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Abstract. Let c1, c2, · · · , ck be k non-negative integers. A graph G is (c1, c2, · · · , ck)-colorable if

the vertex set can be partitioned into k sets V1, V2, . . . , Vk, such that the subgraph G[Vi], induced by

Vi, has maximum degree at most ci for i = 1, 2, . . . , k. Let F denote the family of plane graphs with

neither adjacent 3-cycles nor 5-cycle. Borodin and Raspaud (2003) conjectured that each graph in

F is (0, 0, 0)-colorable. In this paper, we prove that each graph in F is (1, 1, 0)-colorable, which

improves the results by Xu (2009) and Liu-Li-Yu (2014+).
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1. Introduction

All graphs considered in this paper are finite, simple, and undirected. Call a graph G planar if

it can be embedded into the plane so that its edges meet only at their ends. As proved by Graey

et al [8], the problem of deciding whether a planar graph is properly 3-colorable is NP-complete.

In 1959, Grötzsch [9] showed that every triangle-free planar graph is 3-colorable. A lot of research

was devoted to find sufficient conditions for a planar graph to be 3-colorable, by allowing a triangle

together with some other conditions. The well-known Steinberg’s conjecture [15] stated below is

one of such numerous efforts.

Conjecture 1.1 (Steinberg, [15]). All planar graphs without 4-cycles and 5-cycles are 3-colorable.

Towards this conjecture, Erdős suggested to find a constant c such that a planar graph without

cycles of length from 4 to c is 3-colorable. The best constant people so far is c = 7, found by

Borodin, Glebov, Raspaud, and Salavatipour [4]. For more results, see the recent nice survey by

Borodin [1].
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Another relaxation of the conjecture is to allow some defects in the color classes. A graph is

(c1, c2, · · · , ck)-colorable if the vertex set can be partitioned into k sets V1, V2, . . . , Vk, such that

for every i ∈ [k] := {1, 2, . . . , k} the subgraph G[Vi] has maximum degree at most ci. With

this notion, a properly 3-colorable graph is (0, 0, 0)-colorable. Chang, Havet, Montassier, and

Raspaud [6] proved that all planar graphs without 4-cycles or 5-cycles are (2, 1, 0)-colorable and

(4, 0, 0)-colorable. It is shown in [11, 12, 18] that planar graphs without 4-cycles or 5-cycles are

(3, 0, 0)- and (1, 1, 0)-colorable. Wang and his coauthors (private communication) further proved

such graphs are (2, 0, 0)-colorable.

As usual, a 3-cycle is also called a triangle. Havel (1969, [10]) asked if each planar graph with

large enough distances between triangles is (0, 0, 0)-colorable. This was resolved by Dvor̈ák, Král

and Thomas [7]. We say that two cycles are adjacent if they have at least one edge in common

and intersecting if they have at least one common vertex. Borodin and Raspaud in 2003 made

the following two conjectures, which have common features with Havel’s and Steinberg’s 3-color

problems.

Conjecture 1.2 (Bordeaux Conjecture, [5]). Every planar graph without intersecting 3-cycles and

without 5-cycles is 3-colorable.

Conjecture 1.3 (Strong Bordeaux Conjecture, [5]). Every planar graph without adjacent 3-cycles

and without 5-cycles is 3-colorable.

Let d▽ denote the minimal distance between triangles. Towards the conjectures, Borodin and

Raspaud [5] showed that planar graphs with d▽ ≥ 4 and without 5-cycles are (0, 0, 0)-colorable.

This result was later improved to d▽ ≥ 3 by Borodin and Glebov [2], and independently by Xu [16].

Borodin and Glebov [3] further improved this result to d▽ ≥ 2.

With the relaxed coloring notation, Xu [17] showed that all planar graphs without adjacent

3-cycles and without 5-cycles are (1, 1, 1)-colorable. Recently, Liu, Li and Yu [13, 14] proved

that every planar graph without intersecting 3-cycles and without 5-cycles is (2, 0, 0)-colorable and

(1, 1, 0)-colorable. In this paper, we improve the results by Xu [17] and by Liu-Li-Yu [13], and

prove the following result.

Theorem 1.4. Every planar graph without 5-cycles and adjacent 3-cycles is (1, 1, 0)-colorable.

We actually prove a stronger result. To state it, we introduce the following notion. Let H be a

subgraph of G. Then (G,H) is superextendable if every (1, 1, 0)-coloring of H can be extended to

a (1, 1, 0)-coloring of G such that each vertex u ∈ G−H is coloured differently from its neighbors

in H. If (G,H) is superextendable, then we call H a superextendable sugraph of G. Let F be the

family of planar graphs without 5-cycles and adjacent 3-cycles.

Theorem 1.5. Every triangle or 7-cycle of a graph in F is superextendable.

Proof of Theorem 1.4 from Theorem 1.5: Let G be a graph in F . If G is triangle-free, then G is

3-colorable by the Gröztch Theorem, and is naturally (1, 1, 0)-colorable; if G has a triangle, then

every (1, 1, 0)-coloring of this triangle can be superextended to the whole graph G by Theorem 1.5.

So Theorem 1.4 follows.

Like many of the results of this kind, we also use a discharging argument to prove Theorem 1.5.

The main difficulty still lies on the cases when a 4-vertex or a 5-vertex is incident with many
2



triangles or many 4-faces. Fortunately, we could utilize many of the lemmas from Xu [17] and

Liu-Li-Yu [13] to handle those difficult situations.

We use G = (V,E, F ) to denote a plane graph with vertex set V (G), edge set E(G), and face

set F (G). For a face f ∈ F (G), let b(f) denote the boundary of a face f . A k-vertex (k+-vertex,

k−-vertex) is a vertex of degree k (at least k, at most k). The same notation will apply to faces

and cycles. An (l1, l2, . . . , lk)-face is a k-face v1v2 . . . vk with d(vi) = li, respectively. If a 3-vertex

is incident with a triangle, then its neighbor not on the triangle is called its outer neighbor, and

the 3-face is a pendant 3-face of its outer neighbor. Let C be a cycle of a plane graph G. We use

int(C) and ext(C) to denote the sets of vertices located inside and outside C, respectively. A cycle

C is called a separating cycle if int(C) 6= ∅ 6= ext(C), and is called a nonseparating cycle otherwise.

We also use C to denote the set of vertices of C.

Let S1, S2, . . . , Sl be pairwise disjoint subsets of V (G). We use G[S1, S2, . . . , , Sl] to denote the

graph obtained fromG by contracting all the vertices in Si to a single vertex for each i ∈ {1, 2, . . . , l}.

Let x(y) be the resulting vertex by identifying x and y in G.

The paper is organized as follows. In Section 2, we show the reducible structures useful in our

proof. In Section 3, we are devoted to the proof of Theorem 1.5 by a discharging procedure.

2. Reducible configurations

Suppose that (G,C0) is a counterexample to Theorem 1.5 with minimum σ(G) = |V (G)|+|E(G)|,

where C0 is a triangle or a 7-cycle in G.

If C0 is a separating cycle, then C0 is superextendable in both G \ ext(C0) and G \ int(C0).

Hence, C0 is superextendable in G, contrary to the choice of C0. Thus we assume that C0 is the

boundary of the outer face of G.

Let Fk = {f : f is a k-face and b(f) ∩ C0 = ∅}, F ′
k = {f : f is a k-face and |b(f) ∩ C0| = 1},

and F ′′
k = {f : f is a k-face and |b(f) ∩ C0| = 2}.

Since G ∈ F , the following is immediate.

Proposition 2.1. Every vertex not on C0 has degree at least 3, and no 3-face shares an edge with

a 4-face in G.

The following is a summary of some basic properties of G when we consider superextendablity

of a 3-cycle or a 7-cycle. The proofs of those results can be found, for example, in [17] or [14].

Lemma 2.2 (Xu, [17]; Liu-Li-Yu, [14]). The following are true about G:

(1) The graph G contains neither separating triangles nor separating 7-cycles.

(2) If G has a separating 4-cycle C1 = v1v2v3v4v1, then ext(C1) = {b, c} such that v1bc is a 3-cycle.

Furthermore, the 4-cycle is the unique separating 4-cycle.

(3) Let x, y be two nonadjacent vertices on C0. Then xy 6∈ E(G) and N(x) ∩N(y) ⊆ C0.

(4) Let f be a 4-face with b(f) = v1v2v3v4v1 and let v1 ∈ C0. Then, v3 6∈ C0. Moreover, |N(v3) ∩

C0| = 1 if f ∈ F ′′
4 , and |N(v3) ∩ C0| = 0 if f ∈ F ′

4.

(5) Let u,w be a pair of diagonal vertices on a 4-face. Then G[{u,w}] ∈ F .

The following holds for minimum graphs that are not (1, 1, 0)-colorable.

Lemma 2.3. The following are true in G.
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(1) (Lemma 2.5 from [12]) No 3-vertex v 6∈ C0 is adjacent to two 3-vertices in int(C0).

(2) (Lemma 2.3 from [12]) G has no (3, 3, 4−)-face f ∈ F3.

(3) (Lemma 2.8 from [12]) If v ∈ int(C0) be a 4-vertex incident with exactly one 3-face that is

a (3, 4, 4)-face in F3, then a neighbor of v not on the face is either in C0 or a 4+-vertex.

(4) (Lemma 2.6 from [12]) Let v ∈ int(C0) be the 3-vertex on a (3, 4, 4)-face f ∈ F3. Then the

neighbor of v not on f is either on C0 or a 4+-vertex.

(5) (Lemma 3(3) from [18]) Suppose that v ∈ int(C0) is a 4-vertex incident with two faces from

F3. If one of the faces is a (3, 4, 4)-face, then v has a 5+-neighbor on the other face.

A 4-vertex v ∈ int(C0) is bad if it is incident with a (3, 4, 4)-face from F3, A (3, 4, 5+)-face from

F3 is bad if the 4-vertex on it is bad. A 5-vertex bad if it is incident with a bad (3, 4, 5)-face or a

(3, 3, 5)-face.

Lemma 2.4. Suppose that v ∈ int(C0) is a 5-vertex incident with two 3-faces f1 and f3 from F3.

Let v5 be the remaining neighbor of v. Then each of the followings holds.

(1) (Lemma 5 from [18]) If both f1 and f3 are (3, 4
−, 5)-faces, then v5 is either on C0 or a 4+-vertex.

(2) (Lemma 4(1) from [18]) At most one of f1 and f3 is bad.

(3) (Lemma 4(2) from [18]) If f1 is a bad (3, 4, 5)-face and f3 is a (3, 4, 5)-face, then the outer

neighbor of the 3-vertex on b(f3) is either on C0 or a 4+-vertex.

(4) If f1 is a bad (3, 4, 5)-face and f3 is a (4, 4, 5)-face, then at most one 4-vertex on b(f3) is bad.

(5) (Lemma 8 from [18]) No 6-vertex in int(C0) is incident with three (3, 4−, 6)-faces from F3.

Proof. We only prove (4). Let f1 = vv1v2 with d(v1) = 4 and d(v2) = 3, and f3 = vv3v4 with

d(v3) = d(v4) = 4. And let v′i and v′′i (if any) be the other neighbors of vi for i = 1, 2, 3, 4. Suppose

that both 4-vertices on b(f3) are bad.

Let S = {v, v1, v2, v3, v4, v
′
1, v

′′
1 , v

′
3, v

′′
3 , v

′
4, v

′′
4}, where d(v′′1 ) = d(v′′3 ) = d(v′′4 ) = 4, and let H =

G \ S. Since σ(H) < σ(G), C0 has a superextension c on H. Based on c, we properly color

{v′′1 , v
′
1, v

′′
3 , v

′
3, v3, v

′′
4 , v

′
4, v, v2} in order. Now v4 can be colored as it has four properly colored

neighbors. If v, v4 are colored differently, then v1 can also be colored, as it has four properly

colored neighbors as well. Thus, c(v) = c(v4) = 1, and v1 cannot be colored. It follows that

{c(v′1), c(v
′′
1 )} = {c(v′4), c(v

′′
4 )} = {2, 3}. If c(v3) = 3, then we can recolor v4 with 2, and color v1, so

let c(v3) = 2. If c(v5) = 2, then we recolor v with 3 and color v1 with 1 and recolor v2 accordingly,

so let c(v5) = 3. Recolor v with 2 and color v1 with 1. Now we can recolor v2 with 1 (if c(v′2) = 3)

or 3 (if c(v′2) 6= 3). �

For a 3-vertex in a 3-face f ∈ F3, it is weak if it is adjacent to a 3-vertex not on f or C0, and

strong if it is adjacent to a vertex on C0 or a 4+-vertex not on f . For a vertex v ∈ int(C0) with

d(v) ∈ {5, 6}, v is weak if v is incident with two (5, 5−, 3)-faces from F3 one of which is bad and

adjacent to a pendant 3-face in F3 when d(v) = 5, or v is incident to two bad (6, 4, 3)-faces and one

(3, 5+, 6)-face from F3 when d(v) = 6.

Lemma 2.5. (1) There is no (3, 5+, 5+)-face with three weak vertices.

(2) (Lemma 11 in [12]) There is no (3, 5+, 5)-face f = uvw such that u, v are weak and w is

incident with a (5, 3, 3)-face.

Proof. We only give the proof of (1) here. Suppose that a (3, 5+, 5+)-face f = uvw contains three

weak vertices. When d(v) = 5, we labelN(v)−{u,w} as v1, v2, v3 such that d(v2) = d(v3) = 3 and v1
4



is a bad 4-vertex whose neighbors are v2, v
′
1, v

′′
1 with d(v′1) = 4; when d(v) = 6, we labelN(v)−{u,w}

as v1, v2, v4, v5 such that v1, v4 are bad 4-vertices with N(v1) = {v2, v
′
1, v

′′
1}, N(v4) = {v5, v

′
4, v

′′
4}

and d(v′1) = d(v′4) = 4. Similarly, label N(w) − {u, v} as w1, w2, w3. Let S1 = N(v) ∪ {v′1, v
′′
1} if

d(v) = 5, and S1 = N(v) ∪ {v′1, v
′′
1 , v

′
4, v

′′
4} if d(v) = 6.

We first have the following claim:

In a (1, 1, 0)-coloring of G− S1, w can be properly colored.

Proof of the claim: Consider a (1, 1, 0)-coloring c of G− S1.

First let d(w) = 5. We may assume that w1, w2, w3 are colored differently. Note that we may

recolor w3, w
′
1, w

′′
1 , w1, w2 in the order so that they are all properly colored. If c(w3) = 3, then

{c(w1), c(w2)} = {1, 2}, thus we can recolor w2 so that it has the same color with w1. Then w

can be properly colored. If c(w3) = 1 (or 2 by symmetry), then {c(w1), c(w2)} = {2, 3}; when

c(w1) = 2, we can recolor w2 with 2, and color w properly; when c(w1) = 3, w′
1, w

′′
2 are colored 1

and 2, respectively, and we can recolor w1 with 1, then color w properly.

Now assume that d(w) = 6. Again, we may recolor w′
1, w

′′
1 , w1, w2, w

′
4, w

′′
4 , w4, w5 properly in the

order. If there are only two colors on w1, w2, w4, w5, then w can be properly colored. If w2 (or w5)

is colored with 3, then we can recolor it with 1 or 2; if c(w1) = 3, then we can recolor w1 with 1 or

2 so that it is different from the color of w2. By doing this, we may assume that 3 is not on the

four neighbors of w, so w can be properly color with 3. Thus we have the claim.

The following claim now gives a contradiction:

A (1, 1, 0)-coloring of G − S1 with w being properly colored can be extended to a

(1, 1, 0)-coloring of G.

Proof of the claim: Let c be a (1, 1, 0)-coloring of G− S1 in which w is properly colored.

First assume that d(v) = 5. We color u, , v3 properly in the order. If v can be properly colored,

then we color v2, v
′
1, v

′′
1 properly in the order, and finally color v1, which can be color as it has only

four properly colored neighbors. If v cannot be properly colored, then w, u, v3 have different colors,

thus v can be colored 1 or 2. Color v with 1 for a moment. Color v2, v
′
1, v

′′
1 properly in the order.

Now try to color v1. If v1 is not colorable, then it must be (c(v′1), c(v
′′
1 ), c(v2)) = (3, 2, 2), in which

case, we can color v1 with 1 and color v with 2.

Now assume that d(v) = 6. We color u, v, v2, v5, v
′
1, v

′′
1 , v

′
4, v

′′
4 properly in the order. Now v1, v4

can be colored, unless that both of them have the same color, say 1, with v. In the bad case, we can

recolor v2, v5 with 1 or 3, then color v with 2. Thus the claim is true and we have a contraction. �

Now we discuss the configurations about 4-faces from F4. Some of Lemmas 2.6- 2.10 have their

initial forms in [17, 14].

Lemma 2.6. (Adapted from Lemma 3.6 in [13])

(1) No 4-face is from F ′
4 in G.

(2) Let f ∈ F4 and let v, x be a pair of diagonal vertices on b(f). Then d(v) ≥ 4 or d(x) ≥ 4.

Lemma 2.7. Let v ∈ int(C0) be a bad 4-vertex, or a 5-vertex incident with a bad (5, 4, 3)-face, or

a 5-vertex incident with a (5, 3, 3)-face from F3. If v is incident to a 4-face f , then its diagonal

vertex on b(f) is a 4+-vertex.
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Proof. We consider the case when d(v) = 5. The other cases are very similar and simpler. Let

f1 = vv1v2 be a bad (5, 4, 3)-face with d(v1) = 4, and let f3 = vv3u3v4 be a 4-face with d(u3) = 3

in G. Let v′1, v
′′
1 be the two other neighbors of v1 with d(v′1) = 4 and d(v′′1 ) = 3. Let G′ = G \ S

and H = G′[{v3, v4}], where S = {v, v1, v2, v
′
1, v

′′
1}. Let v∗3 be the resulting vertex by identifying

v3 with v4. By Lemma 2.2 (5), H ∈ F . Since σ(H) < σ(G), C0 has a superextension φH on

H. Based on φH , we color v3, v4 with the color φH(v∗3) and recolor properly u3 with a color in

{1, 2, 3} \ {φH(v∗3), φH(u′3)}, where u
′
3 is the other neighbor of u3 in G. Next, properly color v with

a color in {1, 2, 3}\{φH (v∗3), φH (v5)}, and properly color v2, v
′
1, v

′′
1 in order, and finally color v1 as it

has four properly colored neighbors. Thus, C0 has a superextension φG on G, a contradiction. �

For a positive integer n, let [n] = {1, 2, . . . , n}. For a vertex v ∈ int(C0) with d(v) = k, let

v1, v1, . . . , vk denote the neighbors of v in a cyclic order. Let fi be the face with vvi and vvi+1

as two boundary edges for i = 1, 2, . . . , k, where the subscripts are taken modulo k. A k-vertex

v ∈ int(C0) is poor if it is incident with k 4-faces from F4, and rich otherwise.

The following is a very useful lemma in the remaining proofs.

Lemma 2.8. ((Lemma 3. 10 from [14]) Let v ∈ int(C0) be a 4-vertex with N(v) = {vi : i ∈ [4]}.

If v is incident with two 4-faces that share exactly an edge, then no t-path joins vi and vi+2 in G

for t ∈ {1, 2, 3, 5}, where the subscripts of v are taken modulo 4.

Lemma 2.9. Let v ∈ int(C0) be a 4-vertex incident with a 4-face fi = vviuivi+1. Then each of the

followings holds, where the subscripts are taken modulo 4.

(1) If d(vi) = d(ui) = 3, then fi−1 and fi+1 are 6+-faces. Consequently, if v is poor, then v is

not incident with (3, 3, 4, 4+)-faces.

(2) (Lemma 3.11 (1) in [14]) If fi+1 = vvi+1ui+1vi+2, then d(ui) ≥ 4 or d(ui+1) ≥ 4.

(3) (Lemma 3.11 (2) in [14]) If fi+2 = vvi+2ui+2vi+3, then d(ui) ≥ 4 or d(ui+2) ≥ 4.

(4) (Lemma 3.12 from [14]) If v is a poor 4-vertex, then either d(vi) ≥ 5 or d(vi+2) ≥ 5.

Proof. (1) Suppose that fi−1 and fi are 4-faces with d(ui) = d(vi) = 3, where vi’s are neighbors of

4-vertex v. Identify vi−1, vi, and vi+1 into one vertex, we get a new graph in F , so the new graph is

(1, 1, 0)-colorable. Now the original graph has a (1, 1, 0)-coloring, unless ui−1 has the same color (1

or 2), which by symmetry we assume to be 1, as vi−1, vi and vi+1. We uncolor vi and v, and then

color ui and v properly. Clearly, ui and v are colored 2 or 3. If ui and v are colored differently,

color vi with 2; if ui and v are colored the same, color vi with an available color. �

Let v be a 5+-vertex in int(C0). For convenience, we use Q4(v) to denote the set of poor 4-vertices

in N(v) \ C0 that are incident with (3, 4, 4, 4)-faces from F4.

Lemma 2.10. Let v be a poor 5-vertex in G. Then

(1) (Lemma 3.13(2) from [14]) At most two vertices in {ui : i ∈ [5]} are 3-vertices.

(2) (Lemma 3.13(3) from [14]) If d(ui) = 3, then either d(vi−1) ≥ 5 or d(vi+2) ≥ 5.

(3) (Lemma 3.13(1) from [14]) If d(ui) = d(vi) = 3, then d(uj) ≥ 4 for j ∈ [5] \ {i}.

(4) If fi is a (5, 4, 3, 4)-face, then at most one of vi, vi+1 is in Q4(v).

(5) If d(vi) = d(ui) = d(vi+2) = 3, then d(vj) ≥ 5 for j ∈ [5] \ {i, i + 2}.

(6) If fi is a (5, 3, 4, 4)-face such that ui and vi+1 are poor 4-vertices, then vi+1 6∈ Q4(v).
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Proof. (4) Without loss of generality, assume that f1 = vv1u1v2 is a (5, 4, 3, 4)-face. Assume further

that v1, v2 are in Q4(v). By Lemma 2.9(4),d(u2) ≥ 5 and d(u5) ≥ 5 as d(u1) = 3. Let N(u1) =

{v1, v2, w} andN(w)∩N(v1) = {v′1} andN(w)∩N(v2) = {v′2}. It implies that u1v1v1w and u1v2v
′
2w

are (3, 4, 4, 4)-faces. So d(v′1) = d(v′2) = d(w) = d(v1) = d(v2) = 4. Let H = G[{u1, v
′
1, v

′
2, v}]. By

Lemmas 2.2 (5) and 2.8, H ∈ F . Let c be a coloring of (H,C0). Let v′ be the resulting vertex of

the identification. In G, color u1, u2, u3 with c(v′), and properly color v1, v2, w in the order, and

finally color u1. Thus, (G,C0) is superextendable, a contradiction.

(5) By symmetry, assume that d(v1) = d(u1) = d(v3) = 3. By Lemma 2.7 (2), d(v2) ≥ 4, and

furthermore, by Lemma 2.9 (2), d(v2) ≥ 5.

We show that d(v5) ≥ 5. Suppose otherwise that d(v5) ≤ 4. Then by Lemma 2.6(2), d(v5) = 4.

Let G′ = G − {v, v5} and H = G′[{u4, u5}, {v2, v4}]. By Lemmas 2.2 (5) and 2.8, H ∈ F . Then

(H,C0) is superextendable, and let c be a coloring of (H,C0). In G, color v2, v4 and u4, u5 with

the colors of the identified vertices, respectively, then properly recolor v5, u1, v1, v3 in the order.

Let c′ be the resulting coloring of G − v. Now we color v. If c′(v2) = c′(v4) = 3, then v can

be colored, as the other three colored neighbors are all properly colored, so we may assume that

c′(v2) = c′(v4) = 1. If c′(v1) = 1, then clearly v can be colored; If c′(v1) = 3, then we uncolor v1
and color v with 3 (if c′(v3), c

′(v5) 6= 3) or with 2 (if c′(v3) = 3 or c′(v5) = 3), and now v1 can be

colored, as c′(u1) ∈ {1, 2} and u1 is properly colored, a contradiction.

Similarly, we have d(v4) ≥ 5.

(6) As vi+1 is a poor 4-vertex and d(ui) = 4, by Lemma 2.9(4), d(u′) ≥ 5, where u′ is the

diagonal vertex to v on the 4-face incident with vi+1; similarly, ui is a poor 4-vertex and d(vi) = 3,

by Lemma 2.9(4), d(u′1) ≥ 5, where u′1 is the diagonal vertex to v2 on the 4-face incident with u1.

It follows that no 4-face incident with vi+1 is a (3, 4, 4, 4)-face, so vi+1 6∈ Q4(v). �

3. Discharging procedure

In this section, we prove the main theorem by a discharging argument.

Let the initial charge of a vertex v be µ(v) = 2d(v) − 6, the initial charge of a face f 6= C0 be

µ(f) = d(f)− 6, and µ(C0) = d(C0) + 6. By Euler’s formula,
∑

x∈V ∪F µ(x) = 0.

A (3, 4, 4, 5+)- or (3, 4, 5+, 4)-face f ∈ F4 is superlight if both 4-vertices on b(f) are poor and

light otherwise.

The following are the discharging rules:

(R1) Let v ∈ int(C0) with d(v) = 4 and f ∈ F3 ∪ F4 be a face incident with v.

(R1.1) When f ∈ F3, f gets 1 from v, unless v is incident with f and a (3, 4, 4)-face f ′ ∈ F3, in

which case, v gives 5
4 to f ′ and 3

4 to f .

(R1.2) When f ∈ F4, f gets 1 from v if it is a (4, 3, 3, 4+)-face, 2
3 if it is a (4, 4, 4, 3)-face or v is

rich, and 1
2 otherwise.

(R2) Let v ∈ int(C0) with d(v) ≥ 5.

(R2.1) Let f = vuw be a 3-face in F3 incident with v.

(R2a) Let f be a (5+, 3, 3)-face. Then v gives 2 to f .

(R2b) Let f be a (5+, 4, 3)-face. Then v gives 9
4 to f if u is bad and w is weak; 2 to f if

u is not bad and w is weak; 7
4 to f if u is bad and w is strong; 3

2 to f if u is not

bad and w is strong.
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(R2c) Let f be a (5+, 5+, 3)-face. Then v gives 5
4 to f if v is weak, and 7

4 otherwise.

(R2d) Let f be a (5+, 4+, 4+)-face. Then v gives 3
2 to f if both u, w are bad 4-vertices;

5
4 to f if exactly one of u and w is a bad 4-vertex; 1 to other (5+, 4+, 4+)-faces.

(R2.2) For each 4-face f ∈ F4 incident with v, v gives 1 to f if f is a (5+, 4+, 3, 3)-face

or a superlight (3, 4, 4, 5+)- or (3, 4, 5+, 4)-face; 5
6 to f if f is a light (3, 4, 4, 5+)- or

(3, 4, 5+, 4)-face; 3
4 to f if f is a (3, 4, 5+, 5+)-face or a (3, 5+, 4, 5+)-face; 1

2 to f if f is a

(4+, 4+, 4+, 5+)-face.

(R2.3) If Q4(v) 6= ∅, then v gives 1
6 to each 4-vertex in Q4(v).

(R3) Each 4+-vertex sends 1
2 to each of its pendant 3-faces in F3.

(R4) Let v ∈ C0. Then v gives 3 to each incident 3-face from F ′
3;

3
2 to each incident face from F ′′

3 ;

1 to each incident 4-face from F ′′
4 .

(R5) C0 gives 2 to each 2-vertex on C0;
3
2 to each 3-vertex on C0; 1 to each 4-vertex on C0; and

1
2

to each 5-vertex on C0. In addition, if C0 is a 7-face with six 2-vertices, then it gets 1 from

the incident face.

We will show that each x ∈ F (G) ∪ V (G) has final charge µ∗(x) ≥ 0 and at least one face has

positive charge, to reach a contradiction.

As G contains no 5-faces, and 6+-faces other than C0 are not involved in the discharging proce-

dure, we will check the final charge of the 3- and 4-faces other than C0 first.

Lemma 3.1. Let f be a i-face in F (G) \ C0 for i = 3, 4. Then µ∗(f) ≥ 0.

Proof. Suppose that d(f) = 3 and f = vuw with d(v) ≤ d(u) ≤ d(w). By Lemma 2.2 (3),

|b(f)∩C0| ≤ 2. If |b(f)∩C0| = 2, then f ∈ F ′′
3 , by (R4), µ∗(f) ≥ −3+2× 3

2 = 0; if |b(f)∩C0| = 1,

then f ∈ F ′
3, by (R4), µ∗(f) ≥ −3+3 = 0. Hence, let |b(f)∩C0| = 0. By Proposition 2.1, d(v) ≥ 3.

Assume first that d(v) = 3. If f is a (3, 3, a)-face, by Lemma 2.3 (2), a ≥ 5 and the outer neighbors

of u, v are of degree at least 4 or on C0, then by (R2a) and (R3), µ∗(f) ≥ −3 + 2× 1
2 +2 = 0. If f

is a (3, 4, 4)-face, by Lemma 2.3 (4), the third neighbor of v is a 4+-vertex or on C0, then by (R1.1)

and (R3), µ∗(f) ≥ −3 + 2× 5
4 +

1
2 = 0. Now let f be a (3, 4, 5+)-face. Then by (R1.1) and (R2b),

µ∗(f) ≥ −3 + 9
4 +

3
4 = 0 if v is weak and u is bad; µ∗(f) ≥ −3 + 7

4 +
3
4 +

1
2 = 0 if v is strong and u

is bad; µ∗(f) ≥ −3 + 2 + 1 = 0 if v is weak and u is not bad; µ∗(f) ≥ −3 + 3
2 + 1 + 1

2 = 0 if v is

strong and u is not bad.

Assume that d(v) = 4. Then d(w) ≥ d(u) ≥ 4. If f is a (4, 4, 4)-face, then by Lemma 2.3 (5),

none of the 4-vertices on f can be bad, thus by (R1.1), µ∗(f) ≥ −3 + 3 × 1 = 0. Now assume

that f is a (4, 4+, 5+)-face. In this case, if v, u are two bad 4-vertices, then by (R1.1) and (R2c), f

receives at least 3
2 from w and at least 3

4 from each of v and u, thus µ∗(f) ≥ −3 + 2 × 3
4 + 3

2 = 0;

if one of v, u is not bad, then by (R1.1) and (R2c), w gives at least 5
4 to f and u, v give at least

(34 + 1) to f , then µ∗(f) ≥ −3 + (34 + 1) + 5
4 = 0; for other cases, by (R1.1), and (R2c), f receives

at least 1 from each vertex on b(f), thus µ∗(f) ≥ −3 + 3× 1 = 0.

Finally, let d(v) ≥ 5. It follows that f is a (5+, 5+, 3)-face, then by Lemma 2.5 (1), at most two

of the three vertices are weak, so by (R2c) and (R3), µ∗(f) ≥ −3+min{5
4 +

7
4 , 2×

7
4 , 2×

5
4 +

1
2} ≥ 0.

Suppose that d(f) = 4 and f = vuwx. By Lemma 2.2 (4), |b(f) ∩ C0| ≤ 2. If |b(f) ∩ C0| = 2,

then f ∈ F ′′
4 , by (R4), µ∗(f) ≥ −2 + 2 × 1 = 0. By Lemma 2.6(1) F ′

4 = ∅. Hence, assume that

|b(f) ∩ C0| = 0. By Proposition 2.1, d(z) ≥ 3 for each z ∈ b(f). By Lemma 2.6 (2), if d(z) = 3 for

some z ∈ b(f), then its diagonal vertex on b(f) is a 4+-vertex.
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If f is a (3, 3, 4+, 4+)-face, then by (R1.2) and (R2.2), µ∗(f) ≥ −2+2×1 = 0. If f is a (3, 4, 4, 4)-

face, then by (R1.2), µ∗(f) ≥ −2 + 3 × 2
3 = 0. If f is a (3, 4+, 5+, 5+)-face or (3, 5+, 4+, 5+)-face,

then by (R2.2), µ∗(f) ≥ −2 + 2 · 3
4 + 1

2 = 0. If f is a (4+, 4+, 4+, 4+)-face, then by (R1.2) and

(R2.2), µ∗(f) ≥ −2 + 4 × 1
2 = 0. Finally, let f be a (3, 4, 4, 5+)-face or (3, 4, 5+, 4)-face. If f is

superlight, then f gets 1 from the 5+-vertex on b(f) and at least 1
2 from each 4-vertex on b(f), thus

µ∗(f) ≥ −2+1+2× 1
2 = 0. Otherwise, f is light, by (R2.2), f receives 5

6 from the 5+-vertex, 2
3 from

a rich 4-vertex and at least 1
2 from the other 4-vertex on b(f), then µ∗(f) ≥ −2+ 5

6 +
2
3 +

1
2 = 0. �

Let v be a k-vertex in int(C0). Let ti be the number of i-faces incident with v in Fi for i ∈ {3, 4}.

Let tp be the number of pendant 3-faces adjacent to v. By Proposition 2.1,

(1) t3 ≤ ⌊
k

2
⌋, and t4 ≤ max{0, k − 2t3 − tp − 1} if t4 > 0.

Lemma 3.2. Let v ∈ int(C0) be a 4-vertex. Then µ∗(v) ≥ 0.

Proof. If N(v) ∩ C0 6= ∅, then t3 ≤ 1, thus µ∗(v) ≥ 2 − max{5
4 + 1

2 , 2 · 1, 3 · 1
2} ≥ 0. So, let

N(v) ∩ C0 = ∅. Clearly, t3 ≤ 2.

If t3 = 2, then by Lemma 2.3 (5), at most one of the triangles is a (3, 4, 4)-face, thus by (R1.1),

µ∗(v) ≥ 2 − max{5
4 + 3

4 , 2 · 1} = 0. If (t3, t4) = (1, 1), then when v is not bad, by (R1.1) and

(R1.2), v gives at most one to each of the incident faces, thus µ∗(v) ≥ 2 − 2 · 1 = 0, and when

v is bad, v cannot be incident with a (3, 3, 4, 4+)-face by Lemma 2.7, then by (R1.1) and (R1.2),

µ∗(v) ≥ 2 − 5
4 − 2

3 = 1
12 > 0. Let (t3, t4) = (1, 0). Then 0 ≤ tp ≤ 2. By Lemma 2.3 (3), at least

one of the other neighbors of v is a 4+-vertex or in C0 when v is bad, thus by (R1.1) and (R3),

µ∗(v) ≥ 2−max{5
4 + 1

2 , 1 + 2× 1
2} = 0.

Now, we assume that t3 = 0. If tp ≥ 2, then t4 ≤ 1, so by (R1.2) and (R3), µ∗(v) ≥ 2−max{4 ·
1
2 , 1 + 2× 1

2} = 0. Assume that tp = 1 and t4 = 2. Let v be incident with 4-faces f3 = vv2u2v3 and

f4 = vv3u3v4 in F4. By Lemmas 2.6 (2) and 2.9, at most two of the vertices in {v2, u2, v3, u3, v4}

are 3-vertices, and when d(v3) = 3, none of the other vertices is a 3-vertex, then by (R1.2) and

(R3), v gives at most max{2 · 2
3 , 1 +

1
2} = 3

2 to f3 and f4, thus µ
∗(v) ≥ 2− 3

2 −
1
2 = 0.

Lastly, let t3 = tp = 0. If t4 ≤ 2, by (R1.2), µ∗(v) ≥ 2 − 2 × 1 = 0. Let t4 = 3. If v is

not incident with a (4, 3, 3, 4+)-face, then by (R1.2), µ∗(v) ≥ 2 − 3 × 2
3 = 0; If v is incident with

a (4, 3, 3, 4+)-face, then by Lemma 2.9, the other incident 4-faces are (4, 4+, 4+, 4+)-faces, so by

(R1.2), µ∗(v) ≥ 2 − 1 − 2 × 1
2 = 0. Hence assume that t4 = 4, that is, v is poor. By Lemma 2.9

(4), v is adjacent to at least two 5+-vertices, and without loss of generality, let d(v3), d(v4) ≥ 5. By

Lemma 2.9 (1), v is not incident with (3, 3, 4, 4+)-faces. Thus, if v is not incident with (3, 4, 4, 4)-

faces, then by (R1), µ∗(v) ≥ 2−4× 1
2 = 0, and if v is incident with a (3, 4, 4, 4)-face, then by (R2.3),

v gets 1
6 from each of its 5+-neighbors, so by (R1) and (R2.3), µ∗(v) ≥ 2− 3× 1

2 −
2
3 +2 · 16 > 0. �

Lemma 3.3. Let v ∈ int(C0) be a k-vertex with k ≥ 5. If u ∈ Q4(v), then one of the 4-faces that

contain uv as an edge contains no 3-vertices or is a (3, 5+, 4, 5+)-face.

Proof. As u ∈ Q4(v), u is a poor 4-vertex and incident with one (3, 4, 4, 4)-face. Suppose that

fi = uviuivi+1 for i ∈ [4], where v = v4 and the subscripts are taken modulo 4. We show that f3
or f4 contains no 3-vertices or is a (3, 5+, 4, 5+).

If d(u3) ≥ 4 and d(u4) ≥ 4, then by Lemma 2.9(4), either d(v1) ≥ 5 or d(v3) ≥ 5, so f3 or f4
cannot contain 3-vertices. Thus, by symmetry, let d(u3) = 3. By Lemma 2.9 (1)-(3), d(v3) ≥ 4 and
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d(uj) ≥ 4 for j ∈ [4] \ {3}. So f4 contains no 3-vertices if d(v1) 6= 3. Let d(v1) = 3. Then v1uv2u1
is the (3, 4, 4, 4)-face. By Lemma 2.9(4), d(v3) ≥ 5, so f3 is a (3, 5+, 4, 5+)-face, as desired. �

Let v ∈ int(C0) with d(v) = k ≥ 5. By Lemma 3.3, a vertex in Q4(v) must either share a 4-face

without 3-vertices with v, or is on a (3, 5+, 4, 5+)-face. In the former case, the 4-face could contain

at most two vertices from Q4(v), then the charges from v to the vertices and the 4-face are at most
1
2 +2 · 16 < 1. In the latter case, the face contains exactly one vertex from Q4(v), then by (R2), the

charges from v to the vertex and the 4-face are at most 3
4 + 1

6 < 1. Thus, by (R2),

µ∗(v) ≥ 2k − 6−
9

4
t3 − t4 −

1

2
tp(2)

≥ (k − 2t3 − t4 − tp) + (
7

8
k − 6) ≥

7

8
k − 6 (as t3 ≤ ⌊

k

2
⌋).(3)

Lemma 3.4. Suppose that v ∈ int(C0) is a 5-vertex with t3 > 0. Then µ∗(v) ≥ 0.

Proof. If |N(v) ∩ C0| ≥ 2, then t3 + tp ≤ 2 and t4 = 0, as t3 > 0, so by (R1)-(R5), µ∗(v) ≥

4 − 9/4 − 1/2 > 0. If |N(v) ∩ C0| = 1, then v cannot be incident with two bad 3-faces in F3 by

Lemma 2.4 (2), and when v is incident with a bad 3-face and a (3, 4, 5)-face, the 3-vertex is strong

on the (3, 4, 5)-face by Lemma 2.4 (3), so µ∗(v) ≥ 4−max{9
4 +

1
2 ,

9
4 +

7
4 , 2×2} = 0 by (R2.1)-(R2.3)

and (R3). Therefore, we assume that |N(v) ∩ C0| = 0.

Assume first that t3 = 2. Let f1 = vv1v2 and f3 = vv3v4 be the incident 3-faces and v5 be

the fifth neighbor of v. By Lemma 2.4 (2), at most one of f1, f3 is bad. If both f1 and f3 are

(3, 4−, 5)-faces, then by Lemma 2.4 (1), d(v5) ≥ 4 or v5 ∈ C0, , and by Lemma 2.4 (3), if one is bad,

then the 3-vertex on the other one is strong, thus by (R2b), µ∗(v) ≥ 4−max{9
4 +

7
4 , 2× 2} = 0. If

f1 is a (3, 4, 5)-face and f3 is a (3, 5, 5+)-face, then by (R2) and (R3), µ∗(v) ≥ 4− (94 +
5
4 +

1
2) = 0

if v is weak, and µ∗(v) ≥ 4 − max{9
4 + 7

4 ,
7
4 + 7

4 + 1
2} ≥ 0 if v is not weak. If none of f1, f3 is a

(3, 4, 5)-face, then by (R2), µ∗(v) ≥ 4− 2 · 7
4 −

1
2 = 0.

Finally, let t3 = 1. Then t4 ≤ 2. If t4 ≤ 1, then |Q4(v)| = 0, thus, by (R2a), (R2.2) and (R3),

µ∗(v) ≥ 4 − 9
4 − 1 − 1

2 = 1
4 > 0. Thus assume that t4 = 2 and let f1 = vv1v2, f3 = vv3u3v4 and

f4 = vv4u4v5 be the incident faces. Note that v3, v5 are rich and |Q4(v)| ≤ 1. If f1 is not bad,

then by Lemma 3.3 and by (R2.1), (R2.2) and (R2.3), µ∗(v) ≥ 4 − 2 −max{1 + 3
4 + 1

6 , 2 · 1} = 0.

Therefore, let f1 be a bad (5, 4, 3)-face. By Lemma 2.7, d(u3) ≥ 4 and d(u4) ≥ 4. Consider

d(v4) = 3 first. Then |Q4(v)| = 0, and by Lemma 2.6, d(v3) ≥ 4 and d(v5) ≥ 4. Therefore, if

d(v3) = d(v5) = 4, then as v3, v5 are rich, by (R2a) and (R2.2), v gives at most 5
6 to each of f3, f4,

thus, µ∗(v) ≥ 4 − 9
4 − 2 × 5

6 = 1
12 > 0; if d(v3) ≥ 5 or d(v5) ≥ 5, then there are at least two

5+-vertices in b(f3) or b(f4), thus, by (R2a) and (R2.2), µ∗(v) ≥ 4 − 9
4 − 1 − 3

4 = 0. Assume next

that d(v4) = 4. Then |Q4(v)| ≤ 1. By Lemma 2.9 (2), either d(v3) ≥ 4 or d(v5) ≥ 4. It means that

f3 or f4 is a (5, 4, 4+, 4+)-face, by (R2a), (R2.2) and (R2.3), µ∗(v) ≥ 4− 9
4 − 1− 1

2 − 1
6 = 1

12 > 0.

Assume that d(v4) ≥ 5. Then |Q4(v)| = 0, and f3, f4 are (5, 5+, 4+, 3+)-faces, by (R2a) and (R2.2),

v gives at most 3
4 to each of f3, f4, then µ∗(v) ≥ 4− 9

4 − 2× 3
4 = 1

4 > 0. �

For a poor 5-vertex v ∈ int(C0), let f(v) = (f1, f2, f3, f4, f5), where fi = vviuivi+1 with i ∈ Z5,

the cyclic group of order 5. We say that v gives a charge sequence (a1, a2, a3, a4, a5) to f(v) if v

gives at most ai to fi by (R2.2).

Lemma 3.5. For each 5-vertex v ∈ int(C0), µ
∗(v) ≥ 0.

10



Proof. By Lemma 3.4, we may assume that t3 = 0. By (1), µ∗(v) ≥ 4 − t4 − tp/2 ≥ 0 if t4 ≤ 4.

Thus, we let t4 = 5, that is, v is poor. Let M(v) = {u1, u2, u3, u4, u5}. By Lemma 2.10(1), M(v)

has at most two 3-vertices, and by Lemma 2.6 (2), there are at most two 3-vertices in N(v).

Case 1. N(v) has exactly two 3-vertices.

By symmetry and Lemma 2.6 (2), we may assume that d(v1) = d(v3) = 3. By Lemma 2.6 (2),

d(v2), d(v4), d(v5) ≥ 4. Furthermore, by Lemma 2.9 (2), d(v2) 6= 4, thus d(v2) ≥ 5.

Assume that some vertex, say u1, in M(v) has degree 3. Then by Lemma 2.10 (3), d(uj) ≥ 4 for

j ∈ [5]\{1}, and by Lemma 2.10(5), d(vj) ≥ 5 for j ∈ [5]\{1, 3}, thus |Q4(v)| = 0, and f2, f3, f4, f5
are (5, 5+, 4+, 3)- (5, 3, 4+, 5+)-, (5, 4+, 4+, 5+)-, and (5, 5+, 4+, 3)-faces, respectively. By (R2.2)

and (R2.3), v gives a charge sequence (1, 34 ,
3
4 ,

1
2 ,

3
4) to f(v), thus µ∗(v) ≥ 4− 1− 3× 3

4 −
1
2 = 1

4 > 0.

Hence we assume that M(v) has no 3-vertex.

As f1, f2 are (3, 4+, 5+, 5)-faces and f4 is a (4+, 4+, 4+, 5)-face, by (R2.2), v gives 2 · 3
4 + 1

2 = 2

to them. Consider f3 (and similarly f5), which is a (3, 4+, 4+, 5)-face. We claim that

v gives at most 1 to the face and the vertex in Q4(v) ∩ b(f3),

which shows that µ∗(v) ≥ 4− 2− 2 · 1 = 0. In fact, if it contains another 5+-vertex, then by (R2.2)

and (R2.3), v gives at most 3
4 + 1

6 < 1, as desired. So let it be a (3, 4, 4, 5)-face. If it contains two

poor 4-vertices, then it is superlight and by Lemma 2.10(4), it contains no vertex in Q4(v), thus

by (R2.2), v gives 1 to it; otherwise, it is light, thus by (R2.2) and (R2.3), v gives 5
6 +

1
6 = 1 to it.

Case 2. N(v) has exactly one 3-vertex. By symmetry, we assume that d(v1) = 3.

Assume first that M(v) contains no 3-vertex. Then each of f2, f3, f4 is a (5, 4+, 4+, 4+)-face,

and f1 is a (5, 3, 4+, 4+)-face and f5 is a (5, 4+, 4+, 3)-face. By (R2.2) and (R2.3), v gives a charge

sequence (1, 12 ,
1
2 ,

1
2 , 1) to f(v), thus µ∗(v) ≥ 4 − 2 × 1 − 3 × 1

2 − 3 × 1
6 = 0 if |Q4(v)| ≤ 3. Thus,

assume that vj ∈ Q4(v) for j ∈ [5] \ {1}. If u1 is a poor 4-vertex, then f1 = vv1u1v2 is a (5, 3, 4, 4)-

face such that u1, v2 are poor and v2 ∈ Q4(v), a contradiction to Lemma 2.10(6). Thus, assume

that u1 is not a poor 4-vertex. In this case, f1 is light. By (R2.2), v gives 5
6 to f1. Thus,

µ∗(v) ≥ 4− 1− 5
6 − 3× 1

2 − 4× 1
6 = 0.

Next, assume that M(v) contains exactly one 3-vertex. Let d(u1) = 3 (or by symmetry d(u5) =

3). By our assumption, d(uj) ≥ 4 for j 6= 1 and j ∈ [5]. Thus, each of f2, f3, f4 is a (5, 4+, 4+, 4+)-

face, f5 is a (5, 4+, 4+, 3)-face. Note that if d(v2) ≥ 5, then |Q4(v)| ≤ 3; if d(v2) = 4, then by

Lemma 2.9(1), v2 is rich, which implies that v2 6∈ Q4(v), then |Q4(v)| ≤ 3. By (R2.2) and (R2.3),

v gives a charge sequence (1, 12 ,
1
2 ,

1
2 , 1) to f(v), and µ∗(v) ≥ 4− 2× 1− 3× 1

2 − 3× 1
6 = 0. Hence,

we may assume, by symmetry, that either d(u3) = 3 or d(u2) = 3.

Let d(u3) = 3. By Lemma 2.10 (2), either d(v2) ≥ 5 or d(v5) ≥ 5, and by symmetry we may

assume that d(v5) ≥ 5. This implies that f5 is a (3, 5, 4+, 5+)-face and v5 /∈ Q4(v). In this case,

both f2, f4 are two (5, 4+, 4+, 4+)-faces, and f1 is a (5, 3, 4+, 4+)-face. If d(v3) ≥ 5 or d(v4) ≥ 5,

then |Q4(v)| ≤ 2, and by (R2.2) and (R2.3), v gives a charge sequence (1, 12 ,
3
4 ,

1
2 ,

3
4 ) to f(v), thus,

µ∗(v) ≥ 4 − 1 − 2 × 3
4 − 2 × 1

2 − 2 × 1
6 = 1

6 > 0. Then assume that d(v3) = d(v4) = 4. By

Lemma 2.10(4), either v3 6∈ Q4(v) or v4 6∈ Q4(v). If f1 is a (5, 3, 4, 4)-face with two poor 4-vertices,

then by Lemma 2.10(6), v2 6∈ Q4(v), it follows that |Q4(v)| ≤ 1, so by (R2.2) and (R2.3), v gives a
11



charge sequence (1, 12 , 1,
1
2 ,

3
4) to f(v), thus, µ∗(v) ≥ 4− 1− 1

2 − 1− 1
2 −

3
4 −

1
6 = 1

12 > 0; otherwise,

f1 is a light (5, 3, 4+, 4+)-face, so by (R2.2) and (R2.3), µ∗(v) ≥ 4− 5
6 − 1

2 − 1− 1
2 − 3

4 − 2 · 1
6 > 0.

Let d(u2) = 3 now. By Lemma 2.10 (2), d(v4) ≥ 5. Then both f3, f4 are (5, 4+, 4+, 4+)-faces.

If v2 is a rich 4-vertex or 5+-vertex, then v2 /∈ Q4(v) and |Q4(v)| ≤ 2, so by (R2.2) and (R2.3), v

gives at most 5
6 to each of f1, f2, and v gives a charge sequence (56 ,

5
6 ,

1
2 ,

1
2 , 1) to f(v), it follows that

µ∗(v) ≥ 4−2× 5
6 −2× 1

2−1−2× 1
6 = 0. Therefore, we may assume that v2 is a poor 4-vertex. Then

by Lemmas 2.9 (4), d(u1) ≥ 5 as d(u2) = 3, and by Lemma 2.10(4), and v2 6∈ Q4(v) or v3 6∈ Q4(v).

Consider f5. By Lemma 2.10(6), it is either a light (5, 3, 4+, 4+)-face, or (5, 3, 4, 4)-face with two

poor 4-vertices but v5 6∈ Q4(v). By (R2.2) and (R2.3), v gives 1 to f2,
3
4 to f1, and

5
6 or 1 to f5

(depend on whether it is light or superlight). Thus, µ∗(v) ≥ 4− 3
4−1−2× 1

2−max{1+ 1
6 ,

5
6+2· 16} =

1
12 > 0.

Assume finally that M(v) contains exactly two 3-vertices. If d(u1) = 3 or d(u5) = 3, then by

Lemma 2.10 (3), M(v) contains exactly one 3-vertex, contrary to our assumption, so by symmetry,

d(u2) = d(u3) = 3 or d(u2) = d(u4) = 3.

Let d(u2) = d(u3) = 3. By Lemma 2.10 (2), d(v4) ≥ 5 as d(u2) = 3, and either d(v2) ≥ 5 or

d(v5) ≥ 5 as d(u3) = 3. By Lemma 2.9(4), v3 is not a poor 4-vertex as d(u2), d(u3) < 4. It follows

that |Q4(v)| ≤ 1. If d(v2) = 4, then d(v5) ≥ 5 and f2 is a light (5, 4, 3, 4+)-face, so by (R2.2) and

(R2.3), v gives a charge sequence (1, 56 ,
3
4 ,

1
2 ,

3
4) to f(v), and µ∗(v) ≥ 4− 1− 5

6 − 2 · 3
4 − 1

2 −
1
6 = 0;

if d(v2) ≥ 5, then f2, f3 are (5, 5+, 3, 4)-faces, so by (R2.2) and (R2.3), v gives a charge sequence

(34 ,
3
4 ,

3
4 ,

1
2 , 1) to f(v), and µ∗(v) ≥ 4− 1− 3 · 3

4 − 1
2 −

1
6 > 0.

Let d(u2) = d(u4) = 3. By Lemma 2.10 (2), d(v3) ≥ 5 and d(v4) ≥ 5. If both v2, v5 are poor

4-vertices, then by applying Lemma 2.9(4) to v2 and v5, respectively, d(u1) ≥ 5 and d(u5) ≥ 5 as

d(u2) = d(u4) = 3, so by (R2.2) and (R2.3), v gives a charge sequence (34 ,
3
4 ,

1
2 ,

3
4 ,

3
4 ) to f(v), and

µ∗(v) ≥ 4−4× 3
4 −

1
2 −2× 1

6 = 1
6 > 0. Then let v2 be a rich 4-vertex or a 5+-vertex. By (R2.2) and

(R2.3), v gives a charge sequence (56 ,
3
4 ,

1
2 ,

3
4 , 1) to f(v), and µ∗(v) ≥ 4− 1− 5

6 − 2 · 3
4 − 1

2 −
1
6 = 0.

Case 3. N(v) has no 3-vertex.

If M(v) has at most one 3-vertex, then f(v) has at least four (5, 4+, 4+, 4+)-faces, by (R2.2) and

(R2.3), v gives the charge sequence (1, 12 ,
1
2 ,

1
2 ,

1
2) to f(v), thus µ∗(v) ≥ 4− 1− 4 × 1

2 − 5 × 1
6 > 0.

Hence by Lemma 2.10 (1), we assume that M(v) has exactly two 3-vertices. By symmetry, we

assume that d(u2) = d(u3) = 3 or d(u2) = d(u4) = 3. In the former case, by Lemma 2.9(4) v3
is not a poor 4-vertex, which implies that v3 6∈ Q4(v), thus f2, f3 are light (5, 4, 3, 4+)-faces or

(5, 5+, 3, 4+)-faces. By (R2.2) and (R2.3), v gives a charge sequence (12 ,
5
6 ,

5
6 ,

1
2 ,

1
2) to f(v), thus,

µ∗(v) ≥ 4 − 2 × 5
6 − 3 × 1

2 − 4 × 1
6 = 1

6 > 0. In the latter case, by Lemma 2.10 (2), d(v1) ≥ 5

or d(v3) ≥ 5 as d(u4) = 3, and d(v1) ≥ 5 or d(v4) ≥ 5 as d(u2) = 3, so |Q4(v)| ≤ 4. Note that

|Q4(v)| 6= 4, for otherwise, d(v1) ≥ 5, d(vj) = 4 for j ∈ [5] \ {1}, and f2 is a (5, 4, 3, 4)-face with

v2, v3 ∈ Q4(v), a contradiction to Lemma 2.10(4). Therefore, by (R2.2) and (R2.3), v gives a charge

sequence (12 , 1,
1
2 , 1,

1
2) to f(v), and we have µ∗(v) ≥ 4− 2× 1− 3× 1

2 − 3× 1
6 = 0. �

Lemma 3.6. For each v ∈ int(C0), µ
∗(v) ≥ 0.

Proof. By Lemmas 3.2 and 3.5, we may assume that d(v) ≥ 6. We may further assume that

d(v) = 6, as when d(v) ≥ 7, µ∗(v) ≥ 7
8 × 7− 6 = 1

8 > 0 by (3).
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If t3 = 0, then t4 + tp ≤ 6, so by (2), µ∗(v) ≥ 6− (t4 + tp) +
1
2tp ≥ 0. It t3 = 1, then t4 ≤ 3, so

µ∗(v) ≥ 6− 9
4 − t4−

1
2tp > 0. If t3 = 2, then by Proposition 2.1 t4 ≤ 1, so µ∗(v) ≥ 6−2× 9

4 −1 > 0.

Thus we assumer that t3 = 3.

By (R2.1), v gives at most 9
4 to a (6, 4−, 3)-face, 7

4 to a (6, 5+, 3)-face, and 3
2 to other incident

3-faces, thus µ∗(v) ≥ 6− 9
4k1 − 2k2 −

7
4k3 −

3
2k4, where k1, k2, k3, k4 are the numbers of 3-faces that

receive 9
4 , 2,

7
4 , at most 3

2 from v, respectively. Note that k1+k2+k3+k4 = 3, and by Lemma 5 (5),

v is incident with at most two (6, 4−, 3)-faces, thus k1+k2 ≤ 2. Clearly, µ∗(v) ≥ 9− 9
4 ·2−

7
4 = −1

4 ,

and µ∗(v) < 0 only if k1 = 2 and k3 = 1, in which case, v is weak, so by (R2c), v should give 5
4

instead of 7
4 to the (6, 5+, 3)-face, a contradiction. �

Lemma 3.7. For each v ∈ C0, µ
∗(v) ≥ 0.

Proof. Let d(v) = k. By Proposition 2.1, k ≥ 2.

If k = 2, then by (R4), µ∗(v) = 2 × 2 − 6 + 2 = 0. If k = 3, then v cannot be incident with

faces in F ′
3 ∪ F ′

4. In this case, v may be incident with a face in F ′′
3 ∪ F ′′

4 . By (R4) and (R5),

µ∗(v) ≥ 3
2 − 3

2 = 0. Let k = 4. If v is incident with a 3-face in F ′
3, then it is not incident with

other 3- or 4-faces, thus by (R4) and (R5), µ∗(v) ≥ 2 − 3 + 1 = 0; if v is incident with faces from

F ′′
3 ∪ F ′′

4 , then by (R4) and (R5), µ∗(v) ≥ 2− 3
2 · 2 + 1 = 0.

Let k ≥ 5. The vertex v is incident with at most ⌊k−2
2 ⌋ faces in F ′. By (R3), (R4) and (R5),

µ∗(v) ≥ (2k − 6)− 3 · ⌊
k − 2

2
⌋ −

3

2
· (k − 2− 2 · ⌊

k − 2

2
⌋) =

k

2
− 3.

Thus, µ∗(v) ≥ 0 if k ≥ 6. When k = 5, v gains 1
2 from C0, so µ∗(v) ≥ 0 as well. �

Finally, we consider µ∗(C0). For i ∈ {2, 3, 4, 5}, let si be the number of i-vertices on C0. Then

|C0| ≥ s2 + s3 + s4 + s5. By (R5),

µ∗(C0) ≥ |C0|+ 6− 2s2 −
3

2
s3 − s4 −

1

2
s5 ≥ |C0|+ 6−

3

2
(s2 + s3 + s4 + s5)−

1

2
s2

≥ |C0|+ 6−
3

2
|C0| −

1

2
s2 = 6−

1

2
(|C0|+ s2)

Note that |C0| = 3 or 7. If |C0| = 3 or s2 ≤ 5, then µ∗(C0) ≥ 0. Hence we may assume that

|C0| = 7 and (s2, s3, s4, s5) ∈ {(6, 1, 0, 0), (7, 0, 0, 0)}. If s2 = 7, then G = C0 and it is trivially

superextendable. If s2 = 6 and s3 = 1, then by (R5), C0 gains 1 from the adjacent face which has

degree more than 7. Thus, µ∗(C0) ≥
1
2 > 0.

We have shown that all vertices and faces have non-negative final charges. Furthermore, the

outer-face has positive charges, except when |C0| = 7 and s2 = 5 and s3 = 2 (the two 3-vertices must

be adjacent and has a common neighbor not on C0), in which there must be a face other than C0 hav-

ing degree more than 7. Thus the face has positive final charge. Therefore,
∑

x∈V (G)∪F (G) µ
∗(x) > 0,

a contradiction.
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