Hamiltonicity of planar graphs with a forbidden minor

M. N. Ellingham*
Department of Mathematics, 1326 Stevenson Center
Vanderbilt University, Nashville, Tennessee 37212, U.S.A.
mark.ellingham@vanderbilt.edu
Emily A. Marshall ${ }^{\dagger}$
Department of Mathematics, 303 Lockett Hall
Louisiana State University, Baton Rouge, Louisiana 70803, U.S.A.
emarshall@lsu.edu
Kenta Ozeki ${ }^{\ddagger}$
National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
and
JST, ERATO, Kawarabayashi Large Graph Project, Japan
ozeki@nii.ac.jp
Shoichi Tsuchiya
School of Network and Information, Senshu University, 2-1-1 Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8580, Japan
s.tsuchiya@isc.senshu-u.ac.jp

October 20, 2016

Abstract

Tutte showed that 4-connected planar graphs are Hamiltonian, but it is well known that 3-connected planar graphs need not be Hamiltonian. We show that $K_{2,5}$-minor-free 3-connected planar graphs are Hamiltonian. This does not extend to $K_{2,5}$-minor-free 3 -connected graphs in general, as shown by the Petersen graph, and does not extend to $K_{2,6}$-minor-free 3-connected planar graphs, as we show by an infinite family of examples.

1 Introduction

All graphs in this paper are finite and simple (no loops or multiple edges).

[^0]Whitney [24] showed that every 4-connected plane triangulation is Hamiltonian, and Tutte [23] extended this to every 4 -connected planar graph. Tutte's result has been strengthened in various ways; see for example (4), 14, 18, 20, 21, 22.

If we relax the connectivity condition, it is not true that all 2 - or 3 -connected planar graphs are Hamiltonian. The smallest 2-connected planar graph that is not Hamiltonian is $K_{2,3}$. The smallest 3 -connected planar graph that is not Hamiltonian is the so-called Herschel graph, with 11 vertices and 18 edges. It was known to Coxeter in 1948 [6, p. 8], but a proof that it is smallest relies on later work by Barnette and Jucovič [1] and Dillencourt 9]. If we restrict to triangulations, the smallest 2 - or 3 -connected planar triangulation that is not Hamiltonian is a triangulation obtained by adding 9 edges to the Herschel graph. It was known to C. N. Reynolds (in dual form) in 1931, as reported by Whitney [24, Fig. 9]. Again, the proof that this is smallest relies on [1 and 9. This triangulation was also presented much later by Goldner and Harary [12, so it is sometimes called the Goldner-Harary graph.

It is therefore reasonable to ask what conditions can be imposed on a 2 - or 3 -connected planar graph to make it Hamiltonian. The main direction in which positive results have been obtained is to restrict the types of 2 - or 3 -cuts in the graph. Dillencourt [8, Theorem 4.1] showed that a near-triangulation (a 2-connected plane graph with all faces bounded by triangles except perhaps the outer face) with no separating triangles and certain restrictions on chords of the outer cycle is Hamiltonian. Sanders [19, Theorem 2] extended this to a larger class of graphs. Jackson and Yu [15, Theorem 4.2] showed that a plane triangulation is Hamiltonian if each 'piece' defined by decomposing along separating triangles connects to at most three other pieces. Our results explore a different kind of condition, based on excluding a complete bipartite minor.

Excluded complete bipartite minors have been used previously in more general settings to prove results involving concepts related to the existence of a Hamilton cycle, such as toughness, circumference, or the existence of spanning trees of bounded degree; see for example [2, 3, 17. We are interested in graphs that have no $K_{2, t}$ minor, for some t. Some general results are known for such graphs, including a rough structure theorem [10, upper bounds on the number of edges [5, 16, and a lower bound on circumference (3).

For 2-connected graphs, a $K_{2,3}$-minor-free graph is either outerplanar or K_{4}, and is therefore both planar and Hamiltonian. However, the authors [11 recently characterized all $K_{2,4}$-minor-free graphs, and there are many $K_{2,4}$-minor-free 2 -connected planar graphs that are not Hamiltonian. For 3-connected graphs, the $K_{2,4}$-minor-free ones belong to a small number of small graphs, some of which are nonplanar, or a sparse infinite family of planar graphs; all are Hamiltonian. There are $K_{2,5}$-minor-free 3-connected nonplanar graphs that are not Hamiltonian, such as the Petersen graph, but in this paper we show that all $K_{2,5}$-minor-free 3 -connected planar graphs are Hamiltonian. We also show that this cannot be extended to $K_{2,6}$-minorfree graphs, by constructing an infinite family of $K_{2,6}$-minor-free 3 -connected planar graphs that are not Hamiltonian.

The number $g(n)$ of nonisomorphic $K_{2,5}$-minor-free 3-connected planar graphs on n vertices grows at least exponentially (for $n \geq 10$ with n even this is not hard to show using the family of graphs obtained by adding an optional diagonal chord across each quadrilateral face of a prism $C_{n / 2} \square K_{2}$). Some computed values of $g(n)$ are as follows.

n	7	8	9	10	11	12
$g(n)$	31	194	918	3278	8346	18154

The exponential growth of $g(n)$ contrasts with the growth of the number of nonisomorphic 3-connected $K_{2,4^{-}}$ minor-free graphs (planar or nonplanar), which is only linear [11. Thus, our results apply to a sizable class of graphs.

In Section 2 we provide necessary definitions and preliminary results. The main result, Theorem 3.1, that $K_{2,5}$-minor-free 3-connected planar graphs are Hamiltonian, is proved in Section 3. In Section 4 we discuss $K_{2,6}$-minor-free 3 -connected planar graphs.

2 Definitions and Preliminary Results

An edge, vertex, or set of k vertices whose deletion increases the number of components of a graph is a cutedge, cutvertex, or k-cut, respectively. The subgraph of G induced by $S \subseteq V(G)$ is denoted by $G[S]$. If P is a path and $x, y \in V(P)$ then $P[x, y]$ represents the subpath of P between x and y.

2.1 Minors and models

A graph H is a minor of a graph G if H is isomorphic to a graph formed from G by contracting and deleting edges of G and deleting vertices of G. A graph is H-minor-free if it does not have H as a minor. Another way to think of a minor H is in terms of a function β mapping each $u \in V(H)$ to $\beta(u) \subseteq V(G)$, the branch set of u, such that (a) $\beta(u) \cap \beta\left(u^{\prime}\right)=\emptyset$ if $u \neq u^{\prime}$; (b) $G[\beta(u)]$ is connected for each u; and (c) if $u u^{\prime} \in E(H)$ then there is at least one edge between $\beta(u)$ and $\beta\left(u^{\prime}\right)$ in G. We call β a model, or more specifically an edge-based model, of H in G. More generally, we may replace condition (c) by the existence of a function π mapping each $e=u u^{\prime} \in E(H)$ to a path $\pi\left(u u^{\prime}\right)$ in G, such that $\left(c_{1}\right) \pi\left(u u^{\prime}\right)$ starts in $\beta(u)$ and ends in $\beta\left(u^{\prime}\right)$; $\left(\mathrm{c}_{2}\right)$ no internal vertex of $\pi\left(u u^{\prime}\right)$ belongs to any $\beta\left(u^{\prime \prime}\right)$ (even if $u^{\prime \prime}=u$ or $\left.u^{\prime}\right)$; and ($\left.\mathrm{c}_{3}\right) \pi(e)$ and $\pi\left(e^{\prime}\right)$ are internally disjoint if $e \neq e^{\prime}$. We call (β, π) a path-based model of H in G.

Now we discuss $K_{2, t}$ minors in particular. We assume that $V\left(K_{2, t}\right)=\left\{a_{1}, a_{2}, b_{1}, b_{2}, \ldots, b_{t}\right\}$ and $E\left(K_{2, t}\right)=$ $\left\{a_{i} b_{j} \mid 1 \leq i \leq 2,1 \leq j \leq t\right\}$.

Edge-based models are convenient for proving nonexistence of a minor. In fact, for $K_{2, t}$ minors we can use an even more restrictive model. Consider an edge-based model β_{0} of $K_{2, t}$, where b_{1} and its incident edges correspond to a path $v_{1} v_{2} \ldots v_{k}, k \geq 3$, with $v_{1} \in \beta_{0}\left(a_{1}\right), v_{k} \in \beta_{0}\left(a_{2}\right)$, and $v_{i} \in \beta_{0}\left(b_{1}\right)$ for $2 \leq i \leq k-1$. Define $\beta_{1}\left(b_{1}\right)=\left\{v_{2}\right\}, \beta_{1}\left(a_{2}\right)=\beta_{0}\left(a_{2}\right) \cup\left\{v_{3}, \ldots, v_{k-1}\right\}$, and $\beta_{1}(u)=\beta_{0}(u)$ for all other u. Then β_{1} is also an edge-based model of a $K_{2, t}$ minor, and $\left|\beta_{1}\left(b_{1}\right)\right|=1$. Applying the same procedure to $b_{2}, b_{3}, \ldots, b_{t}$ in turn, we obtain an edge-based model $\beta=\beta_{t}$ with $\left|\beta\left(b_{j}\right)\right|=1$ for $1 \leq j \leq t$. Such a β is a standard model of $K_{2, t}$, and we denote it by either $\Sigma\left(R_{1}, R_{2} \mid s_{1}, s_{2}, \ldots, s_{t}\right)$ or $\Sigma\left(R_{1}, R_{2} \mid S\right)$ where $R_{i}=\beta\left(a_{i}\right)$ for $1 \leq i \leq 2,\left\{s_{j}\right\}=\beta\left(b_{j}\right)$ for $1 \leq j \leq t$, and $S=\left\{s_{1}, s_{2}, \ldots, s_{t}\right\}$. Thus, if G has a $K_{2, t}$ minor then it has a standard model of $K_{2, t}$.

On the other hand, path-based models are useful for proving existence of a minor. Moreover, in many situations where we find a $K_{2, t}$ minor it would be tedious to give an exact description of the minor. So, we say that $\Theta\left(R_{1}, R_{2} \mid S_{1}, S_{2}, \ldots, S_{t}\right)$ is an approximate (path-based) model of $K_{2, t}$ if there exists a path-based model (β, π) such that $R_{i} \subseteq \beta\left(a_{i}\right)$ for $1 \leq i \leq 2$ and $S_{j} \subseteq \beta\left(b_{j}\right)$ for $1 \leq j \leq t$. For convenience, we also allow each R_{i} to be a subgraph, not just a set of vertices, with $V\left(R_{i}\right) \subseteq \beta\left(a_{i}\right)$, and similarly for each S_{j}. Informally, we will specify enough of each branch set to make the existence of the minor clear; using subgraphs rather than vertex sets sometimes helps to clarify why a branch set induces a connected subgraph. We use this notation even when we actually have an exact description of a minor. For brevity, we just say that ' $\Theta\left(R_{1}, R_{2} \mid S_{1}, S_{2}, \ldots, S_{t}\right)$ is a $K_{2, t}$ minor'. In our figures the sets or subgraphs R_{i} are enclosed by dotted curves, and the sets or subgraphs S_{j} (usually just single vertices) are indicated by triangles.

We also need one type of rooted minor. We say there is a $K_{2, t}$ minor rooted at R_{1} and R_{2} if there is a path-based model (β, π) (or, equivalently, edge-based model β, or even standard model β) with $R_{1} \subseteq \beta\left(a_{1}\right)$ and $R_{2} \subseteq \beta\left(a_{2}\right)$. Again we extend this to allow R_{1} and R_{2} to be subgraphs, not just sets of vertices.

2.2 Path-outerplanar graphs

A graph is outerplanar if it has a plane embedding in which all vertices are on the outer face. We use a characterization that we proved elsewhere of graphs without rooted $K_{2,2}$ minors in terms of special outerplanar graphs. (Along different lines, Demasi [7, Lemma 2.2.2] provided a description of graphs with no $K_{2,2}$ minor rooting all four vertices, in terms of disjoint paths.) Our characterization uses the following definitions. Given $x, y \in V(G)$, an $x y$-outerplane embedding of a graph G is an embedding in a closed disk
D such that a Hamilton $x y$-path P of G is contained in the boundary of $D ; P$ is called the outer path. A graph is xy-outerplanar, or path-outerplanar, if it has an $x y$-outerplane embedding. A graph G is a block if it is connected and has no cutvertex; a block is either 2-connected, K_{2}, or K_{1}.

Lemma 2.1 ([11]). Suppose $x, y \in V(G)$ where $x \neq y$ and $G^{\prime}=G+x y$ is a block (which holds, in particular, if G has a Hamilton xy-path). Then G has no $K_{2,2}$ minor rooted at x and y if and only if G is xy-outerplanar.

The following results on Hamilton paths in outerplanar and $x y$-outerplanar graphs will be useful.
Lemma 2.2. Let G be a 2-connected outerplanar graph. Let $x \in V(G)$ and let $x y$ be an edge on the outer cycle Z of G. Then for some vertex t with $\operatorname{deg}_{G}(t)=2$, there exists a Hamilton path $x y \ldots t$ in G.

Proof. Fix a forward direction on Z so that y follows x. Denote by $v_{1} Z v_{2}$ the forward path from v_{1} to v_{2} on Z. Proceed by induction on $|V(G)|$. In the base case, $G=K_{3}$ and the result is clear. Assume the lemma holds for all graphs with at most $n-1$ vertices and $|V(G)|=n \geq 4$. Let $w \neq y$ be the other neighbor of x on Z. If $\operatorname{deg}_{G}(w)=2$, then we take $t=w$ and $x Z w$ is a desired Hamilton path in G. Otherwise let v be a neighbor of w such that $v w \notin E(Z)$ (possibly $v=y$). Let G^{\prime} be the subgraph of G induced by $v Z w$; G^{\prime} is a 2-connected $v w$-outerplanar graph with $\left|V\left(G^{\prime}\right)\right| \leq n-1$. By the inductive hypothesis, there exists a Hamilton path $Q=v w \ldots t$ in G^{\prime} where $\operatorname{deg}_{G^{\prime}}(t)=\operatorname{deg}_{G}(t)=2$. Then $x Z v \cup Q$ is the desired path in G.

Corollary 2.3. Let G be an xy-outerplanar graph with $x \neq y$. Then there exists a Hamilton path $x \ldots t$ in $G-y$, where $t=x$ if $|V(G)|=2$, and t is some vertex with $\operatorname{deg}_{G}(t)=2$ otherwise.

Proof. If $|V(G)|=2$ this is clear, so suppose that $|V(G)| \geq 3$. Then $G+x y$ is a 2-connected outerplanar graph, so by Lemma 2.2 it has a Hamilton path $y x \ldots t$ ending at a vertex t of degree 2 . Now $P-y$ is the required path.

2.3 Connectivity and reducibility

The following observation will be useful.
Lemma 2.4. Suppose G is a 2-connected plane graph and C is a cycle in G. Then the subgraph of G consisting of C and all edges and vertices inside C is 2-connected.

Proof. Any cutvertex in the subgraph would also be a cutvertex of G.
The following results will allow us to simplify the situations that we have to deal with in the proof of Theorem 3.1.

Theorem 2.5 (Halin, [13, Theorem 7.2]). Let G be a 3-connected graph with $|V(G)| \geq 5$. Then for every $v \in V(G)$ with $\operatorname{deg}(v)=3$, there is an edge e incident with v such that G / e is 3 -connected.

A k-separation in a graph G is a pair (H, K) of edge-disjoint subgraphs of G with $G=H \cup K, \mid V(H) \cap$ $V(K) \mid=k, V(H)-V(K) \neq \emptyset$, and $V(K)-V(H) \neq \emptyset$.

Lemma 2.6. Let G be a 3-connected graph and suppose (H, K) is a 3-separation in G with $V(H) \cap V(G)=$ $\{x, y, z\}$. Suppose $K^{\prime}=K-V(H)$ is connected and H is 2 -connected. Let G^{\prime} be the graph formed from G by contracting K^{\prime} to a single vertex. Then G^{\prime} is 3-connected.

Proof. Let v be the vertex in G^{\prime} formed from contracting K^{\prime}. Since G is 3 -connected, $x v, y v, z v \in E\left(G^{\prime}\right)$. We claim that every pair of vertices in G^{\prime} has three vertex-disjoint paths between them. By Menger's Theorem, it will follow that G^{\prime} is 3 -connected. We consider five different types of pairs of vertices.

First, suppose $w_{1}, w_{2} \in V(H)-\{x, y, z\}$; there are three internally disjoint paths from w_{1} to w_{2} in G : P_{1}, P_{2}, and P_{3}. If $V\left(P_{i}\right) \cap V\left(K^{\prime}\right)=\emptyset$ for $i=1,2,3$, then P_{1}, P_{2}, and P_{3} are the desired paths in G^{\prime}.

If $V\left(P_{i}\right) \cap V\left(K^{\prime}\right) \neq \emptyset$ for some i, then $\left|V\left(P_{i}\right) \cap\{x, y, z\}\right| \geq 2$ since $\{x, y, z\}$ separates K^{\prime} from H. Thus $V\left(P_{i}\right) \cap V\left(K^{\prime}\right) \neq \emptyset$ for at most one i. Suppose $V\left(P_{1}\right) \cap V\left(K^{\prime}\right) \neq \emptyset$. Then all vertices of $V\left(P_{1}\right) \cap V\left(K^{\prime}\right)$ are in a single subpath of P_{1} which we replace by v to form a new path P_{1}^{\prime}. The paths P_{1}^{\prime}, P_{2}, and P_{3} are the desired paths in G^{\prime}.

Second, consider $w_{1} \in V(H)-\{x, y, z\}$ and $w_{2} \in\{x, y, z\}$, say $w_{2}=x$. If there are not three internally disjoint paths between w_{1} and x in G^{\prime}, then w_{1} and x are separated either by a 2 -cut $\left\{u_{1}, u_{2}\right\}$ (if $w_{1} x \notin E(G)$) or by $w_{1} x$ and some vertex u_{1} (if $w_{1} x \in E(G)$). Since w_{1} and x are not separated by a 2 -cut or by an edge and a vertex in G, we may assume that $u_{1}=v$. But then u_{2} is a cutvertex in H or $w_{1} x$ is a cutedge in H, which is a contradiction since H is 2 -connected. Hence there are three internally disjoint paths between w_{1} and x.

Third, consider $w_{1}, w_{2} \in\{x, y, z\}$, say $w_{1}=x$ and $w_{2}=y$. Because H is 2-connected, there are two internally disjoint paths P_{1} and P_{2} from x to y in H. Take $P_{3}=x v y$. Then P_{1}, P_{2}, and P_{3} are the desired paths in G^{\prime}.

Fourth, consider $w_{1} \in V(H)-\{x, y, z\}$ and v. For any $w_{2} \in V\left(K^{\prime}\right)$, there are three internally disjoint paths P_{1}, P_{2}, and P_{3} from w_{2} to w_{1} in G. Without loss of generality, say $x \in V\left(P_{1}\right), y \in V\left(P_{2}\right)$, and $z \in V\left(P_{3}\right)$. Form P_{1}^{\prime} from P_{1} by replacing $P_{1}\left[w_{2}, x\right]$ with $v x$, form P_{2}^{\prime} from P_{2} by replacing $P_{2}\left[w_{2}, y\right]$ with $v y$, and form P_{3}^{\prime} from P_{3} by replacing $P_{3}\left[w_{2}, z\right]$ with $v z$. The paths $P_{1}^{\prime}, P_{2}^{\prime}$, and P_{3}^{\prime} are the desired paths in G^{\prime}.

Finally, consider $w_{1} \in\{x, y, z\}$, say $w_{1}=x$, and v. By a consequence of Menger's Theorem, since H is 2-connected there are two internally disjoint paths from $\{y, z\}$ to x in H, say $P_{1}=y \ldots x$ and $P_{2}=z \ldots x$. Then $P_{1}^{\prime}=v y \cup P_{1}, P_{2}^{\prime}=v z \cup P_{2}$, and $P_{3}=v x$ are the desired paths in G^{\prime}.

Lemma 2.6 is false without the hypothesis that H is 2-connected: then we could have $V(H)=\{w, x, y, z\}$ and $E(H)=\{w x, w y, w z\}$, in which case G^{\prime} would be isomorphic to $K_{2,3}$, which is not 3-connected.

Now we use the results above to set up a framework that will help to simplify the graph in our main proof. Suppose G is a 3-connected graph, and C is a cycle in G. We say that G is C-reducible to a graph G^{\prime} provided (a) G^{\prime} is obtained from G by contracting edges of G with at most one end on C and/or deleting edges in $E(G)-E(C)$, (b) G^{\prime} is 3 -connected, and (c) for every cycle Z^{\prime} in G^{\prime} there is a cycle Z in G with $|V(Z)| \geq\left|V\left(Z^{\prime}\right)\right|$. By (a), C is still a cycle in G^{\prime}. From this, we see that C-reducibility is transitive. Also by (a), G^{\prime} is a minor of G.

Lemma 2.7. Suppose C is a cycle in a 3 -connected graph G. If B is a component of $G-V(C)$ with exactly three neighbors on C then G is C-reducible to $G / E(B)$, in which B becomes a degree 3 vertex.

Proof. Let $G_{0}=G-V(B)$. If G_{0} is not 2-connected, then there is a cutvertex u. Now $u \notin V(C)$ and $V(C)$ must be entirely in one component of $G_{0}-u$. Since the neighbors of B are all on C, vertices of B are only adjacent to vertices on one side of the cut. Hence u is also a cutvertex in G, which is a contradiction. Thus, G_{0} is 2-connected. Consider $G^{\prime}=G / E(B)$. Clearly (a) holds, and (b) follows from Lemma 2.6 .

Let a_{1}, a_{2}, a_{3} be the neighbors of B on C, and let b be the vertex of G^{\prime} corresponding to B. Let Z^{\prime} be a cycle in G^{\prime}. If $b \notin V\left(Z^{\prime}\right)$, then $Z=Z^{\prime}$ is also a cycle in G. If $b \in V(Z)$ then Z^{\prime} uses a path $a_{i} b a_{j}$. Form a cycle Z in G from Z^{\prime} by replacing $a_{i} b a_{j}$ by a path from a_{i} to a_{j} through B. Clearly $|V(Z)| \geq\left|V\left(Z^{\prime}\right)\right|$, so (c) holds.

Lemma 2.8. Suppose C is a cycle in a 3-connected graph G. If $b \in V(G)-V(C)$ has degree 3 then there is an edge bc so that G is C-reducible to $G / b c$.

Proof. By Theorem 2.5 there is an edge $b c$ such that $G^{\prime}=G / b c$ is 3 -connected. Clearly (a) and (b) hold for G^{\prime}; we must show (c). Let a_{1}, a_{2} and c be the neighbors of b in G. Call the vertex that results from the contraction z. Suppose Z^{\prime} is a cycle in G^{\prime}. If $a_{1} z, a_{2} z \notin E\left(Z^{\prime}\right)$, then take $Z=Z^{\prime}$. If $\left|\left\{a_{1} z, a_{2} z\right\} \cap E\left(Z^{\prime}\right)\right|=1$, say $a_{1} z \in E\left(Z^{\prime}\right)$, form Z from Z^{\prime} by replacing $a_{1} z$ with the path $a_{1} b c$. If $a_{1} z, a_{2} z \in E\left(Z^{\prime}\right)$, form Z from
Z^{\prime} by replacing the subpath $a_{1} z a_{2}$ with $a_{1} b a_{2}$. In all cases, Z is a cycle in G with $|V(Z)| \geq\left|V\left(Z^{\prime}\right)\right|$, so (c) holds.

Lemma 2.9. Suppose C is a cycle in a 3-connected graph G. Suppose that $a_{1} a_{2} \in E(G)-E(C)$, and there are three internally disjoint $a_{1} a_{2}$-paths in $G-a_{1} a_{2}$. Then G is C-reducible to $G-a_{1} a_{2}$.

In particular, G is C-reducible to $G-a_{1} a_{2}$ if a_{1} and a_{2} are neighbors on C of a component of $G-V(C)$ and $a_{1} a_{2} \in E(G)-E(C)$.

Proof. Clearly (a) and (c) hold for $G^{\prime}=G-a_{1} a_{2}$; we must show (b). Since G is 3 -connected, G^{\prime} is 2 connected, and if G^{\prime} has a 2-cut then a_{1} and a_{2} must be in different components, which cannot happen because of the three internally disjoint $a_{1} a_{2}$-paths.

If a_{1} and a_{2} are neighbors of a component B of $G-V(C)$ then there are three internally disjoint $a_{1} a_{2}$-paths in $G-a_{1} a_{2}$, namely the two paths between a_{1} and a_{2} in C, and a path from a_{1} to a_{2} through B.

3 Main Result

We are now ready to prove the main result.
Theorem 3.1. Let G be a 3-connected planar $K_{2,5}$-minor-free graph. Then G is Hamiltonian.
Theorem 3.1 is proved by assuming G is not Hamiltonian, taking a longest cycle C in G and finding a contradiction with either a longer cycle or a $K_{2,5}$ minor.

Proof. Assume that G is not Hamiltonian and assume G is represented as a plane graph. Let H and J be two subgraphs of G. Let R_{0} be the outside face of J (an open set), R_{1} the boundary of R_{0}, and $R_{2}=\mathbb{R}^{2}-R_{0}-R_{1}$. We say H is outside J if as subsets of the plane we have $H \subseteq R_{0} \cup R_{1}$, and inside J if $H \subseteq R_{1} \cup R_{2}$.

Let C be a longest non-Hamilton cycle in G. A longer cycle means a cycle longer than C. Fix a forward direction on C, which we assume is clockwise. Denote by x^{+}the vertex directly after the vertex x on C and by x^{-}the vertex directly before x. Define $C[x, y]$ to be the forward subpath of C from x to y which includes x and y. If $x=y$ then $C[x, y]=\{x\}$. Define $C(x, y)=C[x, y]-\{x, y\}, C(x, y]=C[x, y]-x$, and $C[x, y)=C[x, y]-y$. Define $[x, y]$ to be $V(C[x, y])$ and $G[x, y]$ to be the induced subgraph $G[[x, y]]$; also define $(x, y), G(x, y)$, etc. similarly. We say a vertex z is between x and y if $z \in(x, y)$.

Let D be a component of $G-V(C)$ with the most neighbors on C. We fix D in our arguments, and assume that D is inside C. Let $u_{0}, u_{1}, \ldots, u_{k-1}$ be the neighbors of D along C in forward order. Because G is 3 -connected, $k \geq 3$. For any distinct u_{i} and u_{j} there is at least one path from u_{i} to u_{j} through D; we use $u_{i} D u_{j}$ to denote such a path. The sets $U_{i}=\left(u_{i}, u_{i+1}\right)$ (subscripts interpreted modulo k) are called sectors. If $U_{i}=\emptyset$ for some i, then there is a longer cycle: replace $C\left[u_{i}, u_{i+1}\right]$ with $u_{i} D u_{i+1}$. Thus, $U_{i} \neq \emptyset$ for all i.

A jump $x-y$ is an $x y$-path where $x \neq y, x, y \in V(C)$, and no edge or internal vertex of the path belongs to C or D. If $S, T \subseteq V(C)$ then a jump from S to T or $S-T$ jump is a jump $x-y$ with $x \in S, y \in T$; if $S=T$ we say this is a jump on S. If S is a set of consecutive vertices on C then a jump out of S is a jump $x-y$ where $x \in S, y \notin S$, and y is not adjacent in C to a vertex of S. Whenever $v, w \in V(C)$ are not equal and not consecutive on C and (v, w) contains no neighbor of D there is at least one jump out of $(v, w)=\left[v^{+}, w^{-}\right]$, because $\{v, w\}$ is not a 2 -cut.

A jump out of a sector U_{i} is a sector jump; since every U_{i} is nonempty, there is a sector jump out of every sector. A jump is an inside or outside jump if it is respectively inside or outside C. An inside jump must have both ends in $\left[u_{i}, u_{i+1}\right]$ for some i. Thus, all sector jumps are outside jumps.

If there is a jump $u_{i}^{+}-u_{j}^{+}$, then $C\left[u_{j}^{+}, u_{i}\right] \cup u_{i} D u_{j} \cup C\left[u_{i}^{+}, u_{j}\right] \cup u_{i}^{+}-u_{j}^{+}$is a longer cycle. Denote such a longer cycle as $L\left(u_{i}^{+}-u_{j}^{+}\right)$. If there is a jump $u_{i}^{-}-u_{j}^{-}$, then there is a symmetric longer cycle denoted $L\left(u_{i}^{-}-u_{j}^{-}\right)$. Call such cycles standard longer cycles. Figure 1 shows $L\left(u_{1}^{-}, u_{2}^{-}\right)$when $k=4$.

Figure 1

Figure 2

If $x, y \in V(C), x \neq y, W \subseteq G-V(C)-V(D)$, and $G[[x, y] \cup W]$ contains a $K_{2,2}$ minor rooted at x and y, then we say there is a $K_{2,2}$ minor along $[x, y]$. If there is no such minor then for any $\left[x^{\prime}, y^{\prime}\right] \subseteq[x, y]$ with $x^{\prime} \neq y^{\prime}$ there is no $K_{2,2}$ minor rooted at x^{\prime} and y^{\prime} in $G\left[x^{\prime}, y^{\prime}\right]$. Thus, $G\left[x^{\prime}, y^{\prime}\right]$ is $x^{\prime} y^{\prime}$-outerplanar by Lemma 2.1 and we may apply Corollary 2.3 to $G\left[x^{\prime}, y^{\prime}\right]$.

Suppose a, b, c, d with $c \neq b, a \neq d$ appear in that order along C. Let $W_{1}, W_{2} \subseteq G-V(C)-V(D)$ with $W_{1} \cap W_{2}=\emptyset$. If there is a $K_{2,2}$ minor in $G\left[[a, d] \cup W_{1}\right]$ rooted at $[a, b]$ and $[c, d]$, represented as $\Sigma\left(R_{1}, R_{2} \mid s_{1}, s_{2}\right)$, and a $K_{2,2}$ minor in $G\left[[c, b] \cup W_{2}\right]$ rooted at $[a, b]$ and $[c, d]$, represented as $\Sigma\left(R_{1}^{\prime}, R_{2}^{\prime} \mid s_{1}^{\prime}, s_{2}^{\prime}\right)$, and there exist $u_{i} \in[a, b]$ and $u_{j} \in[c, d]$, then there is a $K_{2,5}$ minor $\Theta\left(R_{1} \cup R_{1}^{\prime}, R_{2} \cup R_{2}^{\prime} \mid s_{1}, s_{2}, s_{1}^{\prime}, s_{2}^{\prime}, D\right)$ in G. Denote such a minor by $M([a, b],[c, d])$. An example is shown in Figure 2 .

For $x \in V(C)$, define $\sigma(x) \in\left\{0, \frac{1}{2}, 1,1 \frac{1}{2}, \ldots, k-\frac{1}{2}\right\}$ by $\sigma\left(u_{i}\right)=i$, and $\sigma(x)=i+\frac{1}{2}$ if $x \in U_{i}$. Define the length of a jump $x-y$ as $\min \{|\sigma(x)-\sigma(y)|, k-|\sigma(x)-\sigma(y)|\}$. A sector jump has length at least 1 .

Claim 1. For every jump $x-y$ of length greater than 1, there is a sector jump $x_{1}-y_{1}$ of length 1 with $x_{1}, y_{1} \in[x, y]$ and another sector jump $x_{2}-y_{2}$ of length 1 with $x_{2}, y_{2} \in[y, x]$.

For any jump $u-v$, define the linear length as $|\sigma(u)-\sigma(v)|$. We claim that for any jump (not necessarily a sector jump) $x^{\prime}-y^{\prime}$ of linear length $\ell^{\prime}>1$ with $\sigma\left(x^{\prime}\right)<\sigma\left(y^{\prime}\right)$, there is a sector jump $x^{\prime \prime}-y^{\prime \prime}$ of linear length less than ℓ^{\prime} with $x^{\prime \prime}, y^{\prime \prime} \in\left[x^{\prime}, y^{\prime}\right]$. The jump $x^{\prime}-y^{\prime}$ must be outside C, and there is a sector $U_{j} \subset\left(x^{\prime}, y^{\prime}\right)$. Let $x^{\prime \prime}-y^{\prime \prime}$ be any jump out of U_{j}; then $\sigma\left(x^{\prime}\right)<\sigma\left(x^{\prime \prime}\right)<\sigma\left(y^{\prime}\right)$. If $x^{\prime \prime}-y^{\prime \prime}$ does not contain an interior vertex of $x^{\prime}-y^{\prime}$, then by planarity $x^{\prime \prime}-y^{\prime \prime}$ has linear length less than ℓ^{\prime}. If $x^{\prime \prime}-y^{\prime \prime}$ contains an interior vertex of $x^{\prime}-y^{\prime}$, then we have jumps $x^{\prime \prime}-x^{\prime}$ and $x^{\prime \prime}-y^{\prime}$ with linear length less than ℓ^{\prime}, at least one of which is a sector jump. We may repeat this process until we reach a sector jump $x^{*}-y^{*}$ with $x^{*}, y^{*} \in\left[x^{\prime}, y^{\prime}\right]$ of linear length 1 , and hence also length 1.

If we relabel $u_{0}, u_{1}, \ldots, u_{k-1}$ keeping the same cyclic order so that $x \in\left\{u_{0}\right\} \cup U_{0}$ and repeatedly apply the previous paragraph beginning with the jump $x-y$, we obtain the required jump $x_{1}-y_{1}$. Similarly, relabeling so that $y \in\left\{u_{0}\right\} \cup U_{0}$ yields the jump $x_{2}-y_{2}$. This completes the proof of Claim 1 .

Claim 2. $k=3$.

Assume that $k \geq 4$. Suppose there is a component D^{\prime} of $G-V(C)$ with neighbors in three consecutive sectors, say $z_{1} \in U_{0}, z_{2} \in U_{1}$, and $z_{3} \in U_{2}$ (D^{\prime} may also have neighbors in other sectors). Then since $k \geq 4$, $z_{1}-z_{3}$ is a jump of length greater than 1 . Therefore by Claim 1, there is a sector jump $x-y$ of length 1 with $u_{i} \in[x, y] \subseteq\left[z_{3}, z_{1}\right]$. At most one of $x \in U_{2}, y \in U_{0}$ is true; we may assume that $y \notin U_{0}$. Then there is a $K_{2,5}$ minor $\Theta\left(D \cup\left\{u_{1}\right\}, D^{\prime} \cup\left[z_{3}, x\right] \cup x-y \mid u_{0}, z_{1}, z_{2}, u_{2}, u_{i}\right)$ as shown in Figure 3. This minor applies even if $x-y$ intersects D^{\prime}.

Now suppose there is a component D^{\prime} of $G-V(C)$ with neighbors in three sectors that are not consecutive (this requires $k \geq 5$; again D^{\prime} may also have neighbors in other sectors). We may assume that these are $z_{1} \in U_{h}, z_{2} \in U_{i}, z_{3} \in U_{j}$ in order along C, where U_{h}, U_{i} may be consecutive but U_{i}, U_{j} and U_{j}, U_{h}

Figure 3

Figure 4
are not. Then there is a $K_{2,5}$-minor $\Theta\left(D \cup\left\{u_{i+1}\right\}, D^{\prime} \cup\left\{z_{1}, z_{3}\right\} \mid u_{h}, u_{i}, z_{2}, u_{j}, u_{j+1}\right)$. An example with $(h, i, j)=(k-1,0,2)$ is shown in Figure 4

Hence, every component of $G-V(C)$ other than D has neighbors in at most two sectors. Therefore, a sector jump of length 1 , from U_{i-1} to U_{i}, cannot intersect any sector jump with an end in $U_{j}, j \notin\{i-1, i\}$, which includes all sector jumps of length at least 2 .

From Claim 1 it follows that there are at least two distinct pairs of sectors with jumps of length 1 between them. Suppose there are three distinct pairs of sectors with jumps of length 1 between them, say $x_{1}-y_{1}, x_{2}-y_{2}$ and $x_{3}-y_{3}$ in order along C, where $u_{g} \in\left(x_{1}, y_{1}\right), u_{h} \in\left(x_{2}, y_{2}\right)$ and $u_{i} \in\left(x_{3}, y_{3}\right)$. Since $k \geq 4$, we may assume there is some $u_{j} \in\left(y_{3}, x_{1}\right)$. Then there is a $K_{2,5}$ minor $\Theta\left(D \cup\left\{u_{j}\right\},\left[y_{1}, x_{2}\right] \cup x_{2}-y_{2} \cup\left[y_{2}, x_{3}\right] \mid x_{1}, u_{g}, u_{h}, u_{i}, y_{3}\right)$. An example with $(g, h, i)=(0,1,2)$ is shown in Figure 5

Therefore, we may assume that there are exactly two distinct pairs of sectors with jumps of length 1 between them, say $x_{1}-y_{1}$ and $y_{2}-x_{2}$ in order along C, where $u_{g} \in\left(x_{1}, y_{1}\right)$ and $u_{h} \in\left(y_{2}, x_{2}\right)$. Suppose some sector has no jump of length 1 out of it. Without loss of generality we may assume this sector is $U_{0} \subseteq\left(x_{2}, x_{1}\right)$. There is some sector jump $x-y$ out of U_{0}. Then $y \in\left[y_{1}, y_{2}\right]$, otherwise Claim 1 would give a jump of length 1 between a third pair of sectors. Therefore there is a $K_{2,5}$ minor $\Theta\left(D \cup\left\{u_{0}, u_{1}\right\},\left[y_{1}, y_{2}\right] \mid x, x_{1}, u_{g}, u_{h}, x_{2}\right)$ as shown in Figure 6

Therefore, every sector has a jump of length 1 out of it, which means that $k=4$, and we may assume that there are jumps $U_{3}-U_{0}$ and $U_{1}-U_{2}$, but no jumps $U_{0}-U_{1}$ or $U_{2}-U_{3}$. Let $z_{3}-z_{0}$ be the sector jump $U_{3}-U_{0}$ such that z_{3} is closest to u_{3} and z_{0} is closest to u_{1}. Similarly, let $z_{1}-z_{2}$ be the sector jump $U_{1}-U_{2}$ such that z_{1} is closest to u_{1} and z_{2} is closest to u_{3}. Each U_{j} is divided into two parts by z_{j} : let $A_{0}=\left(u_{0}, z_{0}\right)$, $B_{0}=\left(z_{0}, u_{1}\right), B_{1}=\left(u_{1}, z_{1}\right), A_{1}=\left(z_{1}, u_{2}\right), A_{2}=\left(u_{2}, z_{2}\right), B_{2}=\left(z_{2}, u_{3}\right), B_{3}=\left(u_{3}, z_{3}\right)$ and $A_{3}=\left(z_{3}, u_{0}\right)$.

We may assume that $z_{3}-z_{0}$ and $z_{1}-z_{2}$ are embedded in the plane so that D is outside both cycles $Z_{0}=C\left[z_{3}, z_{0}\right] \cup z_{3}-z_{0}$ and $Z_{2}=C\left[z_{1}, z_{2}\right] \cup z_{1}-z_{2}$. Let H_{0} be the subgraph of G consisting of Z_{0} and all vertices and edges inside Z_{0}, and define H_{2} similarly; these are 2-connected by Lemma 2.4

For any j, define N_{j} to be the set of vertices of $V(G)-V(C)-V(D)$ inside a cycle $C\left[u_{j}, u_{j+1}\right] \cup u_{j+1} D u_{j}$ (the exact path through D does not matter). Loosely, these are the vertices inside C associated with the sector U_{j}. We now claim that there is a $K_{2,2}$ minor along $\left[u_{3}, u_{1}\right]$ using only vertices in $\left[u_{3}, u_{1}\right] \cup V\left(H_{0}\right) \cup N_{3} \cup N_{0}$.

If $N_{3} \neq \emptyset$, then there is a component D^{\prime} of $G-V(C)$ with $V\left(D^{\prime}\right) \subseteq N_{3}$. Now D^{\prime} has (at least) three neighbors in $\left[u_{3}, u_{0}\right]$, say w_{1}, w_{2}, w_{3} in order along C. So $\Theta\left(\left[u_{3}, w_{1}\right],\left[w_{3}, u_{1}\right] \mid w_{2}, D^{\prime}\right)$ is the required $K_{2,2}$ minor. Thus, we may assume that $N_{3}=\emptyset$, and symmetrically that $N_{0}=\emptyset$.

Let $H_{0}^{\prime}=H_{0} \cup G\left[z_{3}, z_{0}\right]$. Then $V\left(H_{0}^{\prime}\right)=V\left(H_{0}\right)$, so H_{0}^{\prime} is also 2-connected, but possibly $E\left(H_{0}^{\prime}\right) \neq E\left(H_{0}\right)$ because H_{0}^{\prime} contains any edges inside C joining two vertices of $\left[z_{3}, u_{0}\right]$ or two vertices of $\left[u_{0}, z_{0}\right]$. If H_{0}^{\prime} has a $K_{2,2}$ minor rooted at z_{3} and z_{0}, such as a minor $\Theta\left(z_{3}, z_{0} \mid u_{0}, q\right)$ when $z_{3}-z_{0}$ has an internal vertex q, then we can extend this minor using $\left[u_{3}, z_{3}\right]$ and $\left[z_{0}, u_{1}\right]$ to get the required $K_{2,2}$ minor. If there is an inside jump out of any of $B_{3}, A_{3}, A_{0}, B_{0}$, then this jump together with $z_{3}-z_{0}$ forms the required $K_{2,2}$ minor.

So we may assume that H_{0}^{\prime} has no $K_{2,2}$ minor rooted at z_{3} and z_{0}. Thus, $z_{3}-z_{0}$ has no internal vertex and so $z_{3} z_{0}$ is an outer edge of H_{0}^{\prime}. Also, by Lemma 2.1, H_{0}^{\prime} is $z_{3} z_{0}$-outerplanar. If there is an edge of

Figure 5

Figure 6

Figure 7
G leaving H_{0}^{\prime} at a vertex of A_{3} or A_{0} then, since $N_{3}=N_{0}=\emptyset$, that edge is an inside jump, creating the required $K_{2,2}$ minor. Hence, any edges of G leaving H_{0}^{\prime} leave at z_{3}, u_{0} or z_{0}. Since G is 3 -connected these are the only vertices that can have degree 2 in H_{0}^{\prime}.

Suppose that $B_{3}=\emptyset$. By Lemma 2.2 there is a Hamilton path $P=z_{0} z_{3} \ldots t$ in H_{0}^{\prime} where t has degree 2 in H_{0}^{\prime}; then we must have $t=u_{0}$. Thus, $P \cup C\left[z_{0}, u_{3}\right] \cup u_{3} D u_{0}$ is a longer cycle, a contradiction. This cycle is shown in Figure 7, where we use the convention that paths found using Lemma 2.2 or Corollary 2.3 are shown by heavily shading the part of the graph covered by the paths; the rest of the cycle is shown using dotted curves. Thus, B_{3} is nonempty, and by a symmetric argument B_{0} is also nonempty.

Suppose $r_{0}-t$ is an outside jump out of B_{0}. This jump cannot contain an internal vertex of $z_{3}-z_{0}$, and $t \notin\left(u_{3}, z_{3}\right]$, by choice of $z_{3}-z_{0}$. The jump cannot contain an internal vertex of $z_{1}-z_{2}$, and $t \notin\left(u_{1}, z_{1}\right]$, because there are no $U_{0}-U_{1}$ jumps. Thus, $t \in\left[z_{2}, u_{3}\right]$. Similarly, an outside jump $r_{3}-t^{\prime}$ out of B_{3} must have $t^{\prime} \in\left[u_{1}, z_{1}\right]$. Hence we cannot have outside jumps out of both B_{0} and B_{3} because the jumps $r_{0}-\left[z_{2}, u_{3}\right]$ and $r_{3}-\left[u_{1}, z_{1}\right]$ would intersect by planarity, giving a jump $r_{3}-r_{0}$ that contradicts the choice of $z_{3}-z_{0}$. Therefore, there is an inside jump out of one of B_{0} or B_{3}, giving the required $K_{2,2}$ minor along $\left[u_{3}, u_{1}\right]$.

By a symmetric argument there is also a $K_{2,2}$ minor along $\left[u_{1}, u_{3}\right]$ using only vertices in $\left[u_{1}, u_{3}\right] \cup V\left(H_{2}\right) \cup$ $N_{1} \cup N_{2}$. The two minors intersect only at u_{1} and u_{3}, so together they give a $K_{2,5}$ minor $M\left(u_{3}, u_{1}\right)$. This concludes the proof of Claim 2 .

Henceforth we assume $k=3$. The next claim simplifies the structure of the graph we are looking at and makes further analysis easier.

Claim 3. Without loss of generality, we may assume that D consists of a single degree 3 vertex d and that $V(G)=V(C) \cup\{d\}$. Thus, every jump is a single edge. We may also assume that there are no edges $x y \in E(G)-E(C)$ where G has three internally disjoint xy-paths of length 2 or more; in particular $u_{i} u_{j} \notin E(G)$ for all $i, j \in\{0,1,2, \ldots, k-1\}$.

Since $k=3$ and G is 3 -connected, every component of $G-V(C)$ has exactly three neighbors on C. Applying Lemma 2.7 to each of these components in turn, including D, we find that G is C-reducible to G_{1} for which every component of $G_{1}-V(C)$ is a single degree 3 vertex of G_{1}. Let d be the degree 3 vertex corresponding to D. Applying Lemma 2.8 to each vertex of $V\left(G_{1}\right)-V(C)-\{d\}$ in turn, we find that G_{1} is C-reducible to G_{2} for which $V\left(G_{2}\right)=V(C) \cup\{d\}$. Starting from G_{2} and applying Lemma 2.9 repeatedly to any edge $x y$ not on C where there are three internally disjoint $x y$-paths of length 2 or more, we find that G_{2} is C-reducible to G_{3} in which there are no such edges $x y$. Since $u_{i} u_{j} \notin E(C)$ for all i and j, G_{3} has no edges $u_{i} u_{j}$ by the second part of Lemma 2.9 .

Since C-reducibility is transitive, G is C-reducible to $G_{3} . G_{3}$ is 3 -connected and has all the properties stated in the claim. Since G_{3} is a minor of G, G_{3} is planar, and showing that G_{3} has a $K_{2,5}$ minor also shows that G has a $K_{2,5}$ minor. By (c) of the definition of C-reducibility, showing that G_{3} has a cycle longer than

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12
C also shows that G has a cycle longer than C. Therefore, we may replace G by G_{3} in our arguments. This concludes the proof of Claim 3 .

We are now in the general situation where there are three sectors labeled U_{0}, U_{1}, and U_{2}. Let $t_{0}-t_{1}$ be the outermost $U_{2}-U_{0}$ jump (if any $U_{2}-U_{0}$ jump exists), meaning that $t_{0} \in U_{2}$ is closest to u_{2} and $t_{1} \in U_{0}$ is closest to u_{1}. Similarly let $t_{2}-t_{3}$ be the outermost $U_{0}-U_{1}$ jump, and $t_{4}-t_{5}$ the outermost $U_{1}-U_{2}$ jump, when such jumps exist. Because every sector must have a jump out of it and by Claim 1, there are at least two sector jumps of length 1 ; without loss of generality, assume there are jumps $t_{0}-t_{1}$ and $t_{2}-t_{3}$. Define $X_{0}=\left(t_{0}, u_{0}\right), X_{1}=\left(u_{0}, t_{1}\right), X_{2}=\left(t_{2}, u_{1}\right), X_{3}=\left(u_{1}, t_{3}\right), X_{4}=\left(t_{4}, u_{2}\right)$, and $X_{5}=\left(u_{2}, t_{5}\right)$, whenever the necessary t_{i} vertices exist. An example of the overall situation is shown in Figure 8 ,

Claim 4. There are no sector jumps $x-u_{2}$ where $x \in\left(t_{1}, t_{2}\right)$.
Let $x-u_{2}$ be a sector jump with $x \in\left(t_{1}, t_{2}\right)$. If there exist $q_{1} \in X_{1}$ and $q_{2} \in X_{2}$ then there is a $K_{2,5}$ minor $\Theta\left(\left\{d, u_{0}, u_{1}\right\},\left[t_{1}, t_{2}\right] \mid q_{1}, q_{2}, t_{3}, u_{2}, t_{0}\right)$ as shown in Figure 9. So at least one of X_{1} and X_{2} is empty; without loss of generality, assume $X_{1}=\emptyset$. Since $X_{1}=\emptyset$ and by choice of $t_{0}-t_{1}$, all jumps out of U_{2} must go to t_{1}. If there is a $K_{2,2}$ minor $\Theta\left(u_{2}, u_{0} \mid s_{1}, s_{2}\right)$ along [u_{2}, u_{0}], then there is a $K_{2,5}$ minor $\Theta\left(\left\{d, u_{0}, u_{1}\right\}, x-u_{2} \mid t_{1}, t_{2}, t_{3}, s_{1}, s_{2}\right)$ as shown in Figure 10. So we may assume there is no such minor, and apply Corollary 2.3 to $G\left[u_{2}, u_{0}\right]$ to find a path $P=u_{0} \ldots t$ such that $V(P)=\left(u_{2}, u_{0}\right]$ and t is a degree 2 vertex in $G\left[u_{2}, u_{0}\right]$; then we must have $t t_{1} \in E(G)$. Thus, $P \cup t t_{1} \cup C\left[t_{1}, u_{2}\right] \cup u_{2} d u_{0}$ is a longer cycle, as shown in Figure 11. This completes the proof of Claim4.

Claim 5. Either $t_{0} \neq u_{0}^{-}$or $t_{3} \neq u_{1}^{+} \quad\left(X_{0}\right.$ and X_{3} cannot both be empty).
Assume that $t_{0}=u_{0}^{-}$and $t_{3}=u_{1}^{+}$. See Figure 12 Let $R=G\left[t_{0}, t_{3}\right]$; we may assume that d is outside R. There are three internally disjoint $t_{0} t_{3}$-paths of length 2 or more, namely $t_{0}-t_{1} \cup C\left[t_{1}, t_{2}\right] \cup t_{2}-t_{3}, t_{0} u_{0} d u_{1} t_{3}$ and $C\left[t_{3}, t_{0}\right]$, so by Claim 3, $t_{0} t_{3} \notin E(G)$. Also by Claim 3, $u_{0} u_{1} \notin E(G)$.

Figure 13

Figure 14

Figure 15

Let P be the walk from u_{0} to u_{1} counterclockwise along the outer face of R and Q be the walk from t_{0} to t_{3} clockwise along the outer face of R. The outer face of R is bounded by $P \cup Q \cup\left\{u_{0} t_{0}, u_{1} t_{3}\right\}$. If $P=\left(u_{0}=p_{0}\right) p_{1} p_{2} \ldots p_{r-1}\left(p_{r}=u_{1}\right)$ then each $p_{i}, 1 \leq i \leq r$, is closer to t_{3} along $C\left[t_{0}, t_{3}\right]$ than p_{i-1}, so P has no repeated vertices and is a path; similarly, Q is a path. Additionally, $|V(P)| \geq 3$ because $u_{0} u_{1} \notin E(G)$ and $|V(Q)| \geq 3$ because $t_{0} t_{1}, t_{2} t_{3} \in E(Q)$ (possibly $t_{1}=t_{2}$).

The paths P and Q may intersect but only in limited ways. Any intersection vertex must belong to $\left[t_{1}, t_{2}\right]$. If P and Q intersect at two non-consecutive vertices on C, then using Claim 4 these two vertices would form a 2-cut in G. Hence there are three possibilities for P and $Q: V(P) \cap V(Q)=\left\{x, x^{+}\right\}, V(P) \cap V(Q)=\{x\}$, or $V(P) \cap V(Q)=\emptyset$.
(1) First assume $V(P) \cap V(Q)=\left\{x, x^{+}\right\} \subseteq\left[t_{1}, t_{2}\right]$. We will show that there is a longer cycle. Let $R_{1}=G\left[t_{0}, x\right]$ and $R_{2}=G\left[x^{+}, t_{3}\right]$. Then $t_{0} t_{1} \in E\left(R_{1}\right)$ and $t_{2} t_{3} \in E\left(R_{2}\right)$. Let $P_{1}=P \cap R_{1}$ and $Q_{1}=Q \cap R_{1} ;$ then $u_{0} \in V\left(P_{1}\right), t_{0} t_{1} \in E\left(Q_{1}\right)$, and $V\left(P_{1}\right) \cap V\left(Q_{1}\right)=\{x\}$. First we construct a new $u_{0} x$-path P_{1}^{\prime} and a new $t_{0} x$-path Q_{1}^{\prime} such that $V\left(P_{1}^{\prime} \cup Q_{1}^{\prime}\right)=V\left(R_{1}\right)$ and $V\left(P_{1}^{\prime}\right) \cap V\left(Q_{1}^{\prime}\right)=\{x\}$. If Q_{1} is just the edge $t_{0} t_{1}$ (so $\left.t_{1}=x\right)$ we may take $P_{1}^{\prime}=C\left[u_{0}, x\right]$ and $Q_{1}^{\prime}=Q_{1}$. So we may assume that $\left|V\left(Q_{1}\right)\right| \geq 3$.

Let P_{1}^{\prime} be a $u_{0} x$-path in R_{1} and Q_{1}^{\prime} a $t_{0} x$-path in R_{1} so that $V\left(P_{1}\right) \subseteq V\left(P_{1}^{\prime}\right), V\left(Q_{1}\right) \subseteq V\left(Q_{1}^{\prime}\right)$ and $V\left(P_{1}^{\prime}\right) \cap V\left(Q_{1}^{\prime}\right)=\{x\}$. Such paths exist since we can take $P_{1}^{\prime}=P_{1}$ and $Q_{1}^{\prime}=Q_{1}$. Additionally assume $\left|V\left(P_{1}^{\prime}\right) \cup V\left(Q_{1}^{\prime}\right)\right|$ is maximum. Suppose $V\left(P_{1}^{\prime} \cup Q_{1}^{\prime}\right) \neq V\left(R_{1}\right)$ and let K be a component of $R_{1}-V\left(P_{1}^{\prime} \cup Q_{1}^{\prime}\right)$. Because G is 3 -connected, K must have at least three neighbors in G. Since $V\left(P_{1} \cup Q_{1}\right) \subseteq V\left(P_{1}^{\prime} \cup Q_{1}^{\prime}\right)$, K contains no external vertices of R_{1}. Therefore, by planarity all neighbors of K are in R_{1} and hence in $V\left(P_{1}^{\prime} \cup Q_{1}^{\prime}\right)$. Thus, K has at least two neighbors in one of P_{1}^{\prime} or Q_{1}^{\prime}.

Suppose first that K is adjacent to $w_{1}, w_{2} \in V\left(Q_{1}^{\prime}\right)$. If $w_{1} w_{2} \in E\left(Q_{1}^{\prime}\right)$, then we can lengthen Q_{1}^{\prime} (still with $\left.V\left(Q_{1}\right) \subseteq V\left(Q_{1}^{\prime}\right)\right)$: replace the edge $w_{1} w_{2}$ with a path from w_{1} to w_{2} through K. Hence we may assume that $Q_{1}^{\prime}=t_{0} \ldots w_{1} \ldots w_{3} \ldots w_{2} \ldots x$ with $w_{3} \neq w_{1}, w_{2}$, and we have a $K_{2,5}$ minor $\Theta\left(\left[u_{2}, t_{0}\right] \cup Q_{1}^{\prime}\left[t_{0}, w_{1}\right], Q_{1}^{\prime}\left[w_{2}, x\right] \cup\right.$ $\left.\left(P \cap R_{2}\right) \mid d, u_{0}, K, w_{3}, t_{3}\right)$, a special case of which is shown in Figure 13 . Suppose now that K is adjacent to $w_{1}, w_{2} \in V\left(P_{1}^{\prime}\right)$. If $w_{1} w_{2} \in E\left(P_{1}^{\prime}\right)$ then we can lengthen P_{1}^{\prime}, so $P_{1}^{\prime}=u_{0} \ldots w_{1} \ldots w_{3} \ldots w_{2} \ldots x$ with $w_{3} \neq w_{1}, w_{2}$, and we have a $K_{2,5}$ minor $\Theta\left(\left[u_{2}, u_{0}\right] \cup P_{1}^{\prime}\left[u_{0}, w_{1}\right], P_{1}^{\prime}\left[w_{2}, x\right] \cup\left(P \cap R_{2}\right) \mid d, w_{3}, K, y, t_{3}\right)$ where y is an internal vertex of Q_{1}^{\prime}, which exists because $\left|V\left(Q_{1}^{\prime}\right)\right| \geq\left|V\left(Q_{1}\right)\right| \geq 3$. Thus no such component K exists, $V\left(P_{1}^{\prime} \cup Q_{1}^{\prime}\right)=V\left(R_{1}\right)$, and P_{1}^{\prime} and Q_{1}^{\prime} are the desired paths in R_{1}.

By symmetric arguments, R_{2} has a $u_{1} x^{+}$-path P_{2}^{\prime} and a $t_{3} x^{+}$-path Q_{2}^{\prime} such that $V\left(P_{2}^{\prime} \cup Q_{2}^{\prime}\right)=V\left(R_{2}\right)$ and $V\left(P_{2}^{\prime}\right) \cap V\left(Q_{2}^{\prime}\right)=\left\{x^{+}\right\}$. Hence there is a longer cycle $C\left[t_{3}, t_{0}\right] \cup Q_{1}^{\prime} \cup P_{1}^{\prime} \cup u_{0} d u_{1} \cup P_{2}^{\prime} \cup Q_{2}^{\prime}$ as shown in Figure 14
(2) Assume $V(P) \cap V(Q)=\{x\} \subseteq\left[t_{1}, t_{2}\right]$. The argument here will be very similar to, but not exactly the same as, that in (1). Again let $R_{1}=G\left[t_{0}, x\right]$ and $R_{2}=G\left[x^{+}, t_{3}\right]$. Then $t_{0} t_{1} \in E\left(R_{1}\right)$ and $t_{2} \in V\left(R_{2}\right) \cup\{x\}$. Using the argument from (1), in R_{1} we find a $u_{0} x$-path P_{1}^{\prime} and a $t_{0} x$-path Q_{1}^{\prime} with $V\left(P_{1}^{\prime}\right) \cup V\left(Q_{1}^{\prime}\right)=V\left(R_{1}\right)$ and $V\left(P_{1}^{\prime}\right) \cap V\left(Q_{1}^{\prime}\right)=\{x\}$.

We also want to find in R_{2} a $u_{1} x^{+}$-path P_{2}^{\prime} and a $t_{3} x^{+}$-path Q_{2}^{\prime} such that $V\left(P_{2}^{\prime} \cup Q_{2}^{\prime}\right)=V\left(R_{2}\right)$ and
$V\left(P_{2}^{\prime}\right) \cap V\left(Q_{2}^{\prime}\right)=\left\{x^{+}\right\}$, but this requires some changes from (1). Let P_{2} be the segment of the outer boundary of R_{2} clockwise from u_{1} to x^{+}, and let Q_{2} be the segment counterclockwise from t_{3} to x^{+}. Then P_{2} and Q_{2} are paths by the same argument as for P and Q. If there is an edge $t_{3} x^{+}$(including when $x^{+}=u_{1}$) then we can take $P_{2}^{\prime}=C\left[x^{+}, u_{1}\right]$ and $Q_{2}^{\prime}=Q_{2}=t_{3} x^{+}$, so we may assume there is no such edge and hence $\left|V\left(Q_{2}\right)\right| \geq 3$.

Assume there is $v \in\left(V\left(P_{2}\right) \cap V\left(Q_{2}\right)\right)-\left\{x^{+}\right\}$. Using Claim 4, every edge leaving (x, v) (which contains x^{+}) goes to x or v, or is the edge $t_{2} u_{2}$. But since t_{2} is adjacent to $t_{3}, t_{2} \notin(x, v)$ so $\{x, v\}$ is a 2-cut in G, a contradiction. Thus, $V\left(P_{2}\right) \cap V\left(Q_{2}\right)=\left\{x^{+}\right\}$. Now we have a $u_{1} x^{+}$-path P_{2} and a $t_{3} x^{+}$-path Q_{2} so that (a) all external vertices of R_{2} belong to $V\left(P_{2} \cup Q_{2}\right)$, (b) $V\left(P_{2}\right) \cap V\left(Q_{2}\right)=\left\{x^{+}\right\}$, and (c) $\left|V\left(Q_{2}\right)\right| \geq 3$. This allows us to apply the argument for $\left|V\left(Q_{2}\right)\right| \geq 3$ from (1) to find the required P_{2}^{\prime} and Q_{2}^{\prime} in R_{2}.

As in (1), we use $P_{1}^{\prime}, Q_{1}^{\prime}, P_{2}^{\prime}, Q_{2}^{\prime}$ to find a longer cycle.
(3) Finally suppose $V(P) \cap V(Q)=\emptyset$. Let P^{\prime} be a $u_{0} u_{1}$-path in R and Q^{\prime} a $t_{0} t_{3}$-path in R so that $V(P) \subseteq V\left(P^{\prime}\right), V(Q) \subseteq V\left(Q^{\prime}\right)$ and $V\left(P^{\prime}\right) \cap V\left(Q^{\prime}\right)=\emptyset$. Such paths exist because we can take $P^{\prime}=P$ and $Q^{\prime}=Q$. Assume additionally that $\left|V\left(P^{\prime}\right) \cup V\left(Q^{\prime}\right)\right|$ is maximum. Suppose $V\left(P^{\prime} \cup Q^{\prime}\right) \neq V(R)$ and let K be a component of $R-V\left(P^{\prime} \cup Q^{\prime}\right)$. Because G is 3-connected, K must have at least three neighbors in G. Since $V(P \cup Q) \subseteq V\left(P^{\prime} \cup Q^{\prime}\right), K$ contains no external vertices of R. Therefore, by planarity all neighbors of K are in R and hence in $V\left(P^{\prime} \cup Q^{\prime}\right)$. Thus, K has at least two neighbors in one of P^{\prime} or Q^{\prime}.

First suppose K is adjacent to $w_{1}, w_{2} \in V\left(P^{\prime}\right)$. If $w_{1} w_{2} \in E\left(P^{\prime}\right)$, then we can lengthen P^{\prime} (still with $\left.V(P) \subseteq V\left(P^{\prime}\right)\right):$ replace the edge $w_{1} w_{2}$ with a path from w_{1} to w_{2} through K. Hence we may assume that $P^{\prime}=u_{0} \ldots w_{1} \ldots w_{3} \ldots w_{2} \ldots u_{1}$ with $w_{3} \neq w_{1}, w_{2}$, and we have a $K_{2,5}$ minor $\Theta\left(u_{0} t_{0} \cup P^{\prime}\left[u_{0}, w_{1}\right], P^{\prime}\left[w_{2}, u_{1}\right] \cup\right.$ $\left.u_{1} t_{3} \mid u_{2}, d, w_{3}, K, y\right)$ as shown in Figure 15, where y is an internal vertex of Q^{\prime}, which exists because $\left|V\left(Q^{\prime}\right)\right| \geq$ $|V(Q)| \geq 3$. We can reason similarly if K is adjacent to $w_{1}, w_{2} \in V\left(Q^{\prime}\right)$. Thus no such component K exists and $V\left(P^{\prime} \cup Q^{\prime}\right)=V(R)$.

Suppose there is a $K_{2,2} \operatorname{minor} \Theta\left(t_{0} u_{0}, u_{1} t_{3} \mid s_{1}, s_{2}\right)$ in $G\left[u_{1}, u_{0}\right]$. Then there is a $K_{2,5} \operatorname{minor} \Theta\left(t_{0} u_{0}, u_{1} t_{3} \mid s_{1}\right.$, $\left.s_{2}, d, p, q\right)$ as shown in Figure 16. where p, q are arbitrary internal vertices of P, Q respectively. So we may assume there is no such minor. Therefore, there is no $K_{2,2}$ minor along $\left[t_{3}, t_{0}\right]$ or any of its subintervals.

Suppose that $\left(u_{2}, t_{0}\right)=\emptyset$ or all jumps out of $\left(u_{2}, t_{0}\right)$ go to u_{0}. Apply Corollary 2.3 to $G\left[u_{2}, t_{0}\right]$ to find a path $J=t_{0} \ldots t$ such that $V(J)=\left(u_{2}, t_{0}\right.$] and either $t=t_{0}$ if $\left(u_{2}, t_{0}\right)=\emptyset$, or t is a vertex of degree 2 in $G\left[u_{2}, t_{0}\right]$, from which there must be a jump to u_{0}. In either case, $t_{0} u_{0} \in E(G)$ and there is a longer cycle $P^{\prime} \cup u_{1} d u_{2} \cup C\left[t_{3}, u_{2}\right] \cup Q^{\prime} \cup J \cup t u_{0}$; the case when $\left(u_{2}, t_{0}\right) \neq \emptyset$ is shown in Figure 17 ,

So we may assume that not all jumps out of $\left(u_{2}, t_{0}\right)$ go to u_{0} and so there is a jump $x_{1}-x_{2}$ with $x_{1} \in\left(u_{2}, t_{0}\right)$ and $x_{2} \in\left[t_{3}, u_{2}\right)$. By a symmetric argument there is also a jump $x_{2}^{\prime}-x_{1}^{\prime}$ with $x_{2}^{\prime} \in\left(t_{3}, u_{2}\right)$ and $x_{1}^{\prime} \in\left(u_{2}, t_{0}\right]$. These jumps cannot cross because they are just edges, so we cannot have both $x_{2}=t_{3}$ and $x_{1}^{\prime}=t_{0}$. Without loss of generality, $x_{2} \neq t_{3}$, so $x_{1}-x_{2}$ is a jump from $\left(u_{2}, t_{0}\right)$ to $\left(t_{3}, u_{2}\right)$. Out of all such jumps we may assume that $x_{1}-x_{2}$ has x_{1} closest to t_{0} and x_{2} closest to t_{3}.

If there is a jump $y_{1}-y_{2}$ from $\left(u_{2}, x_{1}\right)$ to $\left(x_{1}, u_{0}\right]$, then $x_{1}-x_{2}$ and $y_{1}-y_{2}$ give a $K_{2,2}$ minor in $G\left[u_{1}, u_{0}\right]$ that we excluded above, namely $\Theta\left(\left[u_{1}, x_{2}\right],\left[y_{2}, u_{0}\right] \mid x_{1}, y_{1}\right)$ if $y_{2} \neq u_{0}$, or $\Theta\left(\left[u_{1}, x_{2}\right], t_{0} u_{0} \mid x_{1}, y_{1}\right)$ if $y_{2}=u_{0}$. A symmetric minor exists if there is a jump from $\left(x_{2}, u_{2}\right)$ to $\left[u_{1}, x_{2}\right)$. Hence edges of G leaving $G\left[x_{2}, x_{1}\right]$ leave at x_{1}, x_{2} or u_{2}. Since $G\left[x_{2}, x_{1}\right]$ is bounded by the cycle $C\left[x_{2}, x_{1}\right] \cup x_{1} x_{2}, G\left[x_{2}, x_{1}\right]$ is 2 -connected by Lemma 2.4. Apply Lemma 2.2 to $G\left[x_{2}, x_{1}\right]$ to find a path $J_{1}=x_{2} x_{1} \ldots t$ where $V\left(J_{1}\right)=\left[x_{2}, x_{1}\right]$ and t is a degree 2 vertex in $G\left[x_{2}, x_{1}\right]$ and hence must be u_{2}. Apply Corollary 2.3 to $G\left[x_{1}, t_{0}\right]$ to find a path $J_{2}=t_{0} \ldots s$ where $V\left(J_{2}\right)=\left(x_{1}, t_{0}\right]$ and either $s=t_{0}$ or s is a degree 2 vertex in $G\left[x_{1}, t_{0}\right]$. In either case $s u_{0} \in E(G)$ and there is a longer cycle $P^{\prime} \cup u_{1} d u_{2} \cup J_{1} \cup C\left[t_{3}, x_{2}\right] \cup Q^{\prime} \cup J_{2} \cup s u_{0}$, as shown in Figure 18

This completes the proof of Claim 5 .

Claim 6. Either $t_{1}=u_{0}^{+}$or $t_{2}=u_{1}^{-}$(at least one of X_{1} and X_{2} is empty).

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Assume $t_{1} \neq u_{0}^{+}$and $t_{2} \neq u_{1}^{-}$. By Claim5, either $t_{0} \neq u_{0}^{-}$or $t_{3} \neq u_{1}^{+}$. Without loss of generality, suppose $t_{0} \neq u_{0}^{-}$. Then there is a $K_{2,5}$ minor $\Theta\left(u_{0} d u_{1}, t_{0} t_{1} \cup\left[t_{1}, t_{2}\right] \mid u_{0}^{-}, u_{0}^{+}, u_{1}^{-}, t_{3}, u_{2}\right)$ as shown in Figure 19 .

Claim 7. At most two pairs of sectors have jumps between them.
Assume that there are three sector jumps $t_{0}-t_{1}, t_{2}-t_{3}$, and $t_{4}-t_{5}$ where possibly $t_{0}=t_{5}, t_{1}=t_{2}$, or $t_{3}=t_{4}$. By Claim 5 X_{0} and X_{3} cannot both be empty and symmetrically, X_{1} and X_{4} cannot both be empty and X_{2} and X_{5} cannot both be empty. Hence $X_{i} \neq \emptyset$ for at least three i. By Claim6 at least one of X_{1} and X_{2} is empty and symmetrically, at least one of X_{3} and X_{4} is empty and at least one of X_{5} and X_{0} is empty. Hence $X_{i} \neq \emptyset$ for exactly three i. Furthermore, the nonempty X_{i} must be rotationally symmetric about C. Without loss of generality, suppose X_{0}, X_{2}, and X_{4} are nonempty and X_{1}, X_{3}, and X_{5} are empty.

If $t_{1}=t_{2}$, then there is a standard longer cycle $L\left(u_{0}^{+}-u_{1}^{+}\right)$. Thus $t_{1} \neq t_{2}$, and symmetrically $t_{3} \neq t_{4}$ and $t_{5} \neq t_{0}$.

Consider a jump $r_{0}-r_{0}^{\prime}$ out of X_{0}. There are three options for $r_{0}^{\prime}: r_{0}^{\prime} \in\left[t_{5}, t_{0}\right), r_{0}^{\prime}=t_{1}$, or $r_{0}^{\prime}=u_{2}$. If $r_{0}^{\prime} \in\left[t_{5}, t_{0}\right)$ then, since $t_{1} \neq t_{2}$, there is a $K_{2,5}$ minor $\Theta\left(d u_{0} t_{1},\left[t_{3}, t_{4}\right] \cup t_{4} t_{5} \cup\left[t_{5}, r_{0}^{\prime}\right] \mid t_{0}, r_{0}, t_{2}, u_{1}, u_{2}\right)$; the case $r_{0}^{\prime}=t_{5}$ is shown in Figure 20. Thus, $r_{0}^{\prime} \in\left\{u_{2}, t_{1}\right\}$, and symmetrically $r_{2}^{\prime} \in\left\{u_{0}, t_{3}\right\}$ for a jump $r_{2}-r_{2}^{\prime}$ out of X_{2}, and $r_{4}^{\prime} \in\left\{u_{1}, t_{5}\right\}$ for a jump $r_{4}-r_{4}^{\prime}$ out of X_{4}.

If at least two of $r_{0}^{\prime}, r_{2}^{\prime}$, and r_{4}^{\prime} belong to $U=\left\{u_{0}, u_{1}, u_{2}\right\}$ then without loss of generality we may assume that $r_{0}^{\prime}=u_{2}$ and $r_{2}^{\prime}=u_{0}$. We have a $K_{2,5}$ minor $M\left(\left[t_{0}, t_{1}\right],\left[u_{1}, t_{4}\right]\right)$ as shown in Figure 21 . If only one of $r_{0}^{\prime}, r_{2}^{\prime}$, and r_{4}^{\prime} belongs to U, then without loss of generality $r_{0}^{\prime}=u_{2}$ and there is a $K_{2,5}$ minor $\Theta\left(u_{2} d u_{1} t_{3},\left[t_{5}, t_{0}\right] \cup t_{0} t_{1} \cup\left[t_{1}, t_{2}\right] \mid r_{0}, u_{0}, r_{2}, t_{4}, r_{4}\right)$ as shown in Figure 22 . Hence we may assume that all jumps out of X_{0} go to t_{1}, out of X_{2} go to t_{3}, and out of X_{4} go to t_{5}.

If there is a $K_{2,2}$ minor $\Theta\left(t_{0}, u_{0} \mid s_{1}, s_{2}\right)$ along $\left[t_{0}, u_{0}\right]$, then there is a $K_{2,5}$ minor $\Theta\left(\left\{d, u_{0}, u_{1}, u_{2}\right\}, t_{2} t_{3} \cup\right.$ $\left.\left[t_{3}, t_{4}\right] \cup t_{4} t_{5} \cup\left[t_{5}, t_{0}\right] \mid s_{1}, s_{2}, t_{1}, r_{2}, r_{4}\right)$ as shown in Figure 23 . Hence there is no $K_{2,2}$ minor along $\left[t_{0}, u_{0}\right]$, or symmetrically, along $\left[t_{2}, u_{1}\right]$ or $\left[t_{4}, u_{2}\right]$. Because all jumps out of X_{4} go to t_{5} we can apply Corollary 2.3 to $G\left[t_{4}, u_{2}\right]$ and find a path $P=t_{4} \ldots t$ where $V(P)=\left[t_{4}, u_{2}\right)$ and t has degree 2 in $G\left[t_{4}, u_{2}\right]$, so $t t_{5} \in E(G)$. If $\left(t_{5}, t_{0}\right)=\emptyset$, then there is a longer cycle $C\left[t_{0}, u_{0}\right] \cup t_{0} t_{1} \cup C\left[t_{1}, t_{4}\right] \cup P \cup t t_{5} u_{2} d u_{0}$ as shown in Figure 24.

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Hence $\left(t_{5}, t_{0}\right) \neq \emptyset$. Let $y-y^{\prime}$ be a jump out of $\left(t_{5}, t_{0}\right)$. Since all jumps out of X_{0} go to $t_{1}, y^{\prime} \notin X_{0}$, so $y^{\prime}=u_{0}$ or u_{2}. Then there is a $K_{2,5}$ minor $\Theta\left(y y^{\prime} \cup u_{0} d u_{2},\left[t_{1}, t_{2}\right] \cup t_{2} t_{3} \cup\left[t_{3}, t_{4}\right] \mid t_{0}, r_{0}, u_{1}, r_{4}, t_{5}\right)$; the case $y^{\prime}=u_{0}$ is shown in Figure 25 . This completes the proof of Claim 7.

Henceforth we assume there are jumps $t_{0}-t_{1}$ and $t_{2}-t_{3}$, but not $t_{4}-t_{5}$. By Claim 6, at least one of X_{1} and X_{2} is empty. Without loss of generality, assume $X_{1}=\emptyset$ and hence $t_{1}=u_{0}^{+}$. We claim that there are $K_{2,2}$ minors M_{1} in $G\left[u_{2}, t_{1}\right]$ and M_{2} in $G\left[u_{0}, u_{2}\right]$, both rooted at u_{2} and $\left[u_{0}, t_{1}\right]$.

Assume that M_{1} does not exist. If $t_{0}=u_{2}^{+}$, then there is a standard longer cycle $L\left(u_{2}^{+}-u_{0}^{+}\right)$. Hence $t_{0} \neq u_{2}^{+}$, and there must be a jump $r-r^{\prime}$ from $\left(u_{2}, t_{0}\right)$ to $\left(t_{0}, u_{0}\right]$. If $r^{\prime} \neq u_{0}$ then we may take M_{1} to be $\Theta\left(\left[u_{2}, r\right],\left(r^{\prime}, t_{1}\right] \mid r^{\prime}, t_{0}\right)$, so all jumps from $\left(u_{2}, t_{0}\right)$ must go to u_{0}. If there is a $K_{2,2}$ minor along $\left[u_{2}, t_{0}\right]$ or along [t_{0}, u_{0}] then we also have M_{1}, so neither of these minors exist. All jumps out of $\left(t_{0}, u_{0}\right)$ must go to t_{1} since jumps to u_{2} are blocked by planarity. By Corollary 2.3 applied to $G\left[u_{2}, t_{0}\right]$, there is a path $P_{1}=t_{0} \ldots t$ such that $V\left(P_{1}\right)=\left(u_{2}, t_{0}\right]$ and t is a degree 2 vertex in $G\left[u_{2}, t_{0}\right]$, or $t=t_{0}$ if $\left(t_{0}, u_{0}\right)=\emptyset$, so that t is adjacent to u_{0}. Similarly by Corollary 2.3 there is a path $P_{2}=t_{0} \ldots s$ such that $V\left(P_{2}\right)=\left[t_{0}, u_{0}\right)$ and s is a degree 2 vertex in $G\left[t_{0}, u_{0}\right]$ or $s=t_{0}$, so that s is adjacent to t_{1}. Then there is a longer cycle $P_{2} \cup s t_{1} \cup C\left[t_{1}, u_{2}\right] \cup u_{2} d u_{0} t \cup P_{1}$ as shown in Figure 26. This is a contradiction, so M_{1} exists.

Figure 26

Figure 27

Figure 28

Figure 29

Assume that M_{2} does not exist. If there is an inside jump out of $\left(t_{2}, u_{1}\right)$ or $\left(u_{1}, t_{3}\right)$, or any jump out of $\left(t_{3}, u_{2}\right)$, then this jump and $t_{2}-t_{3}$ give us M_{2}. So all edges of G leaving $G\left[t_{2}, t_{3}\right]$ leave at t_{2}, t_{3} or u_{1}, and $\left(t_{3}, u_{2}\right)=\emptyset$. Any $K_{2,2}$ minor along $\left[t_{2}, t_{3}\right]$ would also provide M_{2}, so there is no such minor. Therefore, by Lemma 2.2 there is a Hamilton path $P=t_{2} t_{3} \ldots t$ in $G\left[t_{2}, t_{3}\right]$ with t of degree 2 in $G\left[t_{2}, t_{3}\right]$. Then $t=u_{1}$ and we have a longer cycle $C\left[u_{2}, t_{2}\right] \cup P \cup u_{1} d u_{2}$ as shown in Figure 27 . This is a contradiction, so M_{2} exists.

Together M_{1} and M_{2} give a $K_{2,5}$ minor $M\left(\left[u_{0}, t_{1}\right], u_{2}\right)$ as in Figure 28 . This contradiction concludes the proof of Theorem 3.1.

4 Sharpness

A natural next step is to consider the same result for $K_{2,6}$-minor-free graphs. It is not true, however, that all 3-connected planar $K_{2,6}$-minor-free graphs are Hamiltonian. In fact, we can construct an infinite family of non-Hamiltonian 3-connected planar $K_{2,6}$-minor-free graphs. Let G_{k} be the graph shown in Figure 29 , where $k \geq 1$. We begin by analyzing $K_{2,5}$ minors in G_{1}, which is the Herschel graph, mentioned earlier.

Lemma 4.1. Suppose G_{1} has a $K_{2,5}$ minor with standard model $\Sigma\left(R_{1}, R_{2} \mid S\right)$. Then
(a) $R_{1} \cup R_{2} \cup S=V\left(G_{1}\right)$,
(b) each of R_{1} and R_{2} contains exactly one degree 4 vertex of G_{1}, and
(c) G_{1} has no edge between R_{1} and R_{2}.

Proof. For $i=1$ and 2 let $H_{i}=G_{1}\left[R_{i}\right]$, and let $N\left(R_{i}\right)$ be the set of neighbors of R_{i} in G_{1}; then $S \subseteq$ $N\left(R_{i}\right)$. We use the fact that G_{1} is highly symmetric: besides the 2 -fold symmetries generated by reflecting Figure 29 about horizontal and vertical axes, there is a 3 -fold symmetry generated by the automorphism $\left(u_{4}\right)\left(u_{1} u_{6} u_{3}\right)\left(x u_{5} z\right)\left(u_{2} u_{7} v_{1}\right)(y)$. Thus all degree 4 vertices in G_{1} are similar, u_{4} and y are similar, and all other degree 3 vertices are similar.

Assume without loss of generality that $\left|R_{1}\right| \leq\left|R_{2}\right|$. Since all vertices of G_{1} have degree 3 or 4 , we have $\left|R_{1}\right| \geq 2$. Since $\left|R_{1}\right|+\left|R_{2}\right| \leq 6$, we have $\left|R_{1}\right| \leq 3$. Since G_{1} has no triangles, H_{1} is a path $w_{1} w_{2}$ or $w_{1} w_{2} w_{3}$. Define the type of a path $w_{1} w_{2} \ldots w_{k}$ to be the sequence $d_{1} d_{2} \ldots d_{k}$ where $d_{i}=\operatorname{deg}\left(w_{i}\right)$. We break into cases according to the type of H_{1}. The possible types are restricted by the fact that no two degree 4 vertices of G_{1} are adjacent. When $\left|R_{1}\right|=3$ we must also have $\left|R_{2}\right|=3$ so H_{2} is a path $x_{1} x_{2} x_{3}$, and $V\left(G_{1}\right)-R_{1}-S=R_{2}$ so that $V\left(G_{1}\right)-R_{1}-N\left(R_{1}\right) \subseteq R_{2}$.

If H_{1} has type 33 then $\left|N\left(R_{1}\right)\right|<5$. If H_{1} has type 333 then by symmetry we may assume $H_{1}=u_{1} u_{4} u_{6}$, and again $\left|N\left(R_{1}\right)\right|<5$. So neither of these cases happen.

If H_{1} has type 34 (or 43) then up to symmetry $H_{1}=u_{3} x$. Then $S=N\left(R_{1}\right)=\left\{u_{1}, u_{2}, u_{4}, v_{1}, z\right\}$. Now R_{2} contains u_{6} (so that $u_{4} \in N\left(R_{2}\right)$) and y (so that $v_{1} \in N\left(R_{2}\right)$) so H_{2} is the path $u_{6} u_{5} u_{7} y$ of type 3433 .

If H_{1} has type 334 (or 433) then up to symmetry $H_{1}=u_{4} u_{1} x$. Then $S=N\left(R_{1}\right)=\left\{u_{2}, u_{3}, u_{5}, u_{6}, v_{1}\right\}$ and H_{2} is the path $y u_{7} z$ of type 334 .

If H_{1} has type 343 then w_{1} and w_{3} may be either opposite or adjacent neighbors of w_{2}. If they are opposite neighbors, then up to symmetry $H_{1}=u_{3} x u_{2}$. Then $V\left(G_{1}\right)-R_{1}-N\left(R_{1}\right)=\left\{u_{6}, u_{7}\right\} \subseteq R_{2}$ and so either $H_{2}=u_{6} u_{5} u_{7}$ and R_{2} is not adjacent to $v_{1} \in S$, or $H_{2}=u_{6} z u_{7}$ and R_{2} is not adjacent to $u_{1} \in S$. So this does not occur. If w_{1} and w_{3} are adjacent neighbors of w_{2}, then up to symmetry $H_{1}=u_{1} x u_{2}$. Then $S=N\left(R_{1}\right)=\left\{u_{3}, u_{4}, u_{5}, y, v_{1}\right\}$ and H_{2} is the path $u_{6} z u_{7}$ of type 343.

If H_{1} has type 434 then up to symmetry $H_{1}=x u_{1} u_{5}$. Then $V\left(G_{1}\right)-R_{1}-N\left(R_{1}\right)=\{y, z\} \subseteq R_{2}$ and so H_{2} is either $y u_{7} z$ or $y v_{1} z$. But in either case R_{2} is not adjacent to $u_{4} \in S$, so this case does not occur.

Whenever the minor exists (types 34, 334, and 343 with adjacent neighbors) all of (a), (b) and (c) hold.
Proposition 4.2. For all $k \geq 1, G_{k}$ is a 3-connected planar non-Hamiltonian $K_{2,6}$-minor-free graph.
Proof. In the plane embedding of G_{k} shown in Figure 29 every pair of faces intersect at most once (at a vertex or along an edge), so G_{k} is 3 -connected. Let $S=\left\{x, y, z, u_{4}, u_{5}\right\}$. Then $|S|=5$ but $G_{k}-S$ has six components, so G_{k} cannot be Hamiltonian (G_{k} is not 1-tough).

We prove that G_{k} is $K_{2,6}$-minor-free by induction on k. For G_{1} this follows from Lemma 4.1(a). So suppose that $k \geq 2$, all G_{j} for $j \leq k-1$ are $K_{2,6}$-minor-free, and G_{k} has a $K_{2,6}$ minor with standard model $\Sigma\left(R_{1}, R_{2} \mid S\right)$.

Let $F=v_{1} v_{2} \ldots v_{k}$. Let $R_{j}^{\prime}=R_{j}-V(F)$ for $j=1$ and $2, S^{\prime}=S-V(F), S^{\prime \prime}=S \cap V(F)$ and $T=V\left(G_{k}\right)-R_{1}-R_{2}-S$. We cannot have $R_{j} \subseteq V(F)$ because any subset of $V(F)$ that induces a connected subgraph in G_{k} has only three neighbors in G_{k}. Therefore, each R_{j}^{\prime} is nonempty. If $v_{i} \in R_{j} \cup S$ for some $v_{i} \in V(F)$, then there is a path $P_{j}\left(v_{i}\right)$ from v_{i} to a vertex of R_{j}^{\prime}, all of whose internal vertices belong to $R_{j} \cap V(F)$. The other end of $P_{j}\left(v_{i}\right)$ is one of x, y or z.

We claim that $(*) V(F) \subseteq R_{1} \cup R_{2} \cup S$ and no two consecutive vertices of F belong to the same R_{j}. If not, there is $e \in E(F)$ with one end in T, or both ends in the same R_{j}. Contracting e preserves the existence of a $K_{2,6}$ minor and gives a graph isomorphic to G_{k-1}, contradicting our inductive hypothesis.

Suppose $y \in S \cup T$. If some $v_{a} \in S$ then $P_{j}\left(v_{a}\right)=v_{a} v_{a-1} \ldots v_{1} x$ and $P_{3-j}\left(v_{a}\right)=v_{a} v_{a+1} \ldots z$ for $j=1$ or 2 . Thus $\Sigma\left(R_{1}^{\prime}, R_{2}^{\prime} \mid S^{\prime} \cup\left\{v_{1}\right\}\right)$ is a $K_{2,6}$ minor in G_{1}, a contradiction. Otherwise, by $(*), v_{1} \in R_{j}$ and $v_{2} \in R_{3-j}$ for some j. We must have $P_{j}\left(v_{1}\right)=v_{1} x$ and $P_{3-j}\left(v_{2}\right)=v_{2} v_{3} \ldots v_{k} z$. Then $\Sigma\left(R_{1}^{\prime}, R_{2}^{\prime} \mid S-\{y\} \cup\left\{v_{1}\right\}\right)$ is a $K_{2,6}$ or $K_{2,7}$ minor in G_{1}, again a contradiction.

So we may assume without loss of generality that $y \in R_{2}$. If $\left|S^{\prime \prime}\right| \geq 2$ we can choose $v_{a}, v_{b} \in S^{\prime \prime}$ with $a<b$ so that there is no $v_{i} \in S^{\prime \prime}$ with $a<i<b$. Then $P_{1}\left(v_{a}\right)=v_{a} v_{a-1} \ldots v_{1} x$ and $P_{1}\left(v_{b}\right)=v_{b} v_{b+1} \ldots v_{k} z$, so $S^{\prime \prime}=\left\{v_{a}, v_{b}\right\}$ and $x, z \in R_{1}^{\prime}$. Then $\Sigma\left(R_{1}^{\prime}, R_{2}^{\prime} \mid S^{\prime} \cup\left\{v_{1}\right\}\right)$ is a $K_{2,5}$ minor in G_{1} that contradicts Lemma 4.1(b). If $\left|S^{\prime \prime}\right| \leq 1$ then there is either $v_{a} \in S$, or since $k \geq 2$ by $(*)$ there is $v_{a} \in R_{1}$. Without loss of generality $P_{1}\left(v_{a}\right)=v_{a} v_{a-1} \ldots v_{1} x$. Now $\Sigma\left(R_{1}^{\prime}, R_{2}^{\prime} \cup\left\{v_{1}\right\} \mid S^{\prime}\right)$ is a $K_{2,5}$ or $K_{2,6}$ minor in G_{1} with $x \in R_{1}^{\prime}$ and $v_{1} \in R_{2}^{\prime} \cup\left\{v_{1}\right\}$, contradicting Lemma 4.1. c$)$.

Based on computer results of Gordon Royle (personal communication), we suspect that it may be possible to characterize all exceptions to the statement that all 3 -connected planar $K_{2,6}$-minor-free graphs are Hamiltonian. All known exceptions are closely related to the family shown in Figure 29 .

Acknowledgements

The first author thanks Zachary Gaslowitz and Kelly O'Connell for helpful discussions.

References

[1] David Barnette and Ernest Jucovič, Hamiltonian circuits on 3-polytopes. J. Combin. Theory 9 (1970) 54-59.
[2] Guantao Chen, Yoshimi Egawa, Ken-ichi Kawarabayashi, Bojan Mohar and Katsuhiro Ota, Toughness of $K_{a, t}$-minor-free graphs, Electron. J. Combin. 18 no. 1 (2011) \#P148 (6 pages).
[3] Guantao Chen, Laura Sheppardson, Xingxing Yu and Wenan Zang, The circumference of a graph with no $K_{3, t}$-minor, J. Combin. Theory Ser. B 96 (2006) 822-845.
[4] Norishige Chiba and Takao Nishizeki, A theorem on paths in planar graphs, J. Graph Theory 10 (1986) 267-286.
[5] Maria Chudnovsky, Bruce Reed and Paul Seymour, The edge-density for $K_{2, t}$ minors, J. Combin. Theory Ser. B 101 (2011) 18-46.
[6] H. S. M. Coxeter, Regular Polytopes, Methuen, London, 1948, and Pitman, New York, 1949.
[7] Lino Demasi, Rooted minors and delta-wye transformations. Ph.D. thesis, Simon Fraser University, October 2012. http://summit.sfu.ca/system/files/iritems1/12552/etd7556_LDemasi.pdf
[8] M. B. Dillencourt, Hamiltonian cycles in planar triangulations with no separating triangles, J. Graph Theory 14 (1990) 31-49.
[9] Michael B. Dillencourt, Polyhedra of small order and their Hamiltonian properties, J. Combin. Theory Ser. B 66 (1996) 87-122.
[10] Guoli Ding, Graphs without large $K_{2, n}$-minors, preprint. https://www.math.lsu.edu/~ding/k2n.ps (downloaded 8 May 2014)
[11] M. N. Ellingham, Emily A. Marshall, Kenta Ozeki and Shoichi Tsuchiya, A characterization of $K_{2,4^{-}}$ minor-free graphs, SIAM J. Discrete Math. 30 (2016) 955-975.
[12] A. Goldner and F. Harary, Note on a smallest nonhamiltonian maximal planar graph, Bull. Malaysian Math. Soc. 6.1 (1975) 41-42; 6.2 (1975) 33; 8 (1977) 104-106.
[13] R. Halin, Zur Theorie der n-fach zusammenhängenden Graphen, Abh. Math. Sem. Univ. Hamburg 33 (1969) 133-164.
[14] Jochen Harant and Stefan Senitsch, A generalization of Tutte's theorem on Hamiltonian cycles in planar graphs, Discrete Math. 309 (2009) 4949-4951.
[15] Bill Jackson and Xingxing Yu, Hamilton cycles in plane triangulations, J. Graph Theory 41 (2002) 138-150.
[16] Joseph Samuel Myers, The extremal function for unbalanced bipartite minors, Discrete Math. 271 (2003) 209-222.
[17] Katsuhiro Ota and Kenta Ozeki, Spanning trees in 3-connected $K_{3, t}$-minor-free graphs, J. Combin. Theory Ser. B 102 (2012) 1179-1188.
[18] Kenta Ozeki and Petr Vrána, 2-edge-Hamiltonian-connectedness of 4-connected plane graphs, European J. Combin. 35 (2014) 432-448.
[19] Daniel Sanders, On Hamilton cycles in certain planar graphs, J. Graph Theory 21 (1996) 43-50.
[20] Daniel P. Sanders, On paths in planar graphs, J. Graph Theory 24 (1997) 341-345.
[21] Robin Thomas and Xingxing Yu, 4-connected projective-planar graphs are Hamiltonian, J. Combin. Theory Ser. B 62 (1994) 114-132.
[22] Carsten Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983) 169-176.
[23] W. T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116.
[24] H. Whitney, A theorem on graphs, Ann. Math. 32 (1931) 378-390.

[^0]: *Supported by National Security Agency grant H98230-13-1-0233 and Simons Foundation awards 245715 and 429625. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation herein.
 ${ }^{\dagger}$ Supported by National Security Agency grant H98230-13-1-0233 and Simons Foundation award 245715.
 \ddagger Supported in part by JSPS KAKENHI Grant Number 25871053 and by a Grant for Basic Science Research Projects from The Sumitomo Foundation.

