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On Homeomorphically Irreducible Spanning Trees in

Cubic Graphs

Arthur Hoffmann-Ostenhof∗†, Kenta Noguchi‡, and Kenta Ozeki§¶

Abstract

A spanning tree without a vertex of degree two is called a Hist which is an ab-

breviation for homeomorphically irreducible spanning tree. We provide a necessary

condition for the existence of a Hist in a cubic graph. As one consequence, we an-

swer affirmatively an open question on Hists by Albertson, Berman, Hutchinson and

Thomassen.
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1 Introduction

All graphs considered here are finite and simple. In a connected graph G, a spanning tree

which does not have a vertex of degree two is called a homeomorphically irreducible spanning

tree, or abbreviated a Hist. Several conditions which ensure the existence of a Hist in a

graph are known, see for instance [1, 3, 9]. In this paper, we only consider Hists in cubic

graphs. For an integer k, a connected cubic graph G which contains two disjoint cycles is

said to be cyclically k-edge-connected if deleting any set of at most k−1 edges from G does

not separate G into two components both of which have a cycle. The following question

was asked in [1, p. 253].

Question 1 Does there exist a cyclically k-edge-connected cubic graph without a Hist for

each positive integer k?

Note that every Hist T in a cubic graph has only vertices of degree one and three. Hence

E(G) has a partition into E(T ) and the edge set of a union of disjoint cycles.

Let us call a 2-regular subgraph H of a connected graph G non-separating if G−E(H)

is connected. For a set S of edges in G, we denote by 〈S〉 the subgraph of G induced by

the edges in S. So, the vertex set of 〈S〉 is the set of end vertices of edges in S. We answer

Question 1 by applying Corollary 3, a corollary of Theorem 2 which turns out to be useful

for proving that certain cubic graphs do not have a Hist.
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Theorem 2 Let G be a cubic graph with a Hist T , and let H = 〈E(G)−E(T )〉. Then H

is a non-separating 2-regular subgraph of G satisfying |V (H)| = |V (G)|/2 + 1.

Proof. Let G be a cubic graph with a Hist T and let H = 〈E(G)− E(T )〉. Since V (H)

is the set of all leaves of T and G− E(H) = T , H is a non-separating 2-regular subgraph

of G.

Let t1 be the number of leaves in T , and let t3 be the number of vertices of degree 3

in T . Since T is a Hist, we have t1 + t3 = |V (G)|. On the other hand, it is easy to see

that t1 = t3 + 2. (This can be obtained straightforwardly by the Handshaking Lemma or

by induction. For example, see [13, Exercise 2.1.23 on p. 70].) Therefore, |V (G)| = 2t1− 2.

Since V (H) is the set of all leaves of T , we have |V (H)| = t1. By using the above equations

the proof is completed. �

Corollary 3 Let G be a bipartite cubic graph. If G has a Hist, then |V (G)| ≡ 2 (mod 4).

Proof. Let G be a bipartite cubic graph with a Hist. By Theorem 2, H = 〈E(G)−E(T )〉
is a non-separating 2-regular subgraph of G satisfying |V (H)| = |V (G)|/2 + 1. Since G is

bipartite, |V (H)| is even and hence |V (G)| ≡ 2 (mod 4). �

Remark: Corollary 3 implies that no bipartite cubic graph G with |V (G)| ≡ 0 (mod 4)

has a Hist. However, if G is a bipartite cubic graph with |V (G)| ≡ 2 (mod 4), then G may

or may not have a Hist. Both cases could happen, see Section 3.

Now we obtain a positive answer to Question 1 by applying Corollary 3 together with

the following proposition.

Proposition 4 For every positive integer k, there exists a cyclically k-edge-connected bi-

partite cubic graph G such that |V (G)| ≡ 0 (mod 4).

Proposition 4 can be directly proved by considering transitive graphs: it is known that

for any positive integer k, there are infinitely many vertex-transitive bipartite cubic graphs

G of girth at least k with |V (G)| ≡ 0 (mod 4), see for example [12]. Since the cyclic

edge-connectivity of vertex-transitive graph is equal to its girth (see [11]), Proposition 4

holds. However, since this proof requires several algebraic tools, we prefer to present an

elementary proof which also offers a new method to construct cubic bipartite graphs with

high cyclic edge-connectivity, see Theorem 7 and Lemma 8 in Section 2.

In Section 3, we show other application of Theorem 2 to plane and toroidal cubic graphs.

2 Proof of Proposition 4

In order to prove Proposition 4, we use the following fact which can be proved in several

ways, for instance, by the probabilistic method (see [14, Theorems 2.5 and 2.10]) and by

the constructive method (see [5]).

Fact 5 For every positive integer d, there exists a d-connected 4d-regular graph of girth at

least d.
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Then we apply the well known concept of an inflation (see for instance [6]):

Definition 6 Let H be a graph and let G be a cubic graph. Then G is called an inflation

of H if G contains a 2-factor F consisting of chordless cycles such that the graph obtained

from G by contracting each cycle of F to a vertex is isomorphic to H .

If the minimum degree of H is at least 3, then obviously an inflation of H exists, since

one obtains (informally speaking) an inflation of H by expanding every vertex of H to a

cycle. The next theorem guarantees the high cyclic edge-connectivity for each inflation of

graphs with high connectivity and girth.

Theorem 7 Let k ≥ 3 and let H be a k-connected graph with girth at least k. Then every

inflation of H is cyclically k-edge-connected.

Proof. Let G be an inflation of H . For each vertex x ∈ V (H), denote the unique cycle

of F (as in Definition 6) in G corresponding to x by Cx. We say that a cycle C in G is

transverse if there are two distinct vertices x1 and x2 in H with V (Cx)∩V (C) 6= ∅ for each

x ∈ {x1, x2}. Otherwise C is said to be non-transverse, that is, C = Cx for some vertex

x ∈ V (H).

Suppose by contradiction that G is not cyclically k-edge-connected. Then G has a set

S of edges with |S| ≤ k− 1 such that G−S has precisely two components D1 and D2 both

having a cycle. By taking such a set S as small as possible, we may assume that S is a

matching.

For i ∈ {1, 2}, let DH
i be the subgraph of H induced by the vertex set

{x ∈ V (H) : V (Cx) ∩ V (Di) 6= ∅} .

So, DH
1

is obtained from D1 in the following way: for each x ∈ V (H) such that Cx ∩ D1

is not the null graph, where Cx ∩ D1 is the maximum common subgraph of Cx and D1,

contract Cx ∩D1 into one vertex and delete all resultant loops.

Let SH
V

= {x ∈ V (H) : E(Cx) ∩ S 6= ∅},

and SH
E

= S ∩ E(H)

= {e ∈ S : e 6∈ E(Cx) for any x ∈ V (H)}.

Note that |SH
V |+ |SH

E | ≤ |S| ≤ k − 1.

Suppose that V (DH
i ) − SH

V
6= ∅ for each i ∈ {1, 2}. Then H − SH

V
− SH

E
have two

components DH
1

and DH
2
. In this case, the number of vertex disjoint paths from a vertex

of DH
1

to a vertex of DH
2

is at most |SH
V
| + |SH

E
| ≤ k − 1, which contradicts by Menger’s

Theorem that H is k-connected.

Therefore, we may assume without loss of generality that V (DH
1
)− SH

V
= ∅.

Note that D1 contains by assumption a cycle, say C1, and C1 must be transverse (oth-

erwise, C1 = Cx for some x ∈ V (DH
1
) − SH

V
, but this contradicts that V (DH

1
) − SH

V
= ∅).

Thus, C1 corresponds to a closed trail in DH
1
, say CH

1
. Since the girth of H is at least k

and every closed trail contains a cycle, we have |V (CH
1
)| ≥ k, which is a contradiction to

the fact that V (CH
1
) ⊆ V (DH

1
) ⊆ SH

V
and |SH

V
| ≤ k − 1. �

Note that the statement of the above theorem does not hold if H is only demanded to

be k-edge-connected.
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Figure 1: A graph H with Eulerian orientation (the left side) and the bipartite graph

G obtained by an inflation of H (the right side) for the case k = 2. In G, the vertices

with outdegree 3 are represented by white circles, while the vertices with indegree 3 are

represented by black circles.

Lemma 8 Let k ≥ 2 and let H be a 2k-regular graph. Then there exists a bipartite cubic

inflation of H with 2k|V (H)| vertices.

Proof. Since every inflation of H has 2k|V (H)| vertices, it suffices to show that H has a

bipartite inflation.

Since each component of H is Eulerian, it has an Eulerian orientation, that is, the

indegree equals the outdegree for every vertex of H . Then we can expand every vertex x of

H to a cycle Cx to obtain an inflation G with the property that the oriented edges incident

with the vertices of Cx are alternately directed towards and outwards Cx. See Figure 1.

Furthermore, since each cycle Cx is of length exactly 2k, it is possible to extend this partial

orientation to an orientation of G (by orienting the edges of each cycle Cx) such that every

vertex of G has then either outdegree 3 or indegree 3. This shows a 2-coloring of G, and

hence G is bipartite. �

Proof of Proposition 4. Let k be a positive integer. By Fact 5 there exists a k-connected

4k-regular graph H of girth at least k. Since H is 4k-regular, it follows from Lemma 8 that

there exists a bipartite cubic inflation G with 4k|V (H)| vertices. Since H is k-connected

and has the girth at least k, it follows from Theorem 7 that G is cyclically k-edge-connected,

which completes the proof. �

3 Hists in plane cubic graphs

Let us call a plane cubic graph with a Hist in short a pcH-graph. A pcH-graph is by its

definition a generalization of a cubic Halin graph (defined in [8]) which is a pcH-graph with

a Hist such that all the leaves of the Hist induce precisely one cycle. It is easy to see that

any cubic Halin graph contains a triangle. In contrast to cubic Halin graphs, pcH-graphs

can have girth 4 or even 5, see Figure 2. Note that it is NP-complete to determine whether

a plane cubic graph has a Hist, see [4]. (To be exact, Douglas [4] proved that only for plane

graphs of maximum degree at most 3. However, replacing each vertex of degree at most 2

with a certain gadget, we can easily modify the proof to show the NP-completeness of the
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Hist problem for plane cubic graphs.) Since any non-facial cycle of a cubic plane graph is

separating, by restricting Theorem 2 to the planar case we obtain:

Corollary 9 Let G be a plane cubic graph with a Hist. Then G contains a non-separating

2-regular subgraph H consisting of facial cycles such that |V (H)| = |V (G)|/2 + 1.

Figure 2: A fullerene graph with a Hist.

Applying Corollary 9, we see for instance that the dodecahedron does not have a Hist,

since it has 20 vertices and every facial cycle has length 5. The dodecahedron belongs to

the class of fullerene graphs, which are plane 3-connected cubic graphs with facial cycles

of length 5 and 6 only, see Figure 2 for an example. Using Corollary 9 one can prove

straightforwardly that other plane cubic graphs, for instance the Buckminster fullerene

graph [7, Figure 9.5. on p. 211] and the Grinberg graph [2, Fig.18.9. on p. 480], do not have

a Hist. This should illustrate the usefulness of the above corollary. We asked in the first

version of this paper whether there are finitely or infinitely many fullerene graphs with a

Hist which is answered below.

Theorem 10 There are infinitely many fullerene graphs with a Hist.

Proof. Let A, B and H be the plane graphs shown in Figure 3 (every label of a vertex in

the figure is shown left above the vertex). By identifying the cycle C1 of A and the cycle

C2 of B such that u and v are identified, we obtain a fullerene graph with a Hist which is

illustrated in bold edges. In order to construct infinitely many fullerene graphs with Hists,

we use the graphs Hi which are defined as follows (during the construction of Hi we keep

the bold edges of every copy of H which will then define the edges of the Hist within Hi in

the fullerene graph). Firstly, let H0 be a plane cycle of length 18 and let H1 ≃ H . Then

define the graph Hi (i ≥ 2) recursively, by identifying the outer cycle C ′

1
in a copy of H and
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the cycle (18-gon) C ′

2
in Hi−1 so that u′ in C ′

1
and v′ in C ′

2
are identified. Now we construct

for every nonnegative integer k the fullerene graph Fk with 36k + 46 vertices. We identify

the cycle C1 in A and the outer cycle C ′

1
in Hk such that u in C1 and u′ in C ′

1
are identified.

Finally, we identify the cycle C ′

2
in Hk and the outer cycle C2 in B such that v′ in C ′

2
and

v in C2 are identified. Note that the 12 shaded faces in Figure 3 are pentagons of Fk. It is

not difficult to verify that the bold edges in A, B and the bold edges of Hi induce a Hist

in Fk. �

Figure 3: Plane graphs A, B and H .

Remark: In the proof of Theorem 10, every facial cycle of the fullerene graph Fk which

is edge-disjoint with the defined Hist has length 6. In contrast to Fk, the fullerene graph in

Figure 2 has facial cycles of length 5 which are edge-disjoint with the illustrated Hist. By

computer search, T. Jatschka [10] showed that there are fullerene graphs with Hists with

38 vertices and that every fullerene graph with less than 38 vertices does not have a Hist.

A class of graphs similar to fullerene graphs are cubic hexangulations. Recall that a

hexangulation of a surface is a 2-connected graph with an embedding on the surface such

that every facial cycle has length 6. For example, consider the dual of the triangulation in

Figure 4. Using this type of construction, we see that there are infinitely many bipartite

cubic hexangulations G of the torus with |V (G)| ≡ 0 (mod 4). Corollary 3 directly shows

that such hexangulations G do not contain a Hist. We asked in the first version of this

paper whether there are finitely or infinitely many hexangulations of the torus with a Hist.

This question is answered in the next theorem.

Theorem 11 There are infinitely many cubic hexangulations of the torus with a Hist.

Proof. Let G0 and G1 be the hexangulations of the torus shown in the left and the center

of Figure 5. (The top and the bottom, the left and the right are identified, respectively.)

Let T be the hexangulation of the annulus shown in the right of Figure 5. (The top and

the bottom are identified.) We construct the cubic hexangulation Gk (k ≥ 2) of the torus

recursively, by (i) cutting Gk−1 along the cycle v1v2v3v4v5v6, and (ii) inserting T with

appropriate identification. Then Gk is a cubic hexangulation with (12k + 10) vertices, and

has a Hist, which is presented in Figure 5 by the bold edges. �
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Figure 4: The dual of bipartite cubic hexangulations G of the torus satisfying |V (G)| ≡
0 (mod 4). The top and the bottom, the left and the right are identified, respectively.

The length of a shortest non-contractible cycle of a graph embedded on a non-spherical

surface is called the edge-width of the graph. Note that Gk in the proof of Theorem 11 is

bipartite for every k ≥ 0, has girth 6 and edge-width exactly 6 for every k ≥ 1.

After submitting the first version of this paper, the authors were informed that Zhai,

Wei, He and Ye [15] also proved Theorem 11, together with the case of the Klein bottle. It

was also announced that their constructed hexangulations can have arbitrary large edge-

width.

Figure 5: Hexangulations G0, G1 of the torus and T of the annulus.
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[11] R. Nedela, and M. Škoviera, Atoms of cyclic connectivity in cubic graphs, Math. Slovaca

45 (1995) 481–499.
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