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A note on the maximum number of triangles in a
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Abstract

We prove that the maximum number of triangles in a C5-free graph on n vertices
is at most 1

2
√
2
(1 + o(1))n3/2, improving an estimate of Alon and Shikhelman [1].

1 Introduction

Motivated by a conjecture of Erdős [3] on the number of pentagons in triangle-free graphs,
Bollobás and Győri [2] initiated the study of the converse of this problem. Let ex(n,K3, C5)
denote the maximum possible number of triangles in a graph on n vertices without containing
a cycle of length five as a subgraph. Bollobás and Győri [2] showed that

1

3
√
3
(1 + o(1))n3/2 ≤ ex(n,K3, C5) ≤

5

4
(1 + o(1))n3/2. (1)

Their lower bound comes from the following example: Take a C4-free bipartite graph G0

on n/3 + n/3 vertices with about (n/3)3/2 edges and double each vertex in one of the color
classes and add an edge joining the old and the new copy to produce a graph G. Then, it
is easy to check that G contains no C5 and the number of triangles in G is the same as the
number of edges in G0.

Recently, Alon and Shikhelman [1] improved the above result by showing that

ex(n,K3, C5) ≤
√
3

2
(1 + o(1))n3/2. (2)
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In fact, in their nice paper, they investigate the more general function ex(n, T,H) which
stands for the maximum possible number of copies of T in a H-free graph on n vertices.

In this note we improve (1) and (2) by showing that,

Theorem 1.

ex(n,K3, C5) ≤
1

2
√
2
(1 + o(1))n3/2.

In an upcoming paper we prove more results following the approach introduced in this
note and focus on improving our bound in Theorem 1 further.

Our main idea is to select an appropriate subgraph such that the number of edges in the
subgraph is the same as the number of triangles in the original graph and then we apply the
following well-known theorem of Erdős and Simonovits [4].

Theorem 2. (Erdős, Simonovits [4]) The maximum possible number of edges in a graph on
n vertices containing no C4 or C5 as a subgraph is at most 1

2
√
2
(1 + o(1))n3/2.

2 Proof of Theorem 1

Let G be a C5-free graph with maximum possible number of triangles. We may assume
that each edge of G is contained in a triangle, because otherwise, we can delete it without
changing the number of triangles. Two triangles T, T ′ are said to be in the same block if
they either share an edge or if there is a sequence of triangles T, T1, T2, . . . , Ts, T

′ where each
triangle of this sequence shares an edge with the previous one (except the first one of course).
It is easy to see that all the triangles in G are partitioned uniquely into blocks. Notice that
any two blocks of G are edge-disjoint. Below we will characterize the blocks of G.

A block of the form {abc1, abc2, . . . , abck} where k ≥ 1, is called a crown-block (i.e.,
a collection of triangles containing the same edge) and a block consisting of all triangles
contained in the complete graph K4 is called a K4-block. See Figure 1.

Figure 1: An example of a crown-block and a K4-block

Claim 1. Every block of G is either a crown-block or a K4-block.
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Proof. If a block contains only one or two triangles, then it is easy to see that it is a crown-
block. So we may assume that a block of G contains at least three triangles and let abc1, abc2
be some two triangles in it. We claim that if bc1x or ac1x is a triangle in G which is different
from abc1, then x = c2. Indeed, if x 6= c2, then the vertices a, x, c1, b, c2 contain a C5, a
contradiction. Similarly, if bc2x or ac2x is a triangle in G which is different from abc2, then
x = c1.

Therefore, if aci or bci (for i = 1, 2) is contained in two triangles, then abc1c2 forms
a K4. However, then there is no triangle in G which shares an edge with this K4 and is
not contained in it because if there is such a triangle, then it is easy to find a C5 in G, a
contradiction. So in this case, the block is a K4-block, and we are done.

So we can assume that whenever abc1, abc2 are two triangles then the edges ac1, bc1, ac2, bc2
are each contained in exactly one triangle. Therefore, any other triangle which shares an
edge with either abc1 or abc2 must contain ab. Let abc3 be such a triangle. Then applying the
same argument as before for the triangles abc1, abc3 one can conclude that the edges ac3, bc3
are contained in exactly one triangle and so, any other triangle of G which shares an edge
with one of the triangles abc1, abc2, abc3 must contain ab again. So by induction, it is easy
to see that all of the triangles in this block must contain ab. Therefore, it is a crown-block,
as needed.

Recall that any two blocks of G are edge-disjoint. We claim the following.

Claim 2. The edges of any C4 in G are contained in only one block of G.

Proof. Let xyzw be a 4-cycle in G. Every edge of G is contained in a triangle. So in
particular, let xyu be a triangle containing the edge xy. If u 6∈ {x, y, z, w} then uxwzy is a
C5, a contradiction. Therefore, u = z or u = w. So either xyz and yzw or xyw and ywz are
triangles of G. In both cases, the two triangles share an edge, so they belong to the same
block. Hence, all four edges of xyzw lie in the same block.

We are now ready to prove the theorem using the above claims. We want to select a
C4-free subgraph G0 of G such that the number of edges in G0 is the same as the number of
triangles in G. By Claim 1 the edge set of every C4 is completely contained in some block of
G. So in order to make sure the selected subgraph G0 is C4-free, it suffices to make sure the
edges selected from each block of G do not contain a C4, which is done as follows: From each
crown-block {abc1, abc2, . . . , abck}, we select the edges ac1, ac2, . . . , ack to be in G0. From
each K4-block abcd we select the edges ab, bc, ac, ad to be in G0 (since every block is either
a crown-block or a K4-block by Claim 1, we have dealt with all the blocks of G). Finally,
notice that the number of selected edges in each block is exactly the number of triangles in
that block. Moreover, since blocks are edge-disjoint, we never select the same edge twice.
Therefore, as every triangle of G is contained in some block, the total number of triangles
in G is the same as the number of edges in G0. On the other hand, as G0 is C4-free and
also C5-free (as it is a subgraph of G), we can use Theorem 2, to obtain that the number of
edges in it is at most 1

2
√
2
(1 + o(1))n3/2, completing the proof of Theorem 1.
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