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ABSTRACT. Motivated by an old conjecture of P. Erdés and V. Neumann-Lara, our aim
is to investigate digraphs with uncountable dichromatic number and orientations of undi-
rected graphs with uncountable chromatic number. A graph has uncountable chromatic
number if its vertices cannot be covered by countably many independent sets, and a
digraph has uncountable dichromatic number if its vertices cannot be covered by count-
ably many acyclic sets. We prove that consistently there are digraphs with uncountable
dichromatic number and arbitrarily large digirth; this is in surprising contrast with the
undirected case: any graph with uncountable chromatic number contains a 4-cycle. Next,
we prove that several well known graphs (uncountable complete graphs, certain compara-
bility graphs, and shift graphs) admit orientations with uncountable dichromatic number
in ZFC. However, we show that the statement “every graph G of size and chromatic num-
ber w; has an orientation D with uncountable dichromatic number” is independent of
ZFC.

1. INTRODUCTION

The chromatic number of an undirected graph G, denoted by x(G), is the minimal number
of independent sets needed to cover the vertex set of G. A beautiful branch of graph theory
deals with the problem of understanding the consequences of having large (finite or infinite)
chromatic number. In particular, what subgraphs H must appear in graphs G with large,
say uncountable chromatic number? Is it true that cycles, paths or certain highly connected
sets must embed into every graph with large enough chromatic number? There are numerous
deep results regarding these questions; the investigations started in the 1960s with a seminal
paper of P. Erdés and A. Hajnal [§] and later on, significant contributions were made by P.
Komjath, S. Shelah, C. Thomassen, S. Todorcevic and several other people. In particular,
it is now well understood exactly what cycles and finite graphs must embed into a graph
G with x(G) > w. We shall review some of these results in later sections but the surveys
[15, [16] offer great overview of this topic.

In the case of directed graphs, acyclic sets play the role of independent sets: the dichro-
matic number of a directed graph D, denoted again by x(D), is defined to be the minimal
number of acyclic vertex sets needed to cover the vertices of D [22]. The notion of the dichro-
matic number of digraphs is certainly well investigated (see [3| 12, 13} [19] 28] for various
directions in research). Now, our paper is motivated by two fundamental questions: first,
we aim to understand which classical results on chromatic number and obligatory subgraphs
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extend to the directed case. Second, we hope to shed more light on an old conjecture of
Erdds and V. Neumann-Lara [4] 21]:

Conjecture 1.1. There is a function f : N — N so that x(G) = f(k) implies that x(D) = k
for some orientation D of G.

Note that any graph G with x(G) > 3 must contain a cycle and hence there is an
orientation D of G with a directed cycle i.e. x(D) = 2. In turn f(2) = 3 but no other value
of the function f is currently known. Our aim will be to understand the possible values of
X(D) where D is an orientation of a graph G with x(G) > w. In [], a related invariant is
introduced and further investigated in [5]: let

X (G) = sup{x(D) : D is an orientation of G}.

That is, ¥ (G) = k means that there is an orientation of G so that whenever we colour
the vertices of G with < k colours then we can find a monochromatic directed cycle. As
Erdés noted in [4], it is surprisingly hard to determine X (G) for rather simple graphs G;
we certainly can’t refute this in the case of uncountable graphs either.

Before we summarize the results of our paper, let us introduce some notation: throughout
the paper, G will denote an undirected graph and D a digraph. An orientation D of an
undirected graph G is a digraph D with the same set of vertices as G and for every undirected
edge ab in G either ab or ba (but not both) is an arc of D. We will use the well known arrow
notation:

D — (Dy);
means that for every r-colouring of the vertices of D one can find a monochromatic copy of
Dy. The negation is denoted by D — (Dy)}.
We let
a =% (D))
mean that there is an orientation D of G such that D — (Dg)}!.
We will write
G == (Do)
to denote the fact that there is an orientation D of G such that Dy is a subgraph of D[W]
whenever x(G[W]) = x(G).

We start in Section [2 by proving an important lemma on amalgamating digraphs with
large digirth; this will later be applied in multiple arguments. Next, in Section B we
investigate what are those directed graphs that embed into any digraph D with x(D) > w.
The two main results of this section are Theorem and Bt we prove that consistently

e for each k < w there is a digraph D with x(D) > w so that D has no directed cycles
of length < k;
e there is a digraph D with x(D) > w so that D —» (ﬁk)}C for all k < w.
This is in surprising contrast with the undirected case: x(G) > w implies that G — (Cax)}
for all £ < w. We remark that a standard compactness argument combined with Theorem
shows the existence of finite digraphs D with arbitrary large digirth and dichromatic
number, a result of D. Bokal et al [2].

Next, in Section 4] we construct various orientations of graphs G with uncountable chro-
matic number. First, we look at specific graphs: the complete graph on k vertices, com-
parability graphs of Suslin trees and certain non-special trees and shift graphs. We show
that these undirected graphs all admit orientations with large dichromatic number (in ZFC).
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Now, we can see that any obligatory subgraph for digraphs D with uncountable dichromatic
number must be bipartite and consistently acyclic.

Second, we show in Theorem 9] that x(G) = w; is equivalent to ¥ (G) = wy under $t
for any G of size wy. Actually, we prove the much stronger relation

G == (D)
where D is any orientation of the half graph H,,, .

Finally, in Section Bl we show that consistently there is a graph G with x(G) = |G| =
w1 but ¥(G) < w; that is, x(D) < w for any orientation D of G. In particular, this
provides some information on the Erdés-Neumann-Lara conjecture for uncountable graphs:
the statement “x(G) = w; implies ¥ (G) = wy for G of size wy” is independent of ZFC.

We end our paper with a healthy list of open problems which in our opinion worth the
attention of the interested reader.

Acknowledgements. Several arguments in the present paper were motivated by ideas
from [11I]. We thank the anonymous referees for their careful reading and many advice which
significantly improved the presentation of the paper.

The author was supported in part by PIMS and the FWF Grant 11921.

2. PRELIMINARIES

In our paper, G always denotes an undirected graph i.e. a pair (V, E) so that E < [V]?.

A pair D = (V, E) is a digraph if E € V?, and we do not allow multiple arcs i.e. if uv e E
then vu ¢ E. We say that D is an orientation of G if D and G have the same set of vertices
and D has an arc between two vertices u and v (in exactly one of the two directions) if and
only if uv is an edge in G.

We will use V(G) and V(D) to denote the vertex set of G and D, and E(G) and E(D) to
denote the edge/arc set of G and D, respectively. We let N*(v) = {w € V(D) : vw € E(D)}
and N~ (v) = {w € V(D) : wv € E(D)}. For digraphs D;, we use the convention that
D = {D; : i < n} is the pair ( J{V(D;) : ¢ < n},|J{E(D;) : ¢ < n}) which may or may not
be a digraph in our definition (since multi-edges could be introduced).

We write Gy — G to denote the fact that Gy embeds into G as a not necessarily induced
subgraph; < will also be used in the context of digraphs. We let G[W] and D[W] denote
the induced subgraph of G and D on vertices W.

We say that the length of a path is the number of its edges. Let ]7(; denote the one way
infinite directed path and let C.',: denote the directed cycle with n vertices. The girth/digirth
of a graph/digraph is the length of its shortest cycle/directed cycle.

We will frequently use the following lemma on amalgamating digraphs with prescribed
digirth.

Lemma 2.1. Suppose that the digraphs D; are on vertex sets V; (finite or infinite) so that
there is a single R such that R = V; n'V; and there is a digraph isomorphism ; ; : V; = V;
which is the identity on R for all i < j <mn. Then D = | J{D; : i <n} is a digraph.
Fix k e w at least 3. If each D; has digirth bigger than k then
(1) any path P from a € V; to o =1, j(a) € Vj in D has length > k;
(2) D has digirth bigger than k.

Furthermore, suppose that o; € V\R so that o;; = 1, j(as) fori<j <n.
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(3) Letn > k and define D* by V(D*) = V(D) and E(D*) = E(D) u{an—100, ;i :
it <n—1}. Then D* has digirth bigger than k.

Note that the analogue of Lemma 2] trivially fails for undirected graphs: it is easy to
find Gy, G1 both copies of the path of length 2 so that Gy U G is a copy of Cjy.

Proof. 1t is obvious that D is a digraph.

(1) Suppose that there is a path P on vertices ag = o, ay,...,a9—1,a; = & from « € Vi«
to o = ;% jx(a) € Vjx in D which has length ¢ < k; we can suppose that £ is minimal. Let
1;,; be the identity on V; and let

’lp = U{wi’j* 1< 7’L}

Note that v is a digraph homomorphism from D to D;x. Furthermore, % is injective on
{a; : i < ¢} by the minimality of ¢. Hence ¢(ag) = o/, ..., ¢¥(as—1),%(as) = ¢ is a cycle in
Djx of length £ < k which contradicts that D;+ has digirth > k.

(2) Now, suppose that C' on vertices ag,a1,...,a¢—1,a; = ag is a cycle in D of length
¢ < k. Let j* € n so that ag € Vjx. If 1 is defined as above then 1 has to be injective on
{a; : i < £} otherwise there is a path (a subgraph of C') contradicting (1). In particular,
YP(ag) = ag, ..., ¥(ae—1),v(ar) = ag is a cycle in D;x so £ > k; this is a contradiction.

(3) Suppose that C on vertices ag,...,a,—1,a¢ = ag is a cycle in D* of length ¢ < k.
(1) and (2) imply that C' must contain at least 2 non adjacent edges from D*\D. Also, as
k < n, there must be a vertex of C not in A = {a; : i < n}. Hence, for some ¢y < {1 < £,
agy, a0, € A and ay,, ..., ap is a directed path in D. However, this (and ¢ < k) contradicts
(1). O

Finally, let us slightly extend the arrow notations: given a set of directed graphs D we
let

D— (/\D)}

mean that for every r-colouring of the vertices of D and every Dy € D there is a monochro-
matic copy of Dg in D. Similarly,

D - (\/D);

means that for every r-colouring of the vertices of D there is a monochromatic copy of some
digraph Dg from D in D.
Now, we write

G2 (\/p)
to mean that there is an orientation D of G such that D — (\/D);. So the relation
X (G) > w can be written as

G (T v T o))
ENL 1
or G — (\/3<n<w ﬁn)w
Let us omit the straightforward definitions of G BN (/\ Do)i, G 2% (\/ DO) and G 225

(ADo).
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2.1. Set theoretic preliminaries. In general, we use standard set theoretic notations and
definitions but let us refer the reader to [I7] for anything that is left undefined. However,
we do include a short reminder of two key (and somewhat advanced) concepts that appear
regularly: elementary submodels and forcing.

First, we say that a subset M of a model V is an elementary submodel if for any first
order formula ¢ with parameters from M is true in (M, €) (written as M |= ¢) if and only if
it is true in (V,€). We write M < V in this case. For technical reasons, one takes elementary
submodels of H(0), the collection of sets of hereditary cardinality < 6, for a large 6, instead
of the complete set theoretic universe V.

The idea is, that if G is an uncountable graph and M is a countable elementary submodel
so that G = (V, E) € M, then the countable graph G | M := G[V n M] highly resembles
the uncountable G. Now (M¢)¢<¢ is a continuous chain of models if M, < M for v < £ and
M, = UV<§ M, for any limit & < (. If (M¢)e<c covers a graph G then we can get a very
useful decomposition of G by looking at (G | Me41\Me)e<c.

Probably the most useful thing to keep in mind is the following:

Fact 2.2. Suppose that M is a countable elementary submodel of H(0) and Ae M. If A is
countable then A € M or equivalently, if A\M is nonempty then A is uncountable.

In particular, if G € M and a finite set of vertices W < G | M has a single common
neighbour outside G | M then there must be uncountably many common neighbours to W
in G (and infinitely many of these will be in G | M too). Let us refer the reader to [27] for
a complete introduction to elementary submodels and combinatorics.

Next, our main tool to prove the consistency of a statement is either invoking a combi-
natorial principle (like ¢7) or by forcing. With forcing, one looks at a (countable) model
V of ZFC and a poset P € V to form a larger model V¥ by adding a filter G < P which is
generic with respect to V. For example, P can be the set of all finite graphs (with a certain
property) on say wi; when extending a graph p € P to a larger graph g € P, we do not add
new edges between vertices of p. Now any filter G € P defines a graph G = |G which, in
the case of a generic filter, is a quite random and useful object.

A key property of forcing is that any formula ¢ which is true in the extension (i.e. VF = ¢)
is forced by a condition p from the filter G (written as pl-¢). Finally, in order to show that
the forcing behaves nicely (i.e. no cardinals are collapsed) we will prove that our posets are
cce i.e. any set (Q < P of uncountably many conditions contains p # ¢ € Q with a common
extension. The way to do this (in our case) is to find p # ¢ € @ which are isomorphic and
agree on their common vertices; this is done generally by applying the A-system lemma and
Lemma 2.1

Fact 2.3 (A-system lemma). Suppose that S is an uncountable set of finite sets. Then there
s a single finite set v and uncountable R € S so that s nt =1 for any s #t e R.

Naturally, one can suppose that all elements of R have the same size and, in case of finite
graphs, each s € R carries the same graph.
3. OBLIGATORY SUBGRAPHS OF DIGRAPHS WITH UNCOUNTABLE DICHROMATIC NUMBER

For directed graphs D, we can ask what implications does x(D) > w have; in particular,
what are those directed graphs that embed into any digraph D with x(D) > w? We will
mention the undirected counterparts of our results as we proceed.
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Proposition 3.1. Suppose that x(D) > w. Then there is Dy S D so that x(Dg) > w and
each vertex in Dy has infinite in and out degree.

We thank one of our anonymous referees for simplifying the original proof of this result.

Proof. Suppose that D is a counterexample to the statement with minimal cardinality; in
particular, any subgraph of D with size < |D| has countable dichromatic number. Now, we
can find an ordinal k£ and vertices {v, : @ < k} so that x(D[V\{vs : @ < k}]) < w and for
all a € k either

(3.1) {8 € rk\a:vqvg e E(D)}| <w
(3.2) {5 € k\a:vgu, € E(D)}| < w.

Indeed, given vertices v, for a < § we look at D[V\{v, : a < B}]: if this digraph has
countable dichromatic number then we stop. Otherwise, there must be a vertex vg € V\{v, :
a < 8} so that vg has only finitely many in or finitely many out neighbours in D[V\{v,, :
i)

We let V* and V™~ denote the set of v, so that (3.1)) or [B.2) above holds, respectively.

Now, it suffices to show that x(D[V*]) < w and x(D[V~]) < w holds. This, together
with x(D[V\{vs : @ < £}]) < w implies that x(D) < w which is a contradiction.

Consider V* and the set-mapping F'* defined by v, — {vg € N* () : o < 8}. By Fodor’s
theorem [9], V'* is the union of countably many F*-free sets {V;" :i < w} ie. u¢ F*(v) if
u # v e V", In other words, each arc of D[V;"] goes down with respect to the well order

we defined and so D[Vf] is acyclic. The argument for V'~ is completely analogous.
|

Corollary 3.2. I?: embeds into D whenever x(D) > w. Moreover, if T is any orientation
of the everywhere w-branching rooted tree then T embeds into D whenever x(D) > w.

The undirected version of the above lemma and corollary appeared in [8] and we followed
similar proofs.

Before proceeding further, we mention that the set of obligatory digraphs for graphs with
X(D) > w is closed under a simple operation: let rev(Dg) denote the digraph on vertices
V(Do) and edges {uv : vu € E(Dyg)}.

Observation 3.3. If Dy — D for every D such that x(D) > w then rev(Dg) — D for
every D such that x(D) > w as well.

Proof. Indeed, note that x(rev(D)) = x(D) so Dy — rev(D) as well which implies that
rev(Dg) — rev(rev(D)) = D.
O

One of the strongest results on obligatory subgraph was found by A. Hajnal and P.
Komjath: the half graph H,, ., embeds into any graph G with x(G) > w [I0]. Recall that
H,, is the graph defined on vertices w x 2 and (k,4)(¢, j) is an edge if and only if k < ¢ < w
andi=0,j=1.

There are two simple orientations of H, ,: (k,0)(¢,1) is an arc if and only if ¥ < ¢ < w
or (¢,1)(k,0) is an arc if and only if ¥ < £ < w. We will denote these graphs by m and

w,w, respectively.

Proposition 3.4. H, ., and (Hwyw both embed into D if x(D) > w.
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Proof. 1t suffices to prove for H, ., by Observation B3l Suppose that D is a digraph on
vertex set V' without a copy of H, , so that x(D) > w. Let us also suppose that D has

minimal size among these graphs. Cover D by a continuous chain of elementary submodels
(M5)5<€ so that |M5| < |D| and D € M.

Claim 3.4.1. IfveV n Mgy1\Mg then N~ (v) n Mg is finite.

Indeed, suppose that zg,z1--- € N7 (v) n Me. The set N*[{z; : i < n}] must be
uncountable otherwise N*[{z; : i < n}] € M, and so v € M. Hence, we can find distinct
Y0,Y1 - .- SO that y, € Nt[{z; : i < n}]. Now m — D[{x;,y; : i < w}]. This contradicts
our assumption that m does not embed into D.

By the minimal size of D, there are maps fe : V n Mgy1\Mg — w so that there are
no monochromatic cycles with respect to fe. Define f = (f', f?) : V — w x w so that
f'=Uece fe and f2(v) # f(w) if v e V n Mgy1\Mg and w e N~ (v) n Mg. This can be
done as N~ (v) n M is finite.

We claim that f witnesses that x(D) < w which is a contradiction. Indeed, the definition
of f! guarantees that if C' is monochromatic with respect to f then C' must have an arc of the
form wv with v e V A Mgi1\M¢ and w e N~ (v) n Mg. But in this case f?(v) # f2(w) O

At this point, we are uncertain of exactly what orientations of H,, ,, must embed into any
D with x(D) > w.

3.1. Cycles and dichromatic number. Erdés proved in the groundbreaking [7] that there
are graphs with arbitrary large finite chromatic number and arbitrary large girth. Rather
surprisingly this fails for uncountable chromatic number: if x(G) > w then G contains a
4-cycle. This was originally proved in [8] but also follows from the fact that H,, ., embeds
into G if x(G) > w.

Now, for finite directed graphs the analogue of Erdos’ thereom was proved by Bokal et al
[2]: there are digraphs with arbitrary large finite dichromatic number without short directed
cycles. At this point, it is somewhat unexpected that this result extends to uncountably
dichromatic directed graphs as well:

Theorem 3.5. Consistently, for each natural number n = 3 there is a digraph D on vertex
set wy so that

(1) D has digirth bigger than n, and
(2) Chit1 — D[X] for every uncountable X < wy.

In particular, x(D) = w;.

Proof. We show that for any n there is a ccc poset of size w; which introduces such a digraph
D. We leave it to the reader to check that the finite support product or iteration of these
countably many posets gives a model with the appropriate graphs for each n at the same
time.

Fix n > 3 and simply let P be the set of all finite digraphs on a subset of w; which avoid
Cy. for 3 <k <nie. cach p e Pis a finite digraph (V (p), E(p)) with digirth > n. We write
p<gqforp,qePif V(p) 2V(q) and p[V(q)] = ¢.

We say that p, ¢ € P are twins if [V (p)| = [V(g)], V(p) n V(q) < V(p)\V(q) < V()\V(p)
(or vica versa V(¢)\V (p) < V(p)\V(¢)) and the unique order preserving map v, 4, from V(p)
to V(q) is a digraph isomorphism of p and ¢. Note that if p,q are twins then p U ¢ is a
digraph as well.



8 D. T. SOUKUP

Clearly, any generic filter G < P gives a digraph D on vertex set wy with E(D) =U{E(p) :
peg}.

Claim 3.5.1. P is ccc.

Proof. Note that any uncountable set of conditions contains an uncountable subset of pair-
wise twins by the A-system lemma. Now, we claim that p U ¢ is a condition if p, ¢ are twins.
Indeed, apply Lemma 2] (2).

O

The next claim finishes the proof of the theorem:
Claim 3.5.2. VF |= 8n+1 — D[X] for every uncountable X < w;.

Proof. Suppose that p|k|X| = wi. There is an uncountable Y < w; and pg € P for S e Y
so that pg < p, B € V(pg) and pgl-8 € X. Apply the A-system lemma to find ap < a1 <
<+ < ap €Y so that po, and p,,; are twins whenever ¢ < j <n + 1.
Define g by letting
(33) V(Q) = U V(pai) and E(Q) = U E(pai) Y {anaOaaiai+1 11 < TL}
i<n+1 i<n+1
Lemma [ZT] (3) implies that ¢ € P and of course g < p,,. We clearly have quj[ozo co Q] >

D[X] and that ql-D[ayg . . .ay] is an induced copy of C 1.
O

O

Corollary 3.6. Consistently, any digraph Doy which embeds into all digraphs D with x(D) >
w must be acyclic.

We don’t know at this point how to construct digraphs with uncountable dichromatic
number but with arbitrary large digirth in ZFC.
Now, the fact that C4 appears in every graph G with x(G) > w shows that the relation

G — (C4)}

is equivalent to x(G) > w. The digraph version is (consistently) false by the above theorem,
however at this point it seems possible that x(D) > w implies D — (C)L for some k < w
for any D. We show now that this is not the case. Let us denote the set of nonzero,
nondecreasing f : N — N so that kh_)ngo f(k) = co with F for the next proof.

Theorem 3.7. Consistently, for f € F there is a digraph D = Dy on vertex set wy so that
(1) x(D) = w1, and
(2) D—-» (ﬁk)}(k) for all k < w.

Proof. Given f € F we define the poset Py of conditions p = (d?, (¢} )3<k<n») Where
(P1) d? = (VP, EP) is a finite digraph on w; and n? = |V?|,
(P2) g% : V(dP) — f(k), and
(P3) dP[{v: gp(v) = i}] has digirth > k for all i < f(k) and 3 < k < nP.
We let p < ¢ if
(i) VP 2 V7 and dP[V1] = d4,
(ii) gf =gt I V9 for all 3 <k < nf.
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It is clear that a generic filter G < P introduces a digraph D = U{d? : p € G} and
functions g by gr = U{g}, : p€ G,k <nP} for k € w.

Claim 3.7.1. The following holds for any generic filter G < P and D,g;c defined as above:

(a) D has vertex set wi,
(b) dom(gr) = w1, and
(¢) D[{v e wr : gx(v) = i}] has digirth > k for all i < f(k) and 3 < k < w.

Proof. (a) Indeed, it suffices to show that the set {p € P: v € VP} is dense for every v € w;.
Given any ¢ € P and v € w1\V? we let VP = V¢ U {v} and EP = E9. Then simply define
g, = 9ix U {(v,0)} where 3 <k <nP =n?+1and k* = min{k,n?}. It is easy to check that
property (PB]) is satisfied by p.
(b) follows from (a), and (c) follows from property (PB]).
O

We say that two conditions p, ¢ are twins if
(1) n? =n?and V(dP)nV (d?) < V(dP)\V(d?) < V(d9)\V (dP) (or vica versa V (d9)\V (dP) <
V(@)\V(d2)),
(2) the unique order preserving map ¢, 4 from V(dP) to V(d?) is an isomorphism of the
digraphs dP and d9, and
(3) gh(v) = gi(Yp,q(v)) for all 3 < k < n” and v e VP,

Claim 3.8. P is ccc.

Proof. By standard A-system arguments, it suffices to show that if p,q € P are twins then
they have a common extension r € P. We let d" = dP U d? and define g, = gz* U gg*
where 3 < k < n” and k* = min{k,n?}. Note that f(k*) < f(k) for k* = min{k,nP} so
gr V" — f(k) i.e. property (P2 is satisfied.

We need to check that d"[{v € V" : gj(v) = i}] has digirth > k for all ¢ < f(k) and
3 < k <n". Note that

d'{ve V" gi(v) =i}] =d’[{ve VP : gl (v) =i}] U d[{v e V: gli(v) = i}]
where k* = min{k,n?}. Furthermore, the graphs d’[{v € VP : g}, (v) = i}] and di[{v €
V1 : gl (v) = i}] are isomorphic and have digirth > k. Hence Lemma 211 (2) implies that
d"[{ve V" : g}(v) = i}] still has digirth > k. In turn, r satisfies property (PB) and so r € Py

is a common extension of p and gq.

O

Claim 3.8.1. VF = x(D[W]) = wy for any uncountable W< w.

Proof. Suppose that pII—W C w; is uncountable. Find Y € [w1]“',n € w and p, < p for
a €Y so that

(i) {pa : @ € Y} are pairwise twins (with mappings 1), o witnessing this) and nP* =n > 2,

(i) € VP and g, () = o for o, €Y, and

(iii) polFoe W for all v e Y.

This can be done by the A-system lemma. Let N € N be minimal so that f(N) > f(n);

such a value exists as f(k) —> o as k — o0 and N > n as f is nondecreasing. Now, fix
distinct a; € Y for j < N and define ¢ as follows:

(3.4) Vi=|J VP and EY = | ] BP9 U {an-100,a0541 0 < N =1}
J<N j<N
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Now we define g{ for 3 < k < n? as follows: let
Pa,
g = U 9’
i<N
if 3 <k < N —1 where k* = min{k, n} and let

gi =i 1 (VP\{ao}) U {(ao, fm)} o | gn

1<j<N
it N <k<ni

We need to check that d?[{v € V? : g{(v) = 4}] has digirth > k for all i < f(k) and
3<k<n® If k<N —1then

d'{v eV gl(v) =i}] = | J d™i[fve VP : g, (v) = i}]
j<N
and we can apply either Lemma I (2) (if g, (a;) # i) or Lemma [ (3) (if g, () = 4)
to see that d?[{v e V7 : gl(v) = i}] has digirth > k.

Now, for k between N and n?, Lemma 2.1] (3) might not apply directly as k > N. We
distinguish 4 cases depending on value of i < f(k). If f(n) <i < f(k) then d?[{v e V9 :
gi(v) = i}] is empty so we have nothing to prove. If i = f(n) then d?[{v e V7 : gl(v) =
i}] = {ap} so again we have nothing to prove. Now if i < f(n) but g (cj) # i then again
we can apply Lemma 211 (2) to see that d?[{v e V7 : g}(v) = i}] has digirth > k as

dfweVi:giw) =i = ] d* [{ve VP : g™ (v) = i}]
j<N
as before.

Finally, lets look at the case when gzaj (aj) = ¢ (if this holds for one j then it holds for
all j < N as we are working with twin conditions). Suppose that C' is a cycle in d?[{v e V' :
gi(v) = i}] of length < k. By Lemma 2] (2), C must contain a new edge of the form a1
where 1 < j < N — 1. In particular, we can find 1 < jp < 71 < N — 1 so that C' contains a
directed path from «j, to aj, using only edges from |J;_, d” [{v e VP : g (v) = i}].
Let ¢ = (J{¥a,.a,;, : J < N} where ¢4 o is the identity on VP«. Now ¢ maps P into a
walk from aj, back to aj, = ¥(ay,) in d”n [{v e VP : gn 7 (v) = i}]. Also, this walk
has length at most k£ so it must contain a cycle of length at most k& as well. However, this
contradicts that d”*n [{ve VP : g, (v) = i}] has digirth > k.

Hence, we showed that (g{)s<r<ne satisfies property (PB)) and so ¢ € Py. It is now clear
that qlkD[{aj :j < NJis a copy of Cnin W.

(|

At this point, we showed that for any single f € F there is a ccc extension of the ground
model with the required digraph Dy.

Now, starting from a model of CH, we can define a finite support iteration (P, Q) a<w;,f<w:
of length w; where VFe = Q, = Pf for some P,-name f for a function in F.

It follows from Claim B.§] that each P, is ccc so we can arrange the iteration in such a
way that any f € F in the final model shows up at some intermediate stage i.e. Q, =P f for
some « and appropriate name f for f. So it suffices to check that in the final model VP«
we still have x(Dy) = w; for the graphs that we introduced by the intermediate forcings
Q4. This can be done using determined conditions and the argument in Claim B8} more
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precisely, we add edges to the finite approximation of Dy in coordinate « as in Claim .87
while not adding any new edges to graphs in other coordinates. We leave the details to the
interested reader.

O

Let us also mention the following

Observation 3.9. Suppose that D is a digraph.
(1) D —» (E')k)}u for all k < w implies x(D) < 2¢.
(2) The edges of D can always be partitioned into two acyclic sets.

Indeed, if f, witnesses D — (C)L then f : V(D) — w* defined by v — (fx(v))kew
witnesses x(D) < 2. To see (2), take an arbitrary well order on the vertices and consider
the forward and backward edges.

Finally, we state without proof that the famous Erdds-de Bruijn compactness result also
holds for directed graphs:

Theorem 3.10. Suppose that any finite subgraph of the digraph D has finite dichromatic
number at most k. Then x(D) < k as well.

In particular, we can deduce the result of Bokal et al [2] on finite digirth and dichromatic
number from our forcing result in Theorem given a model V of set theory and finite
number k, we force to find an extension V¥ with a graph D with digirth > k and x(D) > w.
By the above compactness result, there must be a finite subgraph D* of D (in V) which
has dichromatic number > k. However, the models V and VF have the same finite digraphs
and hence D* € V as well. Much like the probabilistic proof in [2] this forcing argument
gives no information about these sparse digraphs with large dichromatic number. A simple,
recursive construction of such graphs was actually given by M. Severino [24].

4. ORIENTATIONS OF UNDIRECTED GRAPHS WITH LARGE CHROMATIC NUMBER

There are two trivial orientations of any undirected graph G given a well order < on the
vertices: define the orientation G of G by uv € E(G) if and only if uv € E(G) and u < v.
Similarly, G is defined by uv € E(G) if and only if uv € E(G) and v < w.

It is well known that if G has countable colouring number i.e. {u € N(v) : u < v} is
finite for every vertex v € V(G) (for some well order < of the vertices) then x(G) < w
(see [8]). This yields the following observations: let S denote the countable star with all
edges pointing out, and ‘S denote the countable star with all edges pointing in. Then the

<«

orientation G of G witnesses G = (S)i while G witnesses G =% (?)i
As we saw in the previous section, H,, ., embeds into any graph G with x(G) > w [10].
In particular, the girth of G is at most 4 whenever x(G) > wj; so it could be the case that

ENL /=
G — (C4)
whenever x(G) > w. Indeed, we are going to prove this, at least for some graphs.

First, let us look at complete graphs. Recall that

K [ 6]3

ENL ,—

i} or even G = (04)

means that there is a function f : [k]? — 2 so that for all A, B € [k]® and i < 2 there is
a€ Aand 8 € B so that « < § and f(«, 8) = i.

Theorem 4.1. Suppose that k is an infinite cardinal.
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(1) If k is reqular and k —» [K; k|3 then K, i ( C_')n)
3<new

(2) If X\ is uncountable then K+ B ( /\ Un)

3<new

1
\
Let us show a corollary first:

Corollary 4.2. ¥ (K,) = & for any infinite cardinal k.

Proof. Recall that k™ - [k7;kT]3 holds whenever & is a regular cardinal [23]. Hence
Theorem [£1] (1) and (2) implies that ¥ (K.+) = T for any cardinal .

Now, given a limit cardinal  let (;);<ct(x) be a cofinal sequence of regular cardinals in .
Let V; € [f@]"”"i+ pairwise disjoint for i < cf(x). Then K, restricted to V; is just a copy of K+

ENL —
so we can apply TheoremET] (1) to find an orientation D; witnessing K, + = (/A 3<pe., Cn)

on V;. Putting together these digraphs D; (and orienting the edges outside arbitrarily) we
defined an orientation D of K, that witnesses K, ENL (/\3<new C.R");lt for any p < k. In

particular, ¥ (K,) = & .
O

Our proof of Theorem 1l was motivated by the proof of Theorem 8 [I1]; we will point
out further connections to [I1] later as well, in particular in Section

Proof. (1) Let f : [k]?> — 2 witness x - [r; k]3. Now simply define D = (x,E) by af € E
if < f and f(«, ) = 0, otherwise Sa € E.

First, we show that any induced subgraph of size x contains a copy of 63. Let W € [k]".
Define Wt ={v e W : INT(v) nW| < sk} and W™ ={v e W : [N (v) n W| < s}. If
there is a v € W\(W* u W) then by the choice of f we can find « € N (v) n W and
Be N~ (v)nW so that v < @ < 8 and f(«,8) = 0. Then va, a8, Bv € E so {v,a, B} is a
copy of 63.

Now, it suffices to show that [W*| = k or |[W~| = & is not possible. If |[W*| = &
then using the regularity of &, one can find a Y € [W*]* so that & < 8 € Y implies that
B¢ N*(a). However, f(a, ) = 0 for some o < 8 €Y by the choice of f so 3 € NT(a); this
is a contradiction. The proof that [W~| = « is not possible is completely analogous.

Now, fix n € w at least 3 and W € [k]"; we will find a copy of C,in D[W]. Find pairwise
disjoint paths P = (ag . ai_Q) in W of length n — 2 for £ < k. This can be done by
applying Corollary B2} indeed, we already proved that x(D[W\J]) > w for any § < k so
P, — D[W\4].

Note that if there is a single £ so that N*(ag) AW and N*(a%_,) n W both have size
then we can extend P into a copy of ﬁn in W. So suppose that this is not the case; then
there is I € [k]" so that either

(i) |N‘(a€) NnW|<kforall el or

(ii) [N*(al_,) n W] <k forall €€ I.
If case (i) holds then, using that x is regular, we can find J € [I]" so that £ < ¢ € J implies
that 048 < ag and ag ¢ N *(ag). However, this clearly contradicts the choice of f as there is
some £ < ( € J such that f(ag,ag) =1.

Similarly, if case (ii) holds then we can find J € [I]” so that & < ¢ € J implies that

048 < ag and ag ¢ N +(o¢§). This again contradicts the choice of f.
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(2) Suppose that X is uncountable. We fix a club guessing sequence {Cy : v € ELY}, that
is: C, is a cofinal sequence of type w in @ and whenever F € At is a club in A* (i.e. a closed
and unbounded subset) then C, € F for stationary many « € E3+. The existence of such
guessing sequences was originally proved in Claim 2.3 [25] (for a detailed proof see [1]). We
let I(r,0) = Cy(0) and I(a,n) = Co(n)\Co(n — 1) for 1 < n < w where (Cy(n))new is the
increasing enumeration of C,. Now, define the orientation D as follows: given o < 3 € AT
we let a8 € E(D) if and only if n(«, ) is even where n(a, ) = min{n € w : a € I(8,n)};
otherwise Sa € E(D).

We will show that given a partition At = [ J{A4; : i < A} there is an i < X so that D[A;]
contains a directed n-cycle for all 3 < n € w. Take a continuous, increasing sequence of
elementary submodels (M¢)e<\+ covering A* so that {A4;, D : i < A} & M¢ and |M¢| = A
for all £ < AT. Let E = {M¢ n AT : £ < AT}, Eis a club so there is an i < X\ and some
stationary S € A; so that Cg € E for all § € S. Observe that I(8,n) n A; # & for every
eSS and new.

Claim 4.2.1. For every n € w at least 3 and every § < AT there is a path P = (ag ... ap—2)
in D[A;\0] so that |[NT(an—_2) n A;| = AT.

Proof. We prove by induction on n > 3. If n = 3 then let 8 € S\d and pick ag € I1(5, 2k)
where k is large enough so that § < Cg(2k —1). We need that |[NT(ag) n Ai| = A5 if
IN*(ao) nA;] < Xand Cp(2k) = Me n AT then Nt (ag) n A; S M by elementarity as well.
However, 8 € N (ag) n A;\ M.

Now suppose that n > 3, and again let 5 € S\J. Using the inductive hypothesis and the
fact that C3(2k) = Mg n A for some £ < AT find a path P = (ag ... an—2) in I(53,2k) so
that [Nt (an—2) " A;| = AT where k is large enough so that § < C3(2k—1). By elementarity,
we can find o, 1 € I(83,2k)\{a; : i <n —1} so that a,,—1 € Nt (a,,—2). As before, it is easy
to show that [Nt (a,—1) n A;| = AT and so (ag...an—1) is the desired path. ]

Now, fix 3 < n € w. Let f € S arbitrary and find a path P = (ag...an—2) in A; nI(5,1)
so that [N (an—2) N A;| = AT. This can be done by applying Claim 2Tl with 6 = C3(0)
inside the appropriate elementary submodel M, where Cg(1) = Mg n AT,

Note that C(2) = Mg n AT for some & < At so we can find vy € Nt (ap—2) nA;nI(,2).
Now, Bag . ..ap—_27 is a copy of ﬁn in A;.

O

Recall that given a poset P we define its comparability graph Gp on vertex set P and let
st € E(Gp) if and only if s <p t or t <p s. A Suslin-tree is a poset S so that each p € S has a
well ordered set of predecessors and each chain and antichain of S is countable. Suslin-trees
exist in some models of ZFC (e.g. if ¢ holds) and do not exist in others (e.g. if Martin’s
axiom holds without CH).

We can use the argument from Theorem [£J] and a trick due to J. Steprans to get the
following:

Proposition 4.3. Suppose that S is a Suslin-tree and Gs is its comparability graph. Then
ENL —
3<new
Proof. We work in a model V of ZFC with a Suslin tree S on w;. As before, we pick
f i [w1]? — 2 with the property that f”{{a,b} : a € A,b € B,a < b} = 2 whenever
A, B € [wi]“'. Such functions were defined in [20] from a ladder system on w; in a robust
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way: if our model of set theory V is extended to another model W preserving wy then f(a,b)
evaluated in V and W agree. Now let ab if and only if a <g b and f(a,b) = 0.

Given T € [S]“* and n € w at least 3, we need to find a copy of C,, in Gg[T]. T as a
subtree of S is still Suslin, and hence forcing with T" over our model V' preserves cardinals
(by ccc) and introduces an uncountable set A € T so that H = Gs[A] is complete.

Now, working in the larger model V7T the function f still witnesses w; - [w1;w1]3 and
so by Theorem 1] we can find a directed n-cycle vg...v,_1 in A. However, the fact that
vg...Up—1 forms an n-cycle in T is absolute (see the remark on f earlier) so this must be true
in our original model V' as well.

O

Let us state (without presenting the proof) that another class of graphs defined from well
behaved non-special trees admit similar orientations: suppose that S € w; is stationary and
let o(S) denote the poset on {t < S : t is closed} where s < t if and only if s is an initial
segment of ¢.

Theorem 4.4. G, (g) BN ( /\ C.';)i for any stationary S < w1.

3<new

Indeed, one can combine the machinery of [26] and the {*-argument from Theorem
to prove this result. Note that neither G,(5) nor Gg for S Suslin contains an uncountable
complete subgraph.

Next, we prove that shift graphs defined on large enough sets have large dichromatic
number. Let Sh, (\) denote the graph on vertices [A]" and edges {§; : i < n}{§ : 1 <j <
n+ 1} where §o < -+ < &, € \.

Theorem 4.5. Shy,(exp,,(x)) AL (64)’1 for all 2 < n < w. In particular,

X (Shy(expy, (k))) > &.
As Sh,, (M) has no odd cycles of length less than 2n, we get:

Corollary 4.6. There are digraphs with arbitrary large dichromatic number and large odd
(undirected) girth.

Corollary 4.7. Any digraph F which embeds into all digraphs D with x(D) > w must be
bipartite.

Lastly, we encourage the reader to keep the n = 2 and kK = w case in mind when read-
ing the following proof; otherwise the technical details might overshadow the actual ideas
involved.

Proof of Theorem[{.5] Let A = exp,, (k). We construct an orientation D of Sh,,()) so that
whenever G : [A\]" — & then there is a monochromatic directed 4-cycle. In particular, we aim
for a copy of C 4 of the following form: the vertices will be {ag}UR, RU{S}, {o1}UR, Ru{as}
where |[R|=n—1and oy <aq <R < ag < f.

List all pairs (A4, g) where A € [\]*Pn-1(®) g [A]" — k as {(A3,95) : B € S2,} so that
sup Ag < f.

By induction on f define the orientation of edges of the form {a} U R, R U {f} where
a < R < f and |R| =n — 1. In short, the n + 1-tuple {a} U R U {8} will be oriented either
up (meaning {a} u R, R v {f} € E(D)) or down (meaning R u {8},{a} u R € E(D)).
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For notational simplicity we will use R, RS, aRf for {a} U R, Ru{S} and {a} U RU {5}
respectively.

Now fix g € Sé; and R € [B]""!. We define by induction on i < k disjoint finite sets
ag,r,; € Ag nmin(R) and direct the n + 1-tuples of the form aRf where a € ag g,;.

Given ¢ < x and the finite sets ag r,; for j <4, we consider three cases:

Case 1. If there is g < aq € (Ag nmin(R))\U{ag,r,; : j < i} and ag € Ag\max(R) so
that

(1) ayRaz and agRas are oriented differently (one up, other down), and

(2) gp is constant ¢ on R, a1 R, Ras.
Then we let agr,; = {ao,@1} and define the orientation of ayRS and a1 RS so that
agR, RB, a1 R, Rasg is a copy of 64.

Case 2. Suppose that Case 1 fails but there is ag < a1 € Ag nmin(R)\ | J{ag,r,; : j < i}
so that gg is constant ¢ on o R, a1 R. Then we let ag r,; = {ao, a1} and define the orientation
of ay RB and agRp differently.

Case 3. If both Case 1 and Case 2 fails then we let ag r; = &.

This finishes the induction on ¢ < k and in turn completes the definition of D.

Now, suppose that G : [A\]" — & and our aim is to find a monochromatic 4-cycle. Take a k-
closed elementary submodel M of size exp,, ;(x) so that D,G € M and exp,, ,(x), P*(x) <
M for k < n — 1. Here P is the power set operator, P°(k) = k and P*+1(k) = P(P*(k)).

Find S € S2+ so that

(As,95) = (M A AG T [M A AP).
Now we define a sequence of maps Gy, Gy ...G,—1 so that
Gk : [NF — P F (k)

as follows. We define Gy : [A\]" — & simply by G = G. Next, we define G : [\]"~! — P(k)
by

(4.1) Gi(x1,...,xpn—1)={i€r: {E<x1:Go(& 21,...2n_1) = i}| = exp,,_1(K)} € P(K).
In general, given G,,_g—1, we let
(4.2)
Gk (@p—ty oy n1) = i€ P FUR) € < np: Grnop1(E Tp_py ... Tn_1) = i}| = expp(k)}.

Finally, for k = 1, we let

(4.3)
Gno1(tn_1) ={ieP" (k) : {€ < xp_1:Gno(&xn_1) =i} =exp,(r)} € P" (k).

Note that G,—1(8) € M by the assumptions on M.

Claim 4.8. There is a decreasing sequence of ordinals £,—1,&n—2 ...& and €-decreasing
In—1,0n—2 - ..o with the following properties:
(1) gnfl = ﬂ and infl = anl(ﬂ);
(2) En—2€ Ag N &1 = Ag so that
(G,) Gn—l(gn—Q) = in—l = Gn—l(&n—l% and
(b) in—2 = Gn—2(§n—2;£n—1) € in—l;’
(8) in general, &n_k—1 € Ag N &n_i; S0 that
(a) ank(gnfkfl cee §n72) = 7:nfk = ank(gnfk cee gnfl)a and
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(b) in—r-1=GCGnrk-1(n—r-1,6n—k--En1) Elnt
where k =0...n — 1.
Proof. Given &,_1 = 8 and 4,1 = Gp_1(f), observe that G € M,ran(G,,—1) S M implies
that
A={£e 8 :Gnoa(§) = Gna(B)teM
as well. Hence |[A| > (exp,_;(k))T (as 8 € A\M) and so |A n M| = exp,,_; (k). In turn,
cf(exp,,_;1(k)) > exp,,_»(k) implies that there is an i,,_» € P""2(k) so that

(4.4) (€€ A n M i Gral€,€nr) = ina}| = exp,_s(r).

In particular, i,_2 € i1 = Gp—1(£p—1). Now pick any &,_9 € AnM with G,,—2(En—2,&n—1) =
in—2.
SQuppose we found &,k and i,,—, as required. By assumption, i,k € tn—g+1 = Grnk+1(En—k - - - En—2)-
Hence
HE < &kt Gnok(§,6n—k - - En—2) = in—k}| = expy(k)
and so
e M &k :Gni(§nk - -§n—2) = in—r}| = exp,_(k)

holds as well. By cofinality considerations, there is 4,,_x_1 € P""*71(k) so that

Hee Mk : Gui(&6n—k - -&n—2) = tn—ks Gnok—1(& 6n—k - - -&n—1) = in—r—1}| = exp,_,(K).

Note that this implies that é,—g—1 € tn—t = Gp_k(En—k ...&n—1) and we can pick any
&nfkfl € Mmgnfk so that ank(gnfkfly fn—k cee §n72) = infkv ankfl(gnfkfl;énfk cee gnfl) =
in—k—1. Hence conditions (a) and (b) above are satisfied. O

At last we get &y € Ag N & and i € k so that

(a) Gi(&o...&n—2) =11 = G1(&1 ... &n—1), and
(b) io = Go(§o---&n—1) € i1.

We let R = {&...&—2} € [Ag]"! and look at the construction of the orientation D
when we considered § and R. In particular, we consider the step when the colour iy € k
came up.

If the assumption of Case 1 was satisfied then we constructed a copy of 6’)4 on vertices
ooR, RS, 00 R, Ras and gg is constant ig on agR, a1 R, Ra; g and G agree on Ag and
G(Rf) = ig so this is the desired monochromatic C .

Now, we suppose that Case 1 fails and reach a contradiction. We claim that the assump-
tion of Case 2 is satisfied. Indeed, ig € i1 = G1(&p...&,—2) implies that there are x many
& < & with the property that G(&,&o ... &{n—2) = io. Also, M is k-closed so | J{ag,r; : j <
i} € M. Hence, using elementarity, we can select oy < a1 € M n &\ U{ap,r,; : j < o} so
that

G(O‘()ag() e -§n72) = G(O&l,go .. '§n72) = 1g.
Hence, following the instructions in Case 2, we oriented oy R and oy RS differently. In
turn, the set

B = {€ € \\max(R) : the orientation of agRE, a1 R are different and G(RE) = io}

is not empty. However, B € M so we can choose a3 € B n M and hence a;,asz, a3
witnesses that Case 1 holds. This contradicts our assumption and ends the proof.
O
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Now, we prove that consistently any graph with size and chromatic number w; has un-
countable dichromatic number as well in a very strong sense.

Recall that {* asserts the existence of sets Sg = {Sg,n : n € w} where § € wy so that
for every X < w; there is a club €' < wy such that X n 8 = Sg ,, for some n € w whenever

BecC.

Theorem 4.9. Assume that $T holds and the graph G has size and chromatic number wy.

Then
ENL

G = (/\{D : D is an orientation of Hy .}).
In other words, there is an orientation D* of G so that whenever G[A] is uncountably
chromatic and D is an orientation of H, ., then D embeds into D*[A].

Proof. Let Sg = {Sg,, : n € w} be the {1 sequence and let {Dg : f < wy} list all orientations
of H, .. We suppose that each Dg has vertices 2 x w.

By induction on 8 we orient the edges of G from 3 to 8 n N(j3) to define an orientation
Df,, of G[B+1].

Let

{(6j,m.8;) 1 J <w}
list T'g = {(4,n,&) :0,§£ < B,n < w,|N(B) N Ssn| =w}.

Suppose that the orientation D’E of G[fB] is defined already. By induction on j < w, we
will select a; € [N(B) N S5, n,]<* such that a; naj = & for j < j* < w and orient the edges
between  and a; as follows.

At step j, we look at the set ®; of partial digraph embeddings ¢ of D, into D [S5;.n;]
such that dom(y) = 2 x k for some k < w and

e[{0} x k] < S5, n N(O\ | a;-
J'<j

Note that ®; might only contain ¢¥. In any case, take a ¢; € ®; which is maximal with
respect to inclusion.

Case 1: If ¢; is a complete embedding then let a; = ¢J and move to step j + 1 in the
induction.

Case 2: if Case 1 fails then there is a k < w such that dom(yp;) = 2 x k i.e. ¢; is a
digraph embedding of D¢, [2 x k]. Let a; = ¢;[{0} x k] U {a} for some

a € S5y, 0 NN a5 U @510} x K.

J'<j

Lets define the orientation between 3 and a; so that

90;: =p; v {((O,k),()t), ((Lk)aﬂ)}

is a digraph embedding of D¢, [2 x (k + 1)].

Edges from 8 to (N(8) n 8)\U{a; : j < w} are oriented arbitrarily. This finishes the
definition of the orientation D* = | J5_, Dj of G.

Now take any A such that G[A] is uncountably chromatic and an orientation D of H,, .
There is a club of elementary submodels {M, : @ < w1} of H(XN3) so that D, A € M,, and
whenever § = M, N w; for some a < w; then A né§ = S5, for some n e w.

As G[A] is uncountably chromatic, there is 6 = M, n w; for some a < wy and S € A\d
such that N(8) n A n § is infinite. We can suppose that there is a ¢ < 8 so that D = Ds.
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Let n < w such that A N = Ss5.,; so N(8) n S5y, is infinite. We claim that there is a copy
of D in D*[Ss,] < D*[A].

Let us look at how the orientation was defined between 8 and N(8) n 8. Thereisa j <w
such that (§;,n;,&;) = (6,n,§).

At step j, we selected a maximal partial embedding ¢; of D into D; [Ss5,n]. If Case 1 held
for ¢; then ¢; is a complete embedding witnessing the existence of a copy of D in D*[Ss ,,].

Otherwise, we are in Case 2: ¢; is an embedding of D[2 x k] for some k < w. This case,
we extended ¢; into a strictly larger embedding <p;‘-‘ with

ran(¢}) < S5, 0, U {8} S A
Note that ¢; and A are both in M, and
H(Ng) &= ¢, can be extended to an embedding of D[2 x (k + 1)] into A\ U a;.

J'<3j
Hence this sentence must be true in M, as well, that is, there is an embedding ¢ € M,, of
D[2 x (k + 1)] into A\J; _; a; extending ;. Of course the range of ¢ now has to be in

A n M, = Ss,, which contradicts the maximality of ;.
O

Corollary 4.10. If $T holds and G has size wy then X (G) = wy if and only if X(G) = wy.

5. ON THE LACK OF ORIENTATIONS WITH LARGE CHROMATIC NUMBER

In this final section, we show that consistently there is a graph G with uncountable
chromatic number without an orientation with uncountable dichromatic number. In other
words, x(G) > w does not imply 3’ (D) > w.

In [I1], Hajnal and Komjdth study an intriguing problem which can be roughly stated as
follows: given a graph G with uncountable chromatic number, can we colour the edges of
G with 2 (alternatively, w or wi) colours so that each colour appears on each large enough
subgraph.

Let us observe some straightforward connections to our investigations:

Observation 5.1. (1) If G i (\/{8,1 :3<n<w}) then we can define a 2-edge

colouring of G with the property that every colour appears on every uncountably
chromatic induced subgraph.

(2) If X(G) > w then there is a 2-colouring of the edges of G such that whenever the
vertices V(G) are partitioned into countably many pieces {V; : i < w} then both
colours appear on one of the spanned subgraphs G[V;]

Proof. Let us prove (1) and leave the completely analogous proof of (2) to the reader. Given
the orientation D of G = (A, E) witnessing G = (\/{6,1 :3<n <w}) define f(ab) =0
if a < be Xand ab € E(D), otherwise f(ab) = 1. Now, if x(G[W]) > w then there is a

directed cycle C' in D[W]. Let b = max C (where C' is considered as a set of ordinals in \).
If a and a’ are the neighbours of b in C' then we must have f(ab) # f(a’b). O

It was shown in [II, Theorem 5] that the consequence stated in Observation [5.] (1) can
consistently fail for a graph of size and chromatic number w;. Hence, we get the following;:

Corollary 5.2. Consistently, there is a graph G with size and chromatic number wy such

that G 22 (\V{C -3 <n <w)) fails.



ORIENTATIONS OF GRAPHS WITH UNCOUNTABLE CHROMATIC NUMBER 19

However, it is unknown if there is a graph G of chromatic number w; which fails the
consequence stated in Observation 511 (2) (even consistently). Hence it is rather interesting
that X' (G) < w is possible for a graph G with uncountable chromatic number:

Theorem 5.3. Consistently, there is a graph G on vertex set wi such that

(1) X(G) < w, however
(2) Cs — G[X] for every uncountable X € w1, and so x(G) = w1.

At this point, we don’t know if the implication in Observation [5.1] (2) can or cannot be
reversed.

Proof. We start from a model V' of CH.

Let Py = {(s,9) : s € [w1]=*, g < [s]*} with the usual ordering.

Given a generic filter G < Py we get a graph G = {¢g” : p € G} in the extension VFo.

We will not use this particular fact, but let us mention that G has uncountable dichromatic
number in VFo:

Claim 5.4. VP = G 22 (G3).

Proof. Let fg : w — 3 be a bijection for B € wi. We define an orientation D as follows: if
a < f <w; and af € G then af € E(D) if and only if 8 and 8 4+ n are connected in G for
o = fz(n); otherwise, fa € E(D).

Suppose that pol-W is uncountable and let py, W, P, (fo)a<w, € Mo < My where M, M,
are countable elementary submodels of H(X,). Find 8 € wi\M; and p < po so that pl-3 € W.
Let I = {n: 8 +ne s} and find a p’ € My so that p and p’ are compatible and there is
B e sp/\ran(fg I T) with p'I-0' € W.

Let J = {n: 3 +ne s’} and find p” € My compatible with both p and p’ such that
there is

B e sp”\(ran(fg PI) uran(fe | J))
with p”I-8" € W.
It is easy to see that we can find a common extension g of p,p’ and p” which forces that
(8,8, 8"} is a copy of Ci. 0

Let us remark that the same argument shows Vo |= G 2L (DO) for any finite digraph

Do.
Now define a finite support iteration (Po, Qg)a<w,,f<w, as follows: in VP« we consider
an orientation Da of G and let
— {q € Pn(w1,w) : Da[q ()] is acyclic for all n € w}.
Recall that F' n(/\ r) denotes the set of all finite partial functions from A to .
Clearly, the forcing Q, introduces an w- partition {W, : n < w} of wy such that Dy [W,]
has no directed cycles. In turn, VFa*Qa Ex(Dq) < w.
Our goal is to prove that this iteration is ccc and in the final model V2 our graph G is
uncountably chromatic.
Claim 5.4.1. The set of p € P, which satisfy
(1) p(€) € V and dom(p(&)) < s, and
(2) p ! & decides the orientation of D¢ on dom(p(€))
for all € € supp(p) is dense in P,.
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We will call these conditions determined and we only work with determined conditions
from now on if not mentioned otherwise.

Proof. Easy induction on a. O

We say that p,p’ € Py are twins if |s?| = [s*'|, s? n s? < sP\s? < sP'\sP (or vica versa
sP\s? < sP\s*') and the unique monotone bijection 1, : s* — s¥ (which fixes s N s?')
gives a graph isomorphism between the graphs p and p’. We say two conditions from the
iteration ¢, ¢’ € P, are twins if

(1) p(0) and p’(0) are twins,
and for all £ € supp(p) N supp(p’)

(2) dom(p(§)) = ¥pp [dom(p(£))],

(3) PEN®) = (&) (i (9)) for all & € dom(p(¢)), and

(4) p ! €lFagar € D¢ if and only if p’ | {IFapa) € De for all € € supp(p) nsupp(p’) where

a; = ¥pp(ai).

Claim 5.4.2. If p,p’ € P, are determined and twins then they have a minimal common
extension p v p'.

Proof. We define p v p’ by

(v p)(e) = {

(sP U st gP U gp/), for « =0, and
p(&) v p'(8), for £ € /\{0}.

It is clear that (p v p')(0) € Py so let us show (p v p’) | £ forces that there are no monochro-
matic cycles with respect to p(€) U p/(£). We do this by induction on £ < a.

Suppose that p v p’ | € is a condition. If £ € supp(p)\supp(p’) or & € supp(p’)\supp(p)
then p v p' I €+ 1€ Peyq as well.

Now let £ € supp(p) m supp(p’). We need to show that p v p’ | £ forces that there
are no monochromatic directed cycles in Dg with respect to (p v p')(€). This will easily
follow from Lemma 21} fix k < w and consider D = D¢[{v € s? : p(€)(v) = k} and
D = Dg[{v es? p(&)(v) = k}. pvp | € forces that D and D’ are isomorphic, acyclic
digraphs satisfying the assumptions of Lemma 2.1l as p and p’ are twins. Hence, by Lemma
21 (2), Du D' = De[{ve sP¥? : (pv p)(€)(v) = k} is acyclic as well.

O

Claim 5.4.3. P, is ccc for all a < ws.

Proof. Indeed, the A-system lemma implies that any uncountable set of conditions must
contain an uncountable set of pairwise twins, and Claim [(.4.2] implies that any two twin
conditions are comparable. O

Now, by a standard bookkeeping argument, we can choose the names D, of G so that
Vi = X(6) S w.
Before we show that the chromatic number of G is still uncountable after the iteration,

let us emphasize a simple fact which again follows Lemma 2] (1):

Claim 5.4.4. Suppose that p,p’ € Py, are determined and twins and § € sp\sp/. Then
p v p | & forces that there is no directed path from § to &' = 1, (6) in D¢ which is
monochromatic with respect to p v p'(£).
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Now, we can prove the following:

Claim 5.4.5. Suppose that p,p’ € P,,, are determined and twins and § € sp\sp,. Then there
is a minimal extension p vsp' of p v p' which forces that ¢ is connected to &' = 1, p(d) in

G.
Proof. We define ¢ = p vsp' by

(a) = (spr/,ngp/ v {4,6'}), for a =0, and
e (p v p)(a), for @ € wo\{0}.

That is, we essentially take p v p’ and add the single edge {d,6'}. If we prove that ¢ is a
condition then we are done.

We prove that ¢ | € is a condition by induction on ¢ < ws. Suppose we proved that g | £
is a condition but there is some r < ¢ | £ and C so that r forces that C' is a monochromatic
cycle with respect to ¢(§) in Dg. C must contain the edge {4,6’} and so r forces that ¢
and ¢’ are connected by a directed monochromatic path P (not containing the edge {4,4'}).
However, orientation and colouring on P is decided by p v p’ | £ already, which contradicts
Claim (5.4.4]

O

Note that p vsp’ is not necessarily determined. In any case, to finish our proof, it suffices
to show the following:

Claim 5.4.6. VP2 |= (O3 — G[X] for every uncountable X < wy.

Proof. Suppose pl-X is uncountable for some p € P,.,; we will find ¢ < p and 3,8',58" € wy
such that qI-{8, 8, 8"} is a triangle in G[X]

As P, is ccc, there is an uncountable set Y < w; in V' and determined conditions pg < p
so that 5 € sP# and pgl-5 € X whenever BeY.

Take a countable elementary submodel M of some large enough H(6) containing every-
thing relevant and let § € Y\M. We let s = sP# n M. Using elementarity, find ' € Y n M
so that

(1) ps and pg: are twins,
(2) s =sP8 N sPs’ and
(3) B = wp’m(ﬁ/)-
Let r be a determined condition extending pg: v g pg.
Now, let § = s" n M and, using elementarity again, find a condition 7’ € M so that

(4) r and " are twins,
(5) §=s"ns", and
(6) B =1 (B").
Finally, let ¢ = r' v g» r. Clearly, ql-“{53, 0, 5"} is a triangle in G[X]” |

O

In particular, if one is looking for the value of f(X;) from Conjecture [T}, it needs to be
larger than N;, at least consistently.
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6. OPEN PROBLEMS

It seems that it is non trivial to find in ZFC a single digraph D with uncountable dichro-
matic number. Indeed, even to show that K, has an orientation with uncountable dichro-
matic number required the application of wy - [wy; wl]% which is a deep result of J. Moore
[20]. Hence, we have the following meta-problem:

Problem 6.1. Provide a simple/elementary proof of the fact that K., has an orientation
with uncountable dichromatic number.

An obvious question which comes to mind regarding the definition of X (G) is whether
the sup is actually a max:

Question 6.2. Suppose that an undirected graph G has orientations D¢ for & < cf(k) so
that sup{x(D¢) : { < cf(k)} = k. Is there a single orientation D of G so that x(D) = k¥

We conjecture that the answer is yes if c¢f(x) = w but no if c¢f(k) > w.
Regarding obligatory subgraphs and Proposition B.4] we ask:

Problem 6.3. Characterize those orientations D* of H,, ., so that D* embeds into any
digraph D with uncountable dichromatic number.

At this point, we don’t even have a list of those digraphs say on 4 vertices which embed
into any digraph D with uncountable dichromatic number.

6.1. More on cycles. It is known that x(G) > w implies that G has cycles of all but
finitely many lengths [8], 29].

Question 6.4. Are there digraphs D with x(D) > w so that E')k does not embed into D for
infinitely many k?

More generally, describe what sets of cycles can be omitted by D with x(D) > w. In
particular, answer the following;:

Question 6.5. Does D — (C3)L, imply that C4 — D?

The answer is yes for the undirected version: G — (C3)L obviously implies x(G) > w and
so Cy — G and even G — (Ca)L, holds for all 2 < k < w.

It was shown by Erdés and R. Rado [6] that triangle-free graphs G with size and chromatic
number s can be constructed without additional set theoretic assumptions.

Question 6.6. Is there in ZFC a digraph D of size and dichromatic number wy such that
D has no directed triangles?

If we omit the requirement on size then the shift graphs provide an example by Theorem
4.0l
Finally, it would be very interesting to construct digraphs as in Theorem in ZFC:

Question 6.7. Is there in ZFC, for every k < w, a digraph D of uncountable dichromatic
number such that D has digirth at least k?
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6.2. Connected subgraph. It is clear that every graph with uncountable chromatic num-
ber has a connected component with uncountable chromatic number. Similarly:

Observation 6.8. Suppose that x(D) > w. Then there is Dy D so that x(Dg) > w and
Dy is strongly connected.

Komjath [14] showed that every graph G with uncountable chromatic number contains a
k-connected subgraph with uncountable chromatic number where k € w.

Question 6.9. Suppose that x(D) > w and k € w. Is there a Dy © D so that Dy is strongly
k-connected?

Even the case £ = 2 is open. In the undirected case, the balanced complete bipartite
graph on 2k vertices is a k-connected subgraph of any graph G with uncountable chromatic
number. However, any strongly connected digraph Dy contains directed cycles and hence,
by Theorem [3.5] there is a digraph D with uncountable dichromatic number so that Dy does
not embed into D. Hence no single strongly connected graph will be a universal witness
providing a positive answer to Question

If the answer is yes to Question [6.9] a more ambitious goal would be to find a Dy € D so
that x(Dgp) > w while Dy is strongly k-connected.

Regarding Theorem B the most burning question is the following:

Question 6.10. Is there (even consistently) a digraph D with x(D) > w so that D ENE
c, L fails for everyn € w?
2
Naturally, any ZFC example would be very warmly welcome:

Question 6.11. Is there in ZFC a digraph D with x(D) > w so that D ENE (C')n)i fails
for everynew?

6.3. Various questions. Regarding the Erdés-Neumann-Lara problem, we ask:
Problem 6.12. Does x(G) > 2% imply X (G) > w?
It would be rather natural to look into the following with regards to Theorem

Problem 6.13. Does x(G) = w1 imply X (G) = wy consistently (without restricting the size
of G)?

The following might be easier to answer:
Problem 6.14. Does
o2 7).
hold in ZFC for G with chromatic number wy where P, is the one-way infinite directed path.
Finally, we close with a fascinating open problem of Neumann-Lara from 1985:
Problem 6.15. Does every planar digraph have dichromatic number at most 27

The answer is yes if the digirth is at most four [I3}[18]. We mention that this is a problem
on finite digraphs: if there is an infinite counterexample then it must have a finite subdigraph
of dichromatic number greater than 2 as well by Theorem [3.10]
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