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Abstract

In this paper, we are concerned with sufficient conditions for the existence

of a {P2, P2k+1}-factor. We prove that for k ≥ 3, there exists εk > 0 such that

if a graph G satisfies
∑

0≤j≤k−1
c2j+1(G −X) ≤ εk|X | for all X ⊆ V (G), then

G has a {P2, P2k+1}-factor, where ci(G−X) is the number of components C of

G−X with |V (C)| = i. On the other hand, we construct infinitely many graphs

G having no {P2, P2k+1}-factor such that
∑

0≤j≤k−1
c2j+1(G−X) ≤ 32k+141

72k−78
|X |

for all X ⊆ V (G).
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1 Introduction

In this paper, we consider only finite undirected simple graphs. Let G be a graph.

We let V (G) and E(G) denote the vertex set and the edge set of G, respectively.

For u ∈ V (G), we let NG(u) and dG(u) denote the neighborhood and the degree of

u, respectively. For U ⊆ V (G), we let NG(U) = (
⋃

u∈U NG(u))−U . For a subgraph

H of G and a set X ⊆ V (G), we let H[X] denote the subgraph of H induced by

V (H) ∩ X. A graph is odd if its order is odd. We let C(G) and Codd(G) denote

∗michitaka.furuya@gmail.com
†ozeki@nii.ac.jp
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the set of components of G and the set of odd components of G, respectively. Set

c(G) = |C(G)| and codd(G) = |Codd(G)|. For two graphs H1 and H2, we let H1 ∪H2

and H1 +H2 denote the union and the join of H1 and H2, respectively. For a graph

H and an integer s ≥ 2, we let sH denote the union of s disjoint copies of H. Let Kn,

Pn and Cn denote the complete graph, the path and the cycle of order n, respectively.

For terms and symbols not defined here, we refer the reader to [4].

Let again G be a graph. A subset M of E(G) is a matching if no two distinct

edges in M have a common endvertex. If there is no fear of confusion, we often

identify a matching M of G with the subgraph of G induced by M . A matching M

of G is perfect if V (M) = V (G). If G−u has a perfect matching for every u ∈ V (G),

G is called hypomatchable. For a set F of connected graphs, a spanning subgraph

F of G is called an F-factor if each component of F is isomorphic to a graph in F.

Note that a perfect matching can be regarded as a {P2}-factor. A {Pn : n ≥ 2}-

factor of G is called a path-factor of G. Since every path of order at least 2 can be

partitioned into paths of orders 2 and 3, a graph has a path-factor if and only if

it has a {P2, P3}-factor. Akiyama, Avis and Era [1] gave a necessary and sufficient

condition for the existence of a path-factor (here i(G) denotes the number of isolated

vertices of a graph G).

Theorem A (Akiyama, Avis and Era [1]) A graph G has a {P2, P3}-factor if

and only if i(G−X) ≤ 2|X| for all X ⊆ V (G).

On the other hand, it follows from a result of Loebal and Poljak [7] that for

k ≥ 2, the existence problem of a {P2, P2k+1}-factor is NP-complete. Thus we are

interested in a useful sufficient condition for the existence of a {P2, P2k+1}-factor (for

detailed historical background and motivations, we refer the reader to [5]).

In order to state our results, we need some more preparations. For j ≥ 1, let

Cj(H) be the set of components C of a graph H with |V (C)| = j, and set cj(H) =

|Cj(H)|. Note that c1(H) is the number of isolated vertices of H (i.e., c1(H) = i(H)).

Since no odd graph of order at most 2k − 1 has a {P2, P2k+1}-factor, the existence

of an odd subgraph of order at most 2k − 1 can be regarded as an obstacle to

the existence of a {P2, P2k+1}-factor. Furthermore, for k ≥ 1, if a graph G has a

{P2, P2k+1}-factor, then
∑

0≤j≤k−1(k−j)c2j+1(G−X) ≤ (k+1)|X| for all X ⊆ V (G)

(see [6, Proposition 2.1]). Thus if a condition concerning c2j+1(G−X) (0 ≤ j ≤ k−1)

for X ⊆ V (G) assures us the existence of a {P2, P2k+1}-factor, then it will make a

useful sufficient condition.

Recently, Egawa and Furuya [5, 6] began such a study, and they proved the

following theorems.
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Theorem B (Egawa and Furuya [5]) Let G be a graph. If c1(G−X)+ 2
3c3(G−

X) ≤ 4
3 |X| for all X ⊆ V (G), then G has a {P2, P5}-factor.

Theorem C (Egawa and Furuya [6]) Let G be a graph. If c1(G−X)+ 1
3c3(G−

X) + 1
3c5(G−X) ≤ 2

3 |X| for all X ⊆ V (G), then G has a {P2, P7}-factor.

Theorem D (Egawa and Furuya [6]) Let G be a graph. If c1(G−X) + c3(G−

X)+ 2
3c5(G−X)+ 1

3c7(G−X) ≤ 2
3 |X| for all X ⊆ V (G), then G has a {P2, P9}-factor.

They also showed that the coefficients of |X| in the above theorems are best

possible.

These results naturally suggest the following problem: For k ≥ 5, is there a

number εk > 0 such that if a graph G satisfies
∑

0≤j≤k−1 c2j+1(G−X) ≤ εk|X| for

all X ⊆ V (G), then G has a {P2, P2k+1}-factor? Our first result in this paper is the

following theorem, which gives an affirmative solution to the problem.

Theorem 1.1 Let k ≥ 3 be an integer, and let G be a graph. If
∑

0≤j≤k−1 c2j+1(G−

X) ≤ 5
6k2 |X| for all X ⊆ V (G), then G has a {P2, P2k+1}-factor.

In [5], Egawa and Furuya constructed examples which show that for k ≥ 3 with

k ≡ 0 (mod 3), there exist infinitely many graphs G having no {P2, P2k+1}-factor

such that
∑

0≤j≤k−1 c2j+1(G−X) ≤ 4k+6
8k+3 |X|+ 2k+3

8k+3 for all X ⊆ V (G), and proposed

the following conjecture.

Conjecture 1 Let k ≥ 3 be an integer, and let G be a graph. If
∑

0≤j≤k−1 c2j+1(G−

X) ≤ 4k+6
8k+3 |X| for all X ⊆ V (G), then G has a {P2, P2k+1}-factor.

Theorems C and D imply that Conjecture 1 is true for k ∈ {3, 4}. Note also that

Conjecture 1, if true, would give an affirmative solution to the problem mentioned

in the paragraph preceding Theorem 1.1 with εk = 4k+6
8k+3 . However, the fact is that

Conjecture 1 is false for large integers k. Our second result is the following.

Theorem 1.2 For k ≥ 29, there exist infinitely many graphsG having no {P2, P2k+1}-

factor such that
∑

0≤j≤k−1 c2j+1(G−X) ≤ 32k+141
72k−78 |X| for all X ⊆ V (G).

For k ≥ 36, by simple calculations, we have 32k+141
72k−78 < 4k+6

8k+3 . This implies that

the coefficient of |X| in Conjecture 1 is irrelevant for large k.

In Section 2, we give a sufficient condition for the existence of an F-factor for a

set F with P2 ∈ F. In Section 3, we study fundamental properties of hypomatchable

graphs without {P2, P2k+1}-factors. By using results in Sections 2 and 3, we prove

Theorem 1.1 in Section 4. In Section 5, we construct graphs which show that Theo-

rem 1.2 holds. We remark that Lemmas 3.3 and 3.4, which are proved in Section 3,
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hold for hypomatchable graphs in general, and thus could hopefully be used in the

study of other types of factors.

In our proof, we make use of the following facts.

Fact 1.1 Let k ≥ 2 be an integer, and let G be a graph. Then G has a {P2, P2k+1}-

factor if and only if G has a path-factor F such that C2i+1(F ) = ∅ for every i (1 ≤

i ≤ k − 1).

Fact 1.2 Let a, b, c, d ∈ R with c 6= 0 and ad−bc ≥ 0. Then the function f(x) = ax+b
cx+d

is non-decreasing in the interval x > −d
c
.

2 A sufficient condition for the existence of a component-

factor

Let F be a set of connected graphs. For a graph H, we let BF(H) denote the set

of those hypomatchable components of H which have no F-factor, and set bF(H) =

|BF(H)|. Cornuéjols and Hartvigsen [3] proved that when P2 ∈ F and F − {P2}

consists of hypomatchable graphs, a graph G has an F-factor if and only if bF(G −

X) ≤ |X| for all X ⊆ V (G). The following proposition follows from the proof of the

“if” part of the above result of Cornuéjols and Hartvigsen, but we include its proof

for the convenience of the reader.

Proposition 2.1 Let F be a set of connected graphs such that P2 ∈ F, and let G

be a graph. If bF(G−X) ≤ |X| for all X ⊆ V (G), then G has an F-factor.

In our proof of Proposition 2.1, we choose a set S of vertices of G so that

(S1) codd(G− S)− |S| is as large as possible, and

(S2) subject to (S1), |S| is as large as possible.

Note that codd(G − S) − |S| ≥ codd(G) − |∅| ≥ 0 (it is possible that S = ∅, but our

argument in this section works even if S = ∅).

We make use of the following lemma, which was proved in [6].

Lemma 2.2 (Egawa and Furuya [6]) Let G be a graph, and let S be a subset of

V (G) satisfying (S1) and (S2). Then the following hold.

(i) We have C(G− S) = Codd(G− S).

(ii) For each C ∈ Codd(G− S), C is hypomatchable.
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(iii) Let H be the bipartite graph with bipartition (S,Codd(G−S)) defined by letting

uC ∈ E(H) (u ∈ S,C ∈ Codd(G− S)) if and only if NG(u) ∩ V (C) 6= ∅. Then

for every X ⊆ S, |NH(X)| ≥ |X|.

Proof of Proposition 2.1. Let G be as in Proposition 2.1. Choose S ⊆ V (G) so

that (S1) and (S2) hold. Set T = C(G − S), and let H be the bipartite graph H

with bipartition (S, T ) defined by letting uC ∈ E(H) (u ∈ S,C ∈ T ) if and only if

NG(u) ∩ V (C) 6= ∅. By Lemma 2.2(i)(ii), each element of T is hypomatchable. Let

T1 = {C ∈ T : C has no F-factor}.

Claim 2.1 For every Y ⊆ T1, |NH(Y )| ≥ |Y |.

Proof. Suppose that there exists Y ⊆ T1 such that |NH(Y )| < |Y |. Set X ′ =

NH(Y ). Then each element of Y is a hypomatchable component of G −X ′ having

no F-factor, and hence |Y | ≤ bF(G − X ′). Consequently |X ′| = |NH(Y )| < |Y | ≤

bF(G−X ′), which contradicts the assumption of the theorem. �

It follows from Claim 2.1 and Hall’s marriage theorem that H has a matching

covering T1. Let M be a maximum matching of H covering T1.

We show that M covers S by using an alternating-path argument. Suppose that

S − V (M) 6= ∅. Let v ∈ S − V (M). An alternating path is a path of H starting

from v and alternately containing edges in E(H) − M and edges in M . Let A

be the set of those vertices of H which are contained in an alternating path. By

the definition of an alternating path, every vertex in A ∩ S except v belongs to

V (M) and, for x ∈ V (M) ∩ S, x belongs to A if and only if the other endvertex

of the edge in M which is incident with x belongs to A ∩ T . Thus |A ∩ S| =

|A∩ V (M) ∩ S|+1 = |A∩ V (M)∩ T |+ 1. By the definition of an alternating path,

we also have NH(A ∩ S) ⊆ A ∩ T . Therefore it follows from Lemma 2.2(iii) that

A ∩ T 6⊆ A ∩ V (M) ∩ T . Take u ∈ (A ∩ T ) − (A ∩ V (M) ∩ T ), and let P be an

alternating path connecting v and u. Then M ′ = (M − E(P )) ∪ (E(P ) − M) is a

matching of H which covers T1 and satisfies |V (M ′)| = |V (M) ∪ {v, u}| > |V (M)|,

which contradicts the maximality of M . Consequently M covers S ∪ T1.

Recall that each element of T is a hypomatchable graph. Thus for uC ∈ M (u ∈

S,C ∈ T ), the subgraph of G induced by {u} ∪ V (C) has a perfect matching. Since

each element of V (H)− V (M) (⊆ T − T1) has an F-factor, it follows that G has an

F-factor.

This completes the proof of Proposition 2.1. �
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3 Hypomatchable graphs having no {P2, P2k+1}-factor

For an integer k ≥ 1 and a set F of connected graphs with P2 ∈ F, a pair (ε, λ) (ε >

0, λ ∈ N) is (k,F)-good if the following holds: every hypomatchable graph G of

order at least 2k + 1 with no F-factor has a set X ⊆ V (G) with |X| ≥ λ such that
∑

0≤j≤k−1 c2j+1(G−X) ≥ ε|X|.

In this section, we study the existence of a (k, {P2, P2k+1})-good pair. In Sub-

section 3.1, we state fundamental properties of odd ear decompositions of hypo-

matchable graphs. In Subsection 3.2, we introduce several notions related to odd

ear decompositions, and prove two lemmas which we use in Subsection 3.3. In Sub-

section 3.3, we show that there exists a (k, {P2, P2k+1})-good pair for each k ≥ 3 by

proving the following proposition.

Proposition 3.1 Let k ≥ 3 be an integer. Then
(

1
k2
, 5
)

is a (k, {P2, P2k+1})-good

pair.

3.1 Odd ear decompositions for hypomatchable graphs

We start with a structure theorem for hypomatchable graphs. Let G be a graph. A

sequence (H1, . . . ,Hm) of edge-disjoint subgraphs of G is an odd ear decomposition

if

(E1) V (G) =
⋃

1≤i≤m V (Hi);

(E2) for each 1 ≤ i ≤ m, |E(Hi)| is odd and |E(Hi)| ≥ 3;

(E3) H1 is a cycle; and

(E4) for each 2 ≤ i ≤ m, either

(E4-1) Hi is a path and only the endvertices of Hi belong to
⋃

1≤j≤i−1 V (Hj), or

(E4-2) Hi is a cycle with |V (Hi) ∩ (
⋃

1≤j≤i−1 V (Hj))| = 1.

Lovász [8] proved the following theorem.

Theorem E (Lovász [8]) Let G be a graph with |V (G)| ≥ 3. Then G is hypo-

matchable if and only if G has an odd ear decomposition.

By observing the proof of Theorem E, we obtain the following theorem.

Theorem F (Lovász [8]) Let G be a hypomatchable graph, and let G0 be a sub-

graph of G. If G0 has an odd ear decomposition H = (H1, . . . ,Hm) and G− V (G0)

has a perfect matching, then H can be extended to an odd ear decomposition

(H1, . . . ,Hm,Hm+1, . . . ,Hm′) of G.

6



In [6], the following lemma was proved.

Lemma 3.2 (Egawa and Furuya [6]) Let G be a hypomatchable graph, and let

(H1, . . . ,Hm) be an odd ear decomposition of G. Then for each i (2 ≤ i ≤ m), there

exists an odd ear decomposition (H ′
1, . . . ,H

′
m′) of G such that Hi ⊆ H ′

1.

3.2 Height and related definitions

Let G be a hypomatchable graph of order at least three, and let H = (H1, . . . ,Hm)

be an odd ear decomposition of G. We assume that we have chosen H so that

(H1) (|V (H1)|, . . . , |V (Hm)|) is lexicographically as large as possible.

For each i (1 ≤ i ≤ m), let Q(i) = Hi −
⋃

1≤j≤i−1 V (Hj). Note that V (Q(i)) ∩

V (Hj) = ∅ for any i, j with i > j, and
⋃

1≤j≤i V (Hj) =
⋃

1≤j≤i V (Q(j)) for each

i. We have Q(1) = H1 and, by (E2) and (E4), Q(i) is a path of even order for

2 ≤ i ≤ m.

Lemma 3.3 LetG be a hypomatchable graph of order at least three. Let (H1, . . . ,Hm)

be an odd ear decomposition of G satisfying (H1), and write |V (H1)| = 2l+1. Then

for each i (2 ≤ i ≤ m), we have |V (Q(i))| ≤ 2l, where Q(i) is as defined above.

Proof. Suppose that |V (Q(i))| ≥ 2l+1. Since |V (Q(i))| is even, this forces |V (Q(i))| ≥

2l + 2. By Lemma 3.2, there exists an odd ear decomposition (H ′
1, . . . ,H

′
m′) of G

such that Hi ⊆ H ′
1. Then |V (H ′

1)| ≥ |V (Q(i))| ≥ 2l+2 > |V (H1)|, which contradicts

(H1). Thus |V (Q(i))| ≤ 2l. �

Now for 1 ≤ i ≤ m and x ∈ V (Q(i)), we recursively define the height ht(x) of x,

the height ht(Hi) of Hi, the set I(x) of indices, and the path R(x) as follows.

For each x ∈ V (Q(1)), let ht(x) = 0 and I(x) = {1}, and let R(x) be a spanning

path of H1 with an endvertex x. Let ht(H1) = 0.

Let 2 ≤ i ≤ m, and assume that we have defined ht(y), ht(Hj), I(y) and R(y)

for all 1 ≤ j ≤ i − 1 and y ∈ V (Q(j)). Take x ∈ V (Q(i)). Then there exist

two edge-disjoint paths Q and Q′ on Hi connecting x and
⋃

1≤j≤i−1 V (Hj). Since

E(Hi) is odd, precisely one of Q and Q′ has even length (i.e., odd order). Let

Hi(x) denote the one which has odd order, and yx denote the endvertex of Hi(x)

different from x. Note that yx ∈
⋃

1≤j≤i−1 V (Hj). Define ht(x) = ht(yx) + 1 and

I(x) = I(yx) ∪ {i}. Let R(x) be the path defined by R(x) = Hi(x) ∪ R(yx). Let

ht(Hi) = min{ht(y) : y ∈ V (Q(i))}.

Claim 3.1 For i (1 ≤ i ≤ m) and x ∈ V (Q(i)), the following hold:

7



(i) {1, i} ⊆ I(x) ⊆ {1, . . . , i};

(ii) ht(x) = |I(x)| − 1;

(iii) for j ∈ I(x)− {i}, ht(x) > ht(Hj);

(iv) for j (1 ≤ j ≤ m), j ∈ I(x) if and only if V (R(x)) ∩ V (Q(j)) 6= ∅;

(v) V (H1) ⊆ V (R(x)); and

(vi) for j ∈ I(x)−{1}, both |V (R(x))∩V (Q(j))| and |V (Q(j))−V (R(x))| are even

and |V (R(x)) ∩ V (Q(j))| ≥ 2.

Proof. We proceed by induction on i. If i = 1, then the claim clearly holds. Thus

let 2 ≤ i ≤ m, and assume that all 1 ≤ j ≤ i− 1 and y ∈ V (Q(j)) satisfy (i)–(vi).

Let j0 be the index such that yx ∈ V (Q(j0)). By the induction assumption, j0

and yx satisfy (i)–(vi). Since I(x) = I(yx) ∪ {i} and {1} ⊆ I(yx) ⊆ {1, . . . , j0}, (i)

holds. Since ht(yx) = |I(yx)| − 1, we have

ht(x) = ht(yx) + 1 = |I(yx)| = |I(x)− {i}| = |I(x)| − 1,

which implies (ii). Since ht(yx) > ht(Hj) for j ∈ I(yx) − {j0} and ht(yx) ≥

min{ht(y) : y ∈ V (Q(j0))} = ht(Hj0),

ht(x) > ht(yx) ≥ ht(Hj) for all j ∈ I(yx) (= I(x)− {i}),

and hence (iii) holds. Since j ∈ I(yx) (= I(x) − {i}) if and only if V (R(yx)) ∩

V (Q(j)) 6= ∅, it follows from R(x) = Hi(x) ∪ R(yx) that (iv) holds. We have

V (H1) ⊆ V (R(yx)) ⊆ V (R(x)), which implies (v). Now we show (vi). For j ∈ I(x)−

{1, i}, |V (R(yx))∩ V (Q(j))| (= |V (R(x)) ∩ V (Q(j))|) and |V (Q(j))− V (R(yx))| (=

|V (Q(j)) − V (R(x))|) are even and |V (R(x)) ∩ V (Q(j))| ≥ 2. Since V (R(x)) ∩

V (Q(i)) = V (Hi(x)) − {yx} and |V (Q(i))| is even, both |V (R(x)) ∩ V (Q(i))| and

|V (Q(i)) − V (R(x))| are even. Since x ∈ V (R(x)) ∩ V (Q(i)), this implies that

|V (R(x)) ∩ V (Q(i))| ≥ 2. Thus (vi) holds. �

For i (2 ≤ i ≤ m), since |V (Q(i))| is even, {ht(x) : x ∈ V (Q(i))} = {ht(x) : x is

an endvertex of V (Q(i))}, and hence Q(i) has an endvertex ui such that ht(ui) =

ht(Hi).

The following lemma is the main result of this subsection.

Lemma 3.4 Let G be a hypomatchable graph of order at least three, and let

(H1, . . . ,Hm) be an odd ear decomposition of G satisfying (H1). Let h0 be an integer

with 1 ≤ h0 ≤ max{ht(Hi) : 1 ≤ i ≤ m}. Then the set {ui : 2 ≤ i ≤ m,ht(Hi) = h0}

is an independent set of G where, as above, ui denotes an endvertex of Q(i) such

that ht(ui) = ht(Hi).
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Proof. Suppose that {ui : 2 ≤ i ≤ m,ht(Hi) = h0} is not an independent set of

G. Then there exist two indices i and i′ with 2 ≤ i < i′ ≤ m such that ht(Hi) =

ht(Hi′) = h0 and uiui′ ∈ E(G). By Claim 3.1(ii), h0 = ht(Hi′) = ht(ui′) = |I(ui′)| −

1. If i ∈ I(ui′), then ht(Hi′) = ht(ui′) > ht(Hi) by Claim 3.1(iii), which contradicts

the fact that ht(Hi) = ht(Hi′). Thus

i 6∈ I(ui′). (3.1)

Let R1 be the subpath on Hi with V (R1) ⊇ V (Q(i)) connecting ui and yui
.

Note that 1 ∈ I(ui′). Let R2 be the shortest subpath on R(ui′) connecting ui′

and
⋃

1≤j≤i−1 V (Hj). Let H∗ = (R1 ∪ R2) + uiui′ . By (3.1), H∗ is a path or a

cycle. Furthermore, if H∗ is a path, then only the endvertices of H∗ belong to
⋃

1≤j≤i−1 V (Hj); if H
∗ is a cycle, then |V (H∗) ∩ (

⋃

1≤j≤i−1 V (Hj))| = |{yui
}| = 1.

Since both |E(R1)| and |E(R2)| are even by Claim 3.1(vi), |E(H∗)| is odd. In partic-

ular, (H1, . . . ,Hi−1,H
∗) is an odd ear decomposition of the subgraph of G induced

by (
⋃

1≤j≤i−1 V (Hj)) ∪ V (H∗). By Claim 3.1(vi), |V (Q(j)) − V (H∗)| = |V (Q(j))−

V (R2)| is even for every j ∈ I(ui′) with j ≥ i + 1. Note that V (Q(i)) − V (H∗) =

V (Q(i)) − V (R1) = ∅. Since |V (Q(j)| is even for every j with 2 ≤ j ≤ m, it now

follows from Claim 3.1(iv) that |V (Q(j))−V (H∗)| is even for every j with i ≤ j ≤ m.

Consequently G − ((
⋃

1≤j≤i−1 V (Hj)) ∪ V (H∗)) has a perfect matching. Therefore

by Theorem F, G has an odd ear decomposition (H1, . . . ,Hi−1,H
∗,H ′

1, . . . ,H
′
m′).

Since |V (H∗)| = (|V (Hi)| − 1) + |V (R2)| ≥ |V (Hi)| − 1 + |V (Q(i′))| + 1 > |V (Hi)|,

this contradicts the assumption (H1). �

3.3 Proof of Proposition 3.1

Let k ≥ 3, and let G be a hypomatchable graph of order at least 2k + 1 having no

{P2, P2k+1}-factor. We use the notation introduced in the preceding subsection. In

particular, we choose an odd ear decomposition (H1, . . . ,Hm) of G so that (H1) holds

and, for each 1 ≤ i ≤ m, let ui denote an endvertex of Q(i) such that ht(ui) = ht(Hi).

Having Lemma 3.4 in mind, we aim at showing that there exists an integer h1 with

1 ≤ h1 ≤ max{ht(Hi) : 1 ≤ i ≤ m} for which |{i : 1 ≤ i ≤ m,ht(Hi) = h1}| is

“large” (see Claim 3.5).

A set I ⊆ {1, 2, . . . ,m} of indices with 1 ∈ I is admissible if the subgraph of G

induced by
⋃

i∈I V (Q(i)) has a {P2, P2k+1}-factor.

Claim 3.2 There is no admissible set.

Proof. Suppose that there exists an admissible set I. Then the subgraph of G

induced by
⋃

i∈I V (Q(i)) has a {P2, P2k+1}-factor F . On the other hand, for each

9



i with 2 ≤ i ≤ m and i 6∈ I, from the fact that Q(i) is a path of even order, we

see that Q(i) has a perfect matching Mi. Since {V (Q(i)) : i 6∈ I} is a partition

of V (G) − (
⋃

i∈I V (Q(i))), F ∪ (
⋃

i 6∈I Mi) is a {P2, P2k+1}-factor of G, which is a

contradiction. �

Write |V (H1)| = 2l + 1 and |V (G)| = 2n+ 1. Set h = max{ht(Hi) : 1 ≤ i ≤ m}.

Let aj = min{k − l − j, l} for each integer j ≥ 1, and let a∗ =
∑

1≤j≤h aj . We now

prove three claims.

Claim 3.3 For i (2 ≤ i ≤ m), |V (Q(i))| ≤ 2aht(Hi).

Proof. In view of Lemma 3.3, it suffices to show that |V (Q(i))| ≤ 2(k − l −

ht(Hi)). By Claim 3.1(i)(ii), |I(ui) − {1, i}| = |I(ui)| − 2 = ht(ui) − 1. By

Claim 3.1(vi), |V (R(ui)) ∩ V (Q(j))| ≥ 2 for each j ∈ I(ui) − {1, i}. Furthermore,

by Claim 3.1(v) and the definition of ui and R(ui), we have V (H1) ∪ V (Q(i)) ⊆

V (R(ui)). Hence |V (R(ui))| ≥ |V (H1)| + 2|I(ui) − {1, i}| + |V (Q(i))| = (2l + 1) +

2(ht(ui)− 1) + |V (Q(i))| = 2l+2ht(ui)− 1+ |V (Q(i))|. Note that |V (R(ui))| is odd

by Claim 3.1(iv)(v)(vi). If |V (R(ui))| ≥ 2k + 1, then by Claim 3.1(vi) and Fact 1.1,

I(ui) is an admissible set, which contradicts Claim 3.2. Thus |V (R(ui))| ≤ 2k − 1.

Consequently 2k − 1 ≥ |V (R(ui))| ≥ 2l + 2ht(ui)− 1 + |V (Q(i))|. This implies that

|V (Q(i))| ≤ 2k − 2l − 2ht(ui) = 2(k − l − ht(Hi)), as desired. �

Claim 3.4 We have h ≤ k − l − 1.

Proof. Let i0 (1 ≤ i0 ≤ m) be an index such that ht(Hi0) = h. Then by Claim 3.3,

2 ≤ |V (Q(i0))| ≤ 2(k − l − ht(Hi0)). Thus h = ht(Hi0) ≤ k − l − 1. �

Note that since {1} and {1, 2} are not admissible by Claim 3.2, we have

|V (H1)|+ |V (Q(2))| ≤ 2k − 1. (3.2)

This implies m ≥ 3, and hence h ≥ 1.

Claim 3.5 There exists h1 (1 ≤ h1 ≤ h) such that |{i : 1 ≤ i ≤ m,ht(Hi) = h1}| ≥
n−l
a∗

.

Proof. For each j (1 ≤ j ≤ h), let Nj = {i : 1 ≤ i ≤ m,ht(Hi) = j}. Let

h1 (1 ≤ h1 ≤ h) be an integer such that |Nh1
| = max{|Nj | : 1 ≤ j ≤ h}. We show
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that h1 is a desired integer. It follows from Claim 3.3 that

(2n + 1)− (2l + 1) = |V (G)| − |V (H1)|

=
∑

2≤i≤m

|V (Q(i))|

≤
∑

2≤i≤m

2aht(Hi)

=
∑

1≤j≤h





∑

i∈Nj

2aht(Hi)





=
∑

1≤j≤h





∑

i∈Nj

2aj





=
∑

1≤j≤h

2aj |Nj |

≤
∑

1≤j≤h

2aj |Nh1
|

= 2a∗|Nh1
|.

Consequently |{i : 1 ≤ i ≤ m,ht(Hi) = h1}| = |Nh1
| ≥ n−l

a∗
. �

We can now complete the proof of Proposition 3.1. Let h1 be as in Claim 3.5, and

set X = V (G)−{ui : 2 ≤ i ≤ m,ht(Hi) = h1}. Then it follows from Lemma 3.4 and

Claim 3.5 that
∑

0≤j≤k−1 c2j+1(G −X) = c1(G −X) = |{ui : 2 ≤ i ≤ m,ht(Hi) =

h1}| ≥
n−l
a∗

and |X| = 2n+1− |{ui : 2 ≤ i ≤ m,ht(Hi) = h1}| ≤ 2n+1− n−l
a∗

. Since

n− l

a∗
−

n− l

2na∗ + a∗ − n+ l
|X| ≥

n− l

a∗
−

n− l

2na∗ + a∗ − n+ l

(

2n+ 1−
n− l

a∗

)

= 0,

we obtain

∑

0≤j≤k−1

c2j+1(G−X) ≥
n− l

a∗
≥

n− l

2na∗ + a∗ − n+ l
|X|. (3.3)

Since m ≥ 3, we also have |X| ≥ |V (H1)|+ (m− 1) ≥ 5.

We give a rough bound for n, l and a∗. Since 2n + 1 = |V (G)| ≥ 2k + 1, we

have n ≥ k. By (3.2), (2l + 1) + 2 ≤ |V (H1)| + |V (Q(2))| ≤ 2k − 1, and hence

l ≤ k − 2. We show that a∗ ≤ (k−2)(k−1)
2 . By Claim 3.4 and the definition of ai and

a∗, a∗ =
∑

1≤j≤h aj ≤
∑

1≤j≤h(k − l − j) ≤
∑

1≤j≤k−l−1(k − l − j). Since l ≥ 1, it

follows that a∗ ≤
∑

1≤j≤k−2(k − 1− j) = (k−2)(k−1)
2 .

11



By (3.3),

∑

0≤j≤k−1

c2j+1(G−X) ≥
n− l

2na∗ + a∗ − n+ l
|X|

≥
n− (k − 2)

2n (k−2)(k−1)
2 + (k−2)(k−1)

2 − n+ (k − 2)
|X|

=
2n− 2k + 4

(2k2 − 6k + 2)n + (k2 − k − 2)
|X|.

Recall that k ≥ 3. By Fact 1.2, the function 2x−2k+4
(2k2−6k+2)x+(k2−k−2)

(x ≥ k) is non-

decreasing. If n > 1
2k

2, then 2n−2k+4
(2k2−6k+2)n+(k2−k−2)

≥
2· 1

2
k2−2k+4

(2k2−6k+2) 1
2
k2+(k2−k−2)

> 1
k2
; if

n ≤ 1
2k

2, then since
∑

0≤j≤k−1 c2j+1(G−X) ≥ 1 and |X| ≤ |V (G)|−1 = 2n ≤ k2, we

clearly have
∑

0≤j≤k−1 c2j+1(G−X) ≥ 1
k2
|X|. Thus

∑

0≤j≤k−1 c2j+1(G−X) ≥ 1
k2
|X|.

Therefore the set X satisfies |X| ≥ 5 and
∑

0≤j≤k−1 c2j+1(G−X) ≥ 1
k2
|X|. Since

G is arbitrary, this completes the proof of Proposition 3.1.

Remark 1 We used rough estimates for n, l and a∗ in the proof of Proposition 3.1

because our aim was to show the existence of a k-good pair. If we go through some

more calculations, we will get a k-good pair (ε, λ) with a larger value of ε than 1
2k2

.

4 Proof of Theorem 1.1

In view of Proposition 3.1, Theorem 1.1 immediately follows from the following

proposition.

Proposition 4.1 Let k ≥ 1 be an integer and F be a set of connected graphs with

P2 ∈ F, and let (ε, λ) be a (k,F)-good pair with ε ≤ 1. If a graph G satisfies
∑

0≤j≤k−1 c2j+1(G−X) ≤ λε
λ+1 |X| for all X ⊆ V (G), then G has an F-factor.

Proof. Suppose that G has no F-factor. Then by Proposition 2.1, there exists X ′ ⊆

V (G) such that bF(G−X ′) > |X ′|. Let B1 = {C ∈ BF(G−X ′) : |V (C)| ≥ 2k + 1}.

Then by the definition of a (k,F)-good pair, each C ∈ B1 has a set XC ⊆ V (C) with

|XC | ≥ λ such that
∑

0≤j≤k−1 c2j+1(C −XC) ≥ ε|XC |. Set X0 = X ∪ (
⋃

C∈B1
XC).

Then

C2j+1(G−X0) = C2j+1(G−X ′) ∪





⋃

C∈B1

C2j+1(C −XC)



 for 0 ≤ j ≤ k − 1.
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Consequently

∑

0≤j≤k−1

c2j+1(G−X0) =
∑

0≤j≤k−1

c2j+1(G−X ′) +
∑

0≤j≤k−1





∑

C∈B1

c2j+1(C −XC)





=
∑

0≤j≤k−1

c2j+1(G−X ′) +
∑

C∈B1





∑

0≤j≤k−1

c2j+1(C −XC)





≥
∑

0≤j≤k−1

c2j+1(G−X ′) + ε
∑

C∈B1

|XC |.

This together with the assumption that ε ≤ 1 and the fact that |XC | ≥ λ (C ∈ B1)

implies

∑

0≤j≤k−1

c2j+1(G−X0)−
λε

λ+ 1





∑

0≤j≤k−1

c2j+1(G−X ′) +
∑

C∈B1

(|XC |+ 1)





≥
∑

0≤j≤k−1

c2j+1(G−X ′) + ε
∑

C∈B1

|XC | −
λε

λ+ 1





∑

0≤j≤k−1

c2j+1(G−X ′) +
∑

C∈B1

(|XC |+ 1)





=

(

1−
λε

λ+ 1

)

∑

0≤j≤k−1

c2j+1(G−X ′) +
ε

λ+ 1

∑

C∈B1

(|XC | − λ)

≥ 0,

and hence

λε

λ+ 1





∑

0≤j≤k−1

c2j+1(G−X ′) +
∑

C∈B1

(|XC |+ 1)



 ≤
∑

0≤j≤k−1

c2j+1(G −X0).

Therefore

λε

λ+ 1
|X0| =

λε

λ+ 1



|X ′|+
∑

C∈B1

|XC |





<
λε

λ+ 1



bF(G−X ′) +
∑

C∈B1

|XC |





=
λε

λ+ 1



(|BF(G−X ′)−B1|) +
∑

C∈B1

(|XC |+ 1)





≤
λε

λ+ 1





∑

0≤j≤k−1

c2j+1(G−X ′) +
∑

C∈B1

(|XC |+ 1)





≤
∑

0≤j≤k−1

c2j+1(G−X0),

which contradicts the assumption of the proposition. �
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5 Proof of Theorem 1.2

Throughout this section, we fix an integer k ≥ 29. Set l = 2
⌊

k−12
17

⌋

, m =
⌊

2k−l+1
8

⌋

and r = 2k + 1 − l − 8m
(

= 2k + 1− l − 8
⌊

2k−l+1
8

⌋)

. Then the following lemma

holds.

Lemma 5.1 (i) 2k + 1 = l + 8m+ r.

(ii) 2k−56
17 ≤ l ≤ 2k−24

17 .

(iii) 16k−39
68 ≤ m ≤ 32k+73

136 .

(iv) m ≥ 2l + 3.

(v) r ∈ {1, 3, 5, 7}.

Proof.

(i) This follows from the definition of r.

(ii) We have 2k−56
17 = 2

(

k−12
17 − 16

17

)

≤ l ≤ 2 · k−12
17 = 2k−24

17 .

(iii) It follows from (ii) that 16k−39
68 = 1

8

(

2k − 2k−24
17 + 1

)

− 7
8 ≤ 2k−l+1

8 − 7
8 ≤ m ≤

2k−l+1
8 ≤ 32k+73

136 .

(iv) It follows from (ii) and (iii) that m ≥ 16k−39
68 >

2(2k−24)
17 +2 ≥ 2l+2, and hence

m ≥ 2l + 3.

(v) Since 0 = 2k+1− l− 8 · 2k−l+1
8 ≤ r < 2k+1− l− 8

(

2k−l+1
8 − 1

)

= 8, we have

0 ≤ r ≤ 7. Since l (= 2
⌊

k−12
17

⌋

) is even, r is odd. Thus r ∈ {1, 3, 5, 7}. �

Here we construct a graph Q by using an idea by Bauer, Broersma and Veld-

man [2] as follows. LetH be the graph depicted in Figure 1 having specified vertices u

and v. Takem disjoint copies H1, . . . ,Hm of H and, for each i (1 ≤ i ≤ m), let ui and

vi be the vertices of Hi corresponding to the vertices u and v of H, respectively. Set

U = {ui, vi : 1 ≤ i ≤ m}. Let R be a set of r vertices with (
⋃

1≤i≤m V (Hi))∩R = ∅.

Let T be the graph obtained from
⋃

1≤i≤mHi by adding the vertices in R and joining

all possible pairs of vertices in U ∪R. Let L be a complete graph of order l, and let

Q = L+ T . By Lemma 5.1(i), |V (Q)| = l + 8m+ r = 2k + 1.

Lemma 5.2 Let 1 ≤ i ≤ m, and let X ⊆ V (Hi) be a set with {ui, vi} ⊆ X. Then

the following hold.

(i) We have
∑

0≤j≤k−1 c2j+1(Hi −X) ≤ 2.
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u v

Figure 1: The graph H

(ii) If
∑

0≤j≤k−1 c2j+1(Hi −X) = 1, then |X| ≥ 3.

(iii) If
∑

0≤j≤k−1 c2j+1(Hi −X) = 2, then |X| ≥ 4.

Proof. Since the independence number of Hi−{ui, vi} is 2, (i) holds. Since |V (Hi)−

{ui, vi}| is even, (ii) holds. Since Hi − {ui, vi} is 2-connected, (iii) holds. �

In view of Lemma 5.1(iv), the following lemma follows from Theorems 3 and 4

of [2].

Lemma 5.3 (Bauer et al. [2]) (i) The graph Q−R has no Hamiltonian path.

(ii) For X ⊆ V (Q)−R, if c(Q− (X ∪R)) ≥ 2, then c(Q− (X ∪R)) ≤ 2m+1
4m+l

|X|.

Lemma 5.4 The graph Q has no Hamiltonian path.

Proof. Suppose that Q has a Hamiltonian path P . By the definition of Q, if a vertex

in V (Q) − R is adjacent to a vertex R on P , then the vertex belongs to V (L) ∪ U .

Since V (L) ∪ U is a clique of Q, there exists a Hamiltonian path of Q−R obtained

from P −R by adding some edges, which contradicts Lemma 5.3(i). �

Lemma 5.5 For all X ⊆ V (Q),
∑

0≤j≤k−1 c2j+1(Q−X) ≤ 32k+141
72k−78 |X| + 32k+879

288k−312 .

Proof. Since k ≥ 29, we have l = 2
⌊

k−12
17

⌋

≥ 2. By Lemma 5.1(iv), we also

have m ≥ 7. Let X ⊆ V (Q). We first show that
∑

0≤j≤k−1 c2j+1(Q − X) ≤
2m+1
4m+l

|X| + m−7
8m+2l .

We may assume that
∑

0≤j≤k−1 c2j+1(Q − X) ≥ 1. Since |V (Q)| = 2k + 1, we

have |X| ≥ 2. If Q − X is connected, then it follows from Lemma 5.1(iv) that
∑

0≤j≤k−1 c2j+1(Q−X) = 1 = 2m+1
4m+l

· 2 + 2l−4
8m+2l ≤

2m+1
4m+l

|X|+ m−7
8m+2l . Thus we may

assume that Q−X is disconnected. In particular, V (L) ⊆ X.

Assume first that U ⊆ X. By Lemma 5.2(i),
∑

0≤j≤k−1 c2j+1(Hi − X) ≤ 2

for every 1 ≤ i ≤ m. For each h ∈ {1, 2}, let mh denote the number of Hi such

that
∑

0≤j≤k−1 c2j+1(Hi −X) = h. Note that Q−X have at most one component
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intersecting with R. Hence

∑

0≤j≤k−1

c2j+1(Q−X) ≤
∑

1≤i≤m





∑

0≤j≤k−1

c2j+1(Hi −X)



+ 1 = m1 + 2m2 + 1.

By Lemma 5.2(ii)(iii),

|X| =
∑

1≤i≤m

|(V (Hi)−{ui, vj})∩X|+ |U |+ |V (L)|+ |R∩X| ≥ m1 +2m2 +2m+ l.

Therefore

∑

0≤j≤k−1

c2j+1(Q−X) ≤
m1 + 2m2 + 1

m1 + 2m2 + 2m+ l
|X|. (5.1)

By Fact 1.2, x+1
x+2m+l

(x ≥ 0) is non-decreasing. Since m1 + 2m2 ≤ 2m, it follows

from (5.1) that

∑

0≤j≤k−1

c2j+1(Q−X) ≤
2m+ 1

4m+ l
|X| <

2m+ 1

4m+ l
|X|+

m− 7

8m+ 2l
.

Thus we may assume that U 6⊆ X. Then by the construction of Q, c(Q − X) =

c(Q− (X ∪ R)). Since Q −X is disconnected, c(Q− (X ∪ R)) = c(Q−X) ≥ 2. It

follows from Lemma 5.3(ii) that

∑

0≤j≤k−1

c2j+1(Q−X) ≤ c(Q−X)

= c(Q− (X ∪R))

≤
2m+ 1

4m+ l
|X −R|

<
2m+ 1

4m+ l
|X|+

m− 7

8m+ 2l
.

Consequently
∑

0≤j≤k−1 c2j+1(Q−X) ≤ 2m+1
4m+l

|X|+ m−7
8m+2l .

Recall that l ≥ 2. By Fact 1.2, 2x+1
4x+l

and x−7
8x+2l (x > 0) are non-decreasing. Hence

it follows from Lemma 5.1(ii)(iii) that

2m+ 1

4m+ l
≤

2 · 32k+73
136 + 1

4 · 32k+73
136 + l

≤
2 · 32k+73

136 + 1

4 · 32k+73
136 + 2k−56

17

=
32k + 141

72k − 78

and
m− 7

8m+ 2l
≤

32k+73
136 − 7

8 · 32k+73
136 + 2l

≤
32k+73
136 − 7

8 · 32k+73
136 + 2 · 2k−56

17

=
32k − 879

288k − 312
.

Therefore
∑

0≤j≤k−1 c2j+1(Q−X) ≤ 32k+141
72k−78 |X| + 32k−879

288k−312 . �

Now we are ready to prove Theorem 1.2. Let n ≥ 1 be an integer. Let Q0 be a

complete graph of order n. Let Q1, Q2, . . . , Q2n+1 be disjoint copies of the graph Q.

Let Gn = Q0 + (
⋃

1≤i≤2n+1Qi).
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For 1 ≤ i ≤ 2n + 1, since |V (Qi)| = 2k + 1 and Qi has no Hamiltonian path

by Lemma 5.4, Qi has no {P2, P2k+1}-factor. Suppose that Gn has a {P2, P2k+1}-

factor F . Then for each i (1 ≤ i ≤ 2n + 1), F contains an edge joining V (Qi) and

V (Q0). Since 2n+ 1 > 2|V (Q0)|, this implies that there exists a ∈ V (Q0) such that

dF (a) ≥ 3, which is a contradiction. Thus

Gn has no {P2, P2k+1}-factor. (5.2)

We next show that
∑

0≤j≤k−1 c2j+1(Gn−X) ≤ 32k+141
72k−78 |X| for allX ⊆ V (Gn). Let

X ⊆ V (Gn). Assume for the moment that V (Q0) 6⊆ X. Then Gn −X is connected.

Clearly we may assume that
∑

0≤j≤k−1 c2j+1(Gn −X) = 1. Then |X| ≥ 3 because

|V (Gn)| > 2k + 1. Hence
∑

0≤j≤k−1 c2j+1(Gn −X) = 1 < 32k+141
72k−78 · 3 ≤ 32k+141

72k−78 |X|.

Thus we may assume that V (Q0) ⊆ X. Then

C2j+1(Gn −X) =
⋃

1≤i≤2n+1

C2j+1(Qi −X) for every 0 ≤ j ≤ k − 1. (5.3)

By Lemma 5.5 and (5.3),

∑

0≤j≤k−1

c2j+1(Gn −X) =
∑

0≤j≤k−1





∑

1≤i≤2n+1

c2j+1(Qi −X)





≤
∑

1≤i≤2n+1

(

32k + 141

72k − 78
|V (Qi) ∩X|+

32k − 879

288k − 312

)

=
32k + 141

72k − 78
(|X| − n) +

32k − 879

288k − 312
(2n+ 1)

=
32k + 141

72k − 78
|X|+

(−64n + 32)k − 2322n − 879

288k − 312

<
32k + 141

72k − 78
|X|.

Consequently

∑

0≤j≤k−1

c2j+1(Gn −X) ≤
32k + 141

72k − 78
|X| for all X ⊆ V (Gn). (5.4)

By (5.2) and (5.4), we obtain Theorem 1.2.
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