On Homeomorphically Irreducible Spanning Trees in Cubic Graphs

Arthur Hoffmann-Ostenhof ${ }^{\text {ौ }}$, Kenta Noguchi ${ }^{\ddagger}$, and Kenta Ozeki ${ }^{\S \S}$

Abstract

A spanning tree without a vertex of degree two is called a Hist which is an abbreviation for homeomorphically irreducible spanning tree. We provide a necessary condition for the existence of a Hist in a cubic graph. As one consequence, we answer affirmatively an open question on Hists by Albertson, Berman, Hutchinson and Thomassen.

Keywords: Hist, cubic graph, cyclic edge-connectivity, bipartite, spanning tree, fullerene

1 Introduction

All graphs considered here are finite and simple. In a connected graph G, a spanning tree which does not have a vertex of degree two is called a homeomorphically irreducible spanning tree, or abbreviated a Hist. Several conditions which ensure the existence of a Hist in a graph are known, see for instance [1, 3, 9]. In this paper, we only consider Hists in cubic graphs. For an integer k, a connected cubic graph G which contains two disjoint cycles is said to be cyclically k-edge-connected if deleting any set of at most $k-1$ edges from G does not separate G into two components both of which have a cycle. The following question was asked in [1, p. 253].

Question 1 Does there exist a cyclically k-edge-connected cubic graph without a Hist for each positive integer k ?

Note that every Hist T in a cubic graph has only vertices of degree one and three. Hence $E(G)$ has a partition into $E(T)$ and the edge set of a union of disjoint cycles.

Let us call a 2-regular subgraph H of a connected graph G non-separating if $G-E(H)$ is connected. For a set S of edges in G, we denote by $\langle S\rangle$ the subgraph of G induced by the edges in S. So, the vertex set of $\langle S\rangle$ is the set of end vertices of edges in S. We answer Question 1 by applying Corollary 3, a corollary of Theorem 2 which turns out to be useful for proving that certain cubic graphs do not have a Hist.

[^0]Theorem 2 Let G be a cubic graph with a Hist T, and let $H=\langle E(G)-E(T)\rangle$. Then H is a non-separating 2-regular subgraph of G satisfying $|V(H)|=|V(G)| / 2+1$.

Proof. Let G be a cubic graph with a Hist T and let $H=\langle E(G)-E(T)\rangle$. Since $V(H)$ is the set of all leaves of T and $G-E(H)=T, H$ is a non-separating 2-regular subgraph of G.

Let t_{1} be the number of leaves in T, and let t_{3} be the number of vertices of degree 3 in T. Since T is a Hist, we have $t_{1}+t_{3}=|V(G)|$. On the other hand, it is easy to see that $t_{1}=t_{3}+2$. (This can be obtained straightforwardly by the Handshaking Lemma or by induction. For example, see [13, Exercise 2.1.23 on p. 70].) Therefore, $|V(G)|=2 t_{1}-2$. Since $V(H)$ is the set of all leaves of T, we have $|V(H)|=t_{1}$. By using the above equations the proof is completed.

Corollary 3 Let G be a bipartite cubic graph. If G has a Hist, then $|V(G)| \equiv 2(\bmod 4)$.
Proof. Let G be a bipartite cubic graph with a Hist. By Theorem 2, $H=\langle E(G)-E(T)\rangle$ is a non-separating 2-regular subgraph of G satisfying $|V(H)|=|V(G)| / 2+1$. Since G is bipartite, $|V(H)|$ is even and hence $|V(G)| \equiv 2(\bmod 4)$.

Remark: Corollary 3 implies that no bipartite cubic graph G with $|V(G)| \equiv 0(\bmod 4)$ has a Hist. However, if G is a bipartite cubic graph with $|V(G)| \equiv 2(\bmod 4)$, then G may or may not have a Hist. Both cases could happen, see Section 3,

Now we obtain a positive answer to Question 1 by applying Corollary 3 together with the following proposition.

Proposition 4 For every positive integer k, there exists a cyclically k-edge-connected bipartite cubic graph G such that $|V(G)| \equiv 0(\bmod 4)$.

Proposition 4 can be directly proved by considering transitive graphs: it is known that for any positive integer k, there are infinitely many vertex-transitive bipartite cubic graphs G of girth at least k with $|V(G)| \equiv 0(\bmod 4)$, see for example [12]. Since the cyclic edge-connectivity of vertex-transitive graph is equal to its girth (see [11]), Proposition 4 holds. However, since this proof requires several algebraic tools, we prefer to present an elementary proof which also offers a new method to construct cubic bipartite graphs with high cyclic edge-connectivity, see Theorem 7 and Lemma 8 in Section 2,

In Section 3, we show other application of Theorem 2 to plane and toroidal cubic graphs.

2 Proof of Proposition 4

In order to prove Proposition 4, we use the following fact which can be proved in several ways, for instance, by the probabilistic method (see [14, Theorems 2.5 and 2.10]) and by the constructive method (see [5]).

Fact 5 For every positive integer d, there exists a d-connected $4 d$-regular graph of girth at least d.

Then we apply the well known concept of an inflation (see for instance [6]):
Definition 6 Let H be a graph and let G be a cubic graph. Then G is called an inflation of H if G contains a 2-factor F consisting of chordless cycles such that the graph obtained from G by contracting each cycle of F to a vertex is isomorphic to H.

If the minimum degree of H is at least 3 , then obviously an inflation of H exists, since one obtains (informally speaking) an inflation of H by expanding every vertex of H to a cycle. The next theorem guarantees the high cyclic edge-connectivity for each inflation of graphs with high connectivity and girth.

Theorem 7 Let $k \geq 3$ and let H be a k-connected graph with girth at least k. Then every inflation of H is cyclically k-edge-connected.
Proof. Let G be an inflation of H. For each vertex $x \in V(H)$, denote the unique cycle of F (as in Definition (6) in G corresponding to x by C_{x}. We say that a cycle C in G is transverse if there are two distinct vertices x_{1} and x_{2} in H with $V\left(C_{x}\right) \cap V(C) \neq \emptyset$ for each $x \in\left\{x_{1}, x_{2}\right\}$. Otherwise C is said to be non-transverse, that is, $C=C_{x}$ for some vertex $x \in V(H)$.

Suppose by contradiction that G is not cyclically k-edge-connected. Then G has a set S of edges with $|S| \leq k-1$ such that $G-S$ has precisely two components D_{1} and D_{2} both having a cycle. By taking such a set S as small as possible, we may assume that S is a matching.

For $i \in\{1,2\}$, let D_{i}^{H} be the subgraph of H induced by the vertex set

$$
\left\{x \in V(H): V\left(C_{x}\right) \cap V\left(D_{i}\right) \neq \emptyset\right\} .
$$

So, D_{1}^{H} is obtained from D_{1} in the following way: for each $x \in V(H)$ such that $C_{x} \cap D_{1}$ is not the null graph, where $C_{x} \cap D_{1}$ is the maximum common subgraph of C_{x} and D_{1}, contract $C_{x} \cap D_{1}$ into one vertex and delete all resultant loops.

$$
\begin{aligned}
\text { Let } \quad S_{\mathrm{V}}^{H} & =\left\{x \in V(H): E\left(C_{x}\right) \cap S \neq \emptyset\right\} \\
\text { and } \quad & \quad S_{\mathrm{E}}^{H} \\
& =S \cap E(H) \\
& =\left\{e \in S: e \notin E\left(C_{x}\right) \text { for any } x \in V(H)\right\} .
\end{aligned}
$$

Note that $\left|S_{V}^{H}\right|+\left|S_{E}^{H}\right| \leq|S| \leq k-1$.
Suppose that $V\left(D_{i}^{H}\right)-S_{\mathrm{V}}^{H} \neq \emptyset$ for each $i \in\{1,2\}$. Then $H-S_{\mathrm{V}}^{H}-S_{\mathrm{E}}^{H}$ have two components D_{1}^{H} and D_{2}^{H}. In this case, the number of vertex disjoint paths from a vertex of D_{1}^{H} to a vertex of D_{2}^{H} is at most $\left|S_{\mathrm{V}}^{H}\right|+\left|S_{\mathrm{E}}^{H}\right| \leq k-1$, which contradicts by Menger's Theorem that H is k-connected.

Therefore, we may assume without loss of generality that $V\left(D_{1}^{H}\right)-S_{\mathrm{V}}^{H}=\emptyset$.
Note that D_{1} contains by assumption a cycle, say C_{1}, and C_{1} must be transverse (otherwise, $C_{1}=C_{x}$ for some $x \in V\left(D_{1}^{H}\right)-S_{\mathrm{V}}^{H}$, but this contradicts that $\left.V\left(D_{1}^{H}\right)-S_{\mathrm{V}}^{H}=\emptyset\right)$. Thus, C_{1} corresponds to a closed trail in D_{1}^{H}, say C_{1}^{H}. Since the girth of H is at least k and every closed trail contains a cycle, we have $\left|V\left(C_{1}^{H}\right)\right| \geq k$, which is a contradiction to the fact that $V\left(C_{1}^{H}\right) \subseteq V\left(D_{1}^{H}\right) \subseteq S_{\mathrm{V}}^{H}$ and $\left|S_{\mathrm{V}}^{H}\right| \leq k-1$.

Note that the statement of the above theorem does not hold if H is only demanded to be k-edge-connected.

Figure 1: A graph H with Eulerian orientation (the left side) and the bipartite graph G obtained by an inflation of H (the right side) for the case $k=2$. In G, the vertices with outdegree 3 are represented by white circles, while the vertices with indegree 3 are represented by black circles.

Lemma 8 Let $k \geq 2$ and let H be a $2 k$-regular graph. Then there exists a bipartite cubic inflation of H with $2 k|V(H)|$ vertices.

Proof. Since every inflation of H has $2 k|V(H)|$ vertices, it suffices to show that H has a bipartite inflation.

Since each component of H is Eulerian, it has an Eulerian orientation, that is, the indegree equals the outdegree for every vertex of H. Then we can expand every vertex x of H to a cycle C_{x} to obtain an inflation G with the property that the oriented edges incident with the vertices of C_{x} are alternately directed towards and outwards C_{x}. See Figure [1. Furthermore, since each cycle C_{x} is of length exactly $2 k$, it is possible to extend this partial orientation to an orientation of G (by orienting the edges of each cycle C_{x}) such that every vertex of G has then either outdegree 3 or indegree 3. This shows a 2 -coloring of G, and hence G is bipartite.

Proof of Proposition 4. Let k be a positive integer. By Fact 5 there exists a k-connected $4 k$-regular graph H of girth at least k. Since H is $4 k$-regular, it follows from Lemma 8 that there exists a bipartite cubic inflation G with $4 k|V(H)|$ vertices. Since H is k-connected and has the girth at least k, it follows from Theorem 7 that G is cyclically k-edge-connected, which completes the proof.

3 Hists in plane cubic graphs

Let us call a plane cubic graph with a Hist in short a pcH-graph. A pcH-graph is by its definition a generalization of a cubic Halin graph (defined in [8]) which is a pcH-graph with a Hist such that all the leaves of the Hist induce precisely one cycle. It is easy to see that any cubic Halin graph contains a triangle. In contrast to cubic Halin graphs, pcH-graphs can have girth 4 or even 5, see Figure 2, Note that it is NP-complete to determine whether a plane cubic graph has a Hist, see [4]. (To be exact, Douglas [4] proved that only for plane graphs of maximum degree at most 3 . However, replacing each vertex of degree at most 2 with a certain gadget, we can easily modify the proof to show the NP-completeness of the

Hist problem for plane cubic graphs.) Since any non-facial cycle of a cubic plane graph is separating, by restricting Theorem [2 to the planar case we obtain:

Corollary 9 Let G be a plane cubic graph with a Hist. Then G contains a non-separating 2-regular subgraph H consisting of facial cycles such that $|V(H)|=|V(G)| / 2+1$.

Figure 2: A fullerene graph with a Hist.
Applying Corollary 9, we see for instance that the dodecahedron does not have a Hist, since it has 20 vertices and every facial cycle has length 5 . The dodecahedron belongs to the class of fullerene graphs, which are plane 3 -connected cubic graphs with facial cycles of length 5 and 6 only, see Figure 2 for an example. Using Corollary 9 one can prove straightforwardly that other plane cubic graphs, for instance the Buckminster fullerene graph [7, Figure 9.5. on p. 211] and the Grinberg graph [2, Fig.18.9. on p. 480], do not have a Hist. This should illustrate the usefulness of the above corollary. We asked in the first version of this paper whether there are finitely or infinitely many fullerene graphs with a Hist which is answered below.

Theorem 10 There are infinitely many fullerene graphs with a Hist.
Proof. Let A, B and H be the plane graphs shown in Figure 3 (every label of a vertex in the figure is shown left above the vertex). By identifying the cycle C_{1} of A and the cycle C_{2} of B such that u and v are identified, we obtain a fullerene graph with a Hist which is illustrated in bold edges. In order to construct infinitely many fullerene graphs with Hists, we use the graphs H_{i} which are defined as follows (during the construction of H_{i} we keep the bold edges of every copy of H which will then define the edges of the Hist within H_{i} in the fullerene graph). Firstly, let H_{0} be a plane cycle of length 18 and let $H_{1} \simeq H$. Then define the graph $H_{i}(i \geq 2)$ recursively, by identifying the outer cycle C_{1}^{\prime} in a copy of H and
the cycle (18-gon) C_{2}^{\prime} in H_{i-1} so that u^{\prime} in C_{1}^{\prime} and v^{\prime} in C_{2}^{\prime} are identified. Now we construct for every nonnegative integer k the fullerene graph F_{k} with $36 k+46$ vertices. We identify the cycle C_{1} in A and the outer cycle C_{1}^{\prime} in H_{k} such that u in C_{1} and u^{\prime} in C_{1}^{\prime} are identified. Finally, we identify the cycle C_{2}^{\prime} in H_{k} and the outer cycle C_{2} in B such that v^{\prime} in C_{2}^{\prime} and v in C_{2} are identified. Note that the 12 shaded faces in Figure 3 are pentagons of F_{k}. It is not difficult to verify that the bold edges in A, B and the bold edges of H_{i} induce a Hist in F_{k}.

Figure 3: Plane graphs A, B and H.
Remark: In the proof of Theorem 10, every facial cycle of the fullerene graph F_{k} which is edge-disjoint with the defined Hist has length 6. In contrast to F_{k}, the fullerene graph in Figure 2 has facial cycles of length 5 which are edge-disjoint with the illustrated Hist. By computer search, T. Jatschka [10] showed that there are fullerene graphs with Hists with 38 vertices and that every fullerene graph with less than 38 vertices does not have a Hist.

A class of graphs similar to fullerene graphs are cubic hexangulations. Recall that a hexangulation of a surface is a 2-connected graph with an embedding on the surface such that every facial cycle has length 6 . For example, consider the dual of the triangulation in Figure 4. Using this type of construction, we see that there are infinitely many bipartite cubic hexangulations G of the torus with $|V(G)| \equiv 0(\bmod 4)$. Corollary 3 directly shows that such hexangulations G do not contain a Hist. We asked in the first version of this paper whether there are finitely or infinitely many hexangulations of the torus with a Hist. This question is answered in the next theorem.

Theorem 11 There are infinitely many cubic hexangulations of the torus with a Hist.
Proof. Let G_{0} and G_{1} be the hexangulations of the torus shown in the left and the center of Figure 5. (The top and the bottom, the left and the right are identified, respectively.) Let T be the hexangulation of the annulus shown in the right of Figure 5. (The top and the bottom are identified.) We construct the cubic hexangulation $G_{k}(k \geq 2)$ of the torus recursively, by (i) cutting G_{k-1} along the cycle $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$, and (ii) inserting T with appropriate identification. Then G_{k} is a cubic hexangulation with $(12 k+10)$ vertices, and has a Hist, which is presented in Figure 5 by the bold edges.

Figure 4: The dual of bipartite cubic hexangulations G of the torus satisfying $|V(G)| \equiv$ $0(\bmod 4)$. The top and the bottom, the left and the right are identified, respectively.

The length of a shortest non-contractible cycle of a graph embedded on a non-spherical surface is called the edge-width of the graph. Note that G_{k} in the proof of Theorem 11 is bipartite for every $k \geq 0$, has girth 6 and edge-width exactly 6 for every $k \geq 1$.

After submitting the first version of this paper, the authors were informed that Zhai, Wei, He and Ye [15] also proved Theorem [11, together with the case of the Klein bottle. It was also announced that their constructed hexangulations can have arbitrary large edgewidth.

G_{1}

Figure 5: Hexangulations G_{0}, G_{1} of the torus and T of the annulus.

Acknowledgments

We are grateful to R. Nedela, P. Vrána, and T. Kaiser for helpful discussions.We also thank Y. Egawa for several useful comments which shortened the proof of Theorem 7. We are also grateful to the anonymous referees. In particular, one of the referees suggested a proof of Proposition 4 using vertex-transitive graphs. Part of the work was done by the first and third authors during "8th Workshop on the Matthews-Sumner Conjecture and Related Problems" in Pilsen. They appreciate the organizers of the workshop for their hospitality.

References

[1] M.O. Albertson, D.M. Berman, J.P. Hutchinson and C. Thomassen, Graphs with homeomorphically irreducible spanning trees, J. Graph Theory 14 (1990) 247-258.
[2] J.A.Bondy, U.S.R.Murty. Graph Theory, Springer (2008).
[3] G. Chen, and S. Shan, Homeomorphically irreducible spanning trees, J. Combin. Theory Ser. B 103 (2013) 409-414.
[4] R.J. Douglas, NP-completeness and degree restricted spanning trees, Discrete Math. 105 (1992) 41-47.
[5] Y. Egawa, r-regular r-connected graphs with large girth, Adv. Appl. Discrete Math. 12 (2013) 163-172.
[6] H. Fleischner, and B. Jackson, A note concerning some conjectures on cyclically 4-edge-connected 3-regular graphs, in "Graph Theory in Memory of G.A. Dirac", NorthHolland, Amsterdam, Ann. Discrete Math. 41 (1989) 171-178.
[7] C. Godsil, G. Royle. Algebraic Graph Theory, Springer (2001).
[8] R. Halin. Studies on minimally n-connected graphs, in Combinatorial Mathematics and its Applications (Proc. Conf., Oxford, 1969), 129-136. Academic Press, London, 1971.
[9] A. Hill, Graphs with homeomorphically irreducible spanning trees, in "Proc. British Combinatorial Conference", Aberystwyth 1973, Cambridge University Press, London Mathematical Society Lecture Notes 13 (1974) 61-68.
[10] T. Jatschka, private communication (2017).
[11] R. Nedela, and M. Škoviera, Atoms of cyclic connectivity in cubic graphs, Math. Slovaca 45 (1995) 481-499.
[12] R. Nedela, and M. Škoviera, Regular maps on surfaces with large planar width, Europ. J. Combin. 22 (2001) 243-261.
[13] D.B. West, Introduction to Graph Theory, Prentice Hall (2001).
[14] N.C. Wormald, Models of random regular graphs, in "Surveys in Combinatorics, 1999", Cambridge University Press, London Mathematical Society Lecture Note Series 276 (1999) 239-298.
[15] S. Zhai, E. Wei, J. He and D. Ye, Homeomorphically irreducible spanning trees in cubic hexangulations of surfaces, preprint (2017).

[^0]: *Technical University of Vienna, Austria. Email: arthurzorroo@gmx.at
 ${ }^{\dagger}$ This work was supported by the Austrian Science Fund (FWF): P 26686.
 ${ }^{\ddagger}$ Department of Mathematics, Tokyo Denki University, 5 Senjuasahicho, Adachi-ku, Tokyo 120-8551, Japan. Email: noguchi@mail.dendai.ac.jp
 ${ }^{\S}$ Environment and Information Sciences, Yokohama National University, 79-2 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan. Email: ozeki-kenta-xr@ynu.ac.jp
 ${ }^{\text {§ }}$ This work was in part supported by JSPS KAKENHI Grant Number 25871053.

