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Hamiltonicity of planar graphs with a forbidden minor
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Abstract

Tutte showed that 4-connected planar graphs are Hamiltonian, but it is well known that 3-connected
planar graphs need not be Hamiltonian. We show that K s-minor-free 3-connected planar graphs are
Hamiltonian. This does not extend to K3 s-minor-free 3-connected graphs in general, as shown by the
Petersen graph, and does not extend to K3 ¢-minor-free 3-connected planar graphs, as we show by an

infinite family of examples.

1 Introduction

All graphs in this paper are finite and simple (no loops or multiple edges).
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Whitney [24] showed that every 4-connected plane triangulation is Hamiltonian, and Tutte [23] extended
this to every 4-connected planar graph. Tutte’s result has been strengthened in various ways; see for example
[4, 14, 18, 20, 211 22).

If we relax the connectivity condition, it is not true that all 2- or 3-connected planar graphs are Hamil-
tonian. The smallest 2-connected planar graph that is not Hamiltonian is K3 3. The smallest 3-connected
planar graph that is not Hamiltonian is the so-called Herschel graph, with 11 vertices and 18 edges. It was
known to Coxeter in 1948 [6] p. 8], but a proof that it is smallest relies on later work by Barnette and Jucovié
[1] and Dillencourt [9]. If we restrict to triangulations, the smallest 2- or 3-connected planar triangulation
that is not Hamiltonian is a triangulation obtained by adding 9 edges to the Herschel graph. It was known
to C. N. Reynolds (in dual form) in 1931, as reported by Whitney [24, Fig. 9]. Again, the proof that this is
smallest relies on [I] and [9]. This triangulation was also presented much later by Goldner and Harary [12],
S0 it is sometimes called the Goldner-Harary graph.

It is therefore reasonable to ask what conditions can be imposed on a 2- or 3-connected planar graph to
make it Hamiltonian. The main direction in which positive results have been obtained is to restrict the types
of 2- or 3-cuts in the graph. Dillencourt [8, Theorem 4.1] showed that a near-triangulation (a 2-connected
plane graph with all faces bounded by triangles except perhaps the outer face) with no separating triangles
and certain restrictions on chords of the outer cycle is Hamiltonian. Sanders [19], Theorem 2] extended this to
a larger class of graphs. Jackson and Yu [I5] Theorem 4.2] showed that a plane triangulation is Hamiltonian
if each ‘piece’ defined by decomposing along separating triangles connects to at most three other pieces. Our
results explore a different kind of condition, based on excluding a complete bipartite minor.

Excluded complete bipartite minors have been used previously in more general settings to prove results
involving concepts related to the existence of a Hamilton cycle, such as toughness, circumference, or the
existence of spanning trees of bounded degree; see for example [2], 8] [I7]. We are interested in graphs that
have no K3, minor, for some ¢. Some general results are known for such graphs, including a rough structure
theorem [10], upper bounds on the number of edges [5] [16], and a lower bound on circumference [3].

For 2-connected graphs, a K3 3-minor-free graph is either outerplanar or K4, and is therefore both planar
and Hamiltonian. However, the authors [I1] recently characterized all K 4-minor-free graphs, and there
are many K5 4-minor-free 2-connected planar graphs that are not Hamiltonian. For 3-connected graphs, the
K 4-minor-free ones belong to a small number of small graphs, some of which are nonplanar, or a sparse
infinite family of planar graphs; all are Hamiltonian. There are K 5-minor-free 3-connected nonplanar graphs
that are not Hamiltonian, such as the Petersen graph, but in this paper we show that all K3 s-minor-free
3-connected planar graphs are Hamiltonian. We also show that this cannot be extended to K3 g-minor-
free graphs, by constructing an infinite family of K3 g-minor-free 3-connected planar graphs that are not
Hamiltonian.

The number g(n) of nonisomorphic K s-minor-free 3-connected planar graphs on n vertices grows at least
exponentially (for n > 10 with n even this is not hard to show using the family of graphs obtained by adding
an optional diagonal chord across each quadrilateral face of a prism C,, 20K>). Some computed values of

g(n) are as follows.

n |7 8 9 10 11 12
g(n) | 31 194 918 3278 8346 18154

The exponential growth of g(n) contrasts with the growth of the number of nonisomorphic 3-connected Kz 4-
minor-free graphs (planar or nonplanar), which is only linear [I1]. Thus, our results apply to a sizable class
of graphs.

In Section 2 we provide necessary definitions and preliminary results. The main result, Theorem that
K5 s-minor-free 3-connected planar graphs are Hamiltonian, is proved in Section 3. In Section 4 we discuss

K g-minor-free 3-connected planar graphs.



2 Definitions and Preliminary Results

An edge, vertex, or set of k vertices whose deletion increases the number of components of a graph is a
cutedge, cutvertez, or k-cut, respectively. The subgraph of G induced by S C V(G) is denoted by G[S]. If P
is a path and x,y € V(P) then P[z,y] represents the subpath of P between z and y.

2.1 Minors and models

A graph H is a minor of a graph G if H is isomorphic to a graph formed from G by contracting and deleting
edges of G and deleting vertices of G. A graph is H-minor-free if it does not have H as a minor. Another
way to think of a minor H is in terms of a function 8 mapping each u € V(H) to f(u) C V(G), the branch
set of u, such that (a) S(u) N B(w) =0 if u # u'; (b) G[B(u)] is connected for each u; and (c) if uvu’ € E(H)
then there is at least one edge between S(u) and S(v') in G. We call 8 a model, or more specifically an
edge-based model, of H in G. More generally, we may replace condition (c) by the existence of a function 7
mapping each e = uu’ € E(H) to a path w(uv') in G, such that (c1) m(uu') starts in B(u) and ends in S(u');
(c2) no internal vertex of w(uu’) belongs to any S(u”) (even if v” = w or u'); and (c3) w(e) and 7(e') are
internally disjoint if e # ¢’. We call (8, 7) a path-based model of H in G.

Now we discuss Kz ¢ minors in particular. We assume that V(K3 :) = {a1, az,b1,b2,...,b:} and E(K2 ;) =
{a;ibj |1 <i1<2,1 <5<t}

Edge-based models are convenient for proving nonexistence of a minor. In fact, for K5 ; minors we can
use an even more restrictive model. Consider an edge-based model 3y of K> ;, where b; and its incident edges
correspond to a path vivy...vg, k > 3, with v1 € Bo(ar), vp € Polaz), and v; € Bo(by) for 2 < i < k — 1.
Define 51(b1) = {v2}, B1(az) = Bo(az) U{vs, ..., vk_1}, and By (u) = Bo(u) for all other u. Then f is also an
edge-based model of a K3, minor, and |51 (b1)| = 1. Applying the same procedure to by, bs, ..., b, in turn, we
obtain an edge-based model 8 = 8, with |5(b;)| =1 for 1 < j < t. Such a 3 is a standard model of Ko, and
we denote it by either X(R1, Ra | s1,82,...,8¢) or X(Rq, Rz |S) where R; = B(a;) for 1 <i <2, {s;} = 5(b;)
for 1 <j <t and S ={s1,5s2,...,5}. Thus, if G has a K5 minor then it has a standard model of Ko ;.

On the other hand, path-based models are useful for proving existence of a minor. Moreover, in many
situations where we find a K5 ; minor it would be tedious to give an exact description of the minor. So, we
say that ©(R1, R | S1,S2,...,5;) is an approzimate (path-based) model of Ko if there exists a path-based
model (8, m) such that R; C f(a;) for 1 < ¢ < 2 and S; C B(b;) for 1 < j < ¢. For convenience, we
also allow each R; to be a subgraph, not just a set of vertices, with V(R;) C (a;), and similarly for each
S;. Informally, we will specify enough of each branch set to make the existence of the minor clear; using
subgraphs rather than vertex sets sometimes helps to clarify why a branch set induces a connected subgraph.
We use this notation even when we actually have an exact description of a minor. For brevity, we just say
that ‘©O(Ry, R2 | S1,52,...,5¢) is a Ky minor’. In our figures the sets or subgraphs R; are enclosed by dotted
curves, and the sets or subgraphs S; (usually just single vertices) are indicated by triangles.

We also need one type of rooted minor. We say there is a K5; minor rooted at Ry and R if there is a
path-based model (8, 7) (or, equivalently, edge-based model 8, or even standard model 8) with Ry C B(aq)
and Ry C (az). Again we extend this to allow Ry and Ry to be subgraphs, not just sets of vertices.

2.2 Path-outerplanar graphs

A graph is outerplanar if it has a plane embedding in which all vertices are on the outer face. We use a
characterization that we proved elsewhere of graphs without rooted K32 minors in terms of special outer-
planar graphs. (Along different lines, Demasi [7, Lemma 2.2.2] provided a description of graphs with no
K32 minor rooting all four vertices, in terms of disjoint paths.) Our characterization uses the following

definitions. Given x,y € V(G), an zy-outerplane embedding of a graph G is an embedding in a closed disk



D such that a Hamilton zy-path P of G is contained in the boundary of D; P is called the outer path. A
graph is xy-outerplanar, or path-outerplanar, if it has an xy-outerplane embedding. A graph G is a block if

it is connected and has no cutvertex; a block is either 2-connected, K5, or K.

Lemma 2.1 ([I1]). Suppose x,y € V(G) where x # y and G' = G+xy is a block (which holds, in particular,
if G has a Hamilton zy-path). Then G has no Ks 5 minor rooted at x and y if and only if G is xy-outerplanar.

The following results on Hamilton paths in outerplanar and xy-outerplanar graphs will be useful.

Lemma 2.2. Let G be a 2-connected outerplanar graph. Let x € V(G) and let xy be an edge on the outer
cycle Z of G. Then for some vertex t with degq(t) = 2, there exists a Hamilton path xy ...t in G.

Proof. Fix a forward direction on Z so that y follows x. Denote by vy Zvs the forward path from vy to vs on
Z. Proceed by induction on |V(G)|. In the base case, G = K3 and the result is clear. Assume the lemma
holds for all graphs with at most n — 1 vertices and |V(G)| = n > 4. Let w # y be the other neighbor of
x on Z. If dege(w) = 2, then we take ¢ = w and xZw is a desired Hamilton path in G. Otherwise let v
be a neighbor of w such that vw ¢ E(Z) (possibly v = y). Let G’ be the subgraph of G induced by vZw;
G’ is a 2-connected vw-outerplanar graph with |V(G’)] < n — 1. By the inductive hypothesis, there exists a
Hamilton path @ = vw...t in G’ where degq, (t) = deg(t) = 2. Then xZvUQ is the desired path in G. O

Corollary 2.3. Let G be an xy-outerplanar graph with x # y. Then there exists a Hamilton path x ...t in
G — vy, where t =z if |[V(GQ)| = 2, and t is some vertex with degq(t) = 2 otherwise.

Proof. It |[V(G)| = 2 this is clear, so suppose that |V (G)| > 3. Then G + zy is a 2-connected outerplanar
graph, so by Lemma [2.2] it has a Hamilton path yz ...t ending at a vertex ¢ of degree 2. Now P — y is the
required path. O

2.3 Connectivity and reducibility
The following observation will be useful.

Lemma 2.4. Suppose G is a 2-connected plane graph and C is a cycle in G. Then the subgraph of G

consisting of C' and all edges and vertices inside C' is 2-connected.
Proof. Any cutvertex in the subgraph would also be a cutvertex of G. O

The following results will allow us to simplify the situations that we have to deal with in the proof of
Theorem [B.11

Theorem 2.5 (Halin, [I3], Theorem 7.2]). Let G be a 3-connected graph with |V (G)| > 5. Then for every
v € V(G) with deg(v) = 3, there is an edge e incident with v such that G/e is 3-connected.

A k-separation in a graph G is a pair (H, K) of edge-disjoint subgraphs of G with G = HUK, |[V(H)N
V(K) =k, V(H)—V(K)#0, and V(K) — V(H) # 0.

Lemma 2.6. Let G be a 3-connected graph and suppose (H, K) is a 3-separation in G with V(H)NV(G) =
{z,y,z}. Suppose K' = K — V(H) is connected and H is 2-connected. Let G’ be the graph formed from G
by contracting K' to a single vertexr. Then G’ is 3-connected.

Proof. Let v be the vertex in G’ formed from contracting K’. Since G is 3-connected, zv, yv, zv € E(G’). We
claim that every pair of vertices in G’ has three vertex-disjoint paths between them. By Menger’s Theorem,
it will follow that G’ is 3-connected. We consider five different types of pairs of vertices.

First, suppose wy,ws € V(H) — {x,y, z}; there are three internally disjoint paths from w; to we in G:
Py, Py, and Ps. T V(P)NV(K') = for i = 1,2,3, then Py, P>, and P; are the desired paths in G’.



If V(P)NV(K') # 0 for some i, then |V(P;) N{xz,y,z}| > 2 since {z,y, 2} separates K’ from H. Thus
V(P) NV (K') # 0 for at most one i. Suppose V(P1) NV (K') # 0. Then all vertices of V(P;) NV (K') are
in a single subpath of P; which we replace by v to form a new path Pj. The paths Pj, P5, and P3 are the
desired paths in G’.

Second, consider wy € V(H) — {z,y, 2} and wy € {z,y, 2}, say wy = z. If there are not three internally
disjoint paths between wy and z in G’, then wy and x are separated either by a 2-cut {u1,u2} (if wiz ¢ E(G))
or by wiz and some vertex uy (if wyz € E(G)). Since wy and z are not separated by a 2-cut or by an edge
and a vertex in G, we may assume that u; = v. But then us is a cutvertex in H or wyx is a cutedge in H,
which is a contradiction since H is 2-connected. Hence there are three internally disjoint paths between wy
and x.

Third, consider wq,ws € {z,y,2}, say w1 = z and wes = y. Because H is 2-connected, there are two
internally disjoint paths P; and P> from x to y in H. Take P3; = zvy. Then P;, P>, and Pj3 are the desired
paths in G’.

Fourth, consider w; € V(H) — {z,y, 2} and v. For any we € V(K'), there are three internally disjoint
paths Py, P, and Ps from wy to wy in G. Without loss of generality, say x € V(Py), y € V(FP,), and
z € V(Ps). Form P| from P, by replacing P;[ws, ] with vz, form Pj from P, by replacing Ps|ws, y] with vy,
and form Pj from P3 by replacing Ps[wa, z] with vz. The paths P;, Pj, and Pj are the desired paths in G.

Finally, consider wy € {z,y, z}, say wq = x, and v. By a consequence of Menger’s Theorem, since H is
2-connected there are two internally disjoint paths from {y,z} to z in H,say P, =y...z and P, = z...x.
Then P} = vyU Py, Pj =vzU Py, and P3 = vx are the desired paths in G'. O

Lemma is false without the hypothesis that H is 2-connected: then we could have V(H) = {w, z,y, 2z}
and E(H) = {wz,wy,wz}, in which case G’ would be isomorphic to K3 3, which is not 3-connected.

Now we use the results above to set up a framework that will help to simplify the graph in our main
proof. Suppose G is a 3-connected graph, and C' is a cycle in G. We say that G is C'-reducible to a graph
G’ provided (a) G’ is obtained from G by contracting edges of G with at most one end on C' and/or deleting
edges in E(G) — E(C), (b) G’ is 3-connected, and (c) for every cycle Z’' in G’ there is a cycle Z in G with
[V(Z)| > |[V(Z')|. By (a), C is still a cycle in G’. From this, we see that C-reducibility is transitive. Also by

(a), G’ is a minor of G.

Lemma 2.7. Suppose C' is a cycle in a 3-connected graph G. If B is a component of G —V (C) with exactly
three neighbors on C' then G is C-reducible to G/E(B), in which B becomes a degree 3 vertex.

Proof. Let Gy = G — V(B). If Gy is not 2-connected, then there is a cutvertex u. Now u ¢ V(C) and V(C)
must be entirely in one component of Gy — u. Since the neighbors of B are all on C, vertices of B are only
adjacent to vertices on one side of the cut. Hence u is also a cutvertex in G, which is a contradiction. Thus,
G is 2-connected. Consider G’ = G/E(B). Clearly (a) holds, and (b) follows from Lemma [2.6]

Let a1, as, a3 be the neighbors of B on C, and let b be the vertex of G’ corresponding to B. Let Z’ be a
cyclein G'. If b ¢ V(Z'), then Z = Z' is also a cycle in G. If b € V(Z) then Z’ uses a path a;ba;. Form a
cycle Z in G from Z’ by replacing a;ba; by a path from a; to a; through B. Clearly |V (Z)| > |V(Z’)], so (c)
holds. O

Lemma 2.8. Suppose C is a cycle in a 3-connected graph G. If b € V(G) — V(C') has degree 3 then there
is an edge be so that G is C-reducible to G /be.

Proof. By Theorem there is an edge be such that G’ = G/bc is 3-connected. Clearly (a) and (b) hold
for G’; we must show (c). Let a1, a2 and ¢ be the neighbors of b in G. Call the vertex that results from the
contraction z. Suppose Z' is a cycle in G'. If a1z, a0z ¢ E(Z'), then take Z = Z'. If |{a12, a2z} NE(Z')| = 1,
say a1z € E(Z'), form Z from Z' by replacing a;z with the path a1be. If a1z,a2z € E(Z’), form Z from



Z' by replacing the subpath aqzas with aibas. In all cases, Z is a cycle in G with |V(Z)| > |V (Z")], so (¢)
holds. O

Lemma 2.9. Suppose C is a cycle in a 3-connected graph G. Suppose that a1as € E(G) — E(C), and there
are three internally disjoint aias-paths in G — ayas. Then G is C-reducible to G — ajas.

In particular, G is C-reducible to G — ajas if a1 and ag are neighbors on C' of a component of G — V(C)
and a1as € E(G) — E(C).

Proof. Clearly (a) and (c¢) hold for G’ = G — ajas; we must show (b). Since G is 3-connected, G’ is 2-
connected, and if G’ has a 2-cut then a; and as must be in different components, which cannot happen
because of the three internally disjoint ajas-paths.

If a; and ay are neighbors of a component B of G—V (C') then there are three internally disjoint a;as-paths

in G — ajasz, namely the two paths between a; and as in C, and a path from a; to as through B. O

3 Main Result

We are now ready to prove the main result.
Theorem 3.1. Let G be a 3-connected planar Ky 5-minor-free graph. Then G is Hamiltonian.

Theorem is proved by assuming G is not Hamiltonian, taking a longest cycle C' in G and finding a
contradiction with either a longer cycle or a K35 minor.

Proof. Assume that G is not Hamiltonian and assume G is represented as a plane graph. Let H and J be two
subgraphs of G. Let Ry be the outside face of J (an open set), R; the boundary of Ry, and Ry = R2—Ry—R;.
We say H is outside J if as subsets of the plane we have H C Ry U Ry, and inside J if H C Ry U R».

Let C be a longest non-Hamilton cycle in G. A longer cycle means a cycle longer than C. Fix a forward
direction on C, which we assume is clockwise. Denote by x* the vertex directly after the vertex z on C
and by = the vertex directly before x. Define Clz,y] to be the forward subpath of C' from x to y which
includes z and y. If = y then C[z,y] = {z}. Define C(z,y) = C[z,y] — {z,y}, C(z,y] = Clz,y] — x, and
Clz,y) = Clz,y] — y. Define [z,y] to be V(C|x,y]) and Gz, y] to be the induced subgraph G|[z,y]]; also
define (z,y), G(z,y), etc. similarly. We say a vertex z is between x and y if z € (x,y).

Let D be a component of G — V(C) with the most neighbors on C. We fix D in our arguments, and
assume that D is inside C'. Let ug,uq,...,ur—1 be the neighbors of D along C in forward order. Because G
is 3-connected, k& > 3. For any distinct u; and u; there is at least one path from u; to u; through D; we use
u;Du; to denote such a path. The sets U; = (u;,u;j41) (subscripts interpreted modulo k) are called sectors.
If U; = 0 for some i, then there is a longer cycle: replace Clu;, wit1] with w;Du;yq. Thus, U; # 0 for all 4.

A jump x —y is an xy-path where z # y, x,y € V(C), and no edge or internal vertex of the path belongs
to C or D. If S,T C V(C) then a jump from S to T or S — T jump is a jump x —y with x € S, y € T}
if S =T we say this is a jump on S. If S is a set of consecutive vertices on C then a jump out of S is a
jump x —y where x € S, y ¢ S, and y is not adjacent in C to a vertex of S. Whenever v,w € V(C) are
not equal and not consecutive on C and (v, w) contains no neighbor of D there is at least one jump out of
(v,w) = [v*,w™], because {v,w} is not a 2-cut.

A jump out of a sector U; is a sector jump; since every U, is nonempty, there is a sector jump out of every
sector. A jump is an inside or outside jump if it is respectively inside or outside C. An inside jump must
have both ends in [u;, u;41] for some . Thus, all sector jumps are outside jumps.

If there is a jump u}” — u;', then C[u}", ug) U Duy U Cluf, u] U — uj' is a longer cycle. Denote such
a longer cycle as L(uZ+ - u;r) If there is a jump u; — u; , then there is a symmetric longer cycle denoted

L(u; — u;) Call such cycles standard longer cycles. Figure |1{ shows L(uj ,u; ) when k = 4.



Figure 1 Figure 2

Ifz,yeV(C),z#y, W CG-V(C)—-V(D), and G| [z,y] UW ] contains a K o minor rooted at = and
y, then we say there is a Ko 2 minor along [z,y]. If there is no such minor then for any [2/,y’] C [z, y] with
x’ # 3y there is no Ko » minor rooted at 2’ and ¢’ in G[z’,y']. Thus, G[z',y’] is #’y’-outerplanar by Lemma
and we may apply Corollary to G[z',y'].

Suppose a,b,c,d with ¢ # b, a # d appear in that order along C. Let W1, Wy C G — V(C) — V(D)
with Wy N Wy = (. If there is a Ka 2 minor in G[[a,d] U W7 ] rooted at [a,b] and [c,d], represented as
Y(Ry1,R2|s1,82), and a Ky » minor in G[[¢, b)]UW3 | rooted at [a, b] and [c, d], represented as X(R], RS | 81, s5),
and there exist u; € [a,b] and u; € [c,d], then there is a K35 minor ©(Ry U R, Ry U RS | 51, 52,87, 55, D) in
G. Denote such a minor by M([a,b],[c,d]). An example is shown in Figure

For z € V(C), define o(z) € {0,1,1,1%,...,k — £} by o(w;) = i, and o(z) =i+ % if 2 € U;. Define the
length of a jump z — y as min{|o(z) — o(y)|, k — |o(x) — o(y)|}. A sector jump has length at least 1.

Claim 1. For every jump x© — y of length greater than 1, there is a sector jump xr1 — y1 of length 1 with
x1,Y1 € [x,y] and another sector jump xo — yo of length 1 with x2,y2 € [y, z].

For any jump u — v, define the linear length as |o(u) — o (v)|. We claim that for any jump (not necessarily
a sector jump) o’ —y’ of linear length ¢ > 1 with o(a’) < o(y’), there is a sector jump =’/ — " of linear length
less than ¢ with ”,y" € [2/,y']. The jump 2’ —y" must be outside C, and there is a sector U; C (2, y’). Let
z" —y" be any jump out of U;; then o(2’) < o(2”) < o(y’). If 27 — y” does not contain an interior vertex
of 2/ — 9/, then by planarity z/ — ¢ has linear length less than ¢'. If " — 4" contains an interior vertex of
2’ — 1/, then we have jumps 2/ — 2’ and z” — 3’ with linear length less than ¢, at least one of which is a
sector jump. We may repeat this process until we reach a sector jump z* — y* with «*, y* € [2/,y'] of linear
length 1, and hence also length 1.

If we relabel ug,uq,...,ux—1 keeping the same cyclic order so that x € {ug} U Uy and repeatedly apply
the previous paragraph beginning with the jump z — y, we obtain the required jump z; — y;. Similarly,
relabeling so that y € {ug} U Uy yields the jump xo — yo. This completes the proof of Claim

Claim 2. k£ = 3.

Assume that k > 4. Suppose there is a component D’ of G — V(C) with neighbors in three consecutive
sectors, say z1 € Uy, 29 € Uy, and z3 € Uy (D’ may also have neighbors in other sectors). Then since k > 4,
z1 — z3 is a jump of length greater than 1. Therefore by Claim [I] there is a sector jump x — y of length 1
with u; € [z,y] C [23,21]. At most one of x € Us, y € Uy is true; we may assume that y ¢ Uy. Then there
is a Ko 5 minor ©(D U {u1}, D' U [z3,2] Uz — y | uo, 21, 22, U2, u;) as shown in Figure |3 This minor applies
even if x — y intersects D’.

Now suppose there is a component D’ of G—V (C') with neighbors in three sectors that are not consecutive
(this requires k > 5; again D’ may also have neighbors in other sectors). We may assume that these are
z1 € Up, 22 € U;, 23 € U; in order along C, where Up,U; may be consecutive but U;,U; and Uj, Uy



Figure 3 Figure 4

are not. Then there is a Ky s-minor ©(D U {uj1}, D' U {21, 23} | un, us, 22,45, uj41). An example with
(h,i,7) = (k —1,0,2) is shown in Figure

Hence, every component of G — V(C') other than D has neighbors in at most two sectors. Therefore, a
sector jump of length 1, from U,_; to U;, cannot intersect any sector jump with an end in Uj, j ¢ {i — 1,4},
which includes all sector jumps of length at least 2.

From Claim [1]it follows that there are at least two distinct pairs of sectors with jumps of length 1 between
them. Suppose there are three distinct pairs of sectors with jumps of length 1 between them, say x1—y1, xo—y2
and x3 —ys in order along C, where ug € (x1,41), up, € (T2,y2) and u; € (x3,ys). Since k > 4, we may assume
there is some u; € (y3,x1). Then there is a Ky 5 minor ©(DU{u,}, [y1, z2]Uze —y2U[y2, T3] | 1, Ug, U, Ui, Y3)-
An example with (g, h,i) = (0, 1,2) is shown in Figure

Therefore, we may assume that there are exactly two distinct pairs of sectors with jumps of length 1
between them, say 1 —y; and ys —x2 in order along C, where uy € (z1,y1) and up, € (y2,22). Suppose some
sector has no jump of length 1 out of it. Without loss of generality we may assume this sector is Uy C (z2, 21).
There is some sector jump x — y out of Uy. Then y € [y1, 2], otherwise Claim |1| would give a jump of length
1 between a third pair of sectors. Therefore there is a Ky 5 minor ©(D U {ug, u1}, [y1,y2] |, z1, ug, un, x2) as
shown in Figure [f]

Therefore, every sector has a jump of length 1 out of it, which means that k£ = 4, and we may assume
that there are jumps Us — Uy and U; — Us, but no jumps Uy — Uy or Uy — Us. Let z3 — zp be the sector jump
Us — Uy such that z3 is closest to ug and zq is closest to wq. Similarly, let z; — zo be the sector jump U; — Us
such that z; is closest to u; and 2 is closest to u3. Each Uj is divided into two parts by z;: let Ag = (ug, 20),
By = (z0,u1), B1 = (u1,21), 41 = (21, u2), Az = (u2,22), B2 = (22,u3), B3 = (us, z3) and Az = (23, up).

We may assume that z3 — zg and z; — zo are embedded in the plane so that D is outside both cycles
Zoy = Clz3,20] U 23 — 29 and Zy = Cz1, 22] U 21 — 29. Let Hy be the subgraph of G consisting of Z; and all
vertices and edges inside Zy, and define Hs similarly; these are 2-connected by Lemma

For any j, define N; to be the set of vertices of V(G) —V(C) — V(D) inside a cycle Clu;, uj41]Uujp1 Du,
(the exact path through D does not matter). Loosely, these are the vertices inside C associated with the sector
U;. We now claim that there is a K5 o minor along [ug, u1] using only vertices in [u3, u1] UV (Hy) U N3 U Ny.

If N3 # 0, then there is a component D’ of G — V(C) with V(D’) C N5. Now D’ has (at least) three
neighbors in [ug, ], say w1, wa, w3 in order along C. So ©([ug,w:], [ws, u1]|we, D’) is the required Ko
minor. Thus, we may assume that N3 = @), and symmetrically that Ng = 0.

Let Hjy = Ho U G|z3, z9]. Then V(H]) = V(Hy), so H| is also 2-connected, but possibly E(H}) # E(Hy)
because H{, contains any edges inside C' joining two vertices of [z3, ug] or two vertices of [ug, zo]. If H has a
K 5 minor rooted at z3 and zp, such as a minor ©(z3, zo | uo, ¢) when zs — 2z has an internal vertex ¢, then
we can extend this minor using [us, z3] and [zo, u1] to get the required K3 o minor. If there is an inside jump
out of any of B3, A3, Ao, By, then this jump together with z3 — 2y forms the required K3 2 minor.

So we may assume that Hj has no Ko minor rooted at z3 and zg. Thus, z3 — z¢ has no internal vertex
and so z3zp is an outer edge of H{. Also, by Lemma H|, is z3zp-outerplanar. If there is an edge of
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G leaving H|, at a vertex of Az or Ag then, since N3 = Ny = ), that edge is an inside jump, creating the
required K52 minor. Hence, any edges of G leaving H| leave at z3, ug or zp. Since G is 3-connected these
are the only vertices that can have degree 2 in H{.

Suppose that Bs = (). By Lemma there is a Hamilton path P = zgz3...t in Hj where t has degree 2
in H/; then we must have t = ug. Thus, P U Clzp, u3] UuzDug is a longer cycle, a contradiction. This cycle
is shown in Figure [7] where we use the convention that paths found using Lemma [2.2] or Corollary 2.3 are
shown by heavily shading the part of the graph covered by the paths; the rest of the cycle is shown using
dotted curves. Thus, B3 is nonempty, and by a symmetric argument By is also nonempty.

Suppose 1y — t is an outside jump out of By. This jump cannot contain an internal vertex of z3 — zg, and
t ¢ (us, 23], by choice of z3 — zp. The jump cannot contain an internal vertex of z; — 2o, and ¢t ¢ (uq, 21],
because there are no Uy — U; jumps. Thus, ¢ € [29,us]. Similarly, an outside jump r3 — ¢’ out of B3z must
have t' € [ug, 21]. Hence we cannot have outside jumps out of both By and Bs because the jumps rg — [22, u3]
and 73 — [ug, z1] would intersect by planarity, giving a jump r3 — ro that contradicts the choice of z3 — 2.
Therefore, there is an inside jump out of one of By or Bs, giving the required Ky 5 minor along [ug, u1].

By a symmetric argument there is also a K5 o minor along [u1, u3] using only vertices in [u1, u3]UV (H2)U
N1 U N,. The two minors intersect only at uq and us, so together they give a Ky 5 minor M (us,u:). This
concludes the proof of Claim

Henceforth we assume k& = 3. The next claim simplifies the structure of the graph we are looking at and

makes further analysis easier.

Claim 3. Without loss of generality, we may assume that D consists of a single degree 3 vertex d and
that V(G) = V(C) U {d}. Thus, every jump is a single edge. We may also assume that there are no
edges vy € E(G) — E(C) where G has three internally disjoint xy-paths of length 2 or more; in particular
wiu; ¢ E(G) for alli,j € {0,1,2,...,k—1}.

Since k = 3 and G is 3-connected, every component of G — V(C) has exactly three neighbors on C.
Applying Lemma to each of these components in turn, including D, we find that G is C-reducible to G
for which every component of G; — V(C) is a single degree 3 vertex of G;. Let d be the degree 3 vertex
corresponding to D. Applying Lemma to each vertex of V(G1) — V(C) — {d} in turn, we find that G,
is C-reducible to G5 for which V(G2) = V(C) U {d}. Starting from G5 and applying Lemma repeatedly
to any edge xy not on C' where there are three internally disjoint zy-paths of length 2 or more, we find that
G is C-reducible to G'3 in which there are no such edges zy. Since u;u; ¢ E(C) for all + and j, G5 has no
edges u;u; by the second part of Lemma .

Since C-reducibility is transitive, G is C-reducible to G3. G3 is 3-connected and has all the properties
stated in the claim. Since (i3 is a minor of GG, (i3 is planar, and showing that G3 has a Ks 5 minor also shows

that G has a K» 5 minor. By (c) of the definition of C-reducibility, showing that G has a cycle longer than



Figure 8 Figure 9 Figure 10

Figure 11 Figure 12

C also shows that G has a cycle longer than C. Therefore, we may replace G by G35 in our arguments. This
concludes the proof of Claim 3]

We are now in the general situation where there are three sectors labeled Uy, Uy, and Us. Let tg — t1 be
the outermost Us — Uy jump (if any Us — Uy jump exists), meaning that tg € Us is closest to ug and t; € Uy
is closest to wy. Similarly let ¢2 — t3 be the outermost Uy — Uy jump, and t4 — t5 the outermost U; — Us
jump, when such jumps exist. Because every sector must have a jump out of it and by Claim [I} there are
at least two sector jumps of length 1; without loss of generality, assume there are jumps to — t; and to — t3.
Define Xo = (to,Uo), X1 = (’LLO,t1), XQ = (tQ,Ul), X3 = (U1,t3), X4 = (t4,u2), and X5 = (U27t5), whenever
the necessary t; vertices exist. An example of the overall situation is shown in Figure

Claim 4. There are no sector jumps x — ug where x € (ty,t2).

Let © — ua be a sector jump with = € (¢1,t2). If there exist ¢ € X; and ¢ € Xo then there is a
K5 minor ©({d, ug,u1},[t1,t2] | q1, g2, t3, u2,to) as shown in Figure El So at least one of X; and X5 is
empty; without loss of generality, assume X; = (. Since X; = ) and by choice of tqg — t;, all jumps out
of Uy must go to ¢1. If there is a Ky o minor O(us,ug | s1,s2) along [ug, ug], then there is a Ko 5 minor
O({d, ug,u1},x — uz | t1,ta,1s, 51, s2) as shown in Figure So we may assume there is no such minor, and
apply Corollary 2.3] to Gluz,uo] to find a path P = ug...t such that V(P) = (u2,uo] and t is a degree 2
vertex in Glusg,ug]; then we must have tt; € E(G). Thus, P U tt; U C[t1, us] U uadug is a longer cycle, as
shown in Figure [T} This completes the proof of Claim [4]

Claim 5. FEither to # uy ortz # uj (Xo and X3 cannot both be empty).

Assume that ¢y = u, and t3 = uf. See Figure Let R = Glto, t3]; we may assume that d is outside R.
There are three internally disjoint ¢ot3-paths of length 2 or more, namely to —t1 UCt1, t2] Ute —ts3, touoduts
and C[ts, to], so by Claim 3] tot3 ¢ E(G). Also by Claim 3| uous ¢ E(G).
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Let P be the walk from ug to u; counterclockwise along the outer face of R and @ be the walk from
to to t3 clockwise along the outer face of R. The outer face of R is bounded by P U Q U {ugto, uits}. If
P = (ug = po)p1p2 - - - Pr—1(pr = u1) then each p;, 1 < i < r, is closer to t3 along Clto,t3] than p;_1, so P
has no repeated vertices and is a path; similarly, @ is a path. Additionally, |V (P)| > 3 because uou; ¢ E(G)
and |V(Q)| > 3 because tot1, tats € E(Q) (possibly t1 = t2).

The paths P and @ may intersect but only in limited ways. Any intersection vertex must belong to [t1, t2].
If P and @ intersect at two non-consecutive vertices on C, then using Claim [4] these two vertices would form
a 2-cut in G. Hence there are three possibilities for P and Q: V(P)NV(Q) = {z,z*}, V(P)NV(Q) = {z},
or V(P)NV(Q) =0.

(1) First assume V(P) N V(Q) = {z, T} C [t1,t2]. We will show that there is a longer cycle. Let
Ry = Gltp,z] and Ry = G[aT,t3]. Then tot; € E(Ry) and tat3 € E(Rg). Let Py = PN Ry and Q1 = QN Ry;
then ug € V(Py), tot1 € E(Q1), and V(P1) NV(Q1) = {z}. First we construct a new ugz-path P/ and a
new toz-path Q] such that V(P{ UQ}) = V(R;) and V(P]) NV (Q}) = {«}. If Q1 is just the edge tot; (so
t; = ) we may take P; = C[ug, z] and Q) = Q1. So we may assume that |V (Q1)| > 3.

Let Pj be a upz-path in Ry and Q] a toz-path in Ry so that V(Py) C V(P), V(Q1) C V(Q)) and
V(P))NV(Q}) = {x}. Such paths exist since we can take P = P; and @} = Q. Additionally assume
[V (P)UV(Q})] is maximum. Suppose V(P UQ]) # V(R;) and let K be a component of Ry — V(P UQ}).
Because G is 3-connected, K must have at least three neighbors in G. Since V(P; U Q1) C V(P U Q}),
K contains no external vertices of R;. Therefore, by planarity all neighbors of K are in R; and hence in
V(P{U@®)). Thus, K has at least two neighbors in one of P or Q.

Suppose first that K is adjacent to wy, we € V(Q}). If wiws € E(QY)), then we can lengthen @ (still with
V(Q1) CV(Q})): replace the edge wiwy with a path from w; to we through K. Hence we may assume that
Qi =to...w1...ws...wa...z with ws # w1, ws, and we have a Ky 5 minor O([ug, to]UQ] [to, w1], Q) [we, z]U
(PN Ry)|d,ug, K,ws,t3), a special case of which is shown in Figure Suppose now that K is adjacent
to wi,we € V(P]). If wywe € E(P]) then we can lengthen PJ, so P| = ug...wy...ws3...ws2...x with
w3 # wi,we, and we have a Ky 5 minor ©([ug, up] U P [ug, w1], P{[ws, z] U (P N Ry) |d, ws, K, y,t3) where y
is an internal vertex of @}, which exists because |V (Q})| > |V(Q1)| > 3. Thus no such component K exists,
V(P{UQ)) =V (Ry), and P| and Q) are the desired paths in R;.

By symmetric arguments, Ro has a ujzt-path P} and a t3z-path Qf such that V (P, U Q%) = V(R2)
and V(P)) NV (Q%) = {a*}. Hence there is a longer cycle C|ts, to] U Q) U P] Uugdu; U Py U Q% as shown in
Figure

(2) Assume V(P)NV(Q) = {z} C [t1,t2]. The argument here will be very similar to, but not exactly the
same as, that in (1). Again let Ry = Gltg,x] and Ry = G[zT,t3]. Then tot; € E(Ry) and to € V(Ry) U {z}.
Using the argument from (1), in Ry we find a ugz-path P and a tgx-path Q) with V(P{)UV(Q}) =V (Ry)
and V(P}) N V(Q}) = {x}.

We also want to find in Ry a ujazt-path Pj and a tsz-path Q) such that V(Pj U Q%) = V(R2) and

11



V(PHNV(Q4) = {7}, but this requires some changes from (1). Let P, be the segment of the outer boundary
of Ry clockwise from u; to 2™, and let Q2 be the segment counterclockwise from t3 to . Then P, and
Q2 are paths by the same argument as for P and Q. If there is an edge t3x™ (including when zt = u;)
then we can take P = Clz ", u1] and Q4 = Q2 = t32™, so we may assume there is no such edge and hence
V(Q2)] = 3.

Assume there is v € (V(P2) NV(Q2)) — {z"}. Using Claim |4} every edge leaving (z,v) (which contains
xt) goes to z or v, or is the edge taus. But since ¢y is adjacent to t3, to ¢ (x,v) so {z,v} is a 2-cut in G,
a contradiction. Thus, V(P2) NV (Q2) = {z7}. Now we have a ujz*-path P, and a tzz™-path Q2 so that
(a) all external vertices of Ry belong to V(P U Q2), (b) V(P) NV (Q2) = {x*}, and (c) |[V(Q2)| > 3. This
allows us to apply the argument for |V(Q2)| > 3 from (1) to find the required Py and Q% in Rs.

As in (1), we use P{,Q}, P}, Q) to find a longer cycle.

(3) Finally suppose V(P)NV(Q) = 0. Let P’ be a upuz-path in R and Q' a tpt3-path in R so that
V(P) CV(P), V(Q) CV(Q) and V(P)NV(Q') = 0. Such paths exist because we can take P’ = P and
Q' = Q. Assume additionally that |V(P’) U V(Q')| is maximum. Suppose V(P' U Q') # V(R) and let K
be a component of R — V(P'UQ’). Because G is 3-connected, K must have at least three neighbors in G.
Since V(PUQ) C V(P'UQ'), K contains no external vertices of R. Therefore, by planarity all neighbors of
K are in R and hence in V(P’ U Q’). Thus, K has at least two neighbors in one of P’ or Q'

First suppose K is adjacent to wy,we € V(P'). If wywe € E(P’), then we can lengthen P’ (still with
V(P) C V(P’)): replace the edge wyws with a path from w; to we through K. Hence we may assume that
P =ug...wi...ws3...w2...u1 with ws # w1, wsy, and we have a Ky 5 minor ©(ugtoUP' [ug, w1], P'{ws, u1]U
uits | ug, d, w3, K,y) as shown in Figure where y is an internal vertex of @', which exists because |V (Q')| >
[V(Q)| > 3. We can reason similarly if K is adjacent to wi,ws € V(Q'). Thus no such component K exists
and V(P'UQ') =V(R).

Suppose there is a K o minor O (toug, u1ts | $1, s2) in Gu, ug]. Then there is a Ko 5 minor ©(toug, uits | s1,
s2,d,p,q) as shown in Figure where p, q are arbitrary internal vertices of P, ) respectively. So we may
assume there is no such minor. Therefore, there is no K3 2 minor along [ts,?o] or any of its subintervals.

Suppose that (uz,to) = 0 or all jumps out of (us,ty) go to ug. Apply Corollary to Glua,to] to find
a path J = tg ...t such that V(J) = (uz,to] and either t = tg if (ua,t9) = 0, or t is a vertex of degree 2 in
Glua, to], from which there must be a jump to ug. In either case, toug € E(G) and there is a longer cycle
P Uwuydus UClts, uz] U Q' U J U tug; the case when (ug,t9) # 0 is shown in Figure

So we may assume that not all jumps out of (ue,tp) go to ug and so there is a jump z; — xo with
x1 € (ug,t9) and xg € [t3,uz). By a symmetric argument there is also a jump x5 — z} with x5 € (¢3,u2) and
x} € (uz,tp]. These jumps cannot cross because they are just edges, so we cannot have both x5 = ¢35 and
x} = to. Without loss of generality, xo # t3, S0 1 — 22 is a jump from (ug,tp) to (t3,us). Out of all such
jumps we may assume that x; — zo has x1 closest to g and x5 closest to t3.

If there is a jump y1 — y2 from (ug, z1) to (x1,up), then x1 — z2 and y; — y2 give a Ky o minor in Glug, ug]
that we excluded above, namely O ([u1, xa], [y2, uo] | z1, y1) if y2 # ug, or O([u1, x2], toug | x1,y1) if y2 = up. A
symmetric minor exists if there is a jump from (2, u2) to [u1,x2). Hence edges of G leaving G[za, x1] leave
at x1, T or ug. Since Glxa,x1] is bounded by the cycle Clxa, z1] Ux1x2, Glxa, 1] is 2-connected by Lemma
Apply Lemma to G[za,x1] to find a path J; = xex; ...t where V(J1) = [x2,21] and ¢ is a degree 2
vertex in G[zz, 1] and hence must be uy. Apply Corollaryto G[z1,t0] to find a path Jy =1t ...s where
V(J2) = (x1,to] and either s = tg or s is a degree 2 vertex in G[z1,%p]. In either case sug € E(G) and there
is a longer cycle P’ Uuidus U J; U Clts, x2] U Q' U Jo U sug, as shown in Figure

This completes the proof of Claim

Claim 6. Fither t; = ug orta =uy (at least one of X1 and Xy is empty).
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Figure 19

Assume t; # ug and ty # uj . By Claim either to # ugy or t3 # uf. Without loss of generality, suppose
to # ug . Then there is a Ka 5 minor ©(ugduy, toty U [t1,t2] | ug , ud, ul, t3,uz) as shown in Figure

Claim 7. At most two pairs of sectors have jumps between them.

Assume that there are three sector jumps ty — t1, to — t3, and t4 — t5; where possibly tg = t5, t; = to,
or t3 = t4. By Claim [5] Xy and X3 cannot both be empty and symmetrically, X; and X4 cannot both be
empty and X5 and X5 cannot both be empty. Hence X; # ) for at least three i. By Claim @, at least one of
X, and X5 is empty and symmetrically, at least one of X3 and X, is empty and at least one of X5 and X
is empty. Hence X; # ) for exactly three i. Furthermore, the nonempty X; must be rotationally symmetric
about C. Without loss of generality, suppose Xy, X2, and X4 are nonempty and X7, X3, and X5 are empty.

If t; = to, then there is a standard longer cycle L(ug —uf). Thus t; # t2, and symmetrically t3 # t4 and
ts # to.

Consider a jump 79 — r(, out of Xy. There are three options for r(: r{ € [ts5,t0), 7y = t1, or r{ = ug. If
Ty € [t5,t0) then, since t1 # to, there is a Ky 5 minor O (dugty, [ts, ta] Utats U[ts, (] | to, 7o, t2, U1, u2); the case
r( = t5 is shown in Figure Thus, ) € {uz, 1}, and symmetrically r5 € {ug,t3} for a jump ro — 4 out of
Xo, and )y € {uq,t5} for a jump r4 — 7 out of Xy.

If at least two of r(, r5, and ry belong to U = {ug,us,us} then without loss of generality we may
assume that v, = ug and 5, = ug. We have a Ky 5 minor M([to, 1], [u1,t4]) as shown in Figure If
only one of 7, r, and 7} belongs to U, then without loss of generality r(, = us and there is a K35 minor
O(ugdunts, [ts, to] Utot1 Ult1, ta] | o, uo, 72, ta, 74) as shown in Figure Hence we may assume that all jumps
out of Xy go to t1, out of X5 go to t3, and out of X, go to ts.

If there is a K39 minor O (g, ug | s1, s2) along [to, ug], then there is a Ko 5 minor ©({d, ug, u1, us}, tats U
[ts, ta] Utats U [ts, to] | S1, S2,t1,72,74) as shown in Figure Hence there is no Ky o minor along [to, u], or
symmetrically, along [to, u1] or [ts4, us]. Because all jumps out of X4 go to t5 we can apply Corollary to
Glts,uz] and find a path P = t4...t where V(P) = [t4,u2) and ¢ has degree 2 in Glt4,us), so tts € E(G).
If (t5,t9) = 0, then there is a longer cycle Cltg, ug] U tot1 U Clt1,t4] U P U ttsusdug as shown in Figure
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Figure 22

Figure 24 Figure 25

Hence (t5,t9) # (). Let y — ¢y’ be a jump out of (¢5,%0). Since all jumps out of Xq go to t1, ¥’ ¢ Xo, so y’ = ug
or ug. Then there is a Ko 5 minor O(yy’ U ugdus, [t1,te] U tats U [t3, ta] | to, 70, u1,74,t5); the case y' = ug is
shown in Figure This completes the proof of Claim [7]

Henceforth we assume there are jumps ¢y — t; and ¢y — t3, but not ¢4 — t5. By Claim [6] at least one of
X1 and X, is empty. Without loss of generality, assume X; = () and hence t; = uar. We claim that there are
Ky 9 minors M; in Glug, t1] and My in Glug, uz], both rooted at us and [ug, t1].

Assume that M; does not exist. If g = ug, then there is a standard longer cycle L(uj — ug). Hence
to # uj, and there must be a jump r — 1/ from (ug,t) to (to,uo]. If 7' # up then we may take M; to be
O([ug,r], (7', t1]| 7', t0), so all jumps from (ug, to) must go to ug. If there is a K3 o minor along [usg, o] or along
[to, up] then we also have Mj, so neither of these minors exist. All jumps out of (g, uo) must go to ¢; since
jumps to ug are blocked by planarity. By Corollary applied to Glua, tg], there is a path P, =t ...t such
that V(Py) = (ug, to] and ¢ is a degree 2 vertex in Gluzg, to], or t = to if (to,up) = 0, so that ¢ is adjacent to ug.
Similarly by Corollary there is a path P» = tg...s such that V(P) = [to,up) and s is a degree 2 vertex
in G[tg, ug] or s = tg, so that s is adjacent to t;. Then there is a longer cycle Po U st; UClt1, ug] Uusdugt U Py
as shown in Figure This is a contradiction, so M; exists.

U9 Uz
t3 t3

Figure 26 Figure 27 Figure 28
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Figure 29

Assume that My does not exist. If there is an inside jump out of (¢2,u1) or (ug,ts), or any jump out of
(ts,u2), then this jump and t2 — t3 give us Ma. So all edges of G leaving G[ta, t3] leave at to, t3 or uy, and
(t3,u2) = 0. Any K55 minor along [to,t3] would also provide Ma, so there is no such minor. Therefore, by
Lemma [2.2] there is a Hamilton path P = tot3. ..t in G[ta, t3] with t of degree 2 in G[ts,t3]. Then ¢t = u; and
we have a longer cycle Clua, t2] U P U ujdus as shown in Figure This is a contradiction, so My exists.

Together My and Mj give a Ky 5 minor M ([ug, t1],u2) as in Figure This contradiction concludes the
proof of Theorem [3.1] O

4 Sharpness

A natural next step is to consider the same result for K g-minor-free graphs. It is not true, however, that
all 3-connected planar K3 g-minor-free graphs are Hamiltonian. In fact, we can construct an infinite family
of non-Hamiltonian 3-connected planar K3 g-minor-free graphs. Let G be the graph shown in Figure
where k£ > 1. We begin by analyzing K5 5 minors in GGy, which is the Herschel graph, mentioned earlier.

Lemma 4.1. Suppose Gy has a Ko 5 minor with standard model 3(Ry, R2|S). Then
(CL) R1 URQ usS = V(Gl),
(b) each of Ry and Rs contains exactly one degree 4 vertex of Gy, and
(c) G1 has no edge between Ry and Ra.

Proof. For i = 1 and 2 let H; = G1[R;], and let N(R;) be the set of neighbors of R; in Gp; then S C
N(R;). We use the fact that G is highly symmetric: besides the 2-fold symmetries generated by reflecting
Figure about horizontal and vertical axes, there is a 3-fold symmetry generated by the automorphism
(ug)(urupus)(zusz)(uguzvy)(y). Thus all degree 4 vertices in G are similar, ug and y are similar, and all
other degree 3 vertices are similar.

Assume without loss of generality that |R;| < |Rz|. Since all vertices of G; have degree 3 or 4, we have
|R1| > 2. Since |Ry| + |Rz| < 6, we have |Ry| < 3. Since G has no triangles, H; is a path wjws or wywows.
Define the type of a path wiws ... wy to be the sequence dids . .. dy where d; = deg(w;). We break into cases
according to the type of Hy. The possible types are restricted by the fact that no two degree 4 vertices of G
are adjacent. When |R;| = 3 we must also have |Rs| = 3 so Hs is a path zix923, and V(G1) — R1 — S = Ry
so that V(G1) — R1 — N(R1) C Ro.

If H; has type 33 then |[N(R;)| < 5. If Hy has type 333 then by symmetry we may assume H; = ujuqug,
and again |N(R;1)| < 5. So neither of these cases happen.

If H; has type 34 (or 43) then up to symmetry Hy; = ugx. Then S = N(R1) = {uy,us,uq,v1,2}. Now
Ry contains ug (so that uy € N(R2)) and y (so that v € N(Rz)) so Ha is the path ugusury of type 3433.
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If Hy has type 334 (or 433) then up to symmetry H; = uquix. Then S = N(Ry) = {uz,us,us, ug,v1}
and H, is the path yurz of type 334.

If H; has type 343 then w; and w3 may be either opposite or adjacent neighbors of ws. If they are
opposite neighbors, then up to symmetry Hy = uzzus. Then V(G1) — Ry — N(Ry) = {ug,ur} € Ry and so
either Hy = ugusuy and R is not adjacent to v; € S, or Hs = ugzu; and Ry is not adjacent to u; € S. So
this does not occur. If w; and ws are adjacent neighbors of ws, then up to symmetry H; = ujzus. Then
S = N(Ry) = {us, uq,us,y,v1 } and Hs is the path ugzur of type 343.

If Hy has type 434 then up to symmetry Hy; = xujus. Then V(G1) — Ry — N(R1) = {y, 2} C R and so
H, is either yurz or yv1z. But in either case Ry is not adjacent to uy € S, so this case does not occur.

Whenever the minor exists (types 34, 334, and 343 with adjacent neighbors) all of (a), (b) and (c) hold. O

Proposition 4.2. For all k > 1, Gy, is a 3-connected planar non-Hamiltonian Ky ¢-minor-free graph.

Proof. In the plane embedding of G shown in Figure every pair of faces intersect at most once (at a
vertex or along an edge), so Gy, is 3-connected. Let S = {x,y, z,uq,u5}. Then |S| =5 but Gy — S has six
components, so G cannot be Hamiltonian (G, is not 1-tough).

We prove that Gy, is K g-minor-free by induction on k. For G; this follows from Lemma a). So
suppose that k£ > 2, all G; for j < k —1 are K3 g-minor-free, and G, has a K> ¢ minor with standard model
Y(R1, R2|S).

Let F' = vivy...vp. Let R} = R; — V(F) for j = 1 and 2, S = § - V(F), " = SNV(F) and
T =V(Gy)— Ry — Ry —S. We cannot have R; C V(F') because any subset of V/(F') that induces a connected
subgraph in G has only three neighbors in Gy. Therefore, each R;- is nonempty. If v; € R; U S for some
v; € V(F), then there is a path P;(v;) from v; to a vertex of R, all of whose internal vertices belong to
R;NV(F). The other end of P;(v;) is one of z, y or z.

We claim that (x) V(F) € Ry U Ry U S and no two consecutive vertices of F' belong to the same R;. If
not, there is e € E(F') with one end in 7', or both ends in the same R;. Contracting e preserves the existence
of a K3 ¢ minor and gives a graph isomorphic to G_1, contradicting our inductive hypothesis.

Suppose y € SUT. If some v, € S then Pj(v,) = vqVq—1...v12 and P3_;(vq) = vqUq41 ... 2 for j = lor 2.
Thus X(R}, Ry | S’ U{v1}) is a Ky minor in Gy, a contradiction. Otherwise, by (%), v1 € R; and va € R3_;
for some j. We must have Pj(vi) = viz and P3_j(v2) = vavs...vgz. Then X(R], Ry [ S — {y} U{vi}) is a
Ky or Ky 7 minor in G, again a contradiction.

So we may assume without loss of generality that y € Ry. If |S”| > 2 we can choose v,,v, € S” with
a < b so that there is no v; € S” with a < i < b. Then P;(v,) = vq04—1...v1x and Py(vp) = vpVpy1 - - . Vg2,
so 8" = {vg,vp} and z,z € R}. Then X(R}, R |S" U {v1}) is a Ky 5 minor in G; that contradicts Lemma
4.1(b). If |S”| < 1 then there is either v, € S, or since k > 2 by (x) there is v, € R;. Without loss of
generality P;(vq) = UgVq—1...v12. Now X(R}, Ry U{v1}|S5") is a Ko 5 or Ka ¢ minor in Gy with z € R} and
vy € Ry U{v1}, contradicting Lemma c). O

Based on computer results of Gordon Royle (personal communication), we suspect that it may be pos-
sible to characterize all exceptions to the statement that all 3-connected planar K5 g-minor-free graphs are

Hamiltonian. All known exceptions are closely related to the family shown in Figure
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