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Abstract

Let n,d be integers with 1 < d < L”TflJ, and set h(n,d) := (";d) + d?. Erdés proved that
when n > 6d, each nonhamiltonian graph G on n vertices with minimum degree §(G) > d has at
most h(n,d) edges. He also provides a sharpness example H, 4 for all such pairs n, d. Previously,
we showed a stability version of this result: for n large enough, every nonhamiltonian graph G
on n vertices with 6(G) > d and more than h(n,d + 1) edges is a subgraph of H,, 4.

In this paper, we show that not only does the graph H, ;q maximize the number of edges
among nonhamiltonian graphs with n vertices and minimum degree at least d, but in fact it
maximizes the number of copies of any fixed graph F' when n is sufficiently large in comparison
with d and |F|. We also show a stronger stability theorem, that is, we classify all nonhamiltonian
n-graphs with §(G) > d and more than h(n,d+2) edges. We show this by proving a more general
theorem: we describe all such graphs with more than (”_(;j”)) +(d+2) (Zﬁ) copies of K, for
any k. Mathematics Subject Classification: 05C35, 05C38.

Keywords: Subgraph density, hamiltonian cycles, extremal graph theory.

1 Introduction

Let V(G) denote the vertex set of a graph G, E(G) denote the edge set of G, and e(G) = |E(G)].
Also, if v € V(G), then N(v) is the neighborhood of v and d(v) = |N(v)|. If v € V(G) and
D C V(G) then for shortness we will write D + v to denote D U {v}. For k,t € N, (k); denotes the

falling factorial k(k —1)...(k—t+1) = (kkf't)v

The first Turdn-type result for nonhamiltonian graphs was due to Ore [I1]:

Theorem 1 (Ore [I1]). If G is a nonhamiltonian graph on n vertices, then e(G) < ("51) + 1.
This bound is achieved only for the n-vertex graph obtained from the complete graph K, 1 by
adding a vertex of degree 1. Erdds [4] refined the bound in terms of the minimum degree of the
graph:
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Theorem 2 (Erdés [4]). Let n,d be integers with 1 < d < |25, and set h(n,d) := (";d) +d%. If
G is a nonhamiltonian graph on n vertices with minimum degree §(G) > d, then

-1
e(G) < max {h(n,d), h(n, {n 5 J)} =:e(n,d).
This bound is sharp for all1 < d < L"T_IJ
To show the sharpness of the bound, for n,d € N with d < L%J, consider the graph H,, 4 obtained

from a copy of K, 4, say with vertex set A, by adding d vertices of degree d each of which is
adjacent to the same d vertices in A. An example of Hy; 3 is on the left of Fig

A

<

\\./ \.
Figure 1: Graphs Hyy 3 (left) and K7, 5 (right).

By construction, H, q has minimum degree d, is nonhamiltonian, and e(H,, 4) = ("gd) +d? =
h(n,d). Elementary calculation shows that h(n,d) > h(n,|25%|) in the range 1 < d < |[251] if
and only if d < (n+1)/6 and n is odd or d < (n + 4)/6 and n is even. Hence there exists a

dp := dp(n) such that

e(n,1) > e(n,2) > - >e(n,do) = e(n,do+1) =--- =e(n, V;lJ)’

where do(n) := [2H] if n is odd, and do(n) := [%*] if n is even. Therefore H, 4 is an extremal
example of Theorem [2] when d < do and H,, |(,—1)/2] When d > do.

In [I0] and independently in [6] a stability theorem for nonhamiltonian graphs with prescribed
minimum degree was proved. Let K , denote the edge-disjoint union of K, and K41 sharing a
single vertex. An example of K{Lg is on the right of Fig

Theorem 3 ([10,6]). Let n > 3 and d < |252|. Suppose that G is an n-vertex nonhamiltonian
graph with minimum degree 6(G) > d such that

e(G) > e(n,d + 1):max{h(n,d+ 1), hn, {”;J)}. (1)

Then G is a subgraph of either Hy q or K] ,.

One of the main results of this paper shows that when n is large enough with respect to d and ¢,
H,, 4 not only has the most edges among n-vertex nonhamiltonian graphs with minimum degree at
least d, but also has the most copies of any t-vertex graph. This is an instance of a generalization of
the Turdn problem called subgraph density problem: for n € N and graphs T and H, let ex(n, T, H)
denote the maximum possible number of (unlabeled) copies of 7" in an n-vertex H-free graph. When
T = K3, we have the usual extremal number ex(n,T, H) = ex(n, H).



Some notable results on the function ex(n, T, H) for various combinations of 7" and H were obtained
in [5, 2, [1, 8,0, [7]. In particular, Erdds [5] determined exz(n, Ky, K;), Bollobds and Gyéri [2] found
the order of magnitude of ex(n,C3,C5), Alon and Shikhelman [I] presented a series of bounds on
ex(n,T, H) for different classes of T and H.

In this paper, we study the maximum number of copies of T in nonhamiltonian n-vertex graphs,
ie. ex(n,T,Cy). For two graphs G and T, let N(G,T') denote the number of labeled copies of
T that are subgraphs of G, i.e., the number of injections ¢ : V(T) — V(G) such that for each
xy € E(T), ¢(z)¢p(y) € E(G). Since for every T and H, |Aut(T)|ex(n,T, H) is the maximum of
N(G,T) over the n-vertex graphs G not containing H, some of our results are in the language of
labeled copies of T' in G. For k € N, let Ni(G) denote the number of unlabeled copies of Kj’s in
G. Since |Aut(Ky)| = k!, we have Ni(G) = N(G, K})/k!.

2 Results

As an extension of Theorem [2, we show that for each fixed graph F' and any d, if n is large enough
with respect to |V (F)| and d, then among all n-vertex nonhamiltonian graphs with minimum degree
at least d, H, 4 contains the maximum number of copies of F'.

Theorem 4. For every graph F with t == |V(F)| > 3, any d € N, and any n > no(d,t) :=
4dt + 3d? + 5t, if G is an n-vertex mnonhamiltonian graph with minimum degree 6(G) > d, then
N(G, H) < N(Hya, F).

On the other hand, if F'is a star K1 and n < dt —d, then H,, 4 does not maximize N (G, F'). At
the end of Section We show that in this case, N(H,, |(n—1)/2) F) > N(Hp4, F). So, the bound on
no(d,t) in Theorem 4] has the right order of magnitude when d = O(t).

An immediate corollary of Theorem {4]is the following generalization of Theorem

Corollary 5. For every graph F with t := |V(F)| > 3 and any n > no(t) :== 9t + 3, if G is an
n-vertex nonhamiltonian graph, then N(G,H) < N(Hy 1, F).

We consider the case that F is a clique in more detail. For n,k € N, define on the interval

[1, [(n —1)/2]] the function
hio(n, z) = (”;x> +x<kf1). (2)

We use the convention that for a € R, b € N, () is the polynomial fa x (a—1) x ... x (a —b+1)
if a > b — 1 and 0 otherwise.

By considering the second derivative, one can check that for any fixed k£ and n, as a function of z,
hi(n,x) is convex on [1, |(n — 1)/2]], hence it attains its maximum at one of the endpoints, x = 1
or x = [(n—1)/2]. When k = 2, ha(n,z) = h(n,z). We prove the following generalization of
Theorem [2

Theorem 6. Let n,d, k be integers with 1 < d < L”T_IJ and k > 2. If G is a nonhamiltonian graph



on n vertices with minimum degree §(G) > d, then the number Ni(G) of k-cliques in G satisfies

Ni(G) < max {hk(n, d), hu(n, V - IJ )}

Again, graphs H, 4 and H,, |(,_1)/2) are sharpness examples for the theorem.

Finally, we present a stability version of Theorem [6] To state the result, we first define the family
of extremal graphs.

Fix d < [(n —1)/2]. In addition to graphs H, 4 and K, ; defined above, define H;, ;: V(H, ;) =
AU B, where A induces a complete graph on n — d — 1 vertices, B is a set of d + 1 vertlces “that
induce exactly one edge, and there exists a set of vertices {a1,...,aq} C A such that for all b € B,
N(b) — B = {a1,...,aq}. Note that contracting the edge in H), ,[B] yields H,,—1,4. These graphs
are illustrated in Fig.

@:0+6:

Figure 2: Graphs H, 4 (left), K, ; (center), and H, ;4 (right), where shaded background indicates a complete graph.

We also have two more extremal graphs for the cases d = 2 or d = 3. Define the nonhamiltonian
n-vertex graph G, , with minimum degree 2 as follows: V(Gj, ,) = AU B where A induces a clique
or order n — 3, B = {by, by, b3} is an independent set of order 3, and there exists {a1, ag,a3,x} C A
such that N(b;) = {a;,z} for i € {1,2,3} (see the graph on the left in Fig. 3).

The nonhamiltonian n-vertex graph Fj, 3 with minimum degree 3 has vertex set AU B, where A
induces a clique of order n — 4, B induces a perfect matching on 4 vertices, and each of the vertices
in B is adjacent to the same two vertices in A (see the graph on the right in Fig. 3).

o O

Figure 3: Graphs G}, , (left) and F, 3 (right).

Our stability result is the following:

Theorem 7. Letn >3 and 1 <d < L”T_IJ Suppose that G is an n-vertex nonhamiltonian graph



with minimum degree 6(G) > d such that there exists k > 2 for which

-1
N(G) > max { i, d-+2) tao, | ") | 0
Let Hn,d = {Hn,da Hn,d+17 K;l’da K;L,d+1a H;z,d}'
(i) If d = 2, then G is a subgraph of G;z,z or of a graph in Hp2;
(i1) if d = 3, then G is a subgraph of Fy, 3 or of a graph in Hy3;
(iti) if d=1 or4 <d < L"T_IJ, then G is a subgraph of a graph in H, q.

The result is sharp because H,, 412 has hi(n,d + 2) copies of Kj, minimum degree d + 2 > d, is
nonhamiltonian and is not contained in any graph in H,, 4 U {G’n’Q, Fn3}.

The outline for the rest of the paper is as follows: in Section 3 we present some structural results
for graphs that are edge-maximal nonhamiltonian to be used in the proofs of the main theorems,
in Section 4 we prove Theorem [4 in Section 5 we prove Theorem [f] and give a cliques version of
Theorem [3] and in Section 6 we prove Theorem [7}

3 Structural results for saturated graphs

We will use a classical theorem of Pésa (usually stated as its contrapositive).

Theorem 8 (Pésa [12]). Let n > 3. If G is a nonhamiltonian n-vertex graph, then there exists
1<k< L”T_IJ such that G has a set of k vertices with degree at most k.

Call a graph G saturated if G is nonhamiltonian but for each uv ¢ E(G), G + uv has a hamiltonian
cycle. Ore’s proof [I1] of Dirac’s Theorem [3] yields that

du) +dv) <n-—1 (4)

for every n-vertex saturated graph G and for each uv ¢ E(G).

We will also need two structural results for saturated graphs which are easy extensions of Lemmas
6 and 7 in [6].

Lemma 9. Let G be a saturated n-vertex graph with Ny(G) > hy(n, | 252 |) for any k > 2. Then
for some 1 < r < L%J, V(G) contains a subset D of r vertices of degree at most r such that

G — D is a complete graph.

Proof. Since G is nonhamiltonian, by Theorem [8] there exists some 1 < r < L%‘lj such that G has
r vertices with degree at most r. Pick the maximum such r, and let D be the set of the vertices
with degree at most 7. Since hy(G) > h(n, |%1]), r < [252]. So, by the maximality of r, [D| = r.

Suppose there exist z,y € V(G) — D such that zy ¢ E(G). Among all such pairs, choose z
and y with the maximum d(x). Since y ¢ D, d(y) > r. Let D' := V(G) — N(x) — {z} and
r':=|D'|=n—-1-d(x). By ,

d(z) <n—1—d(z)=7" foral z€ D" (5)



So D' is a set of 7’ vertices of degree at most r’. Sincey € D', v’ > d(y) > r. Thus by the maximality
of r, we get 1’ =n —1—d(z) > |22 |. Equivalently, d(z) < [%51]. For all z € D' + {}, either

z € D where d(z) <r < |22, or 2 € V(G) — D, and so d(z) < d(z) < |22 ].

Now we count the number of k-cliques in G: Among V(G) — D', there are at most (”?J) k-cliques.

Also, each vertex in D’ can be in at most (kr_’1> k-cliques. Therefore Ni(G) < (”;T/) + 7 (kr_ll) <
hi(n, VLT_IJ)’ a contradiction. O
Also, repeating the proof of Lemma 7 in [6] gives the following lemma.

Lemma 10 (Lemma 7 in [6]). Under the conditions of Lemma @ if r = 6(G), then G = H, 5
or G =K 5(G)-

4 Maximizing the number of copies of a given graph and a proof
of Theorem 4

In order to prove Theorem [4] we first show that for any fixed graph F and any d, of the two
extremal graphs of Lemma if n is large then H, 4 has at least as many copies of F' as K], .

Lemma 11. For any d,t,n € N with n > 2dt + d + t and any graph F with t = |V (F)| we have
N(K! ,,F) < N(H,.4, F).

Proof. Fix F' and t = [V(F)|. Let K|, ; = AU B where A and B are cliques of order n — d and
d + 1 respectively and AN B = {v*}, the cut vertex of K;L 4- Also, let D denote the independent
set of order d in H, 4. We may assume d > 2, because H,; = K7/1,1' If z is an isolated vertex of
F then for any n-vertex graph G we have N(G,F) = (n —t+ 1)N(G,F — z). So it is enough to
prove the case §(F') > 1, and we may also assume ¢ > 3.

Because both K7, ,[A] and Hy, ¢ — D are cliques of order n — d, the number of embeddings of F' into
K, 4[A] is the same as the number of embeddings of F' into H, 4 — D. So it remains to compare
only the number of embeddings in ® := {¢ : V(F) — V(K] ;) such that ¢(F) intersects B — v*}
to the number of embeddings in ¥ := {¢ : V(F) — V(H, q) such that ¥ (F') intersects D}.

Let C' U C be a partition of the vertex set V(F), s := |C|. Define the following classes of ® and ¥
— ®(C) = {p : V(F) = V(K] ,) such that ¢(C) intersects B — v*, ¢(C) C B, and

— U(C) = {¢ : V(F) = V(Hy,q) such that ¢(C) intersects D, ¥(C) C (D U N(D)), and
$(C) CV - (DUN(D))}.
By these definitions, if C' # €’ then ®(C)N®(C”) = 0, and ¥(C)NW(C’) = 0. Also Uyrccy(r) P(C) =
®. We claim that for every C # (),

[@(C)] < [¥(C)]- (6)

Summing up the number of embeddings over all choices for C' will prove the lemma. If ®(C) = 0,
then @ obviously holds. So from now on, we consider the cases when ®(C') is not empty, implying
1<s<d+1

Case 1: There is an F-edge joining C' and C. So there is a vertex v € C with Np(v) N C # 0.
Then for every mapping ¢ € ®(C), the vertex v must be mapped to v* in K;L,d, p(v) = v*. So this



vertex v is uniquely determined by C. Also, ¢(C) N (B — v*) # () implies s > 2. The rest of C' can
be mapped arbitrarily to B — v* and C' can be mapped arbitrarily to A — v*. We obtained that
[2(C)] = (d)s—1(n —d — 1)1—s.

We make a lower bound for |¥(C)| as follows. We define a ¢ € ¥(C') by the following procedure. Let
Y(v) =z € N(D) (there are d possibilities), then map some vertex of C' —v to a vertex y € D (there
are (s —1)d possibilities). Since N +y forms a clique of order d+ 1 we may embed the rest of C' into
N—vin (d—1)s_2 ways and finish embedding of F into H,, 4 by arbitrarily placing the vertices of C to
V—(DUN(D)). We obtained that |¥(C)| > d?(s—1)(d—1)s_2(n—2d);—s = d(s—1)(d)s—1(n—2d);_s.

Since s > 2 we have that

w(C)
)

‘ d(s—l)(d)s_l(n—Qd)t_s n—2d+1—t+s t—s
(0] = )

(d)s_1(n—d—1)—s = ﬂ2_”< n—d—t+s

d—l t—s
= d|l-——F—
< n—d—t+s>

(- D)

Y

n—d—t+s

> 1 whenn>dt+d-+t.

v

Case 2: C and C are not connected in F. We may assume s > 2 since C' is a union of components
with §(F) > 1. In K;l’d there are at exactly (d+ 1)s(n —d — 1);_s ways to embed F' into B so that
only C is mapped into B and C goes to A — v*, i.e., |®(C)| = (d+1)s(n —d — 1);_s.

We make a lower bound for |¥(C')| as follows. We define a 1) € U(C') by the following procedure.
Select any vertex v € C' and map it to some vertex in D (there are sd possibilities), then map
C —v into N(D) (there are (d)s—1 possibilities) and finish embedding of F' into H,, 4 by arbitrarily
placing the vertices of C to V — (DU N(D)). We obtained that [¥(C)| > ds(d)s—1(n — 2d);—s. We
have

| (C)| ds(d)s—1(n —2d);—s ds (d—1)t

> > 1——
1D(C)] = (d+1)s(n—d— 1), d+1 n—d—t
2d 1 (d—1)t

- d+1 n—d—t

> 1 whenn > 2dt+d++t.

) because s > 2

We are now ready to prove Theorem [4]

Theorem For every graph F with t := |V(F)| > 3, any d € N, and any n > no(d,t) =
4dt + 3d? + 5t, if G is an n-verter mnonhamiltonian graph with minimum degree 6(G) > d, then
N(G,H) < N(H,.4, F).

Proof. Let d > 1. Fix a graph F with |[V(F)| > 3 (if [V(F)| = 2, then either FF = K3 or F = K»).
The case where G has isolated vertices can be handled by induction on the number of isolated



vertices, hence we may assume each vertex has degree at least 1. Set

ng = 4dt + 3d* + 5t. (7)

Fix a nonhamiltonian graph G with |V(G)| = n > ng and 6(G) > d such that N(G,F) >
N(Hy 4, F) > (n—d);. We may assume that G is saturated, as the number of copies of F' can only
increase when we add edges to G.

Because n > 4dt + t by ,

So, (n—d); > 3(n);.

After mapping edge zy of F to an edge of G (in two labeled ways), we obtain the loose upper
bound,

2e(G)(n — 21y > N(G, F) > (n— d)s > z(n)t,
therefore 5
(@) (Z) > ha(m, [(n — 1)/2)). ®)

By Pésa’s theorem (Theorem [8), there exists some d < r < |(n — 1)/2] such that G contains
a set R or r vertices with degree at most r. Furthermore by , r < dg. So by integrality,
r<dyp—1<(n+3)/6. If r = d, then by Lemma either G = Hy, g or G = K;L,d' By Lemma
and @, G = H,, 4, a contradiction. So we have r > d + 1.

Let Z denote the family of all nonempty independent sets in F'. For I € Z, let ¢ = i(I) := |I| and
j = j(I) = |Np(I)|. Since F has no isolated vertices, j(I) > 1 and so ¢ < ¢ — 1 for each I € Z.
Let ®(I) denote the set of embeddings ¢ : V(F') — V(G) such that ¢(I) C R and I is a maximum
independent subset of ¢~1(R N ¢(F)). Note that ¢(I) is not necessarily independent in G. We
show that

[D(L)| < (r)ir(n —71)1—i-1. (9)
Indeed, there are (r); ways to choose ¢(I) C R. After that, since each vertex in R has at most
r neighbors in G, there are at most 7/ ways to embed Np(I) into G. By the maximality of I, all
vertices of F' — I — Np(I) should be mapped to V(G) — R. There are at most (n —r);—;—; to do
it. Hence |®(I)| < (r)ir?(n — r)¢—i—j. Since 2r + ¢ < 2(dy — 1) +t < n, this implies (9).
Since each ¢ : V(F) — V(G) with ¢(V(F)) N R # 0 belongs to ®(I) for some nonempty I € Z,
@ implies

t—1
NG <=t 3 1801 (-t 3 () rta =i (10)
=1

0AI€T



Hence

N(G,F) < (n—7)+ 021 (Or)ir(n —r)—ia

N(Hpa, F) ~ (n—d);
< Ede it (o
R
= EZ_Z;ZXZ_ZTFZ—Q: (n(n);)txnti2rrz f(r).

Given fixed n,d,t, we claim that the real function f(r) is convex for 0 < r < (n —t+2)/2.

Indeed, the first term g(r) := 52:231 X T:Z__t;f;_%f is a product of t linear terms in each of which r
has a negative coefficient (note that the n —t+2 —r term cancels out with a factor of n —r —t +2
in (n —);). Applying product rule, the first derivative ¢’ is a sum of ¢ products, each with ¢ — 1
linear terms. For r < (n —t 4+ 2)/2, each of these products is negative, thus ¢’(r) < 0. Finally,
applying product rule again, ¢’ is the sum of ¢(¢t — 1) products. For r < (n —t + 2)/2 each of the

products is positive, thus ¢”(r) > 0.

Similarly, the second factor of the second term (as a real function of r, of the form r/(c — r)) is
convex for r <n —t+ 2.

We conclude that in the interval [d + 1, (n + 3)/6] the function f(r) takes its maximum either at
one of the endpoints r =d+ 1 or r = (n + 3)/6. We claim that f(r) < 1 at both end points.

In case of r = d 4 1 the first factor of the first term equals (n —d —t)/(n — d). To get an upper
bound for the first factor of the second term one can use the inequality [[(1 4+ =) < 1+2>
which holds for any number of non-negative z;’s if 0 < " z; < 1. Because dt/(n —d —t+1) <1
by , we obtain that

At Y 2t d41
Fd+1) n n >>< +

X 1
n—d n—t—d+1+< +n—d—t—|—1 n—t—d+1

t d+1 d+1 2dt(d + 1)
= (1= 1 ¢ 4T
< n—d>x< n—t—d+1>+(n—t—d—|—1>+<(n—t—d+1)2>
ot t d+1 t 2d(d + 1) n—d

n—d+n—dxn—t—d+1+n—dxn—t—d+1 ><n—t—d—f—l
_ o1 t (1 d+1 B 2d(d+1) (14 t—1
n—d n—t—d+1 n—-t—d+1 n—t—d+1

t 1 2 1

IA
|

! =X (1-1/12-2/3 X 5/4)

Here we used that n > 3d? + 2d +t and n > 4dt 4+ 5t 4+ d by ,t23, and d > 1.



To bound f(r) for other values of r, let us use 1 +z < e* (true for all ). We get

F(r) < expd — (r—d)t n r « oxc dt
") exP n—d—t+1 n—r—t+2 P n—d—t+1]"

When r = (n+ 3)/6, t > 3, and n > 24d by , the first term is at most e~'8/46 = 0.676....
Moreover, for n > 9t @ (therefore n > 27) we get that ~—"7— is maximized when ¢ is maximized,
i.e., when t = n/9. The whole term is at most (3n + 9)/(13n 4 27) x e'/* < 5/21 x e¥/* = 0.305...,

so in this range, f((n+3)/6) < 1.
By the convexity of f(r), we have N(G, F) < N(H, 4, F'). O

When F is a star, then it is easy to determine max N (G, F) for all n.

Claim 12. Suppose F' = K11 with t := |V(F)| > 3, and t < n and d are integers with 1 < d <
|(n—1)/2]. If G is an n-vertex nonhamiltonian graph with minimum degree 6(G) > d, then

N(G,F) <max {Hp g, Hp, |(n-1)/2) } » (11)

and equality holds if and only if G € {Hn,d, Hy, |(n-1)/2] }

Proof. The number of copies of stars in a graph G depends only on the degree sequence of the
graph: if a vertex v of a graph G has degree d(v), then there are (d(v));—1 labeled copies of F' in
G where v is the center vertex. We have

NG F)= Y (td(_”>1> (12)

veV(Q)

Since G is nonhamiltonian, Pésa’s theorem yields an r < |(n —1)/2], and an r-set R C V(G) such
that dg(v) < r for all v € R. Take the minimum such r, then there exists a vertex v € R with
deg(v) = r. We may also suppose that G is edge-maximal nonhamiltonian, so Ore’s condition
holds. It implies that deg(w) < n —r — 1 for all w ¢ N(v). Altogether we obtain that G has r
vertices of degree at most r, at least n — 2r vertices (those in V(G) — R — N(v)) of degree at most
(n —r —1). This implies that the right hand side of is at most

rx(r)i—1+m=2r)x(n—r—1)1+7rx(n—1)1 = N(Hy,, F).

(Here equality holds only if G = H,, ). Note that r € [d, [$(n — 1)]]. Since for given n and ¢ the
function N(Hy, ,, F') is strictly convex in r, it takes its maximum at one of the endpoints of the
interval. O

Remark 13. As it was mentioned in Section[d, O(dt) is the right order for no(d,t) when d = O(t).

To see this, fix d € N and let F' be the star on t > 3 vertices. If d < |(n —1)/2], t < n and
n < dt —d, then H, |;,—1)/2) contains more copies of F' than H, 4 does, the maximum in (11) is
reached for r = |(n — 1)/2|. We present the calculation below only for 2d + 7 < n < dt — d, the
case 2d + 3 < n < 2d + 6 can be checked by hand by plugging n into the first line of the formula
below. We can proceed as follows.

10



N(Hy /2 F) = Ny, F) = (L= 1)/2)n = Decr + [0+ 1)/2)(Ln — 1)/20)-1)
- (d(n 1)+ (n—2d)(n—d — 1)y + d(d)t_l)

(Ln—l )/2] — d) n— 1)1 — (n—2d)(n — d — 1)s_1
+(n +1)/2]([(n — 1)/2])e—1 — d(d)e—1

(Lo =1)/2) = d)(n = D)ot = (0 = 2)(1 = d/n)™") (0 = 1)1
(

(

\

Dot (Ln = 1)/2) — d— (n — 2d)e= =/
Do (L(n—1)/2] = d— (n — 2d) o)

n —

n

vV v Vv

0.

5 Theorem [6] and a stability version of it

In general, it is difficult to calculate the exact value of N(H,, 4, F') for a fixed graph F'. However,
when F' = K}, we have N(H,, 4, K};) = hi(n,d)k!. Recall Theorem@

Let n,d, k be integers with 1 < d < L”T_IJ and k > 2. If G is a nonhamiltonian graph on n vertices
with minimum degree 6(G) > d, then

Nu(G) < max {hk(n, d), hi(n, {” - 1J )} .

Proof of Theorem [0 By Theorem [§] because G is nonhamiltonian, there exists an r > d such that
G has r vertices of degree at most r. Denote this set of vertices by D. Then Ni(G — D) < ("."),
and every vertex in D is contained in at most (,",) copies of Kj. Hence Ny(G) < hy(n,r). The
theorem follows from the convexity of hy(n,x). O

Our older stability theorem (Theorem [3]) also translates into the the language of cliques, giving a
stability theorem for Theorem [6}

Theorem 14. Let n > 3, and d < VLT_IJ Suppose that G is an n-vertex nonhamiltonian graph

with minimum degree 6(G) > d and there exists a k > 2 such that

—1
Nu(G) >max{hk(n,d+ 1), hy(n, {”2 J)} (13)
Then G is a subgraph of either Hy, 4 or K;Ld

Proof. Take an edge-maximum counterexample G (so we may assume G is saturated). By Lemma
9l G has a set D of r < [(n —1)/2] vertices such that G — D is a complete graph. If r > d +1,
then Ni(G) < max {hk(n,d + 1), hg(n, L”T_IJ)} Thus r = d, and we may apply Lemma O

11



6 Discussion and proof of Theorem [7|

One can try to refine Theorem [3| in the following direction: What happens when we consider n-
vertex nonhamiltonian graphs with minimum degree at least d and less than e(n,d + 1) but more
than e(n,d + 2) edges?

Note that for d < do(n) — 2,
e(n,d) —e(n,d+2) =2n —6d — 7,

which is greater than n. Theorem [7] answers the question above in a more general form—in terms
of s-cliques instead of edges. In other words, we classify all n-vertex nonhamiltonian graphs with
more than max {hs (n,d + 2), hs(n, LEJ } copies of K.

As in Lemma such G can be a subgraph of H,, 4 or K/ nd- Also, G' can be a subgraph of H,, 411
or K, d+1- Recall the graphs H,, g, K’ Hn & Gn 9, and F}, 3 defined in the first two sections of this

n,d’

paper and the statement of Theorem [3| l

0:000:6- 6

Figure 4: Graphs Hp 4, K;, 4, H), 4, G} 2, and Fy, 3.

Theorem (7| Letn >3 and 1 < d < VLT_IJ Suppose that G is an n-verter nonhamiltonian graph
with minimum degree 0(G) > d such that exists a k > 2 for which

Ni(G) > max {hk(n, d+2), hi(n, V;J )} .

Let Hnd _{Hnd) nd+laKndaKnd+17H/ d}'

(i) If d = 2, then G is a subgraph of G;z,Q or of a graph in Hpy2;

(11) if d = 3, then G is a subgraph of F,, 3 or of a graph in Hy3;

(iii) if d=1 or4 <d < L%J , then G is a subgraph of a graph in H,, 4.

Proof. Suppose G is a counterexample to Theorem [7] with the most edges. Then G is saturated. In
particular, degree condition (4) holds for G. So by Lemma [9] there exists an d < r < [(n — 1)/2]
such that V(G) contains a subset D of r vertices of degree at most r and G — D is a complete
graph.

If 7 > d+2, then because hi(n, z) is convex, Ni(G) < hy(n,r) < max {hy(n,d + 2), hg(n, | 252 ]) }.
Therefore either 7 = d or = d + 1. In the case that r = d (and so r = §(G)), Lemma |10 implies
that G C H,, 4. So we may assume that r = d + 1.

If 5(G) > d + 1, then we simply apply Theorem [3| with d + 1 in place of d and get G C H,, 441 or

12



!
G C K, a41- So, from now on we may assume

3(G) = d. (14)

Now implies that our theorem holds for d = 1, since each graph with minimum degree exactly
1 is a subgraph of H,, 1. So, below 2 < d < L”T_lj

Let N := N(D) — D C V(G) — D. The next claim will be used many times throughout the proof.

Lemma 15. (a) If there exists a vertex v € D such that d(v) =d+ 1, then N(v) — D = N.
(b) If there exists a vertex w € N such that u has at least 2 neighbors in D, then u is adjacent to
all vertices in D.

Proof. If v € D, d(v) = d+ 1 and some u € N is not adjacent to v, then d(v) +d(u) > d+1+ (n—
d—2)+1=n. A contradiction to (4)) proves (a).

Similarly, if v € N has at least 2 neighbors in D but is not adjacent to some v € D, then
d(v) + d(u) > d+ (n — d — 2) + 2 = n, again contradicting ([4). 0

Define S := {u € V(G) = D : u € N(v) forallv € D}, s := s, and S’ := V(G) — D — S. By
Lemma (b), each vertex in S’ has at most one neighbor in D. So, for each v € D, call the
neighbors of v in S’ the private neighbors of v.

We claim that
D is not independent. (15)

Indeed, assume D is independent. If there exists a vertex v € D with d(v) = d + 1, then by
Lemma |15( (b), N(v) — D = N. So, because D is independent, G C H, q4+1. Assume now that
every vertex v € D has degree d, and let D = {v1,...,v441}.

If s > d, then because each v; € D has degree d, s =d and N = S. Then G C Hy, 441. If s <d—2,
then each vertex v; € D has at least two private neighbors in S’; call these private neighbors x,, and
Yu;- The path xy, v1yy, To, V2, - - - Toyy Var1Yv,,, contains all vertices in D and can be extended to
a hamiltonian cycle of G, a contradiction.

Finally, suppose s = d — 1. Then every vertex v; € D has exactly one private neighbor. Therefore
G = G! , where G/ , is composed of a clique A of order n —d — 1 and an independent set
D= {vl,,. oy Uda1 ) and there exists a set S C A of size d — 1 and distinct vertices 21,y Zd+1 Such
that for 1 <i <d+1, N(v;) = SUz. Graph G;%d is illustrated in Fig. @

For d = 2, we conclude that G C G;%Q, as claimed, and for d > 3, we get a contradiction since G/, ,
is hamiltonian. This proves .

Call a vertex v € D open if it has at least two private neighbors, half-open if it has exactly one
private neighbor, and closed if it has no private neighbors.

We say that paths P, . .., P, partition D, if these paths are vertex-disjoint and V (Py)U...UV(FP,) =
D. The idea of the proof is as follows: because G— D is a complete graph, each path with endpoints
in G — D that covers all vertices of D can be extended to a hamiltonian cycle of G. So such a path
does not exist, which implies that too few paths cannot partition D:

13



Figure 5: G}, ;.

Lemma 16. If s > 2 then the minimum number of paths in G|[D] partitioning D is at least s.

Proof. Suppose D can be partitioned into ¢ < s —1 paths Pi,..., Py in G[D]. Let S = {z1,..., zs}.
Then P = 21 P12y . .. 2¢Ppz¢41 is a path with endpoints in V(G)—D that covers D. Because V(G)—D
forms a clique, we can find a 21, 2¢41 - path P’ in G — D that covers V(G) — D —{29,...,2¢}. Then
P U P’ is a hamiltonian cycle of G, a contradiction. O

Sometimes, to get a contradiction with Lemma [16] we will use our information on vertex degrees in
G[D]:

Lemma 17. Let H be a graph on r vertices such that for every nonedge xy of H, d(x)+d(y) > r—t
for some t. Then V(H) can be partitioned into a set of at most t paths. In other words, there exist
t disjoint paths P, ..., Py with V(H) = U\_, V(P).

Proof. Construct the graph H’ by adding a clique T of size t to H so that every vertex of T is
adjacent to each vertex in V(H). For each nonedge z,y € H',

dg(z) +dp(y) > (r—t)+t+t=r+t=|V(H)|

By Ore’s theorem, H' has a hamiltonian cycle C’. Then C' — T is a set of at most ¢ paths in H
that cover all vertices of H. O

The next simple fact will be quite useful.

Lemma 18. If G[D] contains an open vertex, then all other vertices are closed.

Proof. Suppose G[D] has an open vertex v and another open or half-open vertex u. Let v’,v” be
some private neighbors of v in S’ and v/ be a neighbor of u in S’. By the maximality of G, graph
G +vu/ has a hamiltonian cycle. In other words, G has a hamiltonian path vvs ... v,, where v; = v
and v, = u'. Let V' = {v; : vvj11 € E(G)}. Since G has no hamiltonian cycle, V' N N(u') = 0.

Since d(v) + d(v') = n — 1, we have V(G) = V' U N(u') + «’. Suppose that v = v; and v" = v;.
Then v;—1,vj—1 € V', and v;_1,vj_1 ¢ N(u’). But among the neighbors of v; and v;, only v is not
adjacent to v/, a contradiction. O

Now we show that S is non-empty and not too large.
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Lemma 19. s > 1.

Proof. Suppose S = (). If D has an open vertex v, then by Lemma all other vertices are closed.
In this case, v is the only vertex of D with neighbors outside of D, and hence G C K/ ,, in which
v is the cut vertex. Also if D has at most one half-open vertex v, then similarly G C K/ .

So suppose that D contains no open vertices but has two half-open vertices u and v with private
neighbors z, and z, respectively. Then 6(G[D]) > d — 1. By Pésa’s Theorem, if d > 4, then G[D]
has a hamiltonian v, u-path. This path together with any hamiltonian z,, z,-path in the complete
graph G — D and the edges uz, and vz, forms a hamiltonian cycle in G, a contradiction.

If d = 3, then by Dirac’s Theorem, G[D] has a hamiltonian cycle, i.e. a 4-cycle, say C. If we can
choose our half-open v and u consecutive on C, then C'—ww is a hamiltonian v, u-path in G[D], and
we finish as in the previous paragraph. Otherwise, we may assume that C' = vxuy, where z and y
are closed. In this case, dg(p)(z) = dg[p)(y) = 3, thus zy € E(G). So we again have a hamiltonian
v, u-path, namely vryu, in G[D]. Finally, if d = 2, then |D| = 3, and G[D] is either a 3-vertex
path whose endpoints are half-open or a 3-cycle. In both cases, G[D] again has a hamiltonian path
whose ends are half-open. O

Lemma 20. s < d - 3.

Proof. Since by (14)), 6(G) = d, we have s < d. Suppose s € {d —2,d — 1,d}.
Case 1: All vertices of D have degree d.
Case 1.1: s =d. Then G C Hy, 441.

Case 1.2: s = d — 1. In this case, each vertex in graph G[D] has degree 0 or 1. By (15), G[D]
induces a non-empty matching, possibly with some isolated vertices. Let m denote the number of
edges in G[D].

If m > 3, then the number of components in G[D] is less than s, contradicting Lemma Suppose
now m = 2, and the edges in the matching are z1y; and xoys. Then d > 3. If d = 3, then
D = {z1,22,y1,y2} and G = F, 3 (see Fig 3 (right)). If d > 4, then G[D] has an isolated vertex,
say x3. This x3 has a private neighbor w € S’. Then |S + w| = d which is more than the number
of components of G[D] and we can construct a path from w to S visiting all components of G[D].

Finally, suppose G[D] has exactly one edge, say z1y1. Recall that d > 2. Graph G[D] has d — 1
isolated vertices, say xo,...,z4. Each of x; for 2 < i < d has a private neighbor u; in S’. Let
S={z,...,2a-1}. f d =2, then S = {21}, N(D) = {z1,uz} and hence G C H,, 5. So in this case
the theorem holds for G. If d > 3, then G contains a path ugxgzq_1Tg_124_2Td—2 - - . 220T1Y121T2U2
from ug4 to ug that covers D.

Case 1.3: s =d —2. Since s > 1, d > 3. Every vertex in G[D] has degree at most 2, i.e., G[D] is a
union of paths, isolated vertices, and cycles. Each isolated vertex has at least 2 private neighbors
in S’. Each endpoint of a path in G[D] has one private neighbor in S’. Thus we can find disjoint
paths from S’ to S’ that cover all isolated vertices and paths in G[D] and all are disjoint from S.
Hence if the number ¢ of cycles in G[D] is less than d — 2, then we have a set of disjoint paths from
V(G) — D to V(G) — D that cover D (and this set can be extended to a hamiltonian cycle in G).
Since each cycle has at least 3 vertices and |D| = d+1, if ¢ > d — 2, then (d+1)/3 > d — 2, which
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is possible only when d < 4, i.e. d = 3. Moreover, then G[D] = C3 U K1 and S = N is a single
vertex. But then G = K 5.

Case 2: There exists a vertex v* € D with d(v*) = d+ 1. By Lemmal 15| (b), N = N(v*) — D, and
so G has at most one open or half-open vertex. Furthermore,

if G has an open or half-open vertex, then it is v*, and by Lemma[I5, there are no (16)
other vertices of degree d + 1.

Case 2.1: s = d. If v* is not closed, then it has a private neighbor z € S’, and the neighborhood
of each other vertex of D is exactly S. In this case, there exists a path from x to S that covers
D. If v* is closed (i.e., N = 5), then G[D] has maximum degree 1. Therefore G[D] is a matching
with at least one edge (coming from v*) plus some isolated vertices. If this matching has at least
2 edges, then the number of components in G[D] is less than s, contradicting Lemma If G[D]
has exactly one edge, then G C H, .

Case 2.2: s = d—1. If v* is open, then dgp (v*) = 0 and by , each other vertex in D has
exactly one neighbor in D. In particular, d is even. Therefore G[D — v*] has d/2 components.
When d > 3 and d is even, d/2 < s — 1 and we can find a path from S to S that covers D —v*, and
extend this path using two neighbors of v* in S’ to a path from V(G) — D to V(G) — D covering
D. Suppose d =2, D = {v*,z,y} and S = {z}. Then z is a cut vertex separating {x,y} from the
rest of G, and hence G C K, 5.

If v* is half-open, then by , each other vertex in D is closed and hence has exactly one neighbor
in D. Let z € S’ be the private neighbor of v*. Then G[D] is 1-regular and therefore has exactly
(d+1)/2 components, in particular, d is odd. If d > 2 and is odd, then (d+1)/2 <d—1=s, and
so we can find a path from z to S that covers D.

Finally, if v* is closed, then by , every vertex of G[D] is closed and has degree 1 or 2, and v*
has degree 2 in G[D]. Then G[D] has at most |d/2] components, which is less than s when d > 3.
If d = 2, then s = 1 and the unique vertex z in S is a cut vertex separating D from the rest of G.
This means G C K’;L,3'

Case 2.3: s =d — 2. Since s > 1, d > 3. If v* is open, then dgp)(v*) = 1 and by , each other
vertex in D is closed and has exactly two neighbors in D. But this is not possible, since the degree
sum of the vertices in G[D] must be even. If v* is half-open with a neighbor x € S’, then G[D] is
2-regular. Thus G[D] is a union of cycles and has at most |(d + 1)/3| components. When d > 4,
this is less than s, contradicting Lemma [T6] If d = 3, then s = 1 and the unique vertex z in S is a
cut vertex separating D from the rest of G'. This means G C K], 4.

If v* is closed, then dgpj(v*) = 3 and §(G[D]) > 2. So, for any vertices z,y in G[D],
dgpy(x) +dgp)(y) 24 = (d+1) = (d=2-1) = [V(G[D])| - (s = 1).
By Lemma if s > 2, then we can partition G[D] into s — 1 paths Py, ..., Ps_;. This would

contradict Lemma So suppose s = 1 and d = 3. Then as in the previous paragraph, G C K,’M.
O

Next we will show that we cannot have 2 < s < d — 3.
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Lemma 21. s =1.

Proof. Suppose s =d —k where 3 <k <d—2.

Case 1: G[D] has an open vertex v. By Lemma every other vertex in D is closed. Let
G' = G[D] —v. Then 6(G’) > k — 1 and |V(G’)| = d. In particular, for any =,y € D — v,

der(z) +der(y) > 2%k —2>k+1=d—(d—k—1) = |V(G)| — (s — 1).

By Lemma we can find a path from S to S in G containing all of V(G’). Because v is open,
this path can be extended to a path from V(G) — D to V(G) — D including v, and then extended
to a hamiltonian cycle of G.

Case 2: D has no open vertices and 4 < k < d — 2. Then §(G[D]) > k — 1 and again for any
z,y € D, dG[D]($)+dG[D](y) >2k—2. Fork >4,2k—2>k+2= (d+1)—(d—k—1) = |D|—(s—1).
Since k < d — 2, by Lemma G[D] can be partitioned into s — 1 paths, contradicting Lemma

Case 3: D has no open vertices and s = d — 3 > 2. If there is at most one half-open vertex, then
for any nonadjacent vertices x,y € D, dgp)(v) + dgp)(y) > 2+3=52>(d+1) —(d—3—1), and
we are done as in Case 2.

So we may assume G has at least 2 half-open vertices. Let D’ be the set of half-open vertices in
D. If D' # D, let v* € D — D'. Define a subset D~ as follows: If |D’| > 3, then let D~ = D',
otherwise, let D~ = D’ + v*. Let G’ be the graph obtained from G[D] by adding a new vertex
w adjacent to all vertices in D~. Then |[V(G')| = d + 2 and 6(G’) > 3. In particular, for any
z,y €V(G),de(x) +der(y) > 6> (d+2) — (d—3—1) = |V(G)| — (s — 1). By Lemmal[L7, V(G’)
can be partitioned into s — 1 disjoint paths P,..., Ps_;. We may assume that w € P;. If w is
an endpoint of Pj, then D can also be partitioned into s — 1 disjoint paths P, —w, P>, ..., Ps_1 in
G[D], a contradiction to Lemma

Otherwise, let Py = x1,...,2—1,%i, Tit1, ..., Tk where z; = w. Since every vertex in (D~) — v* is
half-open and Ng/(w) = D™, we may assume that x;_; is half-open and thus has a neighbor y € 5’.
Let S ={z1,...,24-3}. Then

Yr;—1T;—2...L121L541 - - - kaQPQ,Zg N Zd,4Pd,4Zd,3

is a path in G with endpoints in V/(G) — D that covers D. O

Now we may finish the proof of Theorem [7| By Lemmas s =1, say, S = {z1}. Furthermore,
by Lemma
d>3+s=4. (17)

Case 1: D has an open vertex v. Then by Lemma every other vertex of D is closed. Since
s =1, each w € D — v has degree d — 1 in G[D]. If v has no neighbors in D, then G[D] — v is
a clique of order d, and G C K/ ,. Otherwise, since d > 4, by Dirac’s Theorem, G[D] — v has a
hamiltonian cycle, say C. Using C and an edge from v to C, we obtain a hamiltonian path P in
G|D] starting with v. Let v' € S’ be a neighbor of v. Then v’ Pz is a path from S’ to S that covers
D, a contradiction.
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Case 2: D has a half-open vertex but no open vertices. It is enough to prove that
G[D] has a hamiltonian path P starting with a half-open vertex v, (18)

since such a P can be extended to a hamiltonian cycle in G through z; and the private neighbor
of v. If d > 5, then for any x,y € D,

dg[D](:L’) —i—dG[D](y) >d—24d—-2=2d-4>d+1= ‘V(G[D]”

Hence by Ore’s Theorem, G[D] has a hamiltonian cycle, and hence holds.

If d < 5 then by (7)), d = 4. So G[D] has 5 vertices and minimum degree at least 2. By Lemma [17]
we can find a hamiltonian path P of G[D], say vivavsvavs. If at least one of vy, vs is half-open
or vivs € E(G), then holds. Otherwise, each of v1,vs has 3 neighbors in D, which means
N(v1) N D = N(vs) N D = {vg,v3,v4}. But then G[D] has hamiltonian cycle vjvovsv4v3v1, and
again holds.

Case 3: All vertices in D are closed. Then G C K’

n.d+1s & contradiction. This proves the theorem.
O

7 A comment and a question

e It was shown in Section [4| that the right order of magnitude of ng(d,¢) in Theorem 4] when
d = O(t) is dt. We can also show this when d = O(¢3/?). Tt could be that dt is the right order
of magnitude of ng(d,t) for all d and t.

e Is there a graph F' and positive integers d, n with n < ny(d,t) and d < |(n —1)/2] such that
for some n-vertex nonhamiltonian graph G with minimum degree at least d,

N(G, F) > max{N(and), F), N(K;%d, F), N(Hn,L(n—l)/2J , F)}7
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