$.

Let $d\left(u_{3}\right)=3$. By Lemma 2.10 (2), either $d\left(v_{2}\right) \geq 5$ or $d\left(v_{5}\right) \geq 5$, and by symmetry we may assume that $d\left(v_{5}\right) \geq 5$. This implies that f_{5} is a $\left(3,5,4^{+}, 5^{+}\right)$-face and $v_{5} \notin Q_{4}(v)$. In this case, both f_{2}, f_{4} are two $\left(5,4^{+}, 4^{+}, 4^{+}\right)$-faces, and f_{1} is a $\left(5,3,4^{+}, 4^{+}\right)$-face. If $d\left(v_{3}\right) \geq 5$ or $d\left(v_{4}\right) \geq 5$, then $\left|Q_{4}(v)\right| \leq 2$, and by (R2.2) and (R2.3), v gives a charge sequence ($1, \frac{1}{2}, \frac{3}{4}, \frac{1}{2}, \frac{3}{4}$) to $f(v)$, thus, $\mu^{*}(v) \geq 4-1-2 \times \frac{3}{4}-2 \times \frac{1}{2}-2 \times \frac{1}{6}=\frac{1}{6}>0$. Then assume that $d\left(v_{3}\right)=d\left(v_{4}\right)=4$. By Lemma 2.10(4), either $v_{3} \notin Q_{4}(v)$ or $v_{4} \notin Q_{4}(v)$. If f_{1} is a $(5,3,4,4)$-face with two poor 4 -vertices, then by Lemma 2.10(6), $v_{2} \notin Q_{4}(v)$, it follows that $\left|Q_{4}(v)\right| \leq 1$, so by (R2.2) and (R2.3), v gives a
charge sequence ($1, \frac{1}{2}, 1, \frac{1}{2}, \frac{3}{4}$) to $f(v)$, thus, $\mu^{*}(v) \geq 4-1-\frac{1}{2}-1-\frac{1}{2}-\frac{3}{4}-\frac{1}{6}=\frac{1}{12}>0$; otherwise, f_{1} is a light $\left(5,3,4^{+}, 4^{+}\right)$-face, so by (R2.2) and (R2.3), $\mu^{*}(v) \geq 4-\frac{5}{6}-\frac{1}{2}-1-\frac{1}{2}-\frac{3}{4}-2 \cdot \frac{1}{6}>0$.

Let $d\left(u_{2}\right)=3$ now. By Lemma 2.10 (2), $d\left(v_{4}\right) \geq 5$. Then both f_{3}, f_{4} are $\left(5,4^{+}, 4^{+}, 4^{+}\right)$-faces. If v_{2} is a rich 4 -vertex or 5^{+}-vertex, then $v_{2} \notin Q_{4}(v)$ and $\left|Q_{4}(v)\right| \leq 2$, so by (R2.2) and (R2.3), v gives at most $\frac{5}{6}$ to each of f_{1}, f_{2}, and v gives a charge sequence $\left(\frac{5}{6}, \frac{5}{6}, \frac{1}{2}, \frac{1}{2}, 1\right)$ to $f(v)$, it follows that $\mu^{*}(v) \geq 4-2 \times \frac{5}{6}-2 \times \frac{1}{2}-1-2 \times \frac{1}{6}=0$. Therefore, we may assume that v_{2} is a poor 4 -vertex. Then by Lemmas 2.9 (4), $d\left(u_{1}\right) \geq 5$ as $d\left(u_{2}\right)=3$, and by Lemma 2.10(4), and $v_{2} \notin Q_{4}(v)$ or $v_{3} \notin Q_{4}(v)$. Consider f_{5}. By Lemma 2.10(6), it is either a light (5, 3, $4^{+}, 4^{+}$)-face, or ($5,3,4,4$)-face with two poor 4 -vertices but $v_{5} \notin Q_{4}(v)$. By (R2.2) and (R2.3), v gives 1 to $f_{2}, \frac{3}{4}$ to f_{1}, and $\frac{5}{6}$ or 1 to f_{5} (depend on whether it is light or superlight). Thus, $\mu^{*}(v) \geq 4-\frac{3}{4}-1-2 \times \frac{1}{2}-\max \left\{1+\frac{1}{6}, \frac{5}{6}+2 \cdot \frac{1}{6}\right\}=$ $\frac{1}{12}>0$.

Assume finally that $M(v)$ contains exactly two 3 -vertices. If $d\left(u_{1}\right)=3$ or $d\left(u_{5}\right)=3$, then by Lemma $2.10(3), M(v)$ contains exactly one 3 -vertex, contrary to our assumption, so by symmetry, $d\left(u_{2}\right)=d\left(u_{3}\right)=3$ or $d\left(u_{2}\right)=d\left(u_{4}\right)=3$.

Let $d\left(u_{2}\right)=d\left(u_{3}\right)=3$. By Lemma 2.10 (2), $d\left(v_{4}\right) \geq 5$ as $d\left(u_{2}\right)=3$, and either $d\left(v_{2}\right) \geq 5$ or $d\left(v_{5}\right) \geq 5$ as $d\left(u_{3}\right)=3$. By Lemma 2.9(4), v_{3} is not a poor 4 -vertex as $d\left(u_{2}\right), d\left(u_{3}\right)<4$. It follows that $\left|Q_{4}(v)\right| \leq 1$. If $d\left(v_{2}\right)=4$, then $d\left(v_{5}\right) \geq 5$ and f_{2} is a light ($5,4,3,4^{+}$)-face, so by (R 2.2) and (R2.3), v gives a charge sequence $\left(1, \frac{5}{6}, \frac{3}{4}, \frac{1}{2}, \frac{3}{4}\right)$ to $f(v)$, and $\mu^{*}(v) \geq 4-1-\frac{5}{6}-2 \cdot \frac{3}{4}-\frac{1}{2}-\frac{1}{6}=0$; if $d\left(v_{2}\right) \geq 5$, then f_{2}, f_{3} are ($5,5^{+}, 3,4$)-faces, so by (R2.2) and (R2.3), v gives a charge sequence $\left(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{1}{2}, 1\right)$ to $f(v)$, and $\mu^{*}(v) \geq 4-1-3 \cdot \frac{3}{4}-\frac{1}{2}-\frac{1}{6}>0$.

Let $d\left(u_{2}\right)=d\left(u_{4}\right)=3$. By Lemma 2.10 (2), $d\left(v_{3}\right) \geq 5$ and $d\left(v_{4}\right) \geq 5$. If both v_{2}, v_{5} are poor 4 -vertices, then by applying Lemma 2.9(4) to v_{2} and v_{5}, respectively, $d\left(u_{1}\right) \geq 5$ and $d\left(u_{5}\right) \geq 5$ as $d\left(u_{2}\right)=d\left(u_{4}\right)=3$, so by (R2.2) and (R2.3), v gives a charge sequence $\left(\frac{3}{4}, \frac{3}{4}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}\right)$ to $f(v)$, and $\mu^{*}(v) \geq 4-4 \times \frac{3}{4}-\frac{1}{2}-2 \times \frac{1}{6}=\frac{1}{6}>0$. Then let v_{2} be a rich 4 -vertex or a 5^{+}-vertex. By (R2.2) and (R2.3), v gives a charge sequence $\left(\frac{5}{6}, \frac{3}{4}, \frac{1}{2}, \frac{3}{4}, 1\right)$ to $f(v)$, and $\mu^{*}(v) \geq 4-1-\frac{5}{6}-2 \cdot \frac{3}{4}-\frac{1}{2}-\frac{1}{6}=0$.

Case 3. $N(v)$ has no 3 -vertex.
If $M(v)$ has at most one 3 -vertex, then $f(v)$ has at least four (5, $4^{+}, 4^{+}, 4^{+}$)-faces, by (R2.2) and (R2.3), v gives the charge sequence $\left(1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ to $f(v)$, thus $\mu^{*}(v) \geq 4-1-4 \times \frac{1}{2}-5 \times \frac{1}{6}>0$. Hence by Lemma 2.10 (1), we assume that $M(v)$ has exactly two 3 -vertices. By symmetry, we assume that $d\left(u_{2}\right)=d\left(u_{3}\right)=3$ or $d\left(u_{2}\right)=d\left(u_{4}\right)=3$. In the former case, by Lemma 2.9(4) v_{3} is not a poor 4 -vertex, which implies that $v_{3} \notin Q_{4}(v)$, thus f_{2}, f_{3} are light $\left(5,4,3,4^{+}\right)$-faces or $\left(5,5^{+}, 3,4^{+}\right)$-faces. By (R 2.2) and (R 2.3), v gives a charge sequence $\left(\frac{1}{2}, \frac{5}{6}, \frac{5}{6}, \frac{1}{2}, \frac{1}{2}\right)$ to $f(v)$, thus, $\mu^{*}(v) \geq 4-2 \times \frac{5}{6}-3 \times \frac{1}{2}-4 \times \frac{1}{6}=\frac{1}{6}>0$. In the latter case, by Lemma 2.10 (2), $d\left(v_{1}\right) \geq 5$ or $d\left(v_{3}\right) \geq 5$ as $d\left(u_{4}\right)=3$, and $d\left(v_{1}\right) \geq 5$ or $d\left(v_{4}\right) \geq 5$ as $d\left(u_{2}\right)=3$, so $\left|Q_{4}(v)\right| \leq 4$. Note that $\left|Q_{4}(v)\right| \neq 4$, for otherwise, $d\left(v_{1}\right) \geq 5, d\left(v_{j}\right)=4$ for $j \in[5] \backslash\{1\}$, and f_{2} is a (5, 4, 3, 4)-face with $v_{2}, v_{3} \in Q_{4}(v)$, a contradiction to Lemma 2.10(4). Therefore, by (R2.2) and (R2.3), v gives a charge sequence $\left(\frac{1}{2}, 1, \frac{1}{2}, 1, \frac{1}{2}\right)$ to $f(v)$, and we have $\mu^{*}(v) \geq 4-2 \times 1-3 \times \frac{1}{2}-3 \times \frac{1}{6}=0$.

Lemma 3.6. For each $v \in \operatorname{int}\left(C_{0}\right), \mu^{*}(v) \geq 0$.
Proof. By Lemmas 3.2 and 3.5, we may assume that $d(v) \geq 6$. We may further assume that $d(v)=6$, as when $d(v) \geq 7, \mu^{*}(v) \geq \frac{7}{8} \times 7-6=\frac{1}{8}>0$ by (3).

If $t_{3}=0$, then $t_{4}+t_{p} \leq 6$, so by (2), $\mu^{*}(v) \geq 6-\left(t_{4}+t_{p}\right)+\frac{1}{2} t_{p} \geq 0$. It $t_{3}=1$, then $t_{4} \leq 3$, so $\mu^{*}(v) \geq 6-\frac{9}{4}-t_{4}-\frac{1}{2} t_{p}>0$. If $t_{3}=2$, then by Proposition 2.1 $t_{4} \leq 1$, so $\mu^{*}(v) \geq 6-2 \times \frac{9}{4}-1>0$. Thus we assumer that $t_{3}=3$.

By (R2.1), v gives at most $\frac{9}{4}$ to a $\left(6,4^{-}, 3\right)$-face, $\frac{7}{4}$ to a $\left(6,5^{+}, 3\right)$-face, and $\frac{3}{2}$ to other incident 3 -faces, thus $\mu^{*}(v) \geq 6-\frac{9}{4} k_{1}-2 k_{2}-\frac{7}{4} k_{3}-\frac{3}{2} k_{4}$, where $k_{1}, k_{2}, k_{3}, k_{4}$ are the numbers of 3 -faces that receive $\frac{9}{4}, 2, \frac{7}{4}$, at most $\frac{3}{2}$ from v, respectively. Note that $k_{1}+k_{2}+k_{3}+k_{4}=3$, and by Lemma 5 (5), v is incident with at most two $\left(6,4^{-}, 3\right)$-faces, thus $k_{1}+k_{2} \leq 2$. Clearly, $\mu^{*}(v) \geq 9-\frac{9}{4} \cdot 2-\frac{7}{4}=-\frac{1}{4}$, and $\mu^{*}(v)<0$ only if $k_{1}=2$ and $k_{3}=1$, in which case, v is weak, so by (R2c), v should give $\frac{5}{4}$ instead of $\frac{7}{4}$ to the $\left(6,5^{+}, 3\right)$-face, a contradiction.

Lemma 3.7. For each $v \in C_{0}, \mu^{*}(v) \geq 0$.
Proof. Let $d(v)=k$. By Proposition [2.1, $k \geq 2$.
If $k=2$, then by $(\mathrm{R} 4), \mu^{*}(v)=2 \times 2-6+2=0$. If $k=3$, then v cannot be incident with faces in $F_{3}^{\prime} \cup F_{4}^{\prime}$. In this case, v may be incident with a face in $F_{3}^{\prime \prime} \cup F_{4}^{\prime \prime}$. By (R4) and (R5), $\mu^{*}(v) \geq \frac{3}{2}-\frac{3}{2}=0$. Let $k=4$. If v is incident with a 3 -face in F_{3}^{\prime}, then it is not incident with other 3- or 4 -faces, thus by (R4) and (R5), $\mu^{*}(v) \geq 2-3+1=0$; if v is incident with faces from $F_{3}^{\prime \prime} \cup F_{4}^{\prime \prime}$, then by (R4) and (R5), $\mu^{*}(v) \geq 2-\frac{3}{2} \cdot 2+1=0$.

Let $k \geq 5$. The vertex v is incident with at most $\left\lfloor\frac{k-2}{2}\right\rfloor$ faces in F^{\prime}. By (R3), (R4) and (R5),

$$
\mu^{*}(v) \geq(2 k-6)-3 \cdot\left\lfloor\frac{k-2}{2}\right\rfloor-\frac{3}{2} \cdot\left(k-2-2 \cdot\left\lfloor\frac{k-2}{2}\right\rfloor\right)=\frac{k}{2}-3 .
$$

Thus, $\mu^{*}(v) \geq 0$ if $k \geq 6$. When $k=5, v$ gains $\frac{1}{2}$ from C_{0}, so $\mu^{*}(v) \geq 0$ as well.
Finally, we consider $\mu^{*}\left(C_{0}\right)$. For $i \in\{2,3,4,5\}$, let s_{i} be the number of i-vertices on C_{0}. Then $\left|C_{0}\right| \geq s_{2}+s_{3}+s_{4}+s_{5}$. By (R5),

$$
\begin{aligned}
\mu^{*}\left(C_{0}\right) & \geq\left|C_{0}\right|+6-2 s_{2}-\frac{3}{2} s_{3}-s_{4}-\frac{1}{2} s_{5} \geq\left|C_{0}\right|+6-\frac{3}{2}\left(s_{2}+s_{3}+s_{4}+s_{5}\right)-\frac{1}{2} s_{2} \\
& \geq\left|C_{0}\right|+6-\frac{3}{2}\left|C_{0}\right|-\frac{1}{2} s_{2}=6-\frac{1}{2}\left(\left|C_{0}\right|+s_{2}\right)
\end{aligned}
$$

Note that $\left|C_{0}\right|=3$ or 7 . If $\left|C_{0}\right|=3$ or $s_{2} \leq 5$, then $\mu^{*}\left(C_{0}\right) \geq 0$. Hence we may assume that $\left|C_{0}\right|=7$ and $\left(s_{2}, s_{3}, s_{4}, s_{5}\right) \in\{(6,1,0,0),(7,0,0,0)\}$. If $s_{2}=7$, then $G=C_{0}$ and it is trivially superextendable. If $s_{2}=6$ and $s_{3}=1$, then by (R5), C_{0} gains 1 from the adjacent face which has degree more than 7 . Thus, $\mu^{*}\left(C_{0}\right) \geq \frac{1}{2}>0$.

We have shown that all vertices and faces have non-negative final charges. Furthermore, the outer-face has positive charges, except when $\left|C_{0}\right|=7$ and $s_{2}=5$ and $s_{3}=2$ (the two 3 -vertices must be adjacent and has a common neighbor not on C_{0}), in which there must be a face other than C_{0} having degree more than 7 . Thus the face has positive final charge. Therefore, $\sum_{x \in V(G) \cup F(G)} \mu^{*}(x)>0$, a contradiction.

References

[1] O. V. Borodin, Colorings of plane graphs: A survey. Discrete Math., 313 (2013), 517-539.
[2] O. V. Borodin and A. N. Glebov, A sufficient condition for planar graphs to be 3-colorable, Diskret Anal Issled Oper. 10 (2004), 3-11 (in Russian)
[3] O. V. Borodin and A. N. Glebov, Planar graphs with neither 5-cycles nor close 3-cycles are 3-colorable, J. Graph Theory, 66 (2011), 1-31.
[4] O. V. Borodin, A. N. Glebov, A. R. Raspaud, and M. R. Salavatipour. Planar graphs without cycles of length from 4 to 7 are 3-colorable. J. of Combin. Theory, Ser. B, 93 (2005), 303-311.
[5] O. V. Borodin and A. Raspaud, A sufficient condition for planar graphs to be 3-colorable, J. Combin. Theory, Ser B, 88 (2003), 17-27.
[6] G. Chang, F. Havet, M. Montassier, and A. Raspaud, Steinberg's Conjecture and near colorings, manuscript.
[7] Z. Dvörák, D. Král and R. Thomas, Coloring planar graphs with triangles far apart, arXiv:0911.0885, 2009.
[8] Michael R. Garey, David S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, ISBN: 0-7167-1045-5, 1979.
[9] H. Grötzsch, Ein dreifarbensatz f ur dreikreisfreienetze auf der kugel. Math.-Nat.Reihe, 8 (1959), 109-120.
[10] I. Havel, On a conjecture of Grunbaum, J. Combin. Theory Ser. B, 7 (1969), 184-186.
[11] O. Hill, D. Smith, Y. Wang, L. Xu, and G. Yu, Planar graphs without 4-cycles and 5-cycles are (3, 0, 0)-colorable, Discrete Math., 313 (2013), 2312-2317.
[12] O. Hill, and G. Yu, A relaxation of Steinberg's Conjecture, SIAM J. of Discrete Math., 27 (2013), 584-596.
[13] R. Liu, X. Li, and G. Yu, A relaxation of the Bordeaux Conjecture, European J. of Comb., 49 (2015), 240-249.
[14] R. Liu, X. Li, and G. Yu, Planar graphs without 5-cycles and intersecting triangles are ($1,1,0$)-colorable, http://arxiv.org/abs/1409.4054 (Submitted).
[15] R. Steinberg, The state of the three color problem. Quo Vadis, Graph Theory?, Ann. Discrete Math. 55 (1993), 211-248.
[16] B. Xu, A 3-color theorem on plane graph without 5-circuits, Acta Math Sinica, 23 (2007), 1059-1062.
[17] B. Xu, On $(3,1)^{*}$-coloring of planar graphs, SIAM J. Disceret Math., 23 (2009), 205-220.
[18] L. Xu, Z. Miao, and Y. Wang, Every planar graph with cycles of length neither 4 nor 5 is ($1,1,0$)-colorable, J Comb. Optim., 28 (2014), 774-786.
[19] L. Xu and Y. Wang, Improper colorability of planar graphs with cycles of length neither 4 nor 6 (in Chinese), Sci .Sin. Math, 43 (2013), 15-24.

[^0]: E-mail addresses: xwli68@mail.ccnu.edu.cn, gyu@wm.edu.
 Date: August 9, 2018.
 ${ }^{\dagger}$ The research was partially supported by the Natural Science Foundation of China (11171129) and by Doctoral Fund of Ministry of Education of China (20130144110001).

