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ORIENTATIONS OF GRAPHS WITH UNCOUNTABLE CHROMATIC

NUMBER

D. T. SOUKUP

Dedicated to Professor András Hajnal.

Abstract. Motivated by an old conjecture of P. Erdős and V. Neumann-Lara, our aim
is to investigate digraphs with uncountable dichromatic number and orientations of undi-

rected graphs with uncountable chromatic number. A graph has uncountable chromatic

number if its vertices cannot be covered by countably many independent sets, and a
digraph has uncountable dichromatic number if its vertices cannot be covered by count-
ably many acyclic sets. We prove that consistently there are digraphs with uncountable
dichromatic number and arbitrarily large digirth; this is in surprising contrast with the
undirected case: any graph with uncountable chromatic number contains a 4-cycle. Next,
we prove that several well known graphs (uncountable complete graphs, certain compara-
bility graphs, and shift graphs) admit orientations with uncountable dichromatic number
in ZFC. However, we show that the statement “every graph G of size and chromatic num-
ber ω1 has an orientation D with uncountable dichromatic number” is independent of
ZFC.

1. Introduction

The chromatic number of an undirected graphG, denoted by χpGq, is the minimal number
of independent sets needed to cover the vertex set of G. A beautiful branch of graph theory
deals with the problem of understanding the consequences of having large (finite or infinite)
chromatic number. In particular, what subgraphs H must appear in graphs G with large,
say uncountable chromatic number? Is it true that cycles, paths or certain highly connected
sets must embed into every graph with large enough chromatic number? There are numerous
deep results regarding these questions; the investigations started in the 1960s with a seminal
paper of P. Erdős and A. Hajnal [8] and later on, significant contributions were made by P.
Komjáth, S. Shelah, C. Thomassen, S. Todorcevic and several other people. In particular,
it is now well understood exactly what cycles and finite graphs must embed into a graph
G with χpGq ą ω. We shall review some of these results in later sections but the surveys
[15, 16] offer great overview of this topic.

In the case of directed graphs, acyclic sets play the role of independent sets: the dichro-
matic number of a directed graph D, denoted again by χpDq, is defined to be the minimal
number of acyclic vertex sets needed to cover the vertices of D [22]. The notion of the dichro-
matic number of digraphs is certainly well investigated (see [3, 12, 13, 19, 28] for various
directions in research). Now, our paper is motivated by two fundamental questions: first,
we aim to understand which classical results on chromatic number and obligatory subgraphs
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2 D. T. SOUKUP

extend to the directed case. Second, we hope to shed more light on an old conjecture of
Erdős and V. Neumann-Lara [4, 21]:

Conjecture 1.1. There is a function f : N Ñ N so that χpGq ě fpkq implies that χpDq ě k

for some orientation D of G.

Note that any graph G with χpGq ě 3 must contain a cycle and hence there is an
orientation D of G with a directed cycle i.e. χpDq ě 2. In turn fp2q “ 3 but no other value
of the function f is currently known. Our aim will be to understand the possible values of
χpDq where D is an orientation of a graph G with χpGq ą ω. In [4], a related invariant is
introduced and further investigated in [5]: let

ÝÑχ pGq “ suptχpDq : D is an orientation of Gu.

That is, ÝÑχ pGq ě k means that there is an orientation of G so that whenever we colour
the vertices of G with ă k colours then we can find a monochromatic directed cycle. As
Erdős noted in [4], it is surprisingly hard to determine ÝÑχ pGq for rather simple graphs G;
we certainly can’t refute this in the case of uncountable graphs either.

Before we summarize the results of our paper, let us introduce some notation: throughout
the paper, G will denote an undirected graph and D a digraph. An orientation D of an
undirected graphG is a digraphD with the same set of vertices asG and for every undirected
edge ab in G either ab or ba (but not both) is an arc of D. We will use the well known arrow
notation:

D Ñ pD0q1r
means that for every r-colouring of the vertices of D one can find a monochromatic copy of
D0. The negation is denoted by D Û pD0q1r.

We let
G

ENL
ÝÑ

`

D0

˘1

r

mean that there is an orientation D of G such that D Ñ pD0q1r .
We will write

G
ENL
ùñ

`

D0

˘

to denote the fact that there is an orientation D of G such that D0 is a subgraph of DrW s
whenever χpGrW sq “ χpGq.

We start in Section 2 by proving an important lemma on amalgamating digraphs with
large digirth; this will later be applied in multiple arguments. Next, in Section 3, we
investigate what are those directed graphs that embed into any digraph D with χpDq ą ω.
The two main results of this section are Theorem 3.5 and 3.7: we prove that consistently

‚ for each k ă ω there is a digraph D with χpDq ą ω so that D has no directed cycles
of length ď k;

‚ there is a digraph D with χpDq ą ω so that D Û p
ÝÑ
C kq1k for all k ă ω.

This is in surprising contrast with the undirected case: χpGq ą ω implies that G Ñ pC2kq1ω
for all k ă ω. We remark that a standard compactness argument combined with Theorem
3.5 shows the existence of finite digraphs D with arbitrary large digirth and dichromatic
number, a result of D. Bokal et al [2].

Next, in Section 4, we construct various orientations of graphs G with uncountable chro-
matic number. First, we look at specific graphs: the complete graph on κ vertices, com-
parability graphs of Suslin trees and certain non-special trees and shift graphs. We show
that these undirected graphs all admit orientations with large dichromatic number (in ZFC).
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Now, we can see that any obligatory subgraph for digraphs D with uncountable dichromatic
number must be bipartite and consistently acyclic.

Second, we show in Theorem 4.9 that χpGq “ ω1 is equivalent to ÝÑχ pGq “ ω1 under ♦`

for any G of size ω1. Actually, we prove the much stronger relation

G
ENL
ùñ

`

D
˘

where D is any orientation of the half graph Hω,ω.
Finally, in Section 5, we show that consistently there is a graph G with χpGq “ |G| “

ω1 but ÝÑχ pGq ď ω; that is, χpDq ď ω for any orientation D of G. In particular, this
provides some information on the Erdős-Neumann-Lara conjecture for uncountable graphs:
the statement “χpGq “ ω1 implies ÝÑχ pGq “ ω1 for G of size ω1” is independent of ZFC.

We end our paper with a healthy list of open problems which in our opinion worth the
attention of the interested reader.

Acknowledgements. Several arguments in the present paper were motivated by ideas
from [11]. We thank the anonymous referees for their careful reading and many advice which
significantly improved the presentation of the paper.

The author was supported in part by PIMS and the FWF Grant I1921.

2. Preliminaries

In our paper, G always denotes an undirected graph i.e. a pair pV,Eq so that E Ď rV s2.
A pair D “ pV,Eq is a digraph if E Ď V 2, and we do not allow multiple arcs i.e. if uv P E
then vu R E. We say that D is an orientation of G if D and G have the same set of vertices
and D has an arc between two vertices u and v (in exactly one of the two directions) if and
only if uv is an edge in G.

We will use V pGq and V pDq to denote the vertex set of G and D, and EpGq and EpDq to
denote the edge/arc set of G and D, respectively. We let N`pvq “ tw P V pDq : vw P EpDqu
and N´pvq “ tw P V pDq : wv P EpDqu. For digraphs Di, we use the convention that
D “

Ť

tDi : i ă nu is the pair p
Ť

tV pDiq : i ă nu,
Ť

tEpDiq : i ă nuq which may or may not
be a digraph in our definition (since multi-edges could be introduced).

We write G0 ãÑ G to denote the fact that G0 embeds into G as a not necessarily induced
subgraph; ãÑ will also be used in the context of digraphs. We let GrW s and DrW s denote
the induced subgraph of G and D on vertices W .

We say that the length of a path is the number of its edges. Let
ÝÑ
Pω denote the one way

infinite directed path and let
ÝÑ
Cn denote the directed cycle with n vertices. The girth/digirth

of a graph/digraph is the length of its shortest cycle/directed cycle.

We will frequently use the following lemma on amalgamating digraphs with prescribed
digirth.

Lemma 2.1. Suppose that the digraphs Di are on vertex sets Vi (finite or infinite) so that
there is a single R such that R “ Vi X Vj and there is a digraph isomorphism ψi,j : Vi Ñ Vj
which is the identity on R for all i ă j ă n. Then D “

Ť

tDi : i ă nu is a digraph.
Fix k P ω at least 3. If each Di has digirth bigger than k then

(1) any path P from α P Vi to α
1 “ ψi,jpαq P Vj in D has length ą k;

(2) D has digirth bigger than k.

Furthermore, suppose that αi P VizR so that αj “ ψi,jpαiq for i ă j ă n.
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(3) Let n ą k and define D˚ by V pD˚q “ V pDq and EpD˚q “ EpDqYtαn´1α0, αiαi`i :
i ă n´ 1u. Then D˚ has digirth bigger than k.

Note that the analogue of Lemma 2.1 trivially fails for undirected graphs: it is easy to
find G0, G1 both copies of the path of length 2 so that G0 YG1 is a copy of C4.

Proof. It is obvious that D is a digraph.
(1) Suppose that there is a path P on vertices a0 “ α, a1, . . . , aℓ´1, aℓ “ α1 from α P Vi˚

to α1 “ ψi˚,j˚ pαq P Vj˚ in D which has length ℓ ď k; we can suppose that ℓ is minimal. Let
ψi,i be the identity on Vi and let

ψ “
ď

tψi,j˚ : i ă nu.

Note that ψ is a digraph homomorphism from D to Dj˚ . Furthermore, ψ is injective on
tai : i ă ℓu by the minimality of ℓ. Hence ψpa0q “ α1, . . . , ψpaℓ´1q, ψpaℓq “ α1 is a cycle in
Dj˚ of length ℓ ď k which contradicts that Dj˚ has digirth ą k.

(2) Now, suppose that C on vertices a0, a1, . . . , aℓ´1, aℓ “ a0 is a cycle in D of length
ℓ ď k. Let j˚ P n so that a0 P Vj˚ . If ψ is defined as above then ψ has to be injective on
tai : i ă ℓu otherwise there is a path (a subgraph of C) contradicting (1). In particular,
ψpa0q “ a0, . . . , ψpaℓ´1q, ψpaℓq “ a0 is a cycle in Dj˚ so ℓ ą k; this is a contradiction.

(3) Suppose that C on vertices a0, . . . , aℓ´1, aℓ “ a0 is a cycle in D˚ of length ℓ ď k.
(1) and (2) imply that C must contain at least 2 non adjacent edges from D˚zD. Also, as
k ă n, there must be a vertex of C not in A “ tαi : i ă nu. Hence, for some ℓ0 ă ℓ1 ă ℓ,
aℓ0 , aℓ1 P A and aℓ0 , . . . , aℓ1 is a directed path in D. However, this (and ℓ ď k) contradicts
(1). �

Finally, let us slightly extend the arrow notations: given a set of directed graphs D we
let

D Ñ p
ľ

Dq1r

mean that for every r-colouring of the vertices of D and every D0 P D there is a monochro-
matic copy of D0 in D. Similarly,

D Ñ p
ł

Dq1r

means that for every r-colouring of the vertices of D there is a monochromatic copy of some
digraph D0 from D in D.

Now, we write

G
ENL
ÝÑ

`

ł

D
˘1

r

to mean that there is an orientation D of G such that D Ñ p
Ž

Dq1r. So the relation
ÝÑχ pGq ą ω can be written as

G
ENL
ÝÑ

`ÝÑ
C 3 _

ÝÑ
C 4 _ . . .

˘1

ω

or G
ENL
ÝÑ

`
Ž

3ďnăω

ÝÑ
C n

˘1

ω
.

Let us omit the straightforward definitions of G
ENL
ÝÑ

`
Ź

D0

˘1

r
, G

ENL
ùñ

`
Ž

D0

˘

and G
ENL
ùñ

`
Ź

D0

˘

.
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2.1. Set theoretic preliminaries. In general, we use standard set theoretic notations and
definitions but let us refer the reader to [17] for anything that is left undefined. However,
we do include a short reminder of two key (and somewhat advanced) concepts that appear
regularly: elementary submodels and forcing.

First, we say that a subset M of a model V is an elementary submodel if for any first
order formula φ with parameters fromM is true in pM, Pq (written as M |ù φ) if and only if
it is true in pV, Pq. We writeM ă V in this case. For technical reasons, one takes elementary
submodels of Hpθq, the collection of sets of hereditary cardinality ă θ, for a large θ, instead
of the complete set theoretic universe V .

The idea is, that if G is an uncountable graph andM is a countable elementary submodel
so that G “ pV,Eq P M , then the countable graph G æ M :“ GrV X M s highly resembles
the uncountable G. Now pMξqξăζ is a continuous chain of models ifMν Ď Mξ for ν ă ξ and
Mξ “

Ť

νăξ Mν for any limit ξ ă ζ. If pMξqξăζ covers a graph G then we can get a very

useful decomposition of G by looking at pG æ Mξ`1zMξqξăζ .
Probably the most useful thing to keep in mind is the following:

Fact 2.2. Suppose that M is a countable elementary submodel of Hpθq and A P M . If A is
countable then A Ď M or equivalently, if AzM is nonempty then A is uncountable.

In particular, if G P M and a finite set of vertices W Ď G æ M has a single common
neighbour outside G æ M then there must be uncountably many common neighbours to W
in G (and infinitely many of these will be in G æ M too). Let us refer the reader to [27] for
a complete introduction to elementary submodels and combinatorics.

Next, our main tool to prove the consistency of a statement is either invoking a combi-
natorial principle (like ♦`) or by forcing. With forcing, one looks at a (countable) model
V of ZFC and a poset P P V to form a larger model V P by adding a filter G Ď P which is
generic with respect to V . For example, P can be the set of all finite graphs (with a certain
property) on say ω1; when extending a graph p P P to a larger graph q P P, we do not add
new edges between vertices of p. Now any filter G Ď P defines a graph G “

Ť

G which, in
the case of a generic filter, is a quite random and useful object.

A key property of forcing is that any formula φ which is true in the extension (i.e. V P |ù φ)
is forced by a condition p from the filter G (written as p,φ). Finally, in order to show that
the forcing behaves nicely (i.e. no cardinals are collapsed) we will prove that our posets are
ccc i.e. any set Q Ă P of uncountably many conditions contains p ‰ q P Q with a common
extension. The way to do this (in our case) is to find p ‰ q P Q which are isomorphic and
agree on their common vertices; this is done generally by applying the ∆-system lemma and
Lemma 2.1.

Fact 2.3 (∆-system lemma). Suppose that S is an uncountable set of finite sets. Then there
is a single finite set r and uncountable R Ă S so that sX t “ r for any s ‰ t P R.

Naturally, one can suppose that all elements of R have the same size and, in case of finite
graphs, each s P R carries the same graph.

3. Obligatory subgraphs of digraphs with uncountable dichromatic number

For directed graphs D, we can ask what implications does χpDq ą ω have; in particular,
what are those directed graphs that embed into any digraph D with χpDq ą ω? We will
mention the undirected counterparts of our results as we proceed.
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Proposition 3.1. Suppose that χpDq ą ω. Then there is D0 Ď D so that χpD0q ą ω and
each vertex in D0 has infinite in and out degree.

We thank one of our anonymous referees for simplifying the original proof of this result.

Proof. Suppose that D is a counterexample to the statement with minimal cardinality; in
particular, any subgraph of D with size ă |D| has countable dichromatic number. Now, we
can find an ordinal κ and vertices tvα : α ă κu so that χpDrV ztvα : α ă κusq ď ω and for
all α P κ either

(3.1) |tβ P κzα : vαvβ P EpDqu| ă ω

or

(3.2) |tβ P κzα : vβvα P EpDqu| ă ω.

Indeed, given vertices vα for α ă β we look at DrV ztvα : α ă βus: if this digraph has
countable dichromatic number then we stop. Otherwise, there must be a vertex vβ P V ztvα :
α ă βu so that vβ has only finitely many in or finitely many out neighbours in DrV ztvα :
α ă βus.

We let V ` and V ´ denote the set of vα so that (3.1) or (3.2) above holds, respectively.
Now, it suffices to show that χpDrV `sq ď ω and χpDrV ´sq ď ω holds. This, together

with χpDrV ztvα : α ă κusq ď ω implies that χpDq ď ω which is a contradiction.
Consider V ` and the set-mapping F` defined by vα ÞÑ tvβ P N`pαq : α ă βu. By Fodor’s

theorem [9], V ` is the union of countably many F`-free sets tV `
i : i ă ωu i.e. u R F`pvq if

u ‰ v P V `
i . In other words, each arc of DrV `

i s goes down with respect to the well order
we defined and so DrV `

i s is acyclic. The argument for V ´ is completely analogous.
�

Corollary 3.2.
ÝÑ
Pω embeds into D whenever χpDq ą ω. Moreover, if T is any orientation

of the everywhere ω-branching rooted tree then T embeds into D whenever χpDq ą ω.

The undirected version of the above lemma and corollary appeared in [8] and we followed
similar proofs.

Before proceeding further, we mention that the set of obligatory digraphs for graphs with
χpDq ą ω is closed under a simple operation: let revpD0q denote the digraph on vertices
V pD0q and edges tuv : vu P EpD0qu.

Observation 3.3. If D0 ãÑ D for every D such that χpDq ą ω then revpD0q ãÑ D for
every D such that χpDq ą ω as well.

Proof. Indeed, note that χprevpDqq “ χpDq so D0 ãÑ revpDq as well which implies that
revpD0q ãÑ revprevpDqq “ D.

�

One of the strongest results on obligatory subgraph was found by A. Hajnal and P.
Komjáth: the half graph Hω,ω embeds into any graph G with χpGq ą ω [10]. Recall that
Hω,ω is the graph defined on vertices ωˆ2 and pk, iqpℓ, jq is an edge if and only if k ď ℓ ă ω

and i “ 0, j “ 1.
There are two simple orientations of Hω,ω: pk, 0qpℓ, 1q is an arc if and only if k ď ℓ ă ω

or pℓ, 1qpk, 0q is an arc if and only if k ď ℓ ă ω. We will denote these graphs by
ÝÝÝÑ
Hω,ω and

ÐÝÝÝ
Hω,ω, respectively.

Proposition 3.4.
ÝÝÝÑ
Hω,ω and

ÐÝÝÝ
Hω,ω both embed into D if χpDq ą ω.
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Proof. It suffices to prove for
ÝÝÝÑ
Hω,ω by Observation 3.3. Suppose that D is a digraph on

vertex set V without a copy of
ÝÝÝÑ
Hω,ω so that χpDq ą ω. Let us also suppose that D has

minimal size among these graphs. Cover D by a continuous chain of elementary submodels
pMξqξăζ so that |Mξ| ă |D| and D P Mξ.

Claim 3.4.1. If v P V XMξ`1zMξ then N´pvq XMξ is finite.

Indeed, suppose that x0, x1 ¨ ¨ ¨ P N´pvq X Mξ. The set N`rtxi : i ă nus must be
uncountable otherwise N`rtxi : i ă nus Ď Mξ and so v P Mξ. Hence, we can find distinct

y0, y1 . . . so that yn P N`rtxi : i ă nus. Now
ÝÝÝÑ
Hω,ω ãÑ Drtxi, yi : i ă ωus. This contradicts

our assumption that
ÝÝÝÑ
Hω,ω does not embed into D.

By the minimal size of D, there are maps fξ : V X Mξ`1zMξ Ñ ω so that there are
no monochromatic cycles with respect to fξ. Define f “ pf1, f2q : V Ñ ω ˆ ω so that
f1 “

Ť

ξăζ fξ and f2pvq ‰ f2pwq if v P V X Mξ`1zMξ and w P N´pvq X Mξ. This can be

done as N´pvq XMξ is finite.
We claim that f witnesses that χpDq ď ω which is a contradiction. Indeed, the definition

of f1 guarantees that if C is monochromatic with respect to f then C must have an arc of the
form wv with v P V XMξ`1zMξ and w P N´pvq XMξ. But in this case f2pvq ‰ f2pwq �

At this point, we are uncertain of exactly what orientations of Hω,ω must embed into any
D with χpDq ą ω.

3.1. Cycles and dichromatic number. Erdős proved in the groundbreaking [7] that there
are graphs with arbitrary large finite chromatic number and arbitrary large girth. Rather
surprisingly this fails for uncountable chromatic number: if χpGq ą ω then G contains a
4-cycle. This was originally proved in [8] but also follows from the fact that Hω,ω embeds
into G if χpGq ą ω.

Now, for finite directed graphs the analogue of Erdős’ thereom was proved by Bokal et al
[2]: there are digraphs with arbitrary large finite dichromatic number without short directed
cycles. At this point, it is somewhat unexpected that this result extends to uncountably
dichromatic directed graphs as well:

Theorem 3.5. Consistently, for each natural number n ě 3 there is a digraph D on vertex
set ω1 so that

(1) D has digirth bigger than n, and

(2)
ÝÑ
C n`1 ãÑ DrXs for every uncountable X Ď ω1.

In particular, χpDq “ ω1.

Proof. We show that for any n there is a ccc poset of size ω1 which introduces such a digraph
D. We leave it to the reader to check that the finite support product or iteration of these
countably many posets gives a model with the appropriate graphs for each n at the same
time.

Fix n ě 3 and simply let P be the set of all finite digraphs on a subset of ω1 which avoid
ÝÑ
Ck for 3 ď k ď n i.e. each p P P is a finite digraph pV ppq, Eppqq with digirth ą n. We write
p ď q for p, q P P if V ppq Ě V pqq and prV pqqs “ q.

We say that p, q P P are twins if |V ppq| “ |V pqq|, V ppq X V pqq ă V ppqzV pqq ă V pqqzV ppq
(or vica versa V pqqzV ppq ă V ppqzV pqq) and the unique order preserving map ψp,q from V ppq
to V pqq is a digraph isomorphism of p and q. Note that if p, q are twins then p Y q is a
digraph as well.
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Clearly, any generic filter G Ď P gives a digraph 9D on vertex set ω1 with Ep 9Dq “
Ť

tEppq :
p P Gu.

Claim 3.5.1. P is ccc.

Proof. Note that any uncountable set of conditions contains an uncountable subset of pair-
wise twins by the ∆-system lemma. Now, we claim that pY q is a condition if p, q are twins.
Indeed, apply Lemma 2.1 (2).

�

The next claim finishes the proof of the theorem:

Claim 3.5.2. V P |ù
ÝÑ
C n`1 ãÑ 9Dr 9Xs for every uncountable 9X Ď ω1.

Proof. Suppose that p,| 9X| “ ω1. There is an uncountable Y Ď ω1 and pβ P P for β P Y

so that pβ ď p, β P V ppβq and pβ,β P 9X. Apply the ∆-system lemma to find α0 ă α1 ă
¨ ¨ ¨ ă αn P Y so that pαi

and pαj
are twins whenever i ă j ă n` 1.

Define q by letting

(3.3) V pqq “
ď

iăn`1

V ppαi
q and Epqq “

ď

iăn`1

Eppαi
q Y tαnα0, αiαi`1 : i ă nu.

Lemma 2.1 (3) implies that q P P and of course q ď pαi
. We clearly have q, 9Drα0 . . . αns ãÑ

Dr 9Xs and that q, 9Drα0 . . . αns is an induced copy of
ÝÑ
C n`1.

�

�

Corollary 3.6. Consistently, any digraph D0 which embeds into all digraphs D with χpDq ą
ω must be acyclic.

We don’t know at this point how to construct digraphs with uncountable dichromatic
number but with arbitrary large digirth in ZFC.

Now, the fact that C4 appears in every graph G with χpGq ą ω shows that the relation

G Ñ pC4q1ω

is equivalent to χpGq ą ω. The digraph version is (consistently) false by the above theorem,

however at this point it seems possible that χpDq ą ω implies D Ñ p
ÝÑ
C kq1ω for some k ă ω

for any D. We show now that this is not the case. Let us denote the set of nonzero,
nondecreasing f : N Ñ N so that lim

kÑ8
fpkq “ 8 with F for the next proof.

Theorem 3.7. Consistently, for f P F there is a digraph D “ Df on vertex set ω1 so that

(1) χpDq “ ω1, and

(2) D Û p
ÝÑ
C kq1

fpkq for all k ă ω.

Proof. Given f P F we define the poset Pf of conditions p “ pdp, pgpkq3ďkďnpq where

(P1) dp “ pV p, Epq is a finite digraph on ω1 and np “ |V p|,
(P2) gpk : V pdpq Ñ fpkq, and
(P3) dprtv : gpkpvq “ ius has digirth ą k for all i ă fpkq and 3 ď k ď np.

We let p ď q if

(i) V p Ě V q and dprV qs “ dq,
(ii) gqk “ g

p
k æ V q for all 3 ď k ď nq.
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It is clear that a generic filter G Ď P introduces a digraph 9D “
Ť

tdp : p P Gu and
functions 9gk by 9gk “

Ť

tgpk : p P G, k ď npu for k P ω.

Claim 3.7.1. The following holds for any generic filter G Ď P and 9D, 9gk defined as above:

(a) 9D has vertex set ω1,
(b) domp 9gkq “ ω1, and

(c) 9Drtv P ω1 : 9gkpvq “ ius has digirth ą k for all i ă fpkq and 3 ď k ă ω.

Proof. (a) Indeed, it suffices to show that the set tp P P : v P V pu is dense for every v P ω1.
Given any q P P and v P ω1zV q we let V p “ V q Y tvu and Ep “ Eq. Then simply define
g
p
k “ g

q

k˚ Y tpv, 0qu where 3 ď k ď np “ nq ` 1 and k˚ “ mintk, nqu. It is easy to check that
property (P3) is satisfied by p.

(b) follows from (a), and (c) follows from property (P3).
�

We say that two conditions p, q are twins if

(1) np “ nq and V pdpqXV pdqq ă V pdpqzV pdqq ă V pdqqzV pdpq (or vica versa V pdqqzV pdpq ă
V pdpqzV pdqq),

(2) the unique order preserving map ψp,q from V pdpq to V pdqq is an isomorphism of the
digraphs dp and dq, and

(3) gpkpvq “ g
q
kpψp,qpvqq for all 3 ď k ď np and v P V p.

Claim 3.8. P is ccc.

Proof. By standard ∆-system arguments, it suffices to show that if p, q P P are twins then
they have a common extension r P P. We let dr “ dp Y dq and define grk “ g

p

k˚ Y g
q

k˚

where 3 ď k ď nr and k˚ “ mintk, npu. Note that fpk˚q ď fpkq for k˚ “ mintk, npu so
grk : V r Ñ fpkq i.e. property (P2) is satisfied.

We need to check that drrtv P V r : grkpvq “ ius has digirth ą k for all i ă fpkq and
3 ď k ď nr. Note that

drrtv P V r : grkpvq “ ius “ dprtv P V p : gp
k˚ pvq “ ius Y dqrtv P V q : gq

k˚pvq “ ius

where k˚ “ mintk, npu. Furthermore, the graphs dprtv P V p : gp
k˚ pvq “ ius and dqrtv P

V q : gq
k˚pvq “ ius are isomorphic and have digirth ą k. Hence Lemma 2.1 (2) implies that

drrtv P V r : grkpvq “ ius still has digirth ą k. In turn, r satisfies property (P3) and so r P Pf

is a common extension of p and q.
�

Claim 3.8.1. V P |ù χp 9Dr 9W sq “ ω1 for any uncountable 9W Ď ω1.

Proof. Suppose that p, 9W Ď ω1 is uncountable. Find Y P rω1sω1, n P ω and pα ď p for
α P Y so that

(i) tpα : α P Y u are pairwise twins (with mappings ψα,α1 witnessing this) and npα “ n ě 2,
(ii) α P V pα and ψα,α1 pαq “ α1 for α, α1 P Y , and

(iii) pα,α P 9W for all α P Y .

This can be done by the ∆-system lemma. Let N P N be minimal so that fpNq ą fpnq;
such a value exists as fpkq Ñ 8 as k Ñ 8 and N ą n as f is nondecreasing. Now, fix
distinct αj P Y for j ă N and define q as follows:

(3.4) V q “
ď

jăN

V pαj and Eq “
ď

jăN

Epαj Y tαN´1α0, αjαj`1 : j ă N ´ 1u.
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Now we define gqk for 3 ď k ď nq as follows: let

g
q
k “

ď

iăN

g
pαj

k˚

if 3 ď k ď N ´ 1 where k˚ “ mintk, nu and let

g
q
k “ g

pα0

n æ pV pα0 ztα0uq Y tpα0, fpnqqu Y
ď

1ďjăN

g
pαj
n

if N ď k ď nq.

We need to check that dqrtv P V q : gqkpvq “ ius has digirth ą k for all i ă fpkq and
3 ď k ď nq. If k ď N ´ 1 then

dqrtv P V q : gqkpvq “ ius “
ď

jăN

dpαj rtv P V pαj : g
pαj

k pvq “ ius

and we can apply either Lemma 2.1 (2) (if g
pαj

k pαjq ‰ i) or Lemma 2.1 (3) (if g
pαj

k pαjq “ i)
to see that dqrtv P V q : gqkpvq “ ius has digirth ą k.

Now, for k between N and nq, Lemma 2.1 (3) might not apply directly as k ą N . We
distinguish 4 cases depending on value of i ă fpkq. If fpnq ă i ă fpkq then dqrtv P V q :
g
q
kpvq “ ius is empty so we have nothing to prove. If i “ fpnq then dqrtv P V q : gqkpvq “

ius “ tα0u so again we have nothing to prove. Now if i ă fpnq but g
pαj
n pαjq ‰ i then again

we can apply Lemma 2.1 (2) to see that dqrtv P V q : gqkpvq “ ius has digirth ą k as

dqrtv P V q : gqkpvq “ ius “
ď

jăN

d
pαj rtv P V pαj : g

pαj
n pvq “ ius

as before.
Finally, lets look at the case when g

pαj
n pαjq “ i (if this holds for one j then it holds for

all j ă N as we are working with twin conditions). Suppose that C is a cycle in dqrtv P V q :
g
q
kpvq “ ius of length ď k. By Lemma 2.1 (2), C must contain a new edge of the form αjαj`1

where 1 ď j ă N ´ 1. In particular, we can find 1 ď j0 ă j1 ď N ´ 1 so that C contains a

directed path from αj1 to αj0 using only edges from
Ť

jăN d
pαj rtv P V pαj : g

pαj
n pvq “ ius.

Let ψ “
Ť

tψαj ,αj1
: j ă Nu where ψα,α is the identity on V pα . Now ψ maps P into a

walk from αj1 back to αj1 “ ψpαj0 q in d
pαj1 rtv P V

pαj1 : g
pαj1
n pvq “ ius. Also, this walk

has length at most k so it must contain a cycle of length at most k as well. However, this

contradicts that d
pαj1 rtv P V

pαj1 : g
pαj1
n pvq “ ius has digirth ą k.

Hence, we showed that pgqkq3ďkďnq satisfies property (P3) and so q P Pf . It is now clear

that q, 9Drtαj : j ă N s is a copy of
ÝÑ
CN in 9W .

�

At this point, we showed that for any single f P F there is a ccc extension of the ground
model with the required digraph Df .

Now, starting from a model of CH, we can define a finite support iteration pPα, 9Qβqαďω1,βăω1

of length ω1 where V Pα |ù 9Qα “ P 9f
for some Pα-name 9f for a function in F .

It follows from Claim 3.8 that each Pα is ccc so we can arrange the iteration in such a

way that any f P F in the final model shows up at some intermediate stage i.e. 9Qα “ P 9f for

some α and appropriate name 9f for f . So it suffices to check that in the final model V Pω1

we still have χpDf q “ ω1 for the graphs that we introduced by the intermediate forcings
Qα. This can be done using determined conditions and the argument in Claim 3.8.1; more
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precisely, we add edges to the finite approximation of Df in coordinate α as in Claim 3.8.1
while not adding any new edges to graphs in other coordinates. We leave the details to the
interested reader.

�

Let us also mention the following

Observation 3.9. Suppose that D is a digraph.

(1) D Û p
ÝÑ
C kq1ω for all k ă ω implies χpDq ď 2ω.

(2) The edges of D can always be partitioned into two acyclic sets.

Indeed, if fk witnesses D Û p
ÝÑ
C kq1ω then f : V pDq Ñ ωω defined by v ÞÑ pfkpvqqkPω

witnesses χpDq ď 2ω. To see (2), take an arbitrary well order on the vertices and consider
the forward and backward edges.

Finally, we state without proof that the famous Erdős-de Bruijn compactness result also
holds for directed graphs:

Theorem 3.10. Suppose that any finite subgraph of the digraph D has finite dichromatic
number at most k. Then χpDq ď k as well.

In particular, we can deduce the result of Bokal et al [2] on finite digirth and dichromatic
number from our forcing result in Theorem 3.5: given a model V of set theory and finite
number k, we force to find an extension V P with a graph D with digirth ą k and χpDq ą ω.
By the above compactness result, there must be a finite subgraph D˚ of D (in V P) which
has dichromatic number ě k. However, the models V and V P have the same finite digraphs
and hence D˚ P V as well. Much like the probabilistic proof in [2] this forcing argument
gives no information about these sparse digraphs with large dichromatic number. A simple,
recursive construction of such graphs was actually given by M. Severino [24].

4. Orientations of undirected graphs with large chromatic number

There are two trivial orientations of any undirected graph G given a well order ă on the
vertices: define the orientation

ÝÑ
G of G by uv P Ep

ÝÑ
G q if and only if uv P EpGq and u ă v.

Similarly,
ÐÝ
G is defined by uv P Ep

ÝÑ
Gq if and only if uv P EpGq and v ă u.

It is well known that if G has countable colouring number i.e. tu P Npvq : u ă vu is
finite for every vertex v P V pGq (for some well order ă of the vertices) then χpGq ď ω

(see [8]). This yields the following observations: let
ÝÑ
S denote the countable star with all

edges pointing out, and
ÐÝ
S denote the countable star with all edges pointing in. Then the

orientation
ÝÑ
G of G witnesses G

ENL
ÝÑ

`ÐÝ
S

˘1

ω
while

ÐÝ
G witnesses G

ENL
ÝÑ

`ÝÑ
S

˘1

ω
.

As we saw in the previous section, Hω,ω embeds into any graph G with χpGq ą ω [10].
In particular, the girth of G is at most 4 whenever χpGq ą ω; so it could be the case that

G
ENL
ÝÑ

`ÝÑ
C4

˘1

ω
or even G

ENL
ùñ

`ÝÑ
C4

˘

whenever χpGq ą ω. Indeed, we are going to prove this, at least for some graphs.
First, let us look at complete graphs. Recall that

κ Û rκ;κs22

means that there is a function f : rκs2 Ñ 2 so that for all A,B P rκsκ and i ă 2 there is
α P A and β P B so that α ă β and fpα, βq “ i.

Theorem 4.1. Suppose that κ is an infinite cardinal.
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(1) If κ is regular and κ Û rκ;κs22 then Kκ
ENL

ùñ
`

ľ

3ďnPω

ÝÑ
Cn

˘

.

(2) If λ is uncountable then Kλ`

ENL
ÝÑ

`

ľ

3ďnPω

ÝÑ
C n

˘1

λ
.

Let us show a corollary first:

Corollary 4.2. ÝÑχ pKκq “ κ for any infinite cardinal κ.

Proof. Recall that κ` Û rκ`;κ`s22 holds whenever κ is a regular cardinal [23]. Hence
Theorem 4.1 (1) and (2) implies that ÝÑχ pKκ` q “ κ` for any cardinal κ.

Now, given a limit cardinal κ let pκiqiăcfpκq be a cofinal sequence of regular cardinals in κ.

Let Vi P rκsκ
`

i pairwise disjoint for i ă cfpκq. Then Kκ restricted to Vi is just a copy of Kκ
`

i

so we can apply Theorem 4.1 (1) to find an orientationDi witnessing Kκ
`

i

ENL
ùñ

`
Ź

3ďnPω

ÝÑ
Cn

˘

on Vi. Putting together these digraphs Di (and orienting the edges outside arbitrarily) we

defined an orientation D of Kκ that witnesses Kκ
ENL
ÝÑ

`
Ź

3ďnPω
ÝÑ
Cn

˘1

µ
for any µ ă κ. In

particular, ÝÑχ pKκq “ κ .
�

Our proof of Theorem 4.1 was motivated by the proof of Theorem 8 [11]; we will point
out further connections to [11] later as well, in particular in Section 5.

Proof. (1) Let f : rκs2 Ñ 2 witness κ Û rκ;κs22. Now simply define D “ pκ,Eq by αβ P E
if α ă β and fpα, βq “ 0, otherwise βα P E.

First, we show that any induced subgraph of size κ contains a copy of
ÝÑ
C 3. Let W P rκsκ.

Define W` “ tv P W : |N`pvq X W | ă κu and W´ “ tv P W : |N´pvq X W | ă κu. If
there is a v P W zpW` Y W´q then by the choice of f we can find α P N`pvq X W and
β P N´pvq X W so that v ă α ă β and fpα, βq “ 0. Then vα, αβ, βv P E so tv, α, βu is a

copy of
ÝÑ
C 3.

Now, it suffices to show that |W`| “ κ or |W´| “ κ is not possible. If |W`| “ κ

then using the regularity of κ, one can find a Y P rW`sκ so that α ă β P Y implies that
β R N`pαq. However, fpα, βq “ 0 for some α ă β P Y by the choice of f so β P N`pαq; this
is a contradiction. The proof that |W´| “ κ is not possible is completely analogous.

Now, fix n P ω at least 3 andW P rκsκ; we will find a copy of
ÝÑ
C n in DrW s. Find pairwise

disjoint paths Pξ “ pαξ
0 . . . α

ξ
n´2q in W of length n ´ 2 for ξ ă κ. This can be done by

applying Corollary 3.2; indeed, we already proved that χpDrW zδsq ą ω for any δ ă κ so
ÝÑ
P ω ãÑ DrW zδs.

Note that if there is a single ξ so that N´pαξ
0q XW and N`pαξ

n´2q XW both have size κ

then we can extend Pξ into a copy of
ÝÑ
C n in W . So suppose that this is not the case; then

there is I P rκsκ so that either

(i) |N´pαξ
0q XW | ă κ for all ξ P I, or

(ii) |N`pαξ
n´2q XW | ă κ for all ξ P I.

If case (i) holds then, using that κ is regular, we can find J P rIsκ so that ξ ă ζ P J implies

that αξ
0 ă α

ζ
0 and αζ

0 R N´pαξ
0q. However, this clearly contradicts the choice of f as there is

some ξ ă ζ P J such that fpαξ
0, α

ζ
0q “ 1.

Similarly, if case (ii) holds then we can find J P rIsκ so that ξ ă ζ P J implies that

α
ξ
0 ă α

ζ
0 and αζ

0 R N`pαξ
0q. This again contradicts the choice of f .



ORIENTATIONS OF GRAPHS WITH UNCOUNTABLE CHROMATIC NUMBER 13

(2) Suppose that λ is uncountable. We fix a club guessing sequence tCα : α P Eλ`

ω u, that
is: Cα is a cofinal sequence of type ω in α and whenever E Ď λ` is a club in λ` (i.e. a closed

and unbounded subset) then Cα Ď E for stationary many α P Eλ`

ω . The existence of such
guessing sequences was originally proved in Claim 2.3 [25] (for a detailed proof see [1]). We
let Ipα, 0q “ Cαp0q and Ipα, nq “ CαpnqzCαpn ´ 1q for 1 ď n ă ω where pCαpnqqnPω is the
increasing enumeration of Cα. Now, define the orientation D as follows: given α ă β P λ`

we let αβ P EpDq if and only if npα, βq is even where npα, βq “ mintn P ω : α P Ipβ, nqu;
otherwise βα P EpDq.

We will show that given a partition λ` “
Ť

tAi : i ă λu there is an i ă λ so that DrAis
contains a directed n-cycle for all 3 ď n P ω. Take a continuous, increasing sequence of
elementary submodels pMξqξăλ` covering λ` so that tAi, D : i ă λu Ď Mξ and |Mξ| “ λ

for all ξ ă λ`. Let E “ tMξ X λ` : ξ ă λ`u. E is a club so there is an i ă λ and some
stationary S Ď Ai so that Cβ Ď E for all β P S. Observe that Ipβ, nq X Ai ‰ H for every
β P S and n P ω.

Claim 4.2.1. For every n P ω at least 3 and every δ ă λ` there is a path P “ pα0 . . . αn´2q
in DrAizδs so that |N`pαn´2q XAi| “ λ`.

Proof. We prove by induction on n ě 3. If n “ 3 then let β P Szδ and pick α0 P Ipβ, 2kq
where k is large enough so that δ ă Cβp2k ´ 1q. We need that |N`pα0q X Ai| “ λ`; if
|N`pα0q XAi| ď λ and Cβp2kq “ Mξ Xλ` then N`pα0q XAi Ď Mξ by elementarity as well.
However, β P N`pα0q XAizMξ.

Now suppose that n ą 3, and again let β P Szδ. Using the inductive hypothesis and the
fact that Cβp2kq “ Mξ X λ` for some ξ ă λ` find a path P “ pα0 . . . αn´2q in Ipβ, 2kq so
that |N`pαn´2qXAi| “ λ` where k is large enough so that δ ă Cβp2k´1q. By elementarity,
we can find αn´1 P Ipβ, 2kqztαi : i ă n´ 1u so that αn´1 P N`pαn´2q. As before, it is easy
to show that |N`pαn´1q XAi| “ λ` and so pα0 . . . αn´1q is the desired path. �

Now, fix 3 ď n P ω. Let β P S arbitrary and find a path P “ pα0 . . . αn´2q in Ai X Ipβ, 1q
so that |N`pαn´2q X Ai| “ λ`. This can be done by applying Claim 4.2.1 with δ “ Cβp0q
inside the appropriate elementary submodel Mξ where Cβp1q “ Mξ X λ`.

Note that Cβp2q “ Mξ1 Xλ` for some ξ1 ă λ` so we can find γ P N`pαn´2qXAi XIpβ, 2q.

Now, βα0 . . . αn´2γ is a copy of
ÝÑ
C n in Ai.

�

Recall that given a poset P we define its comparability graph GP on vertex set P and let
st P EpGPq if and only if s ăP t or t ăP s. A Suslin-tree is a poset S so that each p P S has a
well ordered set of predecessors and each chain and antichain of S is countable. Suslin-trees
exist in some models of ZFC (e.g. if ♦ holds) and do not exist in others (e.g. if Martin’s
axiom holds without CH).

We can use the argument from Theorem 4.1 and a trick due to J. Steprans to get the
following:

Proposition 4.3. Suppose that S is a Suslin-tree and GS is its comparability graph. Then

GS

ENL

ùñ
`

ľ

3ďnPω

ÝÑ
Cn

˘

.

Proof. We work in a model V of ZFC with a Suslin tree S on ω1. As before, we pick
f : rω1s2 Ñ 2 with the property that f2tta, bu : a P A, b P B, a ă bu “ 2 whenever
A,B P rω1sω1 . Such functions were defined in [20] from a ladder system on ω1 in a robust
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way: if our model of set theory V is extended to another modelW preserving ω1 then fpa, bq

evaluated in V and W agree. Now let
ÝÑ
ab if and only if a ăS b and fpa, bq “ 0.

Given T P rSsω1 and n P ω at least 3, we need to find a copy of
ÝÑ
Cn in GSrT s. T as a

subtree of S is still Suslin, and hence forcing with T over our model V preserves cardinals
(by ccc) and introduces an uncountable set A Ď T so that H “ GSrAs is complete.

Now, working in the larger model V T , the function f still witnesses ω1 Û rω1;ω1s22 and
so by Theorem 4.1 we can find a directed n-cycle v0...vn´1 in A. However, the fact that
v0...vn´1 forms an n-cycle in T is absolute (see the remark on f earlier) so this must be true
in our original model V as well.

�

Let us state (without presenting the proof) that another class of graphs defined from well
behaved non-special trees admit similar orientations: suppose that S Ď ω1 is stationary and
let σpSq denote the poset on tt Ď S : t is closedu where s ď t if and only if s is an initial
segment of t.

Theorem 4.4. GσpSq
ENL
ÝÑ

`

ľ

3ďnPω

ÝÑ
Cn

˘1

ω
for any stationary S Ď ω1.

Indeed, one can combine the machinery of [26] and the ♦`-argument from Theorem 4.9
to prove this result. Note that neither GσpSq nor GS for S Suslin contains an uncountable
complete subgraph.

Next, we prove that shift graphs defined on large enough sets have large dichromatic
number. Let Shnpλq denote the graph on vertices rλsn and edges tξi : i ă nutξj : 1 ď j ă
n` 1u where ξ0 ă ¨ ¨ ¨ ă ξn P λ.

Theorem 4.5. Shnpexpnpκqq
ENL
ÝÑ

`ÝÑ
C 4

˘1

κ
for all 2 ď n ă ω. In particular,

ÝÑχ pShnpexpnpκqqq ą κ.

As Shnpλq has no odd cycles of length less than 2n, we get:

Corollary 4.6. There are digraphs with arbitrary large dichromatic number and large odd
(undirected) girth.

Corollary 4.7. Any digraph F which embeds into all digraphs D with χpDq ą ω must be
bipartite.

Lastly, we encourage the reader to keep the n “ 2 and κ “ ω case in mind when read-
ing the following proof; otherwise the technical details might overshadow the actual ideas
involved.

Proof of Theorem 4.5. Let λ “ expnpκq. We construct an orientation D of Shnpλq so that
wheneverG : rλsn Ñ κ then there is a monochromatic directed 4-cycle. In particular, we aim

for a copy of
ÝÑ
C 4 of the following form: the vertices will be tα0uYR,RYtβu, tα1uYR,RYtα3u

where |R| “ n ´ 1 and α0 ă α1 ă R ă α3 ă β.

List all pairs pA, gq where A P rλsexpn´1
pκq, g : rAsn Ñ κ as tpAβ , gβq : β P Sλ

κ` u so that
supAβ ă β.

By induction on β define the orientation of edges of the form tαu Y R,R Y tβu where
α ă R ă β and |R| “ n´ 1. In short, the n` 1-tuple tαu YR Y tβu will be oriented either
up (meaning tαu YR,RY tβu P EpDq) or down (meaning R Y tβu, tαu YR P EpDq).
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For notational simplicity we will use αR, Rβ, αRβ for tαuYR, RYtβu and tαuYRYtβu
respectively.

Now fix β P Sλ
κ` and R P rβsn´1. We define by induction on i ă κ disjoint finite sets

aβ,R,i P Aβ X minpRq and direct the n ` 1-tuples of the form αRβ where α P aβ,R,i.
Given i ă κ and the finite sets aβ,R,j for j ă i, we consider three cases:
Case 1. If there is α0 ă α1 P pAβ X minpRqqz

Ť

taβ,R,j : j ă iu and α3 P AβzmaxpRq so
that

(1) α1Rα3 and α0Rα3 are oriented differently (one up, other down), and
(2) gβ is constant i on α0R,α1R,Rα3.

Then we let aβ,R,i “ tα0, α1u and define the orientation of α0Rβ and α1Rβ so that

α0R,Rβ, α1R,Rα3 is a copy of
ÝÑ
C 4.

Case 2. Suppose that Case 1 fails but there is α0 ă α1 P Aβ XminpRqz
Ť

taβ,R,j : j ă iu
so that gβ is constant i on α0R,α1R. Then we let aβ,R,i “ tα0, α1u and define the orientation
of α1Rβ and α0Rβ differently.

Case 3. If both Case 1 and Case 2 fails then we let aβ,R,i “ H.
This finishes the induction on i ă κ and in turn completes the definition of D.
Now, suppose that G : rλsn Ñ κ and our aim is to find a monochromatic 4-cycle. Take a κ-

closed elementary submodel M of size expn´1pκq so that D,G P M and expn´1pκq,Pkpκq Ď

M for k ď n´ 1. Here P is the power set operator, P0pκq “ κ and Pk`1pκq “ PpPkpκqq.
Find β P Sλ

κ` so that

pAβ , gβq “ pM X λ,G æ rM X λs2q.

Now we define a sequence of maps G0, G1 . . . Gn´1 so that

Gn´k : rλsk Ñ Pn´kpκq

as follows. We define G0 : rλsn Ñ κ simply by G0 “ G. Next, we define G1 : rλsn´1 Ñ Ppκq
by

(4.1) G1px1, . . . , xn´1q “ ti P κ : |tξ ă x1 : G0pξ, x1, . . . xn´1q “ iu| ě expn´1pκqu P Ppκq.

In general, given Gn´k´1, we let
(4.2)

Gn´kpxn´k, . . . , xn´1q “ ti P Pn´k´1pκq : |tξ ă xn´k : Gn´k´1pξ, xn´k, . . . xn´1q “ iu| ě expkpκqu.

Finally, for k “ 1, we let

(4.3)
Gn´1pxn´1q “ ti P Pn´2pκq : |tξ ă xn´1 : Gn´2pξ, xn´1q “ iu| ě exp1pκqu P Pn´1pκq.

Note that Gn´1pβq P M by the assumptions on M .

Claim 4.8. There is a decreasing sequence of ordinals ξn´1, ξn´2 . . . ξ0 and P-decreasing
in´1, in´2 . . . i0 with the following properties:

(1) ξn´1 “ β and in´1 “ Gn´1pβq,
(2) ξn´2 P Aβ X ξn´1 “ Aβ so that

(a) Gn´1pξn´2q “ in´1 “ Gn´1pξn´1q, and
(b) in´2 “ Gn´2pξn´2, ξn´1q P in´1;

(3) in general, ξn´k´1 P Aβ X ξn´k so that
(a) Gn´kpξn´k´1 . . . ξn´2q “ in´k “ Gn´kpξn´k . . . ξn´1q, and
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(b) in´k´1 “ Gn´k´1pξn´k´1, ξn´k . . . ξn´1q P in´k

where k “ 0 . . . n´ 1.

Proof. Given ξn´1 “ β and in´1 “ Gn´1pβq, observe that G P M, ranpGn´1q Ď M implies
that

Λ “ tξ P Sλ
κ` : Gn´1pξq “ Gn´1pβqu P M

as well. Hence |Λ| ě pexpn´1pκqq` (as β P ΛzM) and so |Λ X M | “ expn´1pκq. In turn,
cfpexpn´1pκqq ą expn´2pκq implies that there is an in´2 P Pn´2pκq so that

(4.4) |tξ P Λ XM : Gn´2pξ, ξn´1q “ in´2u| ě expn´2pκq.

In particular, in´2 P i1 “ Gn´1pξn´1q. Now pick any ξn´2 P ΛXM with Gn´2pξn´2, ξn´1q “
in´2.

Suppose we found ξn´k and in´k as required. By assumption, in´k P in´k`1 “ Gn´k`1pξn´k . . . ξn´2q.
Hence

|tξ ă ξn´k : Gn´kpξ, ξn´k . . . ξn´2q “ in´ku| ě expkpκq

and so

|tξ P M X ξn´k : Gn´kpξ, ξn´k . . . ξn´2q “ in´ku| ě expn´kpκq

holds as well. By cofinality considerations, there is in´k´1 P Pn´k´1pκq so that

|tξ P MXξn´k : Gn´kpξ, ξn´k . . . ξn´2q “ in´k, Gn´k´1pξ, ξn´k . . . ξn´1q “ in´k´1u| ě expn´kpκq.

Note that this implies that in´k´1 P in´k “ Gn´kpξn´k . . . ξn´1q and we can pick any
ξn´k´1 P MXξn´k so thatGn´kpξn´k´1, ξn´k . . . ξn´2q “ in´k, Gn´k´1pξn´k´1, ξn´k . . . ξn´1q “
in´k´1. Hence conditions (a) and (b) above are satisfied. �

At last we get ξ0 P Aβ X ξ1 and i0 P κ so that

(a) G1pξ0 . . . ξn´2q “ i1 “ G1pξ1 . . . ξn´1q, and
(b) i0 “ G0pξ0 . . . ξn´1q P i1.

We let R “ tξ0 . . . ξn´2u P rAβsn´1 and look at the construction of the orientation D

when we considered β and R. In particular, we consider the step when the colour i0 P κ

came up.
If the assumption of Case 1 was satisfied then we constructed a copy of

ÝÑ
C 4 on vertices

α0R,Rβ, α1R,Rα3 and gβ is constant i0 on α0R,α1R,Rα3; gβ and G agree on Aβ and

GpRβq “ i0 so this is the desired monochromatic
ÝÑ
C 4.

Now, we suppose that Case 1 fails and reach a contradiction. We claim that the assump-
tion of Case 2 is satisfied. Indeed, i0 P i1 “ G1pξ0 . . . ξn´2q implies that there are κ many
ξ ă ξ0 with the property that Gpξ, ξ0 . . . ξn´2q “ i0. Also, M is κ-closed so

Ť

taβ,R,j : j ă
iu P M . Hence, using elementarity, we can select α0 ă α1 P M X ξ0z

Ť

taβ,R,j : j ă i0u so
that

Gpα0, ξ0 . . . ξn´2q “ Gpα1, ξ0 . . . ξn´2q “ i0.

Hence, following the instructions in Case 2, we oriented α0Rβ and α1Rβ differently. In
turn, the set

B “ tξ P λzmaxpRq : the orientation of α0Rξ, α1Rξ are different and GpRξq “ i0u

is not empty. However, B P M so we can choose α3 P B X M and hence α1, α2, α3

witnesses that Case 1 holds. This contradicts our assumption and ends the proof.
�
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Now, we prove that consistently any graph with size and chromatic number ω1 has un-
countable dichromatic number as well in a very strong sense.

Recall that ♦` asserts the existence of sets Sβ “ tSβ,n : n P ωu where β P ω1 so that
for every X Ď ω1 there is a club C Ď ω1 such that X X β “ Sβ,n for some n P ω whenever
β P C.

Theorem 4.9. Assume that ♦` holds and the graph G has size and chromatic number ω1.
Then

G
ENL

ùñ
`

ľ

tD : D is an orientation of Hω,ωu
˘

.

In other words, there is an orientation D˚ of G so that whenever GrAs is uncountably
chromatic and D is an orientation of Hω,ω then D embeds into D˚rAs.

Proof. Let Sβ “ tSβ,n : n P ωu be the ♦` sequence and let tDβ : β ă ω1u list all orientations
of Hω,ω. We suppose that each Dβ has vertices 2 ˆ ω.

By induction on β we orient the edges of G from β to β XNpβq to define an orientation
D˚

β`1 of Grβ ` 1s.
Let

tpδj , nj, ξjq : j ă ωu

list Γβ “ tpδ, n, ξq : δ, ξ ď β, n ă ω, |Npβq X Sδ,n| “ ωu.
Suppose that the orientation D˚

β of Grβs is defined already. By induction on j ă ω, we

will select aj P rNpβq XSδj ,nj
săω such that aj Xaj1 “ H for j ă j1 ă ω and orient the edges

between β and aj as follows.
At step j, we look at the set Φj of partial digraph embeddings ϕ of Dξj into D˚

β rSδj,nj
s

such that dompϕq “ 2 ˆ k for some k ď ω and

ϕrt0u ˆ ks Ď Sδj ,nj
XNpβqz

ď

j1ăj

aj .

Note that Φj might only contain H. In any case, take a ϕj P Φj which is maximal with
respect to inclusion.

Case 1: If ϕj is a complete embedding then let aj “ H and move to step j ` 1 in the
induction.

Case 2: if Case 1 fails then there is a k ă ω such that dompϕjq “ 2 ˆ k i.e. ϕj is a
digraph embedding of Dξj r2 ˆ ks. Let aj “ ϕjrt0u ˆ ks Y tαu for some

α P Sδj ,nj
XNpβqzp

ď

j1ăj

aj Y ϕjrt0u ˆ ksq.

Lets define the orientation between β and aj so that

ϕ˚
j “ ϕj Y tpp0, kq, αq, pp1, kq, βqu

is a digraph embedding of Dξj r2 ˆ pk ` 1qs.
Edges from β to pNpβq X βqz

Ť

taj : j ă ωu are oriented arbitrarily. This finishes the
definition of the orientation D˚ “

Ť

βăω1
D˚

β of G.

Now take any A such that GrAs is uncountably chromatic and an orientation D of Hω,ω.
There is a club of elementary submodels tMα : α ă ω1u of Hpℵ2q so that D,A P Mα and
whenever δ “ Mα X ω1 for some α ă ω1 then A X δ “ Sδ,n for some n P ω.

As GrAs is uncountably chromatic, there is δ “ Mα X ω1 for some α ă ω1 and β P Azδ
such that Npβq X A X δ is infinite. We can suppose that there is a ξ ď β so that D “ Dξ.
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Let n ă ω such that A X δ “ Sδ,n; so Npβq X Sδ,n is infinite. We claim that there is a copy
of D in D˚rSδ,ns Ď D˚rAs.

Let us look at how the orientation was defined between β and Npβq Xβ. There is a j ă ω

such that pδj , nj , ξjq “ pδ, n, ξq.
At step j, we selected a maximal partial embedding ϕj of D into D˚

βrSδ,ns. If Case 1 held

for ϕj then ϕj is a complete embedding witnessing the existence of a copy of D in D˚rSδ,ns.
Otherwise, we are in Case 2: ϕj is an embedding of Dr2 ˆ ks for some k ă ω. This case,

we extended ϕj into a strictly larger embedding ϕ˚
j with

ranpϕ˚
j q Ď Sδj ,nj

Y tβu Ď A.

Note that ϕj and A are both in Mα and

Hpℵ2q |ù ϕj can be extended to an embedding of Dr2 ˆ pk ` 1qs into Az
ď

j1ăj

aj .

Hence this sentence must be true in Mα as well, that is, there is an embedding ϕ P Mα of
Dr2 ˆ pk ` 1qs into Az

Ť

j1ăj aj extending ϕj . Of course the range of ϕ now has to be in
AXMα “ Sδ,n which contradicts the maximality of ϕj .

�

Corollary 4.10. If ♦` holds and G has size ω1 then ÝÑχ pGq “ ω1 if and only if χpGq “ ω1.

5. On the lack of orientations with large chromatic number

In this final section, we show that consistently there is a graph G with uncountable
chromatic number without an orientation with uncountable dichromatic number. In other
words, χpGq ą ω does not imply ÝÑχ pDq ą ω.

In [11], Hajnal and Komjáth study an intriguing problem which can be roughly stated as
follows: given a graph G with uncountable chromatic number, can we colour the edges of
G with 2 (alternatively, ω or ω1) colours so that each colour appears on each large enough
subgraph.

Let us observe some straightforward connections to our investigations:

Observation 5.1. (1) If G
ENL

ùñ
`
Ž

t
ÝÑ
C n : 3 ď n ă ωu

˘

then we can define a 2-edge
colouring of G with the property that every colour appears on every uncountably
chromatic induced subgraph.

(2) If ÝÑχ pGq ą ω then there is a 2-colouring of the edges of G such that whenever the
vertices V pGq are partitioned into countably many pieces tVi : i ă ωu then both
colours appear on one of the spanned subgraphs GrVis

Proof. Let us prove (1) and leave the completely analogous proof of (2) to the reader. Given

the orientation D of G “ pλ,Eq witnessing G
ENL
ùñ

`
Ž

t
ÝÑ
C n : 3 ď n ă ωu

˘

define fpabq “ 0

if a ă b P λ and
ÝÑ
ab P EpDq, otherwise fpabq “ 1. Now, if χpGrW sq ą ω then there is a

directed cycle C in DrW s. Let b “ maxC (where C is considered as a set of ordinals in λ).
If a and a1 are the neighbours of b in C then we must have fpabq ‰ fpa1bq. �

It was shown in [11, Theorem 5] that the consequence stated in Observation 5.1 (1) can
consistently fail for a graph of size and chromatic number ω1. Hence, we get the following:

Corollary 5.2. Consistently, there is a graph G with size and chromatic number ω1 such

that G
ENL

ùñ
`
Ž

t
ÝÑ
C n : 3 ď n ă ωu

˘

fails.
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However, it is unknown if there is a graph G of chromatic number ω1 which fails the
consequence stated in Observation 5.1 (2) (even consistently). Hence it is rather interesting
that ÝÑχ pGq ď ω is possible for a graph G with uncountable chromatic number:

Theorem 5.3. Consistently, there is a graph G on vertex set ω1 such that

(1) ÝÑχ pGq ď ω, however
(2) C3 ãÑ GrXs for every uncountable X Ď ω1, and so χpGq “ ω1.

At this point, we don’t know if the implication in Observation 5.1 (2) can or cannot be
reversed.

Proof. We start from a model V of CH.
Let P0 “ tps, gq : s P rω1săω, g Ď rss2u with the usual ordering.

Given a generic filter G Ď P0 we get a graph 9G “ tgp : p P Gu in the extension V P0 .

We will not use this particular fact, but let us mention that 9G has uncountable dichromatic
number in V P0 :

Claim 5.4. V P0 |ù 9G
ENL

ùñ
`ÝÑ
C3

˘

.

Proof. Let fβ : ω Ñ β be a bijection for β P ω1. We define an orientation 9D as follows: if

α ă β ă ω1 and αβ P 9G then αβ P Ep 9Dq if and only if β and β ` n are connected in 9G for

α “ fβpnq; otherwise, βα P Ep 9Dq.

Suppose that p0, 9W is uncountable and let p0, 9W,P0, pfαqαăω1
P M0 ă M1 whereM0,M1

are countable elementary submodels ofHpℵ2q. Find β P ω1zM1 and p ď p0 so that p,β P 9W .
Let I “ tn : β ` n P spu and find a p1 P M1 so that p and p1 are compatible and there is

β1 P sp
1

zranpfβ æ Iq with p1,β1 P 9W .

Let J “ tn : β1 ` n P sp
1

u and find p2 P M0 compatible with both p and p1 such that
there is

β2 P sp
2

zpranpfβ æ Iq Y ranpfβ1 æ Jqq

with p2 ,β2 P 9W .
It is easy to see that we can find a common extension q of p, p1 and p2 which forces that

tβ, β1, β2u is a copy of
ÝÑ
C3. �

Let us remark that the same argument shows V P0 |ù 9G
ENL
ùñ

`

D0

˘

for any finite digraph
D0.

Now define a finite support iteration pPα, 9Qβqαďω2,βăω2
as follows: in V Pα , we consider

an orientation 9Dα of 9G and let

9Qα “ tq P Fnpω1, ωq : 9Dαrq´1pnqs is acyclic for all n P ωu.

Recall that Fnpλ, κq denotes the set of all finite partial functions from λ to κ.

Clearly, the forcing 9Qα introduces an ω-partition t 9Wn : n ă ωu of ω1 such that 9Dαr 9Wns

has no directed cycles. In turn, V Pα˚ 9Qα |ù χp 9Dαq ď ω.

Our goal is to prove that this iteration is ccc and in the final model V Pω2 our graph 9G is
uncountably chromatic.

Claim 5.4.1. The set of p P Pα which satisfy

(1) ppξq P V and dompppξqq Ď spp0q, and

(2) p æ ξ decides the orientation of 9Dξ on dompppξqq

for all ξ P suppppq is dense in Pα.
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We will call these conditions determined and we only work with determined conditions
from now on if not mentioned otherwise.

Proof. Easy induction on α. �

We say that p, p1 P P0 are twins if |sp| “ |sp
1

|, sp X sp
1

ă spzsp
1

ă sp
1

zsp (or vica versa

sp
1

zsp ă spzsp
1

) and the unique monotone bijection ψp,p1 : sp Ñ sp
1

(which fixes sp X sp
1

)
gives a graph isomorphism between the graphs p and p1. We say two conditions from the
iteration q, q1 P Pα are twins if

(1) pp0q and p1p0q are twins,

and for all ξ P suppppq X supppp1q

(2) dompp1pξqq “ ψp,p1 rdompppξqqs,
(3) ppξqpδq “ p1pξqpψp,p1 pδqq for all δ P dompppξqq, and

(4) p æ ξ,a0a1 P 9Dξ if and only if p1 æ ξ,a1
0a

1
1 P 9Dξ for all ξ P suppppq X supppp1q where

a1
i “ ψp,p1 paiq.

Claim 5.4.2. If p, p1 P Pα are determined and twins then they have a minimal common
extension p_ p1.

Proof. We define p_ p1 by

pp_ p1qpαq “

#

psp Y sp
1

, gp Y gp
1

q, for α “ 0, and

ppξq Y p1pξq, for ξ P αzt0u.

It is clear that pp_ p1qp0q P P0 so let us show pp_ p1q æ ξ forces that there are no monochro-
matic cycles with respect to ppξq Y p1pξq. We do this by induction on ξ ă α.

Suppose that p _ p1 æ ξ is a condition. If ξ P suppppqzsupppp1q or ξ P supppp1qzsuppppq
then p_ p1 æ ξ ` 1 P Pξ`1 as well.

Now let ξ P suppppq X supppp1q. We need to show that p _ p1 æ ξ forces that there

are no monochromatic directed cycles in 9Dξ with respect to pp _ p1qpξq. This will easily

follow from Lemma 2.1: fix k ă ω and consider D “ 9Dξrtv P sp : ppξqpvq “ ku and

D1 “ 9Dξrtv P sp
1

: p1pξqpvq “ ku. p _ p1 æ ξ forces that D and D1 are isomorphic, acyclic
digraphs satisfying the assumptions of Lemma 2.1 as p and p1 are twins. Hence, by Lemma
2.1 (2), D YD1 “ 9Dξrtv P sp_p1

: pp_ p1qpξqpvq “ ku is acyclic as well.
�

Claim 5.4.3. Pα is ccc for all α ď ω2.

Proof. Indeed, the ∆-system lemma implies that any uncountable set of conditions must
contain an uncountable set of pairwise twins, and Claim 5.4.2 implies that any two twin
conditions are comparable. �

Now, by a standard bookkeeping argument, we can choose the names 9Dα of 9G so that

V Pω2 |ù ÝÑχ pGq ď ω.

Before we show that the chromatic number of G is still uncountable after the iteration,
let us emphasize a simple fact which again follows Lemma 2.1 (1):

Claim 5.4.4. Suppose that p, p1 P Pω2
are determined and twins and δ P spzsp

1

. Then

p _ p1 æ ξ forces that there is no directed path from δ to δ1 “ ψp,p1 pδq in 9Dξ which is
monochromatic with respect to p_ p1pξq.
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Now, we can prove the following:

Claim 5.4.5. Suppose that p, p1 P Pω2
are determined and twins and δ P spzsp

1

. Then there
is a minimal extension p _δ p

1 of p _ p1 which forces that δ is connected to δ1 “ ψp,p1 pδq in
9G.

Proof. We define q “ p _δ p
1 by

qpαq “

#

psp_p1

, gp_p1

Y tδ, δ1uq, for α “ 0, and

pp _ p1qpαq, for α P ω2zt0u.

That is, we essentially take p _ p1 and add the single edge tδ, δ1u. If we prove that q is a
condition then we are done.

We prove that q æ ξ is a condition by induction on ξ ă ω2. Suppose we proved that q æ ξ
is a condition but there is some r ď q æ ξ and C so that r forces that C is a monochromatic
cycle with respect to qpξq in 9Dξ. C must contain the edge tδ, δ1u and so r forces that δ
and δ1 are connected by a directed monochromatic path P (not containing the edge tδ, δ1u).
However, orientation and colouring on P is decided by p_ p1 æ ξ already, which contradicts
Claim 5.4.4.

�

Note that p_δ p
1 is not necessarily determined. In any case, to finish our proof, it suffices

to show the following:

Claim 5.4.6. V Pω2 |ù C3 ãÑ 9Gr 9Xs for every uncountable 9X Ď ω1.

Proof. Suppose p, 9X is uncountable for some p P Pω2
; we will find q ď p and β, β1, β2 P ω1

such that q,tβ, β1, β2u is a triangle in 9Gr 9Xs.
As Pω2

is ccc, there is an uncountable set Y Ď ω1 in V and determined conditions pβ ď p

so that β P spβ and pβ,β P 9X whenever β P Y .
Take a countable elementary submodel M of some large enough Hpθq containing every-

thing relevant and let β P Y zM . We let s “ spβ XM . Using elementarity, find β1 P Y XM

so that

(1) pβ and pβ1 are twins,
(2) s “ spβ X spβ1 , and
(3) β “ ψp1,ppβ1q.

Let r be a determined condition extending pβ1 _β1 pβ .
Now, let s̃ “ sr XM and, using elementarity again, find a condition r1 P M so that

(4) r and r1 are twins,

(5) s̃ “ sr X sr
1

, and
(6) β “ ψr1,rpβ2q.

Finally, let q “ r1 _β2 r. Clearly, q,“tβ, β1, β2u is a triangle in 9Gr 9Xs”. �

�

In particular, if one is looking for the value of fpℵ1q from Conjecture 1.1, it needs to be
larger than ℵ1, at least consistently.
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6. Open problems

It seems that it is non trivial to find in ZFC a single digraph D with uncountable dichro-
matic number. Indeed, even to show that Kω1

has an orientation with uncountable dichro-
matic number required the application of ω1 Û rω1;ω1s22 which is a deep result of J. Moore
[20]. Hence, we have the following meta-problem:

Problem 6.1. Provide a simple/elementary proof of the fact that Kω1
has an orientation

with uncountable dichromatic number.

An obvious question which comes to mind regarding the definition of ÝÑχ pGq is whether
the sup is actually a max:

Question 6.2. Suppose that an undirected graph G has orientations Dξ for ξ ă cfpκq so
that suptχpDξq : ξ ă cfpκqu “ κ. Is there a single orientation D of G so that χpDq “ κ?

We conjecture that the answer is yes if cfpκq “ ω but no if cfpκq ą ω.

Regarding obligatory subgraphs and Proposition 3.4, we ask:

Problem 6.3. Characterize those orientations D˚ of Hω,ω so that D˚ embeds into any
digraph D with uncountable dichromatic number.

At this point, we don’t even have a list of those digraphs say on 4 vertices which embed
into any digraph D with uncountable dichromatic number.

6.1. More on cycles. It is known that χpGq ą ω implies that G has cycles of all but
finitely many lengths [8, 29].

Question 6.4. Are there digraphs D with χpDq ą ω so that
ÝÑ
C k does not embed into D for

infinitely many k?

More generally, describe what sets of cycles can be omitted by D with χpDq ą ω. In
particular, answer the following:

Question 6.5. Does D Ñ p
ÝÑ
C 3q1ω imply that

ÝÑ
C 4 ãÑ D?

The answer is yes for the undirected version: G Ñ pC3q1ω obviously implies χpGq ą ω and
so C4 ãÑ G and even G Ñ pC2kq1ω holds for all 2 ď k ă ω.

It was shown by Erdős and R. Rado [6] that triangle-free graphsG with size and chromatic
number κ can be constructed without additional set theoretic assumptions.

Question 6.6. Is there in ZFC a digraph D of size and dichromatic number ω1 such that
D has no directed triangles?

If we omit the requirement on size then the shift graphs provide an example by Theorem
4.5.

Finally, it would be very interesting to construct digraphs as in Theorem 3.5 in ZFC:

Question 6.7. Is there in ZFC, for every k ă ω, a digraph D of uncountable dichromatic
number such that D has digirth at least k?
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6.2. Connected subgraph. It is clear that every graph with uncountable chromatic num-
ber has a connected component with uncountable chromatic number. Similarly:

Observation 6.8. Suppose that χpDq ą ω. Then there is D0 Ď D so that χpD0q ą ω and
D0 is strongly connected.

Komjáth [14] showed that every graph G with uncountable chromatic number contains a
k-connected subgraph with uncountable chromatic number where k P ω.

Question 6.9. Suppose that χpDq ą ω and k P ω. Is there a D0 Ď D so that D0 is strongly
k-connected?

Even the case k “ 2 is open. In the undirected case, the balanced complete bipartite
graph on 2k vertices is a k-connected subgraph of any graph G with uncountable chromatic
number. However, any strongly connected digraph D0 contains directed cycles and hence,
by Theorem 3.5, there is a digraph D with uncountable dichromatic number so that D0 does
not embed into D. Hence no single strongly connected graph will be a universal witness
providing a positive answer to Question 6.9.

If the answer is yes to Question 6.9, a more ambitious goal would be to find a D0 Ď D so
that χpD0q ą ω while D0 is strongly k-connected.

Regarding Theorem 3.7, the most burning question is the following:

Question 6.10. Is there (even consistently) a digraph D with χpDq ą ω so that D
ENL
ÝÑ

`ÝÑ
C n

˘1

2
fails for every n P ω?

Naturally, any ZFC example would be very warmly welcome:

Question 6.11. Is there in ZFC a digraph D with χpDq ą ω so that D
ENL
ÝÑ

`ÝÑ
C n

˘1

ω
fails

for every n P ω?

6.3. Various questions. Regarding the Erdős-Neumann-Lara problem, we ask:

Problem 6.12. Does χpGq ą 2ω imply ÝÑχ pGq ą ω?

It would be rather natural to look into the following with regards to Theorem 4.9:

Problem 6.13. Does χpGq “ ω1 imply ÝÑχ pGq “ ω1 consistently (without restricting the size
of G)?

The following might be easier to answer:

Problem 6.14. Does

G
ENL
ÝÑ

`ÝÑ
Pω

˘1

ω

hold in ZFC for G with chromatic number ω1 where
ÝÑ
Pω is the one-way infinite directed path.

Finally, we close with a fascinating open problem of Neumann-Lara from 1985:

Problem 6.15. Does every planar digraph have dichromatic number at most 2?

The answer is yes if the digirth is at most four [13, 18]. We mention that this is a problem
on finite digraphs: if there is an infinite counterexample then it must have a finite subdigraph
of dichromatic number greater than 2 as well by Theorem 3.10.
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