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Abstract

Tutte showed that 4-connected planar graphs are Hamiltonian, but it is well known that 3-connected

planar graphs need not be Hamiltonian. We show that K2,5-minor-free 3-connected planar graphs are

Hamiltonian. This does not extend to K2,5-minor-free 3-connected graphs in general, as shown by the

Petersen graph, and does not extend to K2,6-minor-free 3-connected planar graphs, as we show by an

infinite family of examples.

1 Introduction

All graphs in this paper are finite and simple (no loops or multiple edges).
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Whitney [24] showed that every 4-connected plane triangulation is Hamiltonian, and Tutte [23] extended

this to every 4-connected planar graph. Tutte’s result has been strengthened in various ways; see for example

[4, 14, 18, 20, 21, 22].

If we relax the connectivity condition, it is not true that all 2- or 3-connected planar graphs are Hamil-

tonian. The smallest 2-connected planar graph that is not Hamiltonian is K2,3. The smallest 3-connected

planar graph that is not Hamiltonian is the so-called Herschel graph, with 11 vertices and 18 edges. It was

known to Coxeter in 1948 [6, p. 8], but a proof that it is smallest relies on later work by Barnette and Jucovič

[1] and Dillencourt [9]. If we restrict to triangulations, the smallest 2- or 3-connected planar triangulation

that is not Hamiltonian is a triangulation obtained by adding 9 edges to the Herschel graph. It was known

to C. N. Reynolds (in dual form) in 1931, as reported by Whitney [24, Fig. 9]. Again, the proof that this is

smallest relies on [1] and [9]. This triangulation was also presented much later by Goldner and Harary [12],

so it is sometimes called the Goldner-Harary graph.

It is therefore reasonable to ask what conditions can be imposed on a 2- or 3-connected planar graph to

make it Hamiltonian. The main direction in which positive results have been obtained is to restrict the types

of 2- or 3-cuts in the graph. Dillencourt [8, Theorem 4.1] showed that a near-triangulation (a 2-connected

plane graph with all faces bounded by triangles except perhaps the outer face) with no separating triangles

and certain restrictions on chords of the outer cycle is Hamiltonian. Sanders [19, Theorem 2] extended this to

a larger class of graphs. Jackson and Yu [15, Theorem 4.2] showed that a plane triangulation is Hamiltonian

if each ‘piece’ defined by decomposing along separating triangles connects to at most three other pieces. Our

results explore a different kind of condition, based on excluding a complete bipartite minor.

Excluded complete bipartite minors have been used previously in more general settings to prove results

involving concepts related to the existence of a Hamilton cycle, such as toughness, circumference, or the

existence of spanning trees of bounded degree; see for example [2, 3, 17]. We are interested in graphs that

have no K2,t minor, for some t. Some general results are known for such graphs, including a rough structure

theorem [10], upper bounds on the number of edges [5, 16], and a lower bound on circumference [3].

For 2-connected graphs, a K2,3-minor-free graph is either outerplanar or K4, and is therefore both planar

and Hamiltonian. However, the authors [11] recently characterized all K2,4-minor-free graphs, and there

are many K2,4-minor-free 2-connected planar graphs that are not Hamiltonian. For 3-connected graphs, the

K2,4-minor-free ones belong to a small number of small graphs, some of which are nonplanar, or a sparse

infinite family of planar graphs; all are Hamiltonian. There are K2,5-minor-free 3-connected nonplanar graphs

that are not Hamiltonian, such as the Petersen graph, but in this paper we show that all K2,5-minor-free

3-connected planar graphs are Hamiltonian. We also show that this cannot be extended to K2,6-minor-

free graphs, by constructing an infinite family of K2,6-minor-free 3-connected planar graphs that are not

Hamiltonian.

The number g(n) of nonisomorphic K2,5-minor-free 3-connected planar graphs on n vertices grows at least

exponentially (for n ≥ 10 with n even this is not hard to show using the family of graphs obtained by adding

an optional diagonal chord across each quadrilateral face of a prism Cn/2�K2). Some computed values of

g(n) are as follows.

n 7 8 9 10 11 12

g(n) 31 194 918 3 278 8 346 18 154

The exponential growth of g(n) contrasts with the growth of the number of nonisomorphic 3-connected K2,4-

minor-free graphs (planar or nonplanar), which is only linear [11]. Thus, our results apply to a sizable class

of graphs.

In Section 2 we provide necessary definitions and preliminary results. The main result, Theorem 3.1, that

K2,5-minor-free 3-connected planar graphs are Hamiltonian, is proved in Section 3. In Section 4 we discuss

K2,6-minor-free 3-connected planar graphs.

2



2 Definitions and Preliminary Results

An edge, vertex, or set of k vertices whose deletion increases the number of components of a graph is a

cutedge, cutvertex, or k-cut, respectively. The subgraph of G induced by S ⊆ V (G) is denoted by G[S]. If P

is a path and x, y ∈ V (P ) then P [x, y] represents the subpath of P between x and y.

2.1 Minors and models

A graph H is a minor of a graph G if H is isomorphic to a graph formed from G by contracting and deleting

edges of G and deleting vertices of G. A graph is H-minor-free if it does not have H as a minor. Another

way to think of a minor H is in terms of a function β mapping each u ∈ V (H) to β(u) ⊆ V (G), the branch

set of u, such that (a) β(u)∩ β(u′) = ∅ if u 6= u′; (b) G[β(u) ] is connected for each u; and (c) if uu′ ∈ E(H)

then there is at least one edge between β(u) and β(u′) in G. We call β a model, or more specifically an

edge-based model, of H in G. More generally, we may replace condition (c) by the existence of a function π

mapping each e = uu′ ∈ E(H) to a path π(uu′) in G, such that (c1) π(uu′) starts in β(u) and ends in β(u′);

(c2) no internal vertex of π(uu′) belongs to any β(u′′) (even if u′′ = u or u′); and (c3) π(e) and π(e′) are

internally disjoint if e 6= e′. We call (β, π) a path-based model of H in G.

Now we discuss K2,t minors in particular. We assume that V (K2,t) = {a1, a2, b1, b2, . . . , bt} and E(K2,t) =

{aibj | 1 ≤ i ≤ 2, 1 ≤ j ≤ t}.
Edge-based models are convenient for proving nonexistence of a minor. In fact, for K2,t minors we can

use an even more restrictive model. Consider an edge-based model β0 of K2,t, where b1 and its incident edges

correspond to a path v1v2 . . . vk, k ≥ 3, with v1 ∈ β0(a1), vk ∈ β0(a2), and vi ∈ β0(b1) for 2 ≤ i ≤ k − 1.

Define β1(b1) = {v2}, β1(a2) = β0(a2)∪{v3, . . . , vk−1}, and β1(u) = β0(u) for all other u. Then β1 is also an

edge-based model of a K2,t minor, and |β1(b1)| = 1. Applying the same procedure to b2, b3, . . . , bt in turn, we

obtain an edge-based model β = βt with |β(bj)| = 1 for 1 ≤ j ≤ t. Such a β is a standard model of K2,t, and

we denote it by either Σ(R1, R2 | s1, s2, . . . , st) or Σ(R1, R2 |S) where Ri = β(ai) for 1 ≤ i ≤ 2, {sj} = β(bj)

for 1 ≤ j ≤ t, and S = {s1, s2, . . . , st}. Thus, if G has a K2,t minor then it has a standard model of K2,t.

On the other hand, path-based models are useful for proving existence of a minor. Moreover, in many

situations where we find a K2,t minor it would be tedious to give an exact description of the minor. So, we

say that Θ(R1, R2 |S1, S2, . . . , St) is an approximate (path-based) model of K2,t if there exists a path-based

model (β, π) such that Ri ⊆ β(ai) for 1 ≤ i ≤ 2 and Sj ⊆ β(bj) for 1 ≤ j ≤ t. For convenience, we

also allow each Ri to be a subgraph, not just a set of vertices, with V (Ri) ⊆ β(ai), and similarly for each

Sj . Informally, we will specify enough of each branch set to make the existence of the minor clear; using

subgraphs rather than vertex sets sometimes helps to clarify why a branch set induces a connected subgraph.

We use this notation even when we actually have an exact description of a minor. For brevity, we just say

that ‘Θ(R1, R2 |S1, S2, . . . , St) is a K2,t minor’. In our figures the sets or subgraphs Ri are enclosed by dotted

curves, and the sets or subgraphs Sj (usually just single vertices) are indicated by triangles.

We also need one type of rooted minor. We say there is a K2,t minor rooted at R1 and R2 if there is a

path-based model (β, π) (or, equivalently, edge-based model β, or even standard model β) with R1 ⊆ β(a1)

and R2 ⊆ β(a2). Again we extend this to allow R1 and R2 to be subgraphs, not just sets of vertices.

2.2 Path-outerplanar graphs

A graph is outerplanar if it has a plane embedding in which all vertices are on the outer face. We use a

characterization that we proved elsewhere of graphs without rooted K2,2 minors in terms of special outer-

planar graphs. (Along different lines, Demasi [7, Lemma 2.2.2] provided a description of graphs with no

K2,2 minor rooting all four vertices, in terms of disjoint paths.) Our characterization uses the following

definitions. Given x, y ∈ V (G), an xy-outerplane embedding of a graph G is an embedding in a closed disk
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D such that a Hamilton xy-path P of G is contained in the boundary of D; P is called the outer path. A

graph is xy-outerplanar, or path-outerplanar, if it has an xy-outerplane embedding. A graph G is a block if

it is connected and has no cutvertex; a block is either 2-connected, K2, or K1.

Lemma 2.1 ([11]). Suppose x, y ∈ V (G) where x 6= y and G′ = G+xy is a block (which holds, in particular,

if G has a Hamilton xy-path). Then G has no K2,2 minor rooted at x and y if and only if G is xy-outerplanar.

The following results on Hamilton paths in outerplanar and xy-outerplanar graphs will be useful.

Lemma 2.2. Let G be a 2-connected outerplanar graph. Let x ∈ V (G) and let xy be an edge on the outer

cycle Z of G. Then for some vertex t with degG(t) = 2, there exists a Hamilton path xy . . . t in G.

Proof. Fix a forward direction on Z so that y follows x. Denote by v1Zv2 the forward path from v1 to v2 on

Z. Proceed by induction on |V (G)|. In the base case, G = K3 and the result is clear. Assume the lemma

holds for all graphs with at most n − 1 vertices and |V (G)| = n ≥ 4. Let w 6= y be the other neighbor of

x on Z. If degG(w) = 2, then we take t = w and xZw is a desired Hamilton path in G. Otherwise let v

be a neighbor of w such that vw /∈ E(Z) (possibly v = y). Let G′ be the subgraph of G induced by vZw;

G′ is a 2-connected vw-outerplanar graph with |V (G′)| ≤ n− 1. By the inductive hypothesis, there exists a

Hamilton path Q = vw . . . t in G′ where degG′(t) = degG(t) = 2. Then xZv∪Q is the desired path in G.

Corollary 2.3. Let G be an xy-outerplanar graph with x 6= y. Then there exists a Hamilton path x . . . t in

G− y, where t = x if |V (G)| = 2, and t is some vertex with degG(t) = 2 otherwise.

Proof. If |V (G)| = 2 this is clear, so suppose that |V (G)| ≥ 3. Then G + xy is a 2-connected outerplanar

graph, so by Lemma 2.2 it has a Hamilton path yx . . . t ending at a vertex t of degree 2. Now P − y is the

required path.

2.3 Connectivity and reducibility

The following observation will be useful.

Lemma 2.4. Suppose G is a 2-connected plane graph and C is a cycle in G. Then the subgraph of G

consisting of C and all edges and vertices inside C is 2-connected.

Proof. Any cutvertex in the subgraph would also be a cutvertex of G.

The following results will allow us to simplify the situations that we have to deal with in the proof of

Theorem 3.1.

Theorem 2.5 (Halin, [13, Theorem 7.2]). Let G be a 3-connected graph with |V (G)| ≥ 5. Then for every

v ∈ V (G) with deg(v) = 3, there is an edge e incident with v such that G/e is 3-connected.

A k-separation in a graph G is a pair (H,K) of edge-disjoint subgraphs of G with G = H ∪K, |V (H) ∩
V (K)| = k, V (H)− V (K) 6= ∅, and V (K)− V (H) 6= ∅.

Lemma 2.6. Let G be a 3-connected graph and suppose (H,K) is a 3-separation in G with V (H)∩ V (G) =

{x, y, z}. Suppose K ′ = K − V (H) is connected and H is 2-connected. Let G′ be the graph formed from G

by contracting K ′ to a single vertex. Then G′ is 3-connected.

Proof. Let v be the vertex in G′ formed from contracting K ′. Since G is 3-connected, xv, yv, zv ∈ E(G′). We

claim that every pair of vertices in G′ has three vertex-disjoint paths between them. By Menger’s Theorem,

it will follow that G′ is 3-connected. We consider five different types of pairs of vertices.

First, suppose w1, w2 ∈ V (H) − {x, y, z}; there are three internally disjoint paths from w1 to w2 in G:

P1, P2, and P3. If V (Pi) ∩ V (K ′) = ∅ for i = 1, 2, 3, then P1, P2, and P3 are the desired paths in G′.
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If V (Pi) ∩ V (K ′) 6= ∅ for some i, then |V (Pi) ∩ {x, y, z}| ≥ 2 since {x, y, z} separates K ′ from H. Thus

V (Pi) ∩ V (K ′) 6= ∅ for at most one i. Suppose V (P1) ∩ V (K ′) 6= ∅. Then all vertices of V (P1) ∩ V (K ′) are

in a single subpath of P1 which we replace by v to form a new path P ′1. The paths P ′1, P2, and P3 are the

desired paths in G′.

Second, consider w1 ∈ V (H) − {x, y, z} and w2 ∈ {x, y, z}, say w2 = x. If there are not three internally

disjoint paths between w1 and x in G′, then w1 and x are separated either by a 2-cut {u1, u2} (if w1x /∈ E(G))

or by w1x and some vertex u1 (if w1x ∈ E(G)). Since w1 and x are not separated by a 2-cut or by an edge

and a vertex in G, we may assume that u1 = v. But then u2 is a cutvertex in H or w1x is a cutedge in H,

which is a contradiction since H is 2-connected. Hence there are three internally disjoint paths between w1

and x.

Third, consider w1, w2 ∈ {x, y, z}, say w1 = x and w2 = y. Because H is 2-connected, there are two

internally disjoint paths P1 and P2 from x to y in H. Take P3 = xvy. Then P1, P2, and P3 are the desired

paths in G′.

Fourth, consider w1 ∈ V (H) − {x, y, z} and v. For any w2 ∈ V (K ′), there are three internally disjoint

paths P1, P2, and P3 from w2 to w1 in G. Without loss of generality, say x ∈ V (P1), y ∈ V (P2), and

z ∈ V (P3). Form P ′1 from P1 by replacing P1[w2, x] with vx, form P ′2 from P2 by replacing P2[w2, y] with vy,

and form P ′3 from P3 by replacing P3[w2, z] with vz. The paths P ′1, P ′2, and P ′3 are the desired paths in G′.

Finally, consider w1 ∈ {x, y, z}, say w1 = x, and v. By a consequence of Menger’s Theorem, since H is

2-connected there are two internally disjoint paths from {y, z} to x in H, say P1 = y . . . x and P2 = z . . . x.

Then P ′1 = vy ∪ P1, P ′2 = vz ∪ P2, and P3 = vx are the desired paths in G′.

Lemma 2.6 is false without the hypothesis that H is 2-connected: then we could have V (H) = {w, x, y, z}
and E(H) = {wx,wy,wz}, in which case G′ would be isomorphic to K2,3, which is not 3-connected.

Now we use the results above to set up a framework that will help to simplify the graph in our main

proof. Suppose G is a 3-connected graph, and C is a cycle in G. We say that G is C-reducible to a graph

G′ provided (a) G′ is obtained from G by contracting edges of G with at most one end on C and/or deleting

edges in E(G) − E(C), (b) G′ is 3-connected, and (c) for every cycle Z ′ in G′ there is a cycle Z in G with

|V (Z)| ≥ |V (Z ′)|. By (a), C is still a cycle in G′. From this, we see that C-reducibility is transitive. Also by

(a), G′ is a minor of G.

Lemma 2.7. Suppose C is a cycle in a 3-connected graph G. If B is a component of G−V (C) with exactly

three neighbors on C then G is C-reducible to G/E(B), in which B becomes a degree 3 vertex.

Proof. Let G0 = G− V (B). If G0 is not 2-connected, then there is a cutvertex u. Now u /∈ V (C) and V (C)

must be entirely in one component of G0 − u. Since the neighbors of B are all on C, vertices of B are only

adjacent to vertices on one side of the cut. Hence u is also a cutvertex in G, which is a contradiction. Thus,

G0 is 2-connected. Consider G′ = G/E(B). Clearly (a) holds, and (b) follows from Lemma 2.6.

Let a1, a2, a3 be the neighbors of B on C, and let b be the vertex of G′ corresponding to B. Let Z ′ be a

cycle in G′. If b /∈ V (Z ′), then Z = Z ′ is also a cycle in G. If b ∈ V (Z) then Z ′ uses a path aibaj . Form a

cycle Z in G from Z ′ by replacing aibaj by a path from ai to aj through B. Clearly |V (Z)| ≥ |V (Z ′)|, so (c)

holds.

Lemma 2.8. Suppose C is a cycle in a 3-connected graph G. If b ∈ V (G) − V (C) has degree 3 then there

is an edge bc so that G is C-reducible to G/bc.

Proof. By Theorem 2.5 there is an edge bc such that G′ = G/bc is 3-connected. Clearly (a) and (b) hold

for G′; we must show (c). Let a1, a2 and c be the neighbors of b in G. Call the vertex that results from the

contraction z. Suppose Z ′ is a cycle in G′. If a1z, a2z /∈ E(Z ′), then take Z = Z ′. If |{a1z, a2z}∩E(Z ′)| = 1,

say a1z ∈ E(Z ′), form Z from Z ′ by replacing a1z with the path a1bc. If a1z, a2z ∈ E(Z ′), form Z from
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Z ′ by replacing the subpath a1za2 with a1ba2. In all cases, Z is a cycle in G with |V (Z)| ≥ |V (Z ′)|, so (c)

holds.

Lemma 2.9. Suppose C is a cycle in a 3-connected graph G. Suppose that a1a2 ∈ E(G)−E(C), and there

are three internally disjoint a1a2-paths in G− a1a2. Then G is C-reducible to G− a1a2.
In particular, G is C-reducible to G− a1a2 if a1 and a2 are neighbors on C of a component of G− V (C)

and a1a2 ∈ E(G)− E(C).

Proof. Clearly (a) and (c) hold for G′ = G − a1a2; we must show (b). Since G is 3-connected, G′ is 2-

connected, and if G′ has a 2-cut then a1 and a2 must be in different components, which cannot happen

because of the three internally disjoint a1a2-paths.

If a1 and a2 are neighbors of a component B of G−V (C) then there are three internally disjoint a1a2-paths

in G− a1a2, namely the two paths between a1 and a2 in C, and a path from a1 to a2 through B.

3 Main Result

We are now ready to prove the main result.

Theorem 3.1. Let G be a 3-connected planar K2,5-minor-free graph. Then G is Hamiltonian.

Theorem 3.1 is proved by assuming G is not Hamiltonian, taking a longest cycle C in G and finding a

contradiction with either a longer cycle or a K2,5 minor.

Proof. Assume that G is not Hamiltonian and assume G is represented as a plane graph. Let H and J be two

subgraphs of G. Let R0 be the outside face of J (an open set), R1 the boundary of R0, and R2 = R2−R0−R1.

We say H is outside J if as subsets of the plane we have H ⊆ R0 ∪R1, and inside J if H ⊆ R1 ∪R2.

Let C be a longest non-Hamilton cycle in G. A longer cycle means a cycle longer than C. Fix a forward

direction on C, which we assume is clockwise. Denote by x+ the vertex directly after the vertex x on C

and by x− the vertex directly before x. Define C[x, y] to be the forward subpath of C from x to y which

includes x and y. If x = y then C[x, y] = {x}. Define C(x, y) = C[x, y] − {x, y}, C(x, y] = C[x, y] − x, and

C[x, y) = C[x, y] − y. Define [x, y] to be V (C[x, y]) and G[x, y] to be the induced subgraph G[ [x, y] ]; also

define (x, y), G(x, y), etc. similarly. We say a vertex z is between x and y if z ∈ (x, y).

Let D be a component of G − V (C) with the most neighbors on C. We fix D in our arguments, and

assume that D is inside C. Let u0, u1, . . . , uk−1 be the neighbors of D along C in forward order. Because G

is 3-connected, k ≥ 3. For any distinct ui and uj there is at least one path from ui to uj through D; we use

uiDuj to denote such a path. The sets Ui = (ui, ui+1) (subscripts interpreted modulo k) are called sectors.

If Ui = ∅ for some i, then there is a longer cycle: replace C[ui, ui+1] with uiDui+1. Thus, Ui 6= ∅ for all i.

A jump x− y is an xy-path where x 6= y, x, y ∈ V (C), and no edge or internal vertex of the path belongs

to C or D. If S, T ⊆ V (C) then a jump from S to T or S − T jump is a jump x − y with x ∈ S, y ∈ T ;

if S = T we say this is a jump on S. If S is a set of consecutive vertices on C then a jump out of S is a

jump x − y where x ∈ S, y /∈ S, and y is not adjacent in C to a vertex of S. Whenever v, w ∈ V (C) are

not equal and not consecutive on C and (v, w) contains no neighbor of D there is at least one jump out of

(v, w) = [v+, w−], because {v, w} is not a 2-cut.

A jump out of a sector Ui is a sector jump; since every Ui is nonempty, there is a sector jump out of every

sector. A jump is an inside or outside jump if it is respectively inside or outside C. An inside jump must

have both ends in [ui, ui+1] for some i. Thus, all sector jumps are outside jumps.

If there is a jump u+i − u
+
j , then C[u+j , ui] ∪ uiDuj ∪ C[u+i , uj ] ∪ u

+
i − u

+
j is a longer cycle. Denote such

a longer cycle as L(u+i − u
+
j ). If there is a jump u−i − u

−
j , then there is a symmetric longer cycle denoted

L(u−i − u
−
j ). Call such cycles standard longer cycles. Figure 1 shows L(u−1 , u

−
2 ) when k = 4.
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Figure 1 Figure 2

If x, y ∈ V (C), x 6= y, W ⊆ G− V (C)− V (D), and G[ [x, y] ∪W ] contains a K2,2 minor rooted at x and

y, then we say there is a K2,2 minor along [x, y]. If there is no such minor then for any [x′, y′] ⊆ [x, y] with

x′ 6= y′ there is no K2,2 minor rooted at x′ and y′ in G[x′, y′]. Thus, G[x′, y′] is x′y′-outerplanar by Lemma

2.1 and we may apply Corollary 2.3 to G[x′, y′].

Suppose a, b, c, d with c 6= b, a 6= d appear in that order along C. Let W1,W2 ⊆ G − V (C) − V (D)

with W1 ∩ W2 = ∅. If there is a K2,2 minor in G[ [a, d] ∪ W1 ] rooted at [a, b] and [c, d], represented as

Σ(R1, R2 | s1, s2), and a K2,2 minor in G[ [c, b]∪W2 ] rooted at [a, b] and [c, d], represented as Σ(R′1, R
′
2 | s′1, s′2),

and there exist ui ∈ [a, b] and uj ∈ [c, d], then there is a K2,5 minor Θ(R1 ∪R′1, R2 ∪R′2 | s1, s2, s′1, s′2, D) in

G. Denote such a minor by M([a, b], [c, d]). An example is shown in Figure 2.

For x ∈ V (C), define σ(x) ∈ {0, 12 , 1, 1
1
2 , . . . , k −

1
2} by σ(ui) = i, and σ(x) = i+ 1

2 if x ∈ Ui. Define the

length of a jump x− y as min{|σ(x)− σ(y)|, k − |σ(x)− σ(y)|}. A sector jump has length at least 1.

Claim 1. For every jump x − y of length greater than 1, there is a sector jump x1 − y1 of length 1 with

x1, y1 ∈ [x, y] and another sector jump x2 − y2 of length 1 with x2, y2 ∈ [y, x].

For any jump u−v, define the linear length as |σ(u)−σ(v)|. We claim that for any jump (not necessarily

a sector jump) x′−y′ of linear length `′ > 1 with σ(x′) < σ(y′), there is a sector jump x′′−y′′ of linear length

less than `′ with x′′, y′′ ∈ [x′, y′]. The jump x′−y′ must be outside C, and there is a sector Uj ⊂ (x′, y′). Let

x′′ − y′′ be any jump out of Uj ; then σ(x′) < σ(x′′) < σ(y′). If x′′ − y′′ does not contain an interior vertex

of x′ − y′, then by planarity x′′ − y′′ has linear length less than `′. If x′′ − y′′ contains an interior vertex of

x′ − y′, then we have jumps x′′ − x′ and x′′ − y′ with linear length less than `′, at least one of which is a

sector jump. We may repeat this process until we reach a sector jump x∗ − y∗ with x∗, y∗ ∈ [x′, y′] of linear

length 1, and hence also length 1.

If we relabel u0, u1, . . . , uk−1 keeping the same cyclic order so that x ∈ {u0} ∪ U0 and repeatedly apply

the previous paragraph beginning with the jump x − y, we obtain the required jump x1 − y1. Similarly,

relabeling so that y ∈ {u0} ∪ U0 yields the jump x2 − y2. This completes the proof of Claim 1.

Claim 2. k = 3.

Assume that k ≥ 4. Suppose there is a component D′ of G − V (C) with neighbors in three consecutive

sectors, say z1 ∈ U0, z2 ∈ U1, and z3 ∈ U2 (D′ may also have neighbors in other sectors). Then since k ≥ 4,

z1 − z3 is a jump of length greater than 1. Therefore by Claim 1, there is a sector jump x − y of length 1

with ui ∈ [x, y] ⊆ [z3, z1]. At most one of x ∈ U2, y ∈ U0 is true; we may assume that y /∈ U0. Then there

is a K2,5 minor Θ(D ∪ {u1}, D′ ∪ [z3, x] ∪ x − y |u0, z1, z2, u2, ui) as shown in Figure 3. This minor applies

even if x− y intersects D′.

Now suppose there is a component D′ of G−V (C) with neighbors in three sectors that are not consecutive

(this requires k ≥ 5; again D′ may also have neighbors in other sectors). We may assume that these are

z1 ∈ Uh, z2 ∈ Ui, z3 ∈ Uj in order along C, where Uh, Ui may be consecutive but Ui, Uj and Uj , Uh
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are not. Then there is a K2,5-minor Θ(D ∪ {ui+1}, D′ ∪ {z1, z3} |uh, ui, z2, uj , uj+1). An example with

(h, i, j) = (k − 1, 0, 2) is shown in Figure 4.

Hence, every component of G − V (C) other than D has neighbors in at most two sectors. Therefore, a

sector jump of length 1, from Ui−1 to Ui, cannot intersect any sector jump with an end in Uj , j /∈ {i− 1, i},
which includes all sector jumps of length at least 2.

From Claim 1 it follows that there are at least two distinct pairs of sectors with jumps of length 1 between

them. Suppose there are three distinct pairs of sectors with jumps of length 1 between them, say x1−y1, x2−y2
and x3−y3 in order along C, where ug ∈ (x1, y1), uh ∈ (x2, y2) and ui ∈ (x3, y3). Since k ≥ 4, we may assume

there is some uj ∈ (y3, x1). Then there is a K2,5 minor Θ(D∪{uj}, [y1, x2]∪x2−y2∪[y2, x3] |x1, ug, uh, ui, y3).

An example with (g, h, i) = (0, 1, 2) is shown in Figure 5.

Therefore, we may assume that there are exactly two distinct pairs of sectors with jumps of length 1

between them, say x1−y1 and y2−x2 in order along C, where ug ∈ (x1, y1) and uh ∈ (y2, x2). Suppose some

sector has no jump of length 1 out of it. Without loss of generality we may assume this sector is U0 ⊆ (x2, x1).

There is some sector jump x− y out of U0. Then y ∈ [y1, y2], otherwise Claim 1 would give a jump of length

1 between a third pair of sectors. Therefore there is a K2,5 minor Θ(D∪{u0, u1}, [y1, y2] |x, x1, ug, uh, x2) as

shown in Figure 6.

Therefore, every sector has a jump of length 1 out of it, which means that k = 4, and we may assume

that there are jumps U3−U0 and U1−U2, but no jumps U0−U1 or U2−U3. Let z3− z0 be the sector jump

U3−U0 such that z3 is closest to u3 and z0 is closest to u1. Similarly, let z1− z2 be the sector jump U1−U2

such that z1 is closest to u1 and z2 is closest to u3. Each Uj is divided into two parts by zj : let A0 = (u0, z0),

B0 = (z0, u1), B1 = (u1, z1), A1 = (z1, u2), A2 = (u2, z2), B2 = (z2, u3), B3 = (u3, z3) and A3 = (z3, u0).

We may assume that z3 − z0 and z1 − z2 are embedded in the plane so that D is outside both cycles

Z0 = C[z3, z0] ∪ z3 − z0 and Z2 = C[z1, z2] ∪ z1 − z2. Let H0 be the subgraph of G consisting of Z0 and all

vertices and edges inside Z0, and define H2 similarly; these are 2-connected by Lemma 2.4.

For any j, define Nj to be the set of vertices of V (G)−V (C)−V (D) inside a cycle C[uj , uj+1]∪uj+1Duj

(the exact path through D does not matter). Loosely, these are the vertices inside C associated with the sector

Uj . We now claim that there is a K2,2 minor along [u3, u1] using only vertices in [u3, u1]∪ V (H0)∪N3 ∪N0.

If N3 6= ∅, then there is a component D′ of G − V (C) with V (D′) ⊆ N3. Now D′ has (at least) three

neighbors in [u3, u0], say w1, w2, w3 in order along C. So Θ([u3, w1], [w3, u1] |w2, D
′) is the required K2,2

minor. Thus, we may assume that N3 = ∅, and symmetrically that N0 = ∅.
Let H ′0 = H0 ∪G[z3, z0]. Then V (H ′0) = V (H0), so H ′0 is also 2-connected, but possibly E(H ′0) 6= E(H0)

because H ′0 contains any edges inside C joining two vertices of [z3, u0] or two vertices of [u0, z0]. If H ′0 has a

K2,2 minor rooted at z3 and z0, such as a minor Θ(z3, z0 |u0, q) when z3 − z0 has an internal vertex q, then

we can extend this minor using [u3, z3] and [z0, u1] to get the required K2,2 minor. If there is an inside jump

out of any of B3, A3, A0, B0, then this jump together with z3 − z0 forms the required K2,2 minor.

So we may assume that H ′0 has no K2,2 minor rooted at z3 and z0. Thus, z3 − z0 has no internal vertex

and so z3z0 is an outer edge of H ′0. Also, by Lemma 2.1, H ′0 is z3z0-outerplanar. If there is an edge of
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G leaving H ′0 at a vertex of A3 or A0 then, since N3 = N0 = ∅, that edge is an inside jump, creating the

required K2,2 minor. Hence, any edges of G leaving H ′0 leave at z3, u0 or z0. Since G is 3-connected these

are the only vertices that can have degree 2 in H ′0.

Suppose that B3 = ∅. By Lemma 2.2 there is a Hamilton path P = z0z3 . . . t in H ′0 where t has degree 2

in H ′0; then we must have t = u0. Thus, P ∪ C[z0, u3] ∪ u3Du0 is a longer cycle, a contradiction. This cycle

is shown in Figure 7, where we use the convention that paths found using Lemma 2.2 or Corollary 2.3 are

shown by heavily shading the part of the graph covered by the paths; the rest of the cycle is shown using

dotted curves. Thus, B3 is nonempty, and by a symmetric argument B0 is also nonempty.

Suppose r0− t is an outside jump out of B0. This jump cannot contain an internal vertex of z3− z0, and

t /∈ (u3, z3], by choice of z3 − z0. The jump cannot contain an internal vertex of z1 − z2, and t /∈ (u1, z1],

because there are no U0 − U1 jumps. Thus, t ∈ [z2, u3]. Similarly, an outside jump r3 − t′ out of B3 must

have t′ ∈ [u1, z1]. Hence we cannot have outside jumps out of both B0 and B3 because the jumps r0− [z2, u3]

and r3 − [u1, z1] would intersect by planarity, giving a jump r3 − r0 that contradicts the choice of z3 − z0.

Therefore, there is an inside jump out of one of B0 or B3, giving the required K2,2 minor along [u3, u1].

By a symmetric argument there is also a K2,2 minor along [u1, u3] using only vertices in [u1, u3]∪V (H2)∪
N1 ∪ N2. The two minors intersect only at u1 and u3, so together they give a K2,5 minor M(u3, u1). This

concludes the proof of Claim 2.

Henceforth we assume k = 3. The next claim simplifies the structure of the graph we are looking at and

makes further analysis easier.

Claim 3. Without loss of generality, we may assume that D consists of a single degree 3 vertex d and

that V (G) = V (C) ∪ {d}. Thus, every jump is a single edge. We may also assume that there are no

edges xy ∈ E(G) − E(C) where G has three internally disjoint xy-paths of length 2 or more; in particular

uiuj /∈ E(G) for all i, j ∈ {0, 1, 2, . . . , k − 1}.

Since k = 3 and G is 3-connected, every component of G − V (C) has exactly three neighbors on C.

Applying Lemma 2.7 to each of these components in turn, including D, we find that G is C-reducible to G1

for which every component of G1 − V (C) is a single degree 3 vertex of G1. Let d be the degree 3 vertex

corresponding to D. Applying Lemma 2.8 to each vertex of V (G1) − V (C) − {d} in turn, we find that G1

is C-reducible to G2 for which V (G2) = V (C) ∪ {d}. Starting from G2 and applying Lemma 2.9 repeatedly

to any edge xy not on C where there are three internally disjoint xy-paths of length 2 or more, we find that

G2 is C-reducible to G3 in which there are no such edges xy. Since uiuj /∈ E(C) for all i and j, G3 has no

edges uiuj by the second part of Lemma 2.9 .

Since C-reducibility is transitive, G is C-reducible to G3. G3 is 3-connected and has all the properties

stated in the claim. Since G3 is a minor of G, G3 is planar, and showing that G3 has a K2,5 minor also shows

that G has a K2,5 minor. By (c) of the definition of C-reducibility, showing that G3 has a cycle longer than

9
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C also shows that G has a cycle longer than C. Therefore, we may replace G by G3 in our arguments. This

concludes the proof of Claim 3.

We are now in the general situation where there are three sectors labeled U0, U1, and U2. Let t0 − t1 be

the outermost U2 −U0 jump (if any U2 −U0 jump exists), meaning that t0 ∈ U2 is closest to u2 and t1 ∈ U0

is closest to u1. Similarly let t2 − t3 be the outermost U0 − U1 jump, and t4 − t5 the outermost U1 − U2

jump, when such jumps exist. Because every sector must have a jump out of it and by Claim 1, there are

at least two sector jumps of length 1; without loss of generality, assume there are jumps t0 − t1 and t2 − t3.

Define X0 = (t0, u0), X1 = (u0, t1), X2 = (t2, u1), X3 = (u1, t3), X4 = (t4, u2), and X5 = (u2, t5), whenever

the necessary ti vertices exist. An example of the overall situation is shown in Figure 8.

Claim 4. There are no sector jumps x− u2 where x ∈ (t1, t2).

Let x − u2 be a sector jump with x ∈ (t1, t2). If there exist q1 ∈ X1 and q2 ∈ X2 then there is a

K2,5 minor Θ({d, u0, u1}, [t1, t2] | q1, q2, t3, u2, t0) as shown in Figure 9. So at least one of X1 and X2 is

empty; without loss of generality, assume X1 = ∅. Since X1 = ∅ and by choice of t0 − t1, all jumps out

of U2 must go to t1. If there is a K2,2 minor Θ(u2, u0 | s1, s2) along [u2, u0], then there is a K2,5 minor

Θ({d, u0, u1}, x− u2 | t1, t2, t3, s1, s2) as shown in Figure 10. So we may assume there is no such minor, and

apply Corollary 2.3 to G[u2, u0] to find a path P = u0 . . . t such that V (P ) = (u2, u0] and t is a degree 2

vertex in G[u2, u0]; then we must have tt1 ∈ E(G). Thus, P ∪ tt1 ∪ C[t1, u2] ∪ u2du0 is a longer cycle, as

shown in Figure 11. This completes the proof of Claim 4.

Claim 5. Either t0 6= u−0 or t3 6= u+1 (X0 and X3 cannot both be empty).

Assume that t0 = u−0 and t3 = u+1 . See Figure 12. Let R = G[t0, t3]; we may assume that d is outside R.

There are three internally disjoint t0t3-paths of length 2 or more, namely t0− t1∪C[t1, t2]∪ t2− t3, t0u0du1t3

and C[t3, t0], so by Claim 3, t0t3 /∈ E(G). Also by Claim 3, u0u1 /∈ E(G).
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Let P be the walk from u0 to u1 counterclockwise along the outer face of R and Q be the walk from

t0 to t3 clockwise along the outer face of R. The outer face of R is bounded by P ∪ Q ∪ {u0t0, u1t3}. If

P = (u0 = p0)p1p2 . . . pr−1(pr = u1) then each pi, 1 ≤ i ≤ r, is closer to t3 along C[t0, t3] than pi−1, so P

has no repeated vertices and is a path; similarly, Q is a path. Additionally, |V (P )| ≥ 3 because u0u1 /∈ E(G)

and |V (Q)| ≥ 3 because t0t1, t2t3 ∈ E(Q) (possibly t1 = t2).

The paths P and Q may intersect but only in limited ways. Any intersection vertex must belong to [t1, t2].

If P and Q intersect at two non-consecutive vertices on C, then using Claim 4 these two vertices would form

a 2-cut in G. Hence there are three possibilities for P and Q: V (P )∩ V (Q) = {x, x+}, V (P )∩ V (Q) = {x},
or V (P ) ∩ V (Q) = ∅.

(1) First assume V (P ) ∩ V (Q) = {x, x+} ⊆ [t1, t2]. We will show that there is a longer cycle. Let

R1 = G[t0, x] and R2 = G[x+, t3]. Then t0t1 ∈ E(R1) and t2t3 ∈ E(R2). Let P1 = P ∩R1 and Q1 = Q∩R1;

then u0 ∈ V (P1), t0t1 ∈ E(Q1), and V (P1) ∩ V (Q1) = {x}. First we construct a new u0x-path P ′1 and a

new t0x-path Q′1 such that V (P ′1 ∪ Q′1) = V (R1) and V (P ′1) ∩ V (Q′1) = {x}. If Q1 is just the edge t0t1 (so

t1 = x) we may take P ′1 = C[u0, x] and Q′1 = Q1. So we may assume that |V (Q1)| ≥ 3.

Let P ′1 be a u0x-path in R1 and Q′1 a t0x-path in R1 so that V (P1) ⊆ V (P ′1), V (Q1) ⊆ V (Q′1) and

V (P ′1) ∩ V (Q′1) = {x}. Such paths exist since we can take P ′1 = P1 and Q′1 = Q1. Additionally assume

|V (P ′1)∪ V (Q′1)| is maximum. Suppose V (P ′1 ∪Q′1) 6= V (R1) and let K be a component of R1− V (P ′1 ∪Q′1).

Because G is 3-connected, K must have at least three neighbors in G. Since V (P1 ∪ Q1) ⊆ V (P ′1 ∪ Q′1),

K contains no external vertices of R1. Therefore, by planarity all neighbors of K are in R1 and hence in

V (P ′1 ∪Q′1). Thus, K has at least two neighbors in one of P ′1 or Q′1.

Suppose first that K is adjacent to w1, w2 ∈ V (Q′1). If w1w2 ∈ E(Q′1), then we can lengthen Q′1 (still with

V (Q1) ⊆ V (Q′1)): replace the edge w1w2 with a path from w1 to w2 through K. Hence we may assume that

Q′1 = t0 . . . w1 . . . w3 . . . w2 . . . x with w3 6= w1, w2, and we have a K2,5 minor Θ([u2, t0]∪Q′1[t0, w1], Q′1[w2, x]∪
(P ∩ R2) | d, u0,K,w3, t3), a special case of which is shown in Figure 13. Suppose now that K is adjacent

to w1, w2 ∈ V (P ′1). If w1w2 ∈ E(P ′1) then we can lengthen P ′1, so P ′1 = u0 . . . w1 . . . w3 . . . w2 . . . x with

w3 6= w1, w2, and we have a K2,5 minor Θ([u2, u0] ∪ P ′1[u0, w1], P ′1[w2, x] ∪ (P ∩ R2) | d,w3,K, y, t3) where y

is an internal vertex of Q′1, which exists because |V (Q′1)| ≥ |V (Q1)| ≥ 3. Thus no such component K exists,

V (P ′1 ∪Q′1) = V (R1), and P ′1 and Q′1 are the desired paths in R1.

By symmetric arguments, R2 has a u1x
+-path P ′2 and a t3x

+-path Q′2 such that V (P ′2 ∪ Q′2) = V (R2)

and V (P ′2) ∩ V (Q′2) = {x+}. Hence there is a longer cycle C[t3, t0] ∪Q′1 ∪ P ′1 ∪ u0du1 ∪ P ′2 ∪Q′2 as shown in

Figure 14.

(2) Assume V (P )∩V (Q) = {x} ⊆ [t1, t2]. The argument here will be very similar to, but not exactly the

same as, that in (1). Again let R1 = G[t0, x] and R2 = G[x+, t3]. Then t0t1 ∈ E(R1) and t2 ∈ V (R2) ∪ {x}.
Using the argument from (1), in R1 we find a u0x-path P ′1 and a t0x-path Q′1 with V (P ′1) ∪ V (Q′1) = V (R1)

and V (P ′1) ∩ V (Q′1) = {x}.
We also want to find in R2 a u1x

+-path P ′2 and a t3x
+-path Q′2 such that V (P ′2 ∪ Q′2) = V (R2) and

11



V (P ′2)∩V (Q′2) = {x+}, but this requires some changes from (1). Let P2 be the segment of the outer boundary

of R2 clockwise from u1 to x+, and let Q2 be the segment counterclockwise from t3 to x+. Then P2 and

Q2 are paths by the same argument as for P and Q. If there is an edge t3x
+ (including when x+ = u1)

then we can take P ′2 = C[x+, u1] and Q′2 = Q2 = t3x
+, so we may assume there is no such edge and hence

|V (Q2)| ≥ 3.

Assume there is v ∈ (V (P2) ∩ V (Q2)) − {x+}. Using Claim 4, every edge leaving (x, v) (which contains

x+) goes to x or v, or is the edge t2u2. But since t2 is adjacent to t3, t2 /∈ (x, v) so {x, v} is a 2-cut in G,

a contradiction. Thus, V (P2) ∩ V (Q2) = {x+}. Now we have a u1x
+-path P2 and a t3x

+-path Q2 so that

(a) all external vertices of R2 belong to V (P2 ∪Q2), (b) V (P2) ∩ V (Q2) = {x+}, and (c) |V (Q2)| ≥ 3. This

allows us to apply the argument for |V (Q2)| ≥ 3 from (1) to find the required P ′2 and Q′2 in R2.

As in (1), we use P ′1, Q
′
1, P

′
2, Q

′
2 to find a longer cycle.

(3) Finally suppose V (P ) ∩ V (Q) = ∅. Let P ′ be a u0u1-path in R and Q′ a t0t3-path in R so that

V (P ) ⊆ V (P ′), V (Q) ⊆ V (Q′) and V (P ′) ∩ V (Q′) = ∅. Such paths exist because we can take P ′ = P and

Q′ = Q. Assume additionally that |V (P ′) ∪ V (Q′)| is maximum. Suppose V (P ′ ∪ Q′) 6= V (R) and let K

be a component of R − V (P ′ ∪ Q′). Because G is 3-connected, K must have at least three neighbors in G.

Since V (P ∪Q) ⊆ V (P ′ ∪Q′), K contains no external vertices of R. Therefore, by planarity all neighbors of

K are in R and hence in V (P ′ ∪Q′). Thus, K has at least two neighbors in one of P ′ or Q′.

First suppose K is adjacent to w1, w2 ∈ V (P ′). If w1w2 ∈ E(P ′), then we can lengthen P ′ (still with

V (P ) ⊆ V (P ′)): replace the edge w1w2 with a path from w1 to w2 through K. Hence we may assume that

P ′ = u0 . . . w1 . . . w3 . . . w2 . . . u1 with w3 6= w1, w2, and we have a K2,5 minor Θ(u0t0∪P ′[u0, w1], P ′[w2, u1]∪
u1t3 |u2, d, w3,K, y) as shown in Figure 15, where y is an internal vertex of Q′, which exists because |V (Q′)| ≥
|V (Q)| ≥ 3. We can reason similarly if K is adjacent to w1, w2 ∈ V (Q′). Thus no such component K exists

and V (P ′ ∪Q′) = V (R).

Suppose there is aK2,2 minor Θ(t0u0, u1t3 | s1, s2) inG[u1, u0]. Then there is aK2,5 minor Θ(t0u0, u1t3 | s1,
s2, d, p, q) as shown in Figure 16, where p, q are arbitrary internal vertices of P , Q respectively. So we may

assume there is no such minor. Therefore, there is no K2,2 minor along [t3, t0] or any of its subintervals.

Suppose that (u2, t0) = ∅ or all jumps out of (u2, t0) go to u0. Apply Corollary 2.3 to G[u2, t0] to find

a path J = t0 . . . t such that V (J) = (u2, t0] and either t = t0 if (u2, t0) = ∅, or t is a vertex of degree 2 in

G[u2, t0], from which there must be a jump to u0. In either case, t0u0 ∈ E(G) and there is a longer cycle

P ′ ∪ u1du2 ∪ C[t3, u2] ∪Q′ ∪ J ∪ tu0; the case when (u2, t0) 6= ∅ is shown in Figure 17.

So we may assume that not all jumps out of (u2, t0) go to u0 and so there is a jump x1 − x2 with

x1 ∈ (u2, t0) and x2 ∈ [t3, u2). By a symmetric argument there is also a jump x′2 − x′1 with x′2 ∈ (t3, u2) and

x′1 ∈ (u2, t0]. These jumps cannot cross because they are just edges, so we cannot have both x2 = t3 and

x′1 = t0. Without loss of generality, x2 6= t3, so x1 − x2 is a jump from (u2, t0) to (t3, u2). Out of all such

jumps we may assume that x1 − x2 has x1 closest to t0 and x2 closest to t3.

If there is a jump y1− y2 from (u2, x1) to (x1, u0], then x1−x2 and y1− y2 give a K2,2 minor in G[u1, u0]

that we excluded above, namely Θ([u1, x2], [y2, u0] |x1, y1) if y2 6= u0, or Θ([u1, x2], t0u0 |x1, y1) if y2 = u0. A

symmetric minor exists if there is a jump from (x2, u2) to [u1, x2). Hence edges of G leaving G[x2, x1] leave

at x1, x2 or u2. Since G[x2, x1] is bounded by the cycle C[x2, x1]∪ x1x2, G[x2, x1] is 2-connected by Lemma

2.4. Apply Lemma 2.2 to G[x2, x1] to find a path J1 = x2x1 . . . t where V (J1) = [x2, x1] and t is a degree 2

vertex in G[x2, x1] and hence must be u2. Apply Corollary 2.3 to G[x1, t0] to find a path J2 = t0 . . . s where

V (J2) = (x1, t0] and either s = t0 or s is a degree 2 vertex in G[x1, t0]. In either case su0 ∈ E(G) and there

is a longer cycle P ′ ∪ u1du2 ∪ J1 ∪ C[t3, x2] ∪Q′ ∪ J2 ∪ su0, as shown in Figure 18.

This completes the proof of Claim 5.

Claim 6. Either t1 = u+0 or t2 = u−1 (at least one of X1 and X2 is empty).

12



Figure 16 Figure 17 Figure 18

Figure 19 Figure 20

Assume t1 6= u+0 and t2 6= u−1 . By Claim 5, either t0 6= u−0 or t3 6= u+1 . Without loss of generality, suppose

t0 6= u−0 . Then there is a K2,5 minor Θ(u0du1, t0t1 ∪ [t1, t2] |u−0 , u
+
0 , u

−
1 , t3, u2) as shown in Figure 19.

Claim 7. At most two pairs of sectors have jumps between them.

Assume that there are three sector jumps t0 − t1, t2 − t3, and t4 − t5 where possibly t0 = t5, t1 = t2,

or t3 = t4. By Claim 5, X0 and X3 cannot both be empty and symmetrically, X1 and X4 cannot both be

empty and X2 and X5 cannot both be empty. Hence Xi 6= ∅ for at least three i. By Claim 6, at least one of

X1 and X2 is empty and symmetrically, at least one of X3 and X4 is empty and at least one of X5 and X0

is empty. Hence Xi 6= ∅ for exactly three i. Furthermore, the nonempty Xi must be rotationally symmetric

about C. Without loss of generality, suppose X0, X2, and X4 are nonempty and X1, X3, and X5 are empty.

If t1 = t2, then there is a standard longer cycle L(u+0 −u
+
1 ). Thus t1 6= t2, and symmetrically t3 6= t4 and

t5 6= t0.

Consider a jump r0 − r′0 out of X0. There are three options for r′0: r′0 ∈ [t5, t0), r′0 = t1, or r′0 = u2. If

r′0 ∈ [t5, t0) then, since t1 6= t2, there is a K2,5 minor Θ(du0t1, [t3, t4]∪ t4t5∪ [t5, r
′
0] | t0, r0, t2, u1, u2); the case

r′0 = t5 is shown in Figure 20. Thus, r′0 ∈ {u2, t1}, and symmetrically r′2 ∈ {u0, t3} for a jump r2 − r′2 out of

X2, and r′4 ∈ {u1, t5} for a jump r4 − r′4 out of X4.

If at least two of r′0, r′2, and r′4 belong to U = {u0, u1, u2} then without loss of generality we may

assume that r′0 = u2 and r′2 = u0. We have a K2,5 minor M([t0, t1], [u1, t4]) as shown in Figure 21. If

only one of r′0, r′2, and r′4 belongs to U , then without loss of generality r′0 = u2 and there is a K2,5 minor

Θ(u2du1t3, [t5, t0]∪t0t1∪ [t1, t2] | r0, u0, r2, t4, r4) as shown in Figure 22. Hence we may assume that all jumps

out of X0 go to t1, out of X2 go to t3, and out of X4 go to t5.

If there is a K2,2 minor Θ(t0, u0 | s1, s2) along [t0, u0], then there is a K2,5 minor Θ({d, u0, u1, u2}, t2t3 ∪
[t3, t4] ∪ t4t5 ∪ [t5, t0] | s1, s2, t1, r2, r4) as shown in Figure 23. Hence there is no K2,2 minor along [t0, u0], or

symmetrically, along [t2, u1] or [t4, u2]. Because all jumps out of X4 go to t5 we can apply Corollary 2.3 to

G[t4, u2] and find a path P = t4 . . . t where V (P ) = [t4, u2) and t has degree 2 in G[t4, u2], so tt5 ∈ E(G).

If (t5, t0) = ∅, then there is a longer cycle C[t0, u0] ∪ t0t1 ∪ C[t1, t4] ∪ P ∪ tt5u2du0 as shown in Figure 24.
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Figure 21 Figure 22 Figure 23

Figure 24 Figure 25

Hence (t5, t0) 6= ∅. Let y−y′ be a jump out of (t5, t0). Since all jumps out of X0 go to t1, y′ /∈ X0, so y′ = u0

or u2. Then there is a K2,5 minor Θ(yy′ ∪ u0du2, [t1, t2] ∪ t2t3 ∪ [t3, t4] | t0, r0, u1, r4, t5); the case y′ = u0 is

shown in Figure 25. This completes the proof of Claim 7.

Henceforth we assume there are jumps t0 − t1 and t2 − t3, but not t4 − t5. By Claim 6, at least one of

X1 and X2 is empty. Without loss of generality, assume X1 = ∅ and hence t1 = u+0 . We claim that there are

K2,2 minors M1 in G[u2, t1] and M2 in G[u0, u2], both rooted at u2 and [u0, t1].

Assume that M1 does not exist. If t0 = u+2 , then there is a standard longer cycle L(u+2 − u
+
0 ). Hence

t0 6= u+2 , and there must be a jump r − r′ from (u2, t0) to (t0, u0]. If r′ 6= u0 then we may take M1 to be

Θ([u2, r], (r
′, t1] | r′, t0), so all jumps from (u2, t0) must go to u0. If there is a K2,2 minor along [u2, t0] or along

[t0, u0] then we also have M1, so neither of these minors exist. All jumps out of (t0, u0) must go to t1 since

jumps to u2 are blocked by planarity. By Corollary 2.3 applied to G[u2, t0], there is a path P1 = t0 . . . t such

that V (P1) = (u2, t0] and t is a degree 2 vertex in G[u2, t0], or t = t0 if (t0, u0) = ∅, so that t is adjacent to u0.

Similarly by Corollary 2.3 there is a path P2 = t0 . . . s such that V (P2) = [t0, u0) and s is a degree 2 vertex

in G[t0, u0] or s = t0, so that s is adjacent to t1. Then there is a longer cycle P2∪ st1∪C[t1, u2]∪u2du0t∪P1

as shown in Figure 26. This is a contradiction, so M1 exists.

Figure 26 Figure 27 Figure 28
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Figure 29

Assume that M2 does not exist. If there is an inside jump out of (t2, u1) or (u1, t3), or any jump out of

(t3, u2), then this jump and t2 − t3 give us M2. So all edges of G leaving G[t2, t3] leave at t2, t3 or u1, and

(t3, u2) = ∅. Any K2,2 minor along [t2, t3] would also provide M2, so there is no such minor. Therefore, by

Lemma 2.2 there is a Hamilton path P = t2t3 . . . t in G[t2, t3] with t of degree 2 in G[t2, t3]. Then t = u1 and

we have a longer cycle C[u2, t2] ∪ P ∪ u1du2 as shown in Figure 27. This is a contradiction, so M2 exists.

Together M1 and M2 give a K2,5 minor M([u0, t1], u2) as in Figure 28. This contradiction concludes the

proof of Theorem 3.1.

4 Sharpness

A natural next step is to consider the same result for K2,6-minor-free graphs. It is not true, however, that

all 3-connected planar K2,6-minor-free graphs are Hamiltonian. In fact, we can construct an infinite family

of non-Hamiltonian 3-connected planar K2,6-minor-free graphs. Let Gk be the graph shown in Figure 29,

where k ≥ 1. We begin by analyzing K2,5 minors in G1, which is the Herschel graph, mentioned earlier.

Lemma 4.1. Suppose G1 has a K2,5 minor with standard model Σ(R1, R2 |S). Then

(a) R1 ∪R2 ∪ S = V (G1),

(b) each of R1 and R2 contains exactly one degree 4 vertex of G1, and

(c) G1 has no edge between R1 and R2.

Proof. For i = 1 and 2 let Hi = G1[Ri], and let N(Ri) be the set of neighbors of Ri in G1; then S ⊆
N(Ri). We use the fact that G1 is highly symmetric: besides the 2-fold symmetries generated by reflecting

Figure 29 about horizontal and vertical axes, there is a 3-fold symmetry generated by the automorphism

(u4)(u1u6u3)(xu5z)(u2u7v1)(y). Thus all degree 4 vertices in G1 are similar, u4 and y are similar, and all

other degree 3 vertices are similar.

Assume without loss of generality that |R1| ≤ |R2|. Since all vertices of G1 have degree 3 or 4, we have

|R1| ≥ 2. Since |R1|+ |R2| ≤ 6, we have |R1| ≤ 3. Since G1 has no triangles, H1 is a path w1w2 or w1w2w3.

Define the type of a path w1w2 . . . wk to be the sequence d1d2 . . . dk where di = deg(wi). We break into cases

according to the type of H1. The possible types are restricted by the fact that no two degree 4 vertices of G1

are adjacent. When |R1| = 3 we must also have |R2| = 3 so H2 is a path x1x2x3, and V (G1)−R1 − S = R2

so that V (G1)−R1 −N(R1) ⊆ R2.

If H1 has type 33 then |N(R1)| < 5. If H1 has type 333 then by symmetry we may assume H1 = u1u4u6,

and again |N(R1)| < 5. So neither of these cases happen.

If H1 has type 34 (or 43) then up to symmetry H1 = u3x. Then S = N(R1) = {u1, u2, u4, v1, z}. Now

R2 contains u6 (so that u4 ∈ N(R2)) and y (so that v1 ∈ N(R2)) so H2 is the path u6u5u7y of type 3433.
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If H1 has type 334 (or 433) then up to symmetry H1 = u4u1x. Then S = N(R1) = {u2, u3, u5, u6, v1}
and H2 is the path yu7z of type 334.

If H1 has type 343 then w1 and w3 may be either opposite or adjacent neighbors of w2. If they are

opposite neighbors, then up to symmetry H1 = u3xu2. Then V (G1)− R1 −N(R1) = {u6, u7} ⊆ R2 and so

either H2 = u6u5u7 and R2 is not adjacent to v1 ∈ S, or H2 = u6zu7 and R2 is not adjacent to u1 ∈ S. So

this does not occur. If w1 and w3 are adjacent neighbors of w2, then up to symmetry H1 = u1xu2. Then

S = N(R1) = {u3, u4, u5, y, v1} and H2 is the path u6zu7 of type 343.

If H1 has type 434 then up to symmetry H1 = xu1u5. Then V (G1)−R1 −N(R1) = {y, z} ⊆ R2 and so

H2 is either yu7z or yv1z. But in either case R2 is not adjacent to u4 ∈ S, so this case does not occur.

Whenever the minor exists (types 34, 334, and 343 with adjacent neighbors) all of (a), (b) and (c) hold.

Proposition 4.2. For all k ≥ 1, Gk is a 3-connected planar non-Hamiltonian K2,6-minor-free graph.

Proof. In the plane embedding of Gk shown in Figure 29 every pair of faces intersect at most once (at a

vertex or along an edge), so Gk is 3-connected. Let S = {x, y, z, u4, u5}. Then |S| = 5 but Gk − S has six

components, so Gk cannot be Hamiltonian (Gk is not 1-tough).

We prove that Gk is K2,6-minor-free by induction on k. For G1 this follows from Lemma 4.1(a). So

suppose that k ≥ 2, all Gj for j ≤ k − 1 are K2,6-minor-free, and Gk has a K2,6 minor with standard model

Σ(R1, R2 |S).

Let F = v1v2 . . . vk. Let R′j = Rj − V (F ) for j = 1 and 2, S′ = S − V (F ), S′′ = S ∩ V (F ) and

T = V (Gk)−R1−R2−S. We cannot have Rj ⊆ V (F ) because any subset of V (F ) that induces a connected

subgraph in Gk has only three neighbors in Gk. Therefore, each R′j is nonempty. If vi ∈ Rj ∪ S for some

vi ∈ V (F ), then there is a path Pj(vi) from vi to a vertex of R′j , all of whose internal vertices belong to

Rj ∩ V (F ). The other end of Pj(vi) is one of x, y or z.

We claim that (∗) V (F ) ⊆ R1 ∪ R2 ∪ S and no two consecutive vertices of F belong to the same Rj . If

not, there is e ∈ E(F ) with one end in T , or both ends in the same Rj . Contracting e preserves the existence

of a K2,6 minor and gives a graph isomorphic to Gk−1, contradicting our inductive hypothesis.

Suppose y ∈ S∪T . If some va ∈ S then Pj(va) = vava−1 . . . v1x and P3−j(va) = vava+1 . . . z for j = 1 or 2.

Thus Σ(R′1, R
′
2 |S′ ∪ {v1}) is a K2,6 minor in G1, a contradiction. Otherwise, by (∗), v1 ∈ Rj and v2 ∈ R3−j

for some j. We must have Pj(v1) = v1x and P3−j(v2) = v2v3 . . . vkz. Then Σ(R′1, R
′
2 |S − {y} ∪ {v1}) is a

K2,6 or K2,7 minor in G1, again a contradiction.

So we may assume without loss of generality that y ∈ R2. If |S′′| ≥ 2 we can choose va, vb ∈ S′′ with

a < b so that there is no vi ∈ S′′ with a < i < b. Then P1(va) = vava−1 . . . v1x and P1(vb) = vbvb+1 . . . vkz,

so S′′ = {va, vb} and x, z ∈ R′1. Then Σ(R′1, R
′
2 |S′ ∪ {v1}) is a K2,5 minor in G1 that contradicts Lemma

4.1(b). If |S′′| ≤ 1 then there is either va ∈ S, or since k ≥ 2 by (∗) there is va ∈ R1. Without loss of

generality P1(va) = vava−1 . . . v1x. Now Σ(R′1, R
′
2 ∪ {v1} |S′) is a K2,5 or K2,6 minor in G1 with x ∈ R′1 and

v1 ∈ R′2 ∪ {v1}, contradicting Lemma 4.1(c).

Based on computer results of Gordon Royle (personal communication), we suspect that it may be pos-

sible to characterize all exceptions to the statement that all 3-connected planar K2,6-minor-free graphs are

Hamiltonian. All known exceptions are closely related to the family shown in Figure 29.
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