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Abstract

For a maximal outerplanar graph G of order n at least 3, Matheson and Tarjan showed

that G has domination number at most n/3. Similarly, for a maximal outerplanar graph

G of order n at least 5, Dorfling, Hattingh, and Jonck showed, by a completely different

approach, that G has total domination number at most 2n/5 unless G is isomorphic to

one of two exceptional graphs of order 12.

We present a unified proof of a common generalization of these two results. For every

positive integer k, we specify a set Hk of graphs of order at least 4k + 4 and at most

4k2 − 2k such that every maximal outerplanar graph G of order n at least 2k + 1 that

does not belong to Hk has a dominating set D of order at most ⌊ kn
2k+1⌋ such that every

component of the subgraph G[D] of G induced by D has order at least k.
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1 Introduction

The two most prominent domination parameters [5, 6], the domination number γ(G) and the

total domination number γt(G) of a graph G, have both been studied in detail for maximal

outerplanar graphs [1–3, 9]. Two fundamental results in this context are as follows.

Theorem 1 (Matheson and Tarjan [7]) If G is a maximal outerplanar graph of order n at

least 3, then γ(G) ≤
⌊

n
3

⌋

.

Theorem 2 (Dorfling, Hattingh, and Jonck [4]) If G is a maximal outerplanar graph of

order n at least 5 that is not isomorphic to one of the two graphs H1 and H2 in Figure 1, then

γ(G) ≤
⌊

2n
5

⌋

.
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Figure 1: The two exceptional graphs H1 and H2 for Theorem 2.

The proofs of these two results in [4, 7] are quite different. While Theorem 1 follows from an

elegant labeling argument, the proof of Theorem 2 relied on a detailed case analysis; one reason

for this difference probably being the existence of the two exceptional graphs.

Our goal in the present paper is a unified proof of a common generalization of these two

results.

For some positive integer k and a graph G, a set D of vertices of G is a k-component dominating

set of G if every vertex in V (G) \D has a neighbor in D, and every component of the subgraph

G[D] of G induced by D has order at least k. The minimum cardinality of a k-component

dominating set of G is the k-component domination number γk(G) of G.

Note that a graph has a k-component dominating set if and only if each of its components

has order at least k. Clearly, γ1(G) coincides with the domination number of G, and γ2(G)

coincides with the total domination number of G, respectively. The notation “γk(G)” has

already been used to denote various other domination parameters. We chose this notation for

its simplicity, and because there is little danger of confusion within the context of this paper.

For every positive integer k, we will specify a set Hk of graphs each of order at least 4k+4

and at most 4k2 − 2k such that our main result reads as follows.

Theorem 3 If k and n are positive integers with n ≥ 2k+1, and G is a maximal outerplanar

graph of order n, then

γk(G) ≤







⌈

kn
2k+1

⌉

, if G ∈ Hk

⌊

kn
2k+1

⌋

, otherwise.
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As we show below, the bound in Theorem 3 is actually tight for all values of k and n with

n ≥ 2k+ 1. For k = 1, we have 4k+ 4 > 4k2 − 2k, which implies that H1 is necessarily empty,

that is, Theorem 3 implies Theorem 1. Furthermore, we will see that H2 = {H1, H2}, that is,

Theorems 3 implies Theorem 2.

The rest of the paper is devoted to the proof of Theorem 3.

2 Results

For every maximal outerplanar graph, we will tacitly assume that it is embedded in the plane

in such a way that all its vertices are on the boundary of the unbounded face. This implies that

every bounded face is bounded by a triangle. Furthermore, we assume that subgraphs inherit

their embeddings in the natural way.

Let G be a maximal outerplanar graph of order at least 3. The boundary of the unbounded

face of G is a Hamiltonian cycle C(G) of G. A chord of G is an edge of G that does not belong

to C(G). Adding a chord xy of G to C(G) results in a graph that has exactly two cycles C1 and

C2 that are distinct from C(G). Furthermore, C1 and C2 are the boundaries of two maximal

outerplanar subgraphs of G whose union is G and whose intersection is the edge xy. We will

refer to these two graphs as the subgraphs of G generated by xy. We refer to the edges of some

graph G as G-edges.

For positive integers s and t, let [s, t] be the set of positive integers at least s and at most

t, and let [t] = [1, t].

For positive integers k and n with n ≥ max{3, k}, let

γk(n) = max{γk(G) : G is a maximal outerplanar graph of order n}.

Lemma 4 If k, k′, and n are positive integers with n ≥ max{3, k} and k ≥ k′, then

(i) γk(n) ≤ γk(n+ 1), and

(ii) γk′(n) ≤ γk(n).

Proof: (i) Let G be a maximal outerplanar graph of order n such that γk(G) = γk(n). For

some C(G)-edge uv of G, let G′ arise from G by adding a new vertex x and the new edges

ux and xv. Clearly, G′ is a maximal outerplanar graph of order n + 1. Let D′ be a minimum

k-component dominating set of G′. If either x 6∈ D′ or x ∈ D′ and the component of G′[D′]

that contains x has order at least k + 1, then D′ \ {x} is a k-component dominating set of

G, which implies γk(n) = γk(G) ≤ γk(G
′) ≤ γk(n + 1). Hence, we may assume that x ∈ D′,

and that the component of G′[D′] that contains x has order exactly k. Since n ≥ k, there is a

vertex y in V (G′) \D′ that has a neighbor in the component of G′[D′] that contains x. The set

D = (D′ \ {x}) ∪ {y} is a k-component dominating set of G, which implies γk(n) ≤ γk(n + 1)

as above.
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(ii) This follows immediately from the trivial fact that every k-component dominating set is a

k′-component dominating set. ✷

Lemma 5 If k is a positive integer, then γk(2k + 3) = k.

Proof: Since γk(2k + 3) ≥ k follows immediately from the definition, it remains to show

γk(2k + 3) ≤ k, which we prove by induction on k. Since every maximal outerplanar graph

of order 5 has a universal vertex, we obtain γ1(5) ≤ 1. Now, let k ≥ 2. Let G be a maximal

outerplanar graph of order 2k + 3. Let x be a vertex of degree 2 in G. The neighbors of x in

G, say u and v, are adjacent. Let G′ arise from G by removing x and contracting the edge uv

to a new vertex u∗. The order of G′ is 2(k− 1) + 3. By induction, G′ has a (k − 1)-component

dominating set D′ of order k − 1. If u∗ ∈ D′, then let D = (D′ \ {u∗}) ∪ {u, v}. If u∗ 6∈ D′,

then let D arise from D′ by adding one vertex from {u, v} that has a neighbor in D′. Note

that D is well defined because D′ is a dominating set of G′. In both cases, D is a k-component

dominating set of G of order k, which completes the proof. ✷

t t t

t t

✁
✁✁❆

❆❆
✁
✁✁ ❆

❆❆
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t t t

✁
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❆❆
✁
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✁
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✁
✁✁

✁
✁✁

✁
✁✁❆

❆❆
❆

❆❆
❆

❆❆

G3

❤ ❤ ❤ t t t t t t t

t t t t t t

✁
✁✁❆

❆❆
✁

✁✁
✁
✁✁

✁
✁✁

✁
✁✁

✁
✁✁❆

❆❆
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❆
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❆
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❆

❆❆

G5

❤ ❤ ❤ ❤ ❤

Figure 2: Some elements of a sequence (Gk)k∈N of maximal outerplanar graphs of order 2k+3.
Considering the two vertices of degree 2 in the graph Gk+ℓ for positive integers k and ℓ with
ℓ ≤ k, it follows easily that the encircled k+ℓ vertices form a minimum k-component dominating
set of Gk+ℓ.

Lemma 6 If k is a positive integer and n ∈ [2k + 1, 4k + 3], then γk(n) = ⌊ kn
2k+1

⌋.

Proof: By definition and Lemmas 4 and 5, we have

k =

⌊

k(2k + 1)

2k + 1

⌋

≤ γk(2k + 1) ≤ γk(2k + 2) ≤ γk(2k + 3) =

⌊

k(2k + 3)

2k + 1

⌋

= k,

which implies the statement for 2k + 1 ≤ n ≤ 2k + 3.

Now, let n ∈ [2k+4, 4k+3]. If n is odd, say n = 2(k+ℓ)+3 for some positive integer ℓ with

ℓ ≤ k, then the graph Gk+ℓ illustrated in Figure 2 easily implies γk(n) ≥ γk(Gk+ℓ) = k + ℓ. If

n is even, say n = 2(k+ ℓ)+ 2 for some positive integer ℓ with ℓ ≤ k, then the graph G′
k+ℓ that

arises from Gk+ℓ by removing one vertex of degree 2 easily implies γk(n) ≥ γk(G
′
k+ℓ) = k + ℓ.

Since

k + ℓ ≤
k(2(k + ℓ) + 2)

2k + 1
<

k(2(k + ℓ) + 3)

2k + 1
< k + ℓ+ 1

for ℓ ∈ [k], this implies γk(n) ≥ ⌊ kn
2k+1

⌋.

For ℓ ∈ [k], Lemmas 4 and 5 imply

γk(2(k + ℓ) + 2) ≤ γk(2(k + ℓ) + 3) ≤ γk+ℓ(2(k + ℓ) + 3) = k + ℓ,

which implies γk(n) ≤ ⌊ kn
2k+1

⌋, and completes the proof. ✷
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It is an immediate consequence of Lemmas 5 and 6 that for a positive integer k and a non-

negative integer ℓ with ℓ ≤ k, we have

γk(2(k + ℓ) + 2) = γk(2(k + ℓ) + 3) = k + ℓ. (1)

Lemma 7 Let k and n be positive integers, and let G be a maximal outerplanar graph of order

n. Let u be a vertex of G, and let xy be a C(G)-edge.

(i) If n = 2k + 1, then G has a k-component dominating set D of order k that contains u.

(ii) If n = 2k + 2, then G has a k-component dominating set D of order k that intersects xy.

(iii) If n = 2k + 1, and x and y both have degree at least 3 in G, then G has a k-component

dominating set D of order k that contains x and y.

(iv) If n = 2k + 2, and x has degree at least 3 in G, then G has a k-component dominating

set D of order k that contains x.

Proof: Since the statements are trivial for k = 1, we consider k ≥ 2.

(i) Since 2k+1 = 2(k− 1)+3, Lemma 5 implies that G has (k− 1)-component dominating set

D′ of order k − 1. If u 6∈ D′, then let D = D′ ∪ {u}. If u ∈ D′, then let D = D′ ∪ {v} where

v ∈ V (G) \D′. In both cases, D has the desired properties.

(ii) Let G′ arise from G by contracting the edge xy to a new vertex u∗. Since G′ has order

2k + 1 = 2(k − 1) + 3, Lemma 5 implies that G′ has (k − 1)-component dominating set D′ of

order k − 1. If u∗ ∈ D′, then let D = (D′ \ {u∗}) ∪ {x, y}. If u∗ 6∈ D′, then let D arise from D′

by adding one vertex from {x, y} that has a neighbor in D′. In both cases, D has the desired

properties.

(iii) Let z be a vertex of G such that xyz is a triangle in G. Let Gx be the subgraph of G

generated by the chord yz that does not contain x, and let Gy be the subgraph of G generated

by the chord xz that does not contain y. Let Gx and Gy have orders ℓx + 1 and ℓy + 1,

respectively. Note that n = ℓx + ℓy + 1, which implies that ℓx and ℓy have the same parity

modulo 2.

If ℓx and ℓy are both even, then (i) implies that Gx has a ℓx/2-component dominating set

Dx of order ℓx/2 that contains y, and Gy has a ℓy/2-component dominating set Dy of order ℓy/2

that contains x. Since k = n−1
2

= ℓx/2 + ℓy/2, possibly adding one vertex to the set Dx ∪ Dy

yields a set with the desired properties.

If ℓx and ℓy are both odd, then (ii) implies that Gx has a (ℓx − 1)/2-component dominating

set Dx of order (ℓx − 1)/2 that intersects yz, and Gy has a (ℓy − 1)/2-component dominating

set Dy of order (ℓy − 1)/2 that intersects xz. The set D = Dx ∪ Dy ∪ {x, y} is a dominating

set of G such that G[D] is connected and |D| ≤ |Dx| + |Dy| + 1 = k. Possibly adding further

vertices to D yields a set with the desired properties.

(iv) If y has degree 2 in G, then G′ = G − y is a maximal outerplanar graph of order 2k + 1.

By (i), G′ has a k-component dominating set D′ of order k that contains x. Clearly, D′ is also

5



a k-component dominating set of G. Hence, we may assume that y has degree at least 3 in G.

Let z, Gx, Gy, ℓx, and ℓy be as in (iii). Since n is even, ℓx and ℓy have different parities modulo

2.

If ℓx is odd and ℓy is even, then (i) implies that Gy has a ℓy/2-component dominating set Dy

of order ℓy/2 that contains x, and (ii) implies that Gx has a (ℓx − 1)/2-component dominating

set Dx of order (ℓx − 1)/2 that intersects yz. Since (ℓx + ℓy − 1)/2 = (n − 2)/2 = k, possibly

adding one further vertex to Dx ∪Dy yields a set D with the desired properties.

If ℓx is even and ℓy is odd, then (ii) implies that Gy has a (ℓy − 1)/2-component dominating

set Dy of order (ℓy − 1)/2 that intersects xz, and (i) implies that Gx has a ℓx/2-component

dominating set Dx of order ℓx/2 that contains z. If x ∈ Dy, then possibly adding one vertex

to Dx ∪ Dy yields a set D with the desired properties. If x 6∈ Dy, then z ∈ Dx ∩ Dy, and

D = Dx ∪Dy ∪ {x} has the desired properties. ✷

For an even integer ℓ at least 4, let Gℓ be the set of all pairs (G, xy), where

• G is a maximal outerplanar graph of order ℓ+ 1,

• xy is a C(G)-edge such that {dG(x), dG(y)} = {2, 3}, and

• if NC(G)(x) = {x′, y} and NC(G)(y) = {y′, x}, then the maximal outerplanar graph G− =

G − {x, y} does not have a (ℓ/2 − 2)-component dominating set of order ℓ/2 − 2 that

intersects x′y′.

See Figure 3 for an illustration. In fact, generalizing the first two graphs in this figure in the

obvious way implies that Gℓ is non-empty for every even ℓ at least 4.

✉

✉

✉

✉

✉

❆
❆
❆✁

✁
✁

x y

y′x′

✉

✉

✉

✉

✉

✉

✉

❆
❆
❆✁

✁
✁

x y

y′x′

✉

✉

✉

✉

✉

✉

✉

❆
❆
❆✁

✁
✁

x y

y′x′ ❈
❈
❈
❈
❈
❈✄
✄
✄
✄
✄
✄

Figure 3: All graphs G for which (G, xy) belongs to G4 and G6. From each pair of crossing
dashed edges exactly one edge belongs to G.

For positive integers k and p with p ≤ k − 1, let Hp
k be the set of all graphs G such that there

are

• 2p+ 1 even integers ℓ1, . . . , ℓ2p+1 with 4 ≤ ℓi ≤ 2k for i ∈ [2p+ 1] and

ℓ1 + · · ·+ ℓ2p+1 ≥ 4kp+ 2p+ 2,

as well as

6



• 2p+ 1 pairs

(G1, x1y1), . . . , (G2p+1, x2p+1y2p+1)

with (Gi, xiyi) ∈ Gℓi for i ∈ [2p+ 1] such that

G arises from the disjoint union of G1, . . . , G2p+1 by

• identifying the two vertices yi and xi+1 for every i ∈ [2p+ 1], where indices are identified

modulo 2p+ 1, and

• triangulating the cycle C0(G) : x1x2 . . . x2p+1x1.

The graphs in Hp
k have a natural embedding illustrated in Figure 4. In what follows, we always

assume the graphs in Hp
k to be embedded in this way.

✉ ✉

✉ ✉

✉

❈
❈
❈
❈
❈ ✄

✄
✄
✄
✄

G1

G2

G3

G4

G5

x2 = y1

x1

x3x4

x5 = y4

Figure 4: The embedding of a graph G in H2
k. The dashed edges indicate a triangulation of

the cycle C0(G) : x1x2x3x5x1.

Let

Hk =
k−1
⋃

p=1

Hp
k.

Since for k = 1, there is no positive integer p with p ≤ k−1, the set H1 is empty. By definition,

H2 = H1
2. In view of the unique element of G4 illustrated in Figure 3, the two graphs in Figure

1 form the only elements of H2.

Lemma 8 Let k and p be positive integers with p ≤ k − 1. Let G be a graph in Hp
k, and let ℓi

and (Gi, xiyi) for i ∈ [2p+ 1] be as above.

(i) G has even order n at least 4kp+ 2p+ 2 and at most 2k(2p+ 1).

(ii) ℓi + ℓi+1 ≥ 2k + 2p+ 2 for every i ∈ [2p+ 1].

(iii) γk(G) = n/2− p =
⌈

kn
2k+1

⌉

.

(iv) For every vertex u in V (G) \ V (C0(G)), the graph G has a dominating set D of order at

most n/2− (p+ 1) such that

7



• D has a partition into two disjoint sets D1 and D2,

• G[D1] is a connected graph of order at least min{ℓi:i∈[2p+1]}
2

− 1 that contains u,

• every component of G[D2] has order at least k, and

• D contains no neighbor of u on C0(G).

Proof: (i) The lower bound on n and its parity modulo 2 are part of the definition of Hp
k. Since

each ℓi is at most 2k, the upper bound follows immediately.

(ii) If there is some index i ∈ [2p + 1] with ℓi + ℓi+1 < 2k + 2k + 2, then, since, each of the

remaining 2p−1 values ℓj is at most 2k, we obtain n < 2k+2p+2+(2p−1)2k = 4kp+2p+2,

which contradicts (i).

(iii) Note that n/2 − p =
⌈

kn
2k+1

⌉

is equivalent to 0 =
⌈

1
2k+1

(

(2k + 1)p− n/2
)⌉

, which is

equivalent to −2k ≤ (2k + 1)p − n/2 ≤ 0. Therefore, the equality n/2 − p =
⌈

kn
2k+1

⌉

follows

easily from (i).

By Lemma 7(i), for every i ∈ [2p + 1], the graph Gi has a ℓi/2-component dominating set

Dx
i of order ℓi/2 that contains xi as well as a ℓi/2-component dominating set Dy

i of order ℓi/2

that contains yi = xi+1. By (ii), the set

Dy
1 ∪Dx

2 ∪Dy
3 ∪Dx

4 ∪ · · · ∪Dy
2p−1 ∪Dx

2p ∪Dy
2p+1

is a k-component dominating set of G of order at most n/2−p, which implies γk(G) ≤ n/2−p.

It remains to show γk(G) ≥ n/2 − p. Therefore, let D be a k-component dominating set

of minimum order of G such that |D ∩ V (C0(G))| is as large as possible. For i ∈ [2p + 1], let

Di = D ∩ (V (Gi) \ {xi, yi}), NC(Gi)(xi) = {x′
i, yi}, and NC(Gi)(yi) = {xi, y

′
i}.

If there is some i ∈ [2p + 1] such that |Di| ≤ ℓi/2 − 2 < k, then, since D is a k-component

dominating set of G, the set Di intersects x′
iy

′
i. This implies that Di is a subset of some

(ℓi/2− 2)-component dominating set of the graph G−
i = Gi − {xi, yi} that is of order ℓi/2− 2

and intersects x′
iy

′
i, which implies the contradiction (Gi, xiyi) 6∈ Gℓi. Hence |Di| ≥ ℓi/2 − 1 for

every i ∈ [2p+ 1].

If there is some i ∈ [2p + 1] such that xi, xi+1 6∈ D, then, since D is a k-component

dominating set of G, the set Di has at least k ≥ ℓi/2 elements. By Lemma 7 (i), the graph Gi

has a k-component dominating set D′
i of order k that contains xi. Now, D

′ = (D \Di)∪D′
i is a

k-component dominating set of G such that |D′| ≤ |D| and |D′∩V (C0(G))| > |D∩V (C0(G))|,

which contradicts the choice of D. Hence, for every i ∈ [2p + 1], we have |D ∩ {xi, xi+1}| ≥ 1,

which implies |D ∩ V (C0(G))| ≥ p+ 1.

Altogether, we obtain

|D| ≥

2p+1
∑

i=1

(ℓi/2− 1) + (p + 1) = n/2− (2p+ 1) + (p+ 1) = n/2− p,

which completes the proof of (iii).
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(iv) By symmetry, we may assume that u ∈ V (G2p+1). The graphG−
2p+1 = G2p+1−{x2p+1, y2p+1}

has order ℓ2p+1−1. By Lemma 7 (i), G−
2p+1 has a (ℓ2p+1/2−1)-component dominating set D−

2p+1

of order ℓ2p+1/2 − 1 that contains u. Let Dx
i and Dy

i be as in (iii). Let D = D1 ∪ D2, where

D1 = D−
2p+1 and D2 = Dy

1 ∪Dx
2 ∪Dy

3 ∪Dx
4 ∪ · · ·∪Dy

2p−1∪Dx
2p. Clearly, D is a dominating set of

G of order at most n/2− (p+ 1), D1 and D2 are disjoint, G[D1] is a connected graph of order

ℓ2p+1/2− 1 that contains u, and every component of G[D2] has order at least k. If D contains

a neighbor, say v, of u on C0(G), then v ∈ D2, and it follows that the component of G[D]

that contains u has order at least k, which implies the contradiction that D is a k-component

dominating set of order less than n/2− p. Hence, D has the desired properties. ✷

If G, u, and D are as in Lemma 8(iv), then D is a semi-k-component dominating set of G with

u in the small component.

Lemma 9 (Shermer [8]) Let s and n be positive integers with s ≥ 2, and let G be a maximal

outerplanar graph of order n. If n ≥ 2s, then G has a chord xy such that one of the subgraphs

of G generated by xy has m C(G)-edges where s ≤ m ≤ 2s− 2.

For a proof of Lemma 9, the reader may refer to [1, 8].

Lemma 10 Let k and ℓ be positive integers with 2 ≤ ℓ ≤ k. If G is a maximal outerplanar

graph of order n = 4k + 2ℓ that does not belong to Hk, then γk(G) ≤ 2k + ℓ− 2 =
⌊

kn
2k+1

⌋

.

Proof: Note that 2k + ℓ − 2 =
⌊

kn
2k+1

⌋

is equivalent to 0 =
⌊

2k−ℓ+2
2k+1

⌋

, which is equivalent to

0 ≤ 2k− ℓ+2 ≤ 2k. Therefore, the equality 2k+ ℓ−2 =
⌊

kn
2k+1

⌋

follows easily from n = 4k+2ℓ

and 2 ≤ ℓ ≤ k.

It remains to show γk(G) ≤ 2k + ℓ − 2. For a contradiction, suppose that G is a graph of

order 4k+2ℓ that does not belong to Hk and satisfies γk(G) > 2k+ ℓ− 2. Since n ≥ 2(2k+2),

Lemma 9 implies that G has a chord xy such that one of the subgraphs of G generated by xy,

say Gxy, has m C(G)-edges where 2k + 2 ≤ m ≤ 4k + 2. We assume that xy is chosen such

that m is smallest possible subject to these conditions. Let Gz be the subgraph of G generated

by xy that is distinct from Gxy.

If m = 2k + 2, then Gxy has order 2k + 3, and Gz has odd order n− (2k + 1). By Lemma

5, Lemma 8(i), and the choice of G, the graph Gxy has a k-component dominating set of order

k, and Gz has a k-component dominating set of order at most
⌊

k(n−(2k+1))
2k+1

⌋

= k + ℓ− 2 whose

union is a k-component dominating set of G of order at most 2k+ℓ−2, which is a contradiction.

Hence, m > 2k + 2.

Let z be the vertex of Gxy such that xyz is a triangle of G. Let Gx be the subgraph of G

generated by yz that does not contain x, and let Gy be the subgraph of G generated by xz that

does not contain y. Let Gx and Gy have orders ℓx + 1 and ℓy + 1, respectively. Let Gz have

order ℓz + 1. Note that m = ℓx + ℓy and n = ℓx + ℓy + ℓz. The choice of xy and m > 2k + 2

imply ℓx, ℓy ≥ 2.

We consider different cases.
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Case 1 ℓx and ℓy are both odd.

By Lemma 7(ii), Gx has a (ℓx − 1)/2-component dominating set Dx of order (ℓx − 1)/2 that

intersects yz, and Gy has a (ℓy − 1)/2-component dominating set Dy of order (ℓy − 1)/2 that

intersects xz. Note that G[Dx ∪Dy] is a connected graph of order at least (ℓx − 1)/2 + (ℓy −

1)/2− 1 = m/2− 2 ≥ k. Since m is even, the order of Gz is odd.

Suppose thatDx andDy both contain z, which implies |Dx∪Dy| = m/2−2. By Lemma 7(i),

Gz has a ℓz/2-component dominating set Dz of order ℓz/2 that contains x, and Dx ∪Dy ∪Dz

is a k-component dominating set of G of order at most m/2− 2+ ℓz/2 = n/2− 2 = 2k+ ℓ− 2,

which is a contradiction. Hence, Dx and Dy do not both contain z. By symmetry, we may

assume that Dy contains x. Again, by Lemma 7(i), Gz has a ℓz/2-component dominating set

Dz of order ℓz/2 that contains x, and Dx ∪Dy ∪Dz is a k-component dominating set of G of

order at most m/2− 1 + ℓz/2− 1 = 2k + ℓ− 2, which is a contradiction.

Case 2 ℓx is odd and ℓy is even.

By Lemma 7(ii), Gx has a (ℓx − 1)/2-component dominating set Dx of order (ℓx − 1)/2 that

intersects yz. Suppose that Dx contains z. By Lemma 7(i), Gy has a ℓy/2-component dom-

inating set Dy of order ℓy/2 that contains z. Note that G[Dx ∪ Dy] is a connected graph

of order (ℓx − 1)/2 + ℓy/2 − 1 = (m − 3)/2 ≥ k. Since m is odd, the order of Gz is even.

By Lemma 7(ii), Gz has a (ℓz − 1)/2-component dominating set Dz of order (ℓz − 1)/2 that

intersects xy, and Dx ∪ Dy ∪ Dz is a k-component dominating set of G of order at most

(m − 3)/2 + (ℓz − 1)/2 = n/2 − 2 = 2k + ℓ− 2, which is a contradiction. Hence, Dx contains

y but not z. By Lemma 7(i), Gy has a ℓy/2-component dominating set Dy of order ℓy/2 that

contains x. Since Dz contains x or y, the set Dx ∪Dy ∪Dz is a k-component dominating set of

G of order at most (m− 1)/2 + (ℓz − 1)/2− 1 = 2k + ℓ− 2, which is a contradiction.

Case 3 ℓx and ℓy are both even.

By Lemma 7(i), Gx has a ℓx/2-component dominating set Dx of order ℓx/2 that contains z,

and Gy has a ℓy/2-component dominating set Dy of order ℓy/2 that contains z. Note that

G[Dx ∪Dy] is a connected graph of order ℓx/2 + ℓy/2− 1 = m/2− 1 > k. Since m is even, the

order of Gz is odd. By the choice of xy, we have ℓx ≤ 2k and ℓy ≤ 2k, which implies ℓy ≥ 4 and

ℓx ≥ 4. If m = 4k+ 2, then the choice of xy implies ℓx = ℓy = 2k+1, which is a contradiction.

Hence m ≤ 4k, which implies that ℓz ≥ 4.

Let NC0(Gx)(y) = {y′, z} and NC0(Gx)(z) = {y, z′}.

Suppose that y and z both have degree at least 3 in Gx. By Lemma 7(iii), Gx has a ℓx/2-

component dominating set Dx of order ℓx/2 that contains y and z. By Lemma 7(i), Gy has a

ℓy/2-component dominating set Dy of order ℓy/2 that contains z, and Gz has a ℓz/2-component

dominating set Dz of order ℓz/2 that contains y. Since ℓx/2+ ℓy/2+ ℓz/2− 2 = 2k+ ℓ− 2, the

set Dx ∪Dy ∪Dz is a k-component dominating set of G of order at most 2k+ ℓ− 2, which is a

contradiction. Hence, by symmetry, we may assume that y has degree 2 in Gx, which implies

that z is adjacent to y′.
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Suppose that z has degree at least 4 in Gx. By Lemma 7(iv), Gx − y has a (ℓx/2 − 1)-

component dominating set D′
x of order ℓx/2−1 that contains z. Choosing Dy and Dz as above,

we obtain that Dx∪Dy ∪Dz is a k-component dominating set of G of order at most 2k+ ℓ−2,

which is a contradiction. Hence, we may assume that z has degree 3 in Gx.

By symmetry, we obtain that {dGx
(y), dGx

(z)} = {dGy
(x), dGy

(z)} = {2, 3}. Furthermore,

since our argument did not use the fact that ℓx ≤ 2k, we also obtain, by symmetry, that

{dGz
(x), dGz

(y)} = {2, 3}.

Suppose that ℓz ≥ 2k + 2. By Lemma 7(i), Gx has a ℓx/2-component dominating set Dx

of order ℓx/2 that contains z, Gy has a ℓy/2-component dominating set Dy of order ℓy/2 that

contains z, and G−
z = Gz − {x, y} has a (ℓz/2 − 1)-component dominating set D−

z of order

ℓz/2 − 1 ≥ k. Now, Dx ∪Dy ∪D−
z is a k-component dominating set of G of order 2k + ℓ− 2,

which is a contradiction. Hence, ℓz ≤ 2k.

Suppose that (Gx, yz) does not lie in Gℓx . Since the order of Gx is ℓx + 1, the definition of

Gℓx implies the existence of a (ℓx/2 − 2)-component dominating set D−
x of G−

x = Gx − {y, z}

that intersects y′z′. By Lemma 7(i), Gy has a ℓy/2-component dominating set Dy of order ℓy/2

that contains z, and Gz has a ℓz/2-component dominating set Dz of order ℓz/2 that contains y.

Now, D−
x ∪Dy ∪Dz is a k-component dominating set of G of order at most 2k + ℓ− 2, which

is a contradiction.

By symmetry, we obtain that (Gx, yz) ∈ Gℓx , (Gy, xz) ∈ Gℓy , and (Gz, xy) ∈ Gℓz , which

implies the contradiction G ∈ H1
k ⊆ Hk. ✷

We proceed to the proof of our main result.

Proof of Theorem 3: Suppose for a contradiction, that G is a counterexample of minimum order

n. Lemma 6 implies n ≥ 4k + 4. Lemma 8 implies G 6∈ Hk and γk(G) >
⌊

kn
2k+1

⌋

.

Claim 1 n mod (2k + 1) = 2ℓ for some ℓ ∈ [k − 1].

Proof of Claim 1: Suppose for a contradiction that n mod (2k + 1) 6∈ {2ℓ : ℓ ∈ [k − 1]}.

Clearly, G contains no two adjacent vertices of degree 2. If G does not contain either two

vertices u and v of degree 2 at distance 2 or two adjacent vertices u and v such that u has

degree 2 and v has degree 3, then removing form G all vertices of degree 2 results in a maximal

outerplanar graph of minimum degree at least 3, which is a contradiction. Hence, let u and v

have the stated properties.

The graph G′ = G−{u, v} is a maximal outerplanar graph of order n− 2. In the first case,

let NG(u) = {x, y} and NG(v) = {x, z}. Note that xy and yz are edges of G′ that belong to

C(G′). In the second case, let NG(u) = {v, x} and NG(v) = {u, x, y}. Note that xy is an edge

of G′ that belongs to C(G′). See Figure 5 for an illustration.
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Figure 5: The two possibilities for u and v in the proof of the claim.

Suppose that G′ 6∈ Hk. By the choice of G, the graph G′ has a k-component dominating set D′

of order at most
⌊

k(n−2)
2k+1

⌋

, and D = D′ ∪ {x} is a k-component dominating set of G of order

at most
⌊

k(n−2)
2k+1

⌋

+ 1 =
⌊

kn+1
2k+1

⌋

. Since n 6≡ 2 mod (2k + 1), and k and 2k + 1 are coprime,

we have kn 6≡ 2k mod (2k + 1), which implies the contradiction |D| ≤
⌊

kn+1
2k+1

⌋

=
⌊

kn
2k+1

⌋

.

Hence, G′ ∈ Hp
k for some p ∈ [k − 1]. By Lemma 8(i), n = n′ + 2 is an even integer at least

4kp+2p+4 = 2p(2k+1)+4 and at most 2k(2p+1)+2 = 2p(2k+1)+2(k−p+1), which implies

n mod (2k + 1) ∈ {2ℓ : ℓ ∈ [2, k − p + 1]}. Our assumption implies n mod (2k + 1) = 2k,

which implies p = 1 and n = 2k(2p+ 1) + 2 = 6k + 2. If G′ arises as in the definition of H1
k by

suitably identifying vertices in three graphs from Gℓ1 , Gℓ2, and Gℓ3 , respectively, then ℓi ≤ 2k

and n′ = 6k imply ℓ1 = ℓ2 = ℓ3 = 2k.

If x 6∈ V (C0(G
′)), then Lemma 8(iv) implies that G′ has a semi-k-component dominating

set D′ of order
⌊

k(n−2)
2k+1

⌋

with x in the small component, which is of order k − 1. In this case,

let D = D′ ∪ {u}. If x ∈ V (C0(G
′)), then y 6∈ V (C0(G

′)), and Lemma 8(iv) implies that G′

has a semi-k-component dominating set D′ of order
⌊

k(n−2)
2k+1

⌋

with x 6∈ D′ and y in the small

component, which is of order k − 1. In this case, let D = D′ ∪ {x}. In both cases, D is a

k-component dominating set of G of order
⌊

kn+1
2k+1

⌋

=
⌊

kn
2k+1

⌋

, which is a contradiction. ✷

Suppose n ≤ 6k+4. Since n ≥ 4k+4, the claim implies n = 2(2k+1)+ 2ℓ = 4k+2(ℓ+1) for

some ℓ ∈ [k − 1]. By Lemma 10, γk(G) ≤
⌊

kn
2k+1

⌋

, which is a contradiction. Hence, n ≥ 6k + 5.

Since 6k + 5 ≥ 2(2k + 2), Lemma 7 implies the existence of a chord xy such that one of

the subgraphs of G generated by xy, say Gxy, has m C(G)-edges where 2k + 2 ≤ m ≤ 4k + 2.

We assume that xy is chosen such that m is smallest possible subject to these conditions. Let

Gz denote the subgraph of G generated by xy distinct from Gxy. Note that Gz has order

n−m+1 ≥ (6k+5)− (4k+2)+ 1 = 2k+4, that is, contracting one or two edges of Gz yields

a graph of order at least 2k + 2.

Suppose m = 2k + 2. If Gz 6∈ Hk, then Lemma 5 and the choice of G imply

γk(G) ≤ γk(Gxy) + γk(Gz) ≤ k +

⌊

k(n− (2k + 1))

2k + 1

⌋

=

⌊

kn

2k + 1

⌋

,

which is a contradiction. Hence, Gz ∈ Hk. Since xy is an edge of C0(Gz), we obtain that either

x or y does not belong to C0(Gz). By symmetry, we may assume that x does not belong to

C0(Gz). By Lemma 8(iv), Gz has a semi-k-component dominating set Dz of order
⌊

k(n−(2k+1))
2k+1

⌋

with x in the small component. By Lemma 7(i), Gxy has a (k + 1)-component dominating set

Dxy of order k + 1 that contains x. Now, Dxy ∪ Dz is a k-component dominating set of G of

order at most (k+1)+
⌊

k(n−(2k+1))
2k+1

⌋

−1 =
⌊

kn
2k+1

⌋

, which is a contradiction. Hence, m > 2k+2.
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Let z be the vertex of Gxy such that xyz is a triangle of G. Let Gx be the subgraph of G

generated by yz that does not contain x, and let Gy be the subgraph of G generated by xz

that does not contain y. Let Gx and Gy have orders ℓx +1 and ℓy +1, respectively. The choice

of xy and m > 2k + 2 imply ℓx, ℓy ≥ 2. Let Gz have order ℓz + 1. Note that m = ℓx + ℓy and

n = ℓx + ℓy + ℓz.

We consider different cases.

Case 1 ℓx and ℓy are both odd.

By Lemma 7(i), Gx has a (ℓx − 1)/2-component dominating set Dx of order (ℓx − 1)/2 that

intersects yz, and Gy has a (ℓy − 1)/2-component dominating set Dy of order (ℓy − 1)/2 that

intersects xz. Since m ≥ 2k+4, G[Dx∪Dy] is a connected graph of order at least m/2−2 ≥ k.

Case 1.1 z ∈ Dx ∩Dy.

Suppose Gz 6∈ Hk. We obtain that γk(G) is at most

|Dx ∪Dy|+ γk(Gz) ≤ m/2− 2 +

⌊

k(n−m+ 1)

2k + 1

⌋

=

⌊

kn

2k + 1
+

m/2− 3k − 2

2k + 1

⌋

≤

⌊

kn

2k + 1

⌋

,

where the last inequality is implied by m < 6k + 4, which is a contradiction. Hence, Gz ∈ Hk.

By symmetry, we may assume that x does not belong to C0(Gz). By Lemma 8(iv), Gz has

a semi-k-component dominating set Dz of order
⌊

k(n−m+1)
2k+1

⌋

with x in the small component.

Again, γk(G) ≤ m/2− 2 +
⌊

k(n−m+1)
2k+1

⌋

≤
⌊

kn
2k+1

⌋

, which is a contradiction.

Case 1.2 z 6∈ Dx ∩Dy.

By symmetry, we may assume that y ∈ Dx. Let G′
z arise from Gz by contracting the edge xy

to a new vertex u∗. Suppose G′
z 6∈ Hk. By the choice of G, the graph G′

z has a k-component

dominating set D′
z of order at most

⌊

k(n−m)
2k+1

⌋

. If u∗ 6∈ D′
z, then let D = Dx ∪ Dy ∪ D′

z. If

u∗ ∈ D′
z, then let D = Dx ∪ Dy ∪ (D′

z \ {u∗}) ∪ {x}. In both cases, D is a k-component

dominating set of G of order at most

m/2− 1 +

⌊

k(n−m)

2k + 1

⌋

=

⌊

kn

2k + 1
+

m/2− 2k − 1

2k + 1

⌋

≤

⌊

kn

2k + 1

⌋

,

where the last inequality is implied by m ≤ 4k + 2, which is a contradiction. Hence, G′
z ∈ Hk.

Suppose u∗ 6∈ C0(G
′
z). By Lemma 8(iv), G′

z has a semi-k-component dominating set D′
z of order

⌊

k(n−m)
2k+1

⌋

with u∗ in the small component. The set Dx∪Dy∪(D′
z \{u

∗})∪{x} is a k-component

dominating set of G of order at most m/2 − 1 +
⌊

k(n−m)
2k+1

⌋

≤
⌊

kn
2k+1

⌋

, which is a contradiction.

Hence, u∗ ∈ C0(G
′
z). If NC(Gz)(y) = {x, y′}, then y′ 6∈ C0(G

′
z). By Lemma 8(iv), G′

z has a

semi-k-component dominating set D′
z of order

⌊

k(n−m)
2k+1

⌋

with y′ in the small component such

that u∗ 6∈ D′
z. The set Dx ∪Dy ∪ D′

z is a k-component dominating set of G of order at most

m/2− 1 +
⌊

k(n−m)
2k+1

⌋

≤
⌊

kn
2k+1

⌋

, which is a contradiction.
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Case 2 ℓx is odd and ℓy is even.

Note that m is odd, which implies m ≤ 4k+1. By Lemma 7(ii), Gx has a (ℓx−1)/2-component

dominating set Dx of order (ℓx − 1)/2 that intersects yz.

Case 2.1 z ∈ Dx.

By Lemma 7(i), Gy has a ℓy/2-component dominating set Dy of order ℓy/2 that contains z.

Since m ≥ 2k + 3, we have |Dx ∪Dy| = m/2 − 3/2 ≥ k. Suppose Gz 6∈ Hk. By the choice of

G, the graph Gz has a k-component dominating set Dz of order at most
⌊

k(n−m+1)
2k+1

⌋

. Now, the

set Dx ∪Dy ∪Dz is a k-component dominating set of G of order at most

m/2− 3/2 +

⌊

k(n−m+ 1)

2k + 1

⌋

=

⌊

kn

2k + 1
+

m/2− 2k − 3/2

2k + 1

⌋

≤

⌊

kn

2k + 1

⌋

,

where the last inequality is implied by m < 4k + 3, which is a contradiction. Hence, Gz ∈ Hk.

By Lemma 8(iv), Gz has a semi-k-component dominating set Dz of order
⌊

k(n−m+1)
2k+1

⌋

with x or

y in the small component. Again, the set Dx ∪Dy ∪Dz is a k-component dominating set of G

of order at most m/2− 3/2 +
⌊

k(n−m+1)
2k+1

⌋

≤
⌊

kn
2k+1

⌋

, which is a contradiction.

Case 2.2 z 6∈ Dx.

We have y ∈ Dx. By Lemma 7(i), Gy has a ℓy/2-component dominating set Dy of order

ℓy/2 that contains x. Note that |Dx ∪ Dy| = m/2 − 1/2 > k. Let NC(Gz)(y) = {x, y′} and

NC(Gz)(x) = {x′, y}. Let G′′
z arise from Gz by contracting the two edges xy and yy′ to a new

vertex u∗. Suppose G′′
z 6∈ Hk. By the choice of G, the graph G′′

z has a k-component dominating

set D′′
z of order at most

⌊

k(n−m−1)
2k+1

⌋

. If u∗ ∈ D′′
z , then let D = Dx ∪Dy ∪ (D′′

z \ {u
∗}) ∪ {y′}. If

u∗ 6∈ D′′
z , then let D = Dx ∪Dy ∪D′′

z . The set D is a k-component dominating set o G of order

at most

m/2− 1/2 +

⌊

k(n−m− 1)

2k + 1

⌋

=

⌊

kn

2k + 1
+

m/2− 2k − 1/2

2k + 1

⌋

≤

⌊

kn

2k + 1

⌋

where the last inequality is implied by m ≤ 4k + 1, which is a contradiction. Hence, G′′
z ∈ Hk.

Suppose u∗ 6∈ C0(G
′′
z). By Lemma 8(iv), G′′

z has a semi-k-component dominating set D′′
z of order

⌊

k(n−m−1)
2k+1

⌋

with u∗ in the small component. The setDx∪Dy∪(D
′′
z \{u

∗})∪{y′} is a k-component

dominating set of G of order at most m/2−1/2+
⌊

k(n−m−1)
2k+1

⌋

≤
⌊

kn
2k+1

⌋

, which is a contradiction.

Hence, u∗ ∈ C0(G
′
z). By Lemma 8(iv), G′′

z has a semi-k-component dominating set D′′
z of order

⌊

k(n−m−1)
2k+1

⌋

with x′ in the small component such that u∗ 6∈ D′′
z . The set Dx ∪ Dy ∪ D′′

z is a

k-component dominating set of G of order at most m/2− 1/2+
⌊

k(n−m−1)
2k+1

⌋

≤
⌊

kn
2k+1

⌋

, which is

a contradiction.

Case 3 ℓx and ℓy are both even.

We have m ≥ 2k + 4. By the choice of xy, this implies 4 ≤ ℓx, ℓy ≤ 2k, and, hence, m ≤ 4k.

Let G′
z arise from Gz by contracting the edge xy to a new vertex u∗.
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Suppose G′
z 6∈ Hk. By the choice of G, the graph G′

z has a k-component dominating set D′
z

of order at most
⌊

k(n−m)
2k+1

⌋

. If u∗ ∈ D′
z, then Lemma 7(i) implies that Gx has a ℓx/2-component

dominating set Dx of order ℓx/2 that contains y, and Gy has a ℓy/2-component dominating set

Dy of order ℓy/2 that contains x. In this case, let D = Dx ∪ Dy ∪ (D′
z \ {u∗}). If u∗ 6∈ D′

z,

then Lemma 7(i) implies that Gx has a ℓx/2-component dominating set Dx of order ℓx/2 that

contains z, and Gy has a ℓy/2-component dominating set Dy of order ℓy/2 that contains z. In

this case, let D = Dx∪Dy∪D′
z . In both cases D is a k-component dominating set of G of order

at most m/2−1+
⌊

k(n−m)
2k+1

⌋

≤
⌊

kn
2k+1

⌋

(cf. the calculation in Case 1.2), which is a contradiction.

Hence, G′
z ∈ Hk.

Suppose u∗ 6∈ C0(G
′
z). By Lemma 7(i), Gx has a ℓx/2-component dominating set Dx of

order ℓx/2 that contains y, and Gy has a ℓy/2-component dominating set Dy of order ℓy/2 that

contains x. Note that k < m/2 − 1 ≤ |Dx ∪ Dy| ≤ m/2. By Lemma 8(iv), G′
z has a semi-

k-component dominating set D′
z of order

⌊

k(n−m)
2k+1

⌋

with u∗ in the small component. The set

Dx∪Dy∪(D
′
z\{u

∗}) is a k-component dominating set of G of order at mostm/2−1+
⌊

k(n−m)
2k+1

⌋

≤
⌊

kn
2k+1

⌋

, which is a contradiction. Hence, u∗ ∈ C0(G
′
z).

Let C0(G
′
z) have order 2p+ 1 for some p ∈ [k − 1]. For i ∈ [2p+ 1], let ℓi with 4 ≤ ℓi ≤ 2k

and (Gi, xiyi) ∈ Gℓi be as in the definition of Hp
k such that G′

z arises by suitably identifying

vertices in the graphs G1, . . . , G2p+1, that is, C0(G
′
z) is the cycle x1x2 . . . x2p+1x1. Let u

∗ = x1,

that is, xzyx2 . . . x2p+1x is a cycle in G. For i ∈ [2p + 1], let Dx
i and Dy

i be as in the proof of

Lemma 8(iii).

By Lemma 7(i), Gx has a ℓx/2-component dominating set Dx of order ℓx/2 that contains z,

and Gy has a ℓy/2-component dominating set Dy of order ℓy/2 that contains z. Now, the set

Dx ∪Dy ∪Dy
1 ∪Dx

2 ∪Dy
3 ∪Dx

4 ∪ · · · ∪Dy
2p−1 ∪Dx

2p ∪Dy
2p+1

is a k-component dominating set of G of order at most n/2− (p + 1). By the choice of G, we

obtain ⌊ kn
2k+1

⌋ < γk(G) ≤ n/2− (p+ 1), which implies n ≥ 4k(p+ 1) + 2(p+ 1) + 2.

Suppose that p = k − 1. We obtain n ≥ 4k(p + 1) + 2(p + 1) + 2 = 4k2 + 2k + 2 as well

as n ≤ n(G′
z) +m ≤ (2k − 1)2k +m ≤ 4k2 + 2k, which is a contradiction. Hence, p ≤ k − 2,

which implies k ≥ 3.

Suppose that dGy
(x), dGy

(z) ≥ 3. By Lemma 7(iii), Gy has a ℓy/2-component dominating

set Dy of order ℓy/2 that contains x and z. Choosing Dx as above, the set

Dx ∪Dy ∪Dy
1 ∪Dx

2 ∪Dy
3 ∪Dx

4 ∪ · · · ∪Dy
2p−1 ∪Dx

2p ∪Dy
2p+1

is a k-component dominating set of G of order at most n/2− (p+2). Since n ≤ (2p+1)2k+2k,

we obtain γk(G) ≤ n/2 − (p + 2) ≤
⌊

kn
2k+1

⌋

, which is a contradiction. Hence, one of the two

degrees dGy
(x) and dGy

(z) is 2.

Suppose that dGy
(x) = 2 and dGy

(z) ≥ 4. By Lemma 7(iv), Gy − x has a (ℓy/2 − 1)-

component dominating set Dy of order ℓy/2 − 1 that contains z. Choosing Dx as above, the
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set

Dx ∪Dy ∪Dy
1 ∪Dx

2 ∪Dy
3 ∪Dx

4 ∪ · · · ∪Dy
2p−1 ∪Dx

2p ∪Dy
2p+1

is a k-component dominating set of G of order at most n/2 − (p + 2) ≤
⌊

kn
2k+1

⌋

, which is

a contradiction. Hence, if dGy
(x) = 2, then dGy

(z) = 3. By a symmetric argument, we

obtain that if dGy
(z) = 2, then dGy

(x) = 3, that is, {dGy
(x), dGy

(z)} = {2, 3}. By symmetry,

{dGx
(y), dGx

(z)} = {2, 3}.

Let NC(Gy)(x) = {x′, z} and NC(Gy)(z) = {x, z′}.

Suppose that (Gy, xz) does not belong to Gℓy . By the definition of Gℓy , this implies that the

graph G−
y = Gy − {x, z} has a (ℓy/2− 2)-component dominating set D−

y of order ℓy/2− 2 that

intersects x′z′. Let Dx be as above. Now, the set

Dx ∪D−
y ∪Dy

1 ∪Dx
2 ∪Dy

3 ∪Dx
4 ∪ · · · ∪Dy

2p−1 ∪Dx
2p ∪Dy

2p+1

contains x ∈ Dy
2p+1 and z ∈ Dx, which implies that it is a k-component dominating set of G

of order at most n/2 − (p + 2) ≤
⌊

kn
2k+1

⌋

, which is a contradiction. Hence, (Gy, xz) ∈ Gℓy ,

and, by symmetry, (Gx, yz) ∈ Gℓx . Altogether, this implies that G ∈ Hp+1
k , which is the final

contradiction and completes the proof. ✷

Let k and n be positive integers with n ≥ 2k + 1. Lemma 6 and Lemma 8(iii) imply that

γk(n) =

{

⌊ kn
2k+1

⌋, if n ∈ [2k + 1, 4k + 3], and

⌈ kn
2k+1

⌉, if n is an even number in [4k + 4, 4k2 − 2k].

Figure 6 illustrates how to construct maximal outerplanar graphs G of arbitrary order n with

n mod (2k + 1) = 0 that satisfy γk(G) = ⌊ kn
2k+1

⌋.
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Figure 6: Graphs of order s · (2k + 1) for k = 5 and s ∈ {1, 2, 5}. Considering the vertices of
degree 2, it follows easily that the encircled vertices form minimum k-component dominating
sets.

If n ∈ {s · (2k + 1) + (2t− 1), s · (2k + 1) + 2t} for positive integers s and t with t ∈ [k], then

16



⌊ kn
2k+1

⌋ = sk + t − 1. The graphs in Figure 7 illustrate how to construct extremal maximal

outerplanar graphs of these orders.
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Figure 7: On the left, a graph G of order n = s · (2k+1)+ (2t− 1) for k = 5, s = 2, and t = 4.
On the right, a graph G of order n = s′ · (2k′ + 1) + 2t′ for k′ = 4, s′ = 2, and t′ = 2. Again,
the encircled vertices form minimum k-component dominating sets.

Altogether, it follows that

γk(n) =

{

⌈ kn
2k+1

⌉, if n is an even number in [4k + 4, 4k2 − 2k] and

⌊ kn
2k+1

⌋, otherwise.

We introduced the parameter γk with the intention to obtain a common generalization of

two separate results; one concerning the domination number and one concerning the total

domination number. It seems interesting to unify/generalize further pairs of results about

these parameters in this way.
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