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Abstract

Let G be a matching-covered graph, i.e., every edge is contained in a perfect matching. An edge

subsetX ofG is feasible if there exists two perfect matchingsM1 andM2 such that |M1∩X| 6≡ |M2∩X|

(mod 2). Lukot’ka and Rollová proved that an edge subset X of a regular bipartite graph is not

feasible if and only if X is switching-equivalent to ∅, and they further ask whether a non-feasible set

of a regular graph of class 1 is always switching-equivalent to either ∅ or E(G)? Two edges of G

are equivalent to each other if a perfect matching M of G either contains both of them or contains

none of them. An equivalent class of G is an edge subset K with at least two edges such that the

edges of K are mutually equivalent. An equivalent class is not a feasible set. Lovász proved that

an equivalent class of a brick has size 2. In this paper, we show that, for every integer k ≥ 3, there

exist infinitely many k-regular graphs of class 1 with an arbitrarily large equivalent class K such that

K is not switching-equivalent to either ∅ or E(G), which provides a negative answer to the problem

proposed by Lukot’ka and Rollová. Further, we characterize bipartite graphs with equivalent class,

and characterize matching-covered bipartite graphs of which every edge is removable.

1 Introduction

Let G be a graph. A perfect matching of G is a set of independent edges which covers all vertices of G.

A graph with a perfect matching is called a matchable graph. A graph G is k-extendable if G has at least

2k + 2 vertices and, for any k independent edges of G, there is a perfect matching containing them. It

has been shown by Plummer [13] that a k-extendable graph is (k + 1)-connected. A 1-extendable graph

is also called matching-covered, or coverable. A 2-extendable bipartite graph is called a brace. By the

result of Plummer [13], a brace is a 3-connected bipartite graph. A brick is a 3-connected graph such

that, for any two vertices u and v, G\{u, v} has a perfect matching. It is not hard to see that a brick is

matching-covered but not bipartite. Plummer [13] proved that a 2-extendable graph is either a brace or

a brick. But a brick is not necessarily 2-extendable. A matching-covered graph can be decomposed into

a family of bricks and braces by the Lovász’s Tight-Cut Decomposition [9].

∗School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China.
†School of Information, Renmin University of China, Beijing 100872, China. Partially supported by a grant from NSFC

(No. 11401576).
‡Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA. Partially

supported by a grant from the Simons Foundation (No. 359516).
§School of Applied Mathematics, Xiamen University of Technology, Xiamen, Fujian 361024, China.

1

http://arxiv.org/abs/1703.05412v2


A set of edges X of a matching-covered graph G is feasible if G has two perfect matchings M1 and

M2 such that |M1 ∩ X | 6≡ |M2 ∩ X | (mod 2). Note that, every edge of G is contained by some perfect

matchings but avoid by others. So a single edge of a matching-covered graph forms a trivial feasible edge

set. On the other hand, if X is an edge-cut of G, the parity of X ∩ M depends on the parities of the

orders of components of G\X and hence X is always non-feasible.

A matching-covered regular graph may have many distinct perfect matchings. It has been conjectured

by Lovász and Plummer [11] that every matching-covered regular graph has exponentially many perfect

matchings, which has been verified by Schrijver [15] for regular bipartite graphs and by Esperet et. al. [5]

for cubic graphs. As a matching covered regular graph has many perfect matchings, it seems reasonable

to believe that non-feasible edge sets are rare. It can be determined in randomized polynomial time

whether a given edge set is feasible or not by using a probabilistic algorithm for exact matching (cf.

Section 3.3 in [10]). Lukot’ka and Rollová [7] show that the feasible sets in cubic graphs could be used

to show the existence of spanning bipartite qudrangulations (cf. [12]) and certain cycle covers in signed

cubic bipartite graphs [7].

Let v be a vertex of G and E(v) be the set of all edges incident with v. For a given edge set X , the

switching-operation of X on E(v) is to be defined as the symmetric difference of E(v) and X , denoted

by E(v) ⊕X = (E(v) ∪ X)\(E(v) ∩ X). As a perfect matching always contains exactly one edge from

E(v), the symmetric difference E(v) ⊕X is feasible if and only if X is feasible. Two edge sets X1 and

X2 are switching-equivalent if X1 can be obtained from X2 by a series of switching-operations and vice

visa. For two switching-equivalent edge sets X1 and X2, by the definition of switching-operation, X1 is

feasible if and only if X2 is feasible.

Theorem 1.1 (Lukot’ka and Rollová, [7]). Let G be a regular bipartite graph and X ⊆ E(G). Then X

is not feasible if and only if X is switching-equivalent to ∅.

Lukot’ka and Rollová [7] found that the Petersen graph has a non-feasible edge set which is not

switching-equivalent to either ∅ or E(G), and believe that an easy characterization of feasible edge sets

for regular non-bipartite graphs seems not possible. More examples can be found in [12]. But all of these

examples are not 3-edge-colorable cubic graphs, which are so-called snarks. For regular nonbipartite

graphs of class 1, Lukot’ka and Rollová propose the following problem.

Problem 1.2 (Lukot’ka and Rollová, [7]). Let G be a regular graph of class 1 and let X be a subset of

edges of G. Is it true that X is not feasible if and only if X is switching-equivalent to either ∅ or E(G)?

In this paper, we provide a negative answer to the above problem by showing the following result.

Theorem 1.3. For any integer k ≥ 3, there are infinitely many k-regular nonbipartite graphs of class 1

with a non-feasible set X which is not switching-equivalent to either ∅ or E(G).

An edge e of a matching-covered graph G is removable if G\{e} is still matching-covered. A removable

edge is also called a removable ear in Ear Decomposition of matching-covered graph [3, 8], which provides

a fundamental construction of matching-covered graphs [2, 8, 16] (see also [11]). A graph G is strongly

coverable if every edge of G is removable. A strongly coverable graph is also called a graph with property

E(1, 1) (cf. [1]). Note that a 2-extendable graph is strongly coverable [14]. Therefore, any two independent

edges of a 2-extendable graph G form a feasible set of G. Aldred et. al. [1] show that a strongly coverable
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Figure 1: A 3-connected bipartite graph with a non-removable edge e.

bipartite graph is 3-connected. But a 3-connected bipartite graph is not necessarily strongly coverable.

The bipartite graph in Figure 1 is 3-connected but not strongly coverable.

A matchable bipartite graph G(A,B) is always balanced, i.e. |A| = |B|. For two subsets X and Y

of V (G(A,B)), let E[X,Y ] denote the set of all edges joining a vertex in X and a vertex in Y . In this

paper, we characterize all strongly coverable bipartite graphs as follows.

Theorem 1.4. Let G(A,B) be a matching-covered bipartite graph. Then G(A,B) is strongly coverable if

and only if every edge-cut S separating G(A,B) into two balanced components G1(A1, B1) and G2(A2, B2)

satisfies that |E[A1, B2]| ≥ 2 and |E[B1, A2]| ≥ 2.

Two edges of a matching-covered graph G are equivalent to each other if a perfect matching of G

either contains both of them or contains none of them. An equivalent class of G is a subset of E(G)

with at least two edges such that any two edges of K are equivalent to each other. An equivalent class

of a matching-covered graph is not a feasible set. A matching-covered graph with an equivalent class K

is not strongly coverable because any edge of K is not removable. However, a matching-covered graph

without an equivalent class may not be strongly coverable, even for bipartite graphs. For example, the

graph in Figure 1 has no equivalent class but does have a non-removable edge e and hence is not strongly

coverable.

Theorem 1.5 (Lovász, [9]). Let G be a brick and K be an equivalent class. Then |K| = 2 and G\K is

bipartite.

In this paper, we obtain a characterization for bipartite graphs with an equivalent class as follows.

Theorem 1.6. Let G(A,B) be a matching-covered bipartite graph. Then G(A,B) has an equivalent class

if and only if G(A,B) has a 2-edge-cut which separates G(A,B) into two balanced components.

The above result implies that a 3-connected matching-covered bipartite graph has no equivalent class.

Therefore, a brace has no equivalent class. Together with Theorem 1.5, a final graph in the Lovász’s

Tight-Cut Decomposition either has no equivalent class or has an equivalent class of size two.

Let Fmc, Fsc, F2-ext and Fnec denote the families of matching-covered graphs, strongly coverable

graphs, 2-extendable graphs and graphs without equivalent class, respectively. Then we have the following

nested relation:

F2-ext ( Fsc ( Fnec ( Fmc.

In Section 2, we are going to prove Theorem 1.3. The proofs of Theorems 1.4 and 1.6 are given in Section

3.
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2 Proof of Theorem 1.3

A signed graph (G, σ) is a graph associated with a mapping σ : E(G) → {−1, 1} which is called a

signature. Let E−(G, σ) = {e |σ(e) = −1}. Two signed graphs (G, σ1) and (G, σ2) are switching-

equivalent if E−(G, σ1) is switching-equivalent to E−(G, σ2). A signed graph (G, σ) is balanced if its

negative edge set is switching-equivalent to the empty set. For a subset U ⊆ V (G), let ∇U denote the

set of all edges joining a vertex in U and a vertex in V (G)\U . The following is a characterization of a

balanced signed graph.

Lemma 2.1 (Harary, [6]). A signed graph (G, σ) is balanced if and only if E−(G, σ) = ∇U for some

U ⊆ V (G).

Let G be a graph and X ⊆ E(G). Define σX : E(G) → {−1, 1} such that σX(e) = −1 if e ∈ X and

σX(e) = 1 otherwise. Then we have a signed graph (G, σX) for a graph G and a given edge subset X .

The following is a straightforward observation by applying the above lemma to signed graphs (G, σX)

and (G, σE(G)\X).

Observation 2.2. Let G be a graph and X ⊆ E(G). Then X is switching-equivalent to ∅ if and only if

X = ∇U for some U ⊆ V (G); and X is switching-equivalent to E(G) if and only if E(G)\X = ∇U for

some U ⊆ V (G).

Now, we are going to prove our main result, Theorem 1.3.

Proof of Theorem 1.3. For any integer k ≥ 3, take a copy of the complete bipartite graph Kk,k.

Assume that (A,B) be the bipartition of Kk,k. The bipartite graph Kk,k is k-edge-colorable and let

c : E(Kk,k) → {1, ..., k} be a k-edge-coloring. Let e1 = u1v1 and e2 = u2v2 be two edges of Kk,k with the

same color, say c(e1) = c(e2) = 1. Without loss of generality, assume that {u1, u2} ⊆ A and {v1, v2} ⊆ B.

Delete e1 and e2 from Kk,k and let Gk(A,B) be the resulting bipartite graph. Note that Gk(A,B) has a

Hamilton cycle.

Take m copies of Gk(A,B) (m ≥ 2) and denote them by G1
k(A

1, B1), G2
k(A

2, B2), ..., Gm
k (Am, Bm).

Add the following edges to join these copies of Gk to get a new k-regular non-bipartite graph G(k,m):

u1
1u

1
2, v

1
1u

2
1, v

1
2u

2
2, · · · , v

i
1u

i+1
1 , vi2u

i+1
2 , · · · , vm−1

1 um
1 , vm−1

2 um
2 , vm1 vm2

where vi1, v
i
2, u

i
1, u

i
2 ∈ V (Gi

k) with degree k − 1. Let K be the set of these new edges. For example, see

G(3, 2) in Figure 2.

Figure 2: An example G(3, 2): the set K consisting of all blue edges.
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Since Gk(A,B) has a Hamiltonian cycle, the copy of G1
k(A

1, B1) has a Hamilton cycle C which

together with u1
1u

1
2 contains two odd cycles. Hence G(k,m) is not bipartite. On the other hand, G(k,m)

has a k-edge-coloring which comes from a k-edge-coloring of Gk together coloring all new edges by the

color c(e1) = c(e2). Hence G(k,m) is a k-regular non-bipartite graph of class 1. Let K be the set of all

new edges.

Claim: The edge set K is an equivalent class of G(k,m).

Proof of Claim. In the graph G(k,m), two edges vi1u
i+1
1 and vi2u

i+1
2 form a 2-edge-cut which separates

G(k,m) into two components with an even number of vertices. Hence a perfect matching of G(k,m)

contains either none of them or both of them. So vi1u
i+1
1 is equivalent to vi2u

i+1
2 for i = 1, ...,m− 1.

Let M be a perfect matching of G(k,m) containing both vi1u
i+1
1 and vi2u

i+1
2 . Consider the copy

Gi+1
k (Ai+1, Bi+1). The perfect matching M matches all vertices Ai+1\{ui+1

1 , ui+1
2 } to k − 2 vertices of

Bi+1. So the remaining two vertices of Bi+1 are matched to two vertices of Ai+2 where i + 1 ≤ m − 1.

Hence vi+1
1 ui+2

1 ∈ M and vi+1
2 ui+2

2 ∈ M . A similar argument shows that K ⊆ M . So all edges in K are

dependent on viju
i+1
j for any j ∈ {1, 2} and i ∈ {1, ...,m− 1}, which implies that K\{u1

1u
2
1, v

m
1 vm2 } is an

equivalent class.

On the other hand, a perfect matching M of G(k,m) containing u1
1u

1
2 matches v11 and v12 to u2

1 and

u2
2 respectively. So all edges of K are dependent on u1

1u
1
2. By symmetry, all edges of K are dependent

on vm1 vm2 too. It follows that K is an equivalent class of G(K,m). This completes the proof of Claim.

Let X = {u1
1u

1
2, v

1
1u

2
1, ..., v

i
1u

i+1
1 , ...vm−1

1 um
1 } ⊂ K. So X is an equivalent class by Claim. Hence not

a feasible set. In the following, it suffices to show that X is not switching-equivalent to either ∅ or

E(G(k,m)).

First, note that G(k,m)\X is connected. Therefore, there is no U ⊆ V (G(k,m)) such that X = ∇U .

On the other hand, G(k,m)\X is not a bipartite graph because the edge vm1 vm2 together with a Hamilton

cycle C of Gk(A
m, Bm) contains two odd cycles which belong to G(k,m)\X . So G(k,m) does not have

a vertex subset U such that E(G(k,m)\X = ∇U . Hence X is not switching-equivalent to ∅ or E(G) by

Observation 2.2. Hence G(k,m) is a k-regular non-bipartite graph of class 1 which has a non-feasible set

X not switching-equivalent to ∅ or E(G(k,m)).

As m ≥ 2 could be any integer, there are infinitely many such graphs G(k,m) for any k ≥ 3 with a

non-feasible set which is not switching-equivalent to ∅ or E(G(k,m)). This completes the proof of the

theorem.

Remark. In the above construction, the complete bipartite graph Kk,k could be replaced by any k-

regular bipartite graph G with a Hamilton cycle C. For a k-edge-coloring of G, choose two edges with

the same color but not from the cycle C to be deleted. Let G′ be the resulting bipartite graph and then

take m copies of G′. Then the construction generates infinitely many other examples.

The graph G(k,m) from the above construction is a matching-covered graph with an equivalent class

of size 2m. So the equivalent class of a matching-covered graph could goes to arbitrarily large. However,

the edge-connectivity of G(k,m) is 2. We do not know whether there are highly connected matching-

covered graphs with a large equivalent class. Theorem 1.5 shows that bricks do not have a large equivalent

class. In the next section, we show that the edge-connectivity of a matching-covered bipartite graph G

is 2 if it has an equivalent class.
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3 Matchable bipartite graphs

Let G(A,B) be a matchable bipartite graph with bipartition (A,B), and let M be a perfect matching of

G(A,B). A cycle C of G(A,B) is M -alternating if E(C) ∩ M is a perfect matching of C. Similarly, a

path P of G(A,B) is M -alternating if E(P ) ∩M is a perfect matching of P . Hall’s Theorem provides a

characterization of matchable graph, which says that a bipartite graph G(A,B) is matchable if and only

if |A| = |B| and for any U ⊆ A, |N(U)| ≥ |U |. The following is a similar result for matching-covered

bipartite graph.

Lemma 3.1 (Theorem 4.1.1 in [11]). Let G(A,B) be a bipartite graph. Then G(A,B) is matching-covered

if and only if |A| = |B| and for any proper subset U 6= ∅ of A, |N(U)| ≥ |U |+ 1.

Let G(A,B) be a matching-covered graph. For any two vertex x ∈ A and y ∈ B such that xy /∈

E(G(A,B)), G ∪ {xy} is matching-covered by Lemma 3.1. Hence, G ∪ {xy} has a perfect matching M

containing xy, and another perfect matching M ′ containing an edge of G incident with x. Therefore,

the symmetric difference M ⊕M ′ has a cycle C containing xy. Further, G has an M ′-alternating path

joining xy, which is C\{xy}. So the following lemma holds.

Lemma 3.2. Let G(A,B) be a matching-covered bipartite graph. Then for any vertex x ∈ A and y ∈ B,

there is an M -alternating joining x and y for some perfect matching M .

For matchable bipartite graphs, the Dulmage-Mendelsohn Decomposition [4] provides a structure

characterization as follows.

Lemma 3.3 (Dulmage and Mendelsohn, [4]). Let G(A,B) be a matchable bipartite graph. Then G(A,B)

has a decomposition into disjoint matching-covered subgraphs Q1, ..., Qk such that:

(1) every Qi is vertex induced and,

(2) for any e ∈ E[Qi, Qj ] with i, j ∈ {1, 2, ..., k}, e is not contained by any perfect matching of G.

Figure 3: The Dulmage-Mendelsohn Decomposition of G(A,B) and the Dulmage-Mendelsohn digraph

D (right).

For a matchable bipartite graph, the Dulmage-Mendelsohn Decomposition is unique. Let G(A,B) be

a matchable bipartite graph and let G = {Q1, ..., Qk} be the Dulmage-Mendelsohn Decomposition. For

any 1 ≤ i ≤ k, identify all vertices in A ∩ Qi to a vertex ui and all vertices in B ∩ Qi to a vertex vi

and delete all multiple-edges to get a simple bipartite graph. For an edge uivj , orient it from ui to vj if

i = j and from vj to ui if i 6= j. Since the Dulmage-Mendelsohn Decomposition is unique, the digraph

generated this way is unique and is denoted by D′. The Dulmage-Mendelsohn digraph D is obtained from

6



D′ by contracting all arcs uivi to a single vertex qi for all 1 ≤ i ≤ k. (For example, see Figure 3.) So if

G(A,B) is matching-covered, then G has only one graph and hence D has one vertex but no arcs. The

following is a property of the Dulmage-Mendelsohn digraph D of a matchable bipartite graph G(A,B).

Lemma 3.4. Let G(A,B) be a connected matchable bipartite graph. If G(A,B) is not matching-covered,

then the Dulmage-Mendelsohn digraph D of G(A,B) is acyclic.

Proof. Let G(A,B) be a matchable bipartite graph and let G = {Q1, ..., Qk} be the Dulmage-Mendelsohn

Decomposition. Since G(A,B) is not matching-covered, then k ≥ 2. Let D be the Dulmage-Mendelsohn

digraph. Since G(A,B) is connected, D has at least one arc. Suppose to the contrary that D has

a directed cycle C. Without loss of generality, assume that C = q1q2 · · · qmq1 for some 2 ≤ m ≤ k

(relabeling if necessary).

By the definition of D, for each arc qiqi+1 where i and i + 1 are taken modulo m, G(A,B) has an

edge joining a vertex ui+1 ∈ Qi+1 ∩ A and a vertex vi ∈ Qi ∩ B which is not contained by any perfect

matching of G(A,B) by (2) in Lemma 3.3. In each Qi with 1 ≤ i ≤ m, there exists an Mi-alternating

path Pi joining ui and vi for some perfect matching Mi of Qi by Lemma 3.2. For m+ 1 ≤ i ≤ k, let Mi

be a perfect matching of Qi which is matching-covered. Let M = ∪k
i=1Mi and

C′ := (∪m
i=1Pi) ∪ {viui+1|i, i+ 1 ∈ {1, ...,m} (mod m)}.

Then M is a perfect matching of G and C′ is an M -alternating cycle of G. So the symmetric difference

M ⊕ E(C′) is another perfect matching containing edges viui+1, which contradicts that viui+1 is not

contained in any perfect matching of G(A,B). This completes the proof.

By Lemma 3.4 and the definition of the Dulmage-Mendelsohn digraph, if D has an arc qiqj , then all

edges of E(Qi, Qj) join vertices of Qi∩B and the vertices of Qj∩A. In other words, E[Qi∩A,Qj∩B] = ∅.

On the other hand, if E[Qi ∩B,Qj ∩ A] 6= ∅, then qiqj is an arc of D.

Let G(A,B) be a matchable bipartite graph, but not matching-covered. Then, by Lemma 3.4, the

Dulmage-Mendelsohn digraph D of G(A,B) is acyclic. A directed cut S of D is a subset of arcs of D

which separates D into two components and all arcs of S are oriented from the one component to the

other. A family of directed paths P intersects all directed cuts of D if for any directed cut S of D, there

exists a path P ∈ P such that E(P ) ∩ S 6= ∅. The following result shows how many new edges should be

added to a non-matching-covered bipartite graph to obtain a matching-covered bipartite graph.

Theorem 3.5. Let G(A,B) be a matchable bipartite graph and let G′(A,B) be a smallest matching-

covered bipartite graph such that G(A,B) ⊆ G′(A,B). Then

|E(G′(A,B))| ≤ |E(G(A,B))| + ℓ,

where ℓ is the smallest size of a family of directed paths intersecting all directed cuts of the Dulmage-

Mendelsohn digraph D of G(A,B).

Proof. Let G(A,B) be a matchable bipartite graph and let D be the Dulmage-Mendelsohn digraph. If

G(A,B) is a matching-covered graph, then D is a single vertex and P = ∅. The theorem holds trivially.

So in the following, assume that G(A,B) is not matching-covered. Therefore, the Dulmage-Mendelsohn

Decomposition G = {Q1, ..., Qk} of G(A,B) has at least two graphs, i.e., k ≥ 2. By Lemma 3.4, D is

acyclic. Let P be a family of directed paths intersecting all directed cuts of D such that |P| = ℓ.

7



For any P ∈ P , add an arc eP from the terminal vertex of P to the initial vertex of P , and let

the new digraph be D′. Since P intersects all directed cuts of D, D′ has no directed cut and hence is

strongly-connected. Hence, for any arc e of D, D′ has a directed cycle containing e.

For each new arc eP = xixj , then add a new edge to G joining a vertex vi ∈ B ∩ Qi and a vertex

uj ∈ A ∩ Qj . Let the new bipartite graph be G′(A,B). Let e be an edge of G′(A,B). If e is an edge

of some Qi, then e is contained in a perfect matching of G(A,B) which is also a perfect matching of

G′(A,B). If e is an edge of E[Qi, Qj], the digraphD′ has a directed cycle C containing the arc qiqj or qjqi.

By a similar argument as in Lemma 3.4, the directed cycle C of D′ corresponds to an M -alternating cycle

in G′(A,B) for some perfect matching M of G′(A,B). Therefore, e is contained in a perfect matching of

G′(A,B). So G′(A,B) is matching-covered. Hence, the number of edges of a smallest matching-covered

graph containing G(A,B) is at most |E(G′(A,B))| = |E(G(A,B))| + |P| = |E(G(A,B))| + ℓ.

Now, we are going to prove our main results, Theorems 1.4 and 1.6.

Proof of Theorem 1.4. Let G(A,B) be a matching-covered bipartite graph.

First, assume that G(A,B) is strongly coverable. Let S be an edge-cut of G(A,B), which separates

G(A,B) into two balanced components G1(A1, B1) and G2(A2, B2). Then S = E[A1, B2] ∪ E[A2, B1].

We need to show that |E[A1, B2]| ≥ 2 and |E[B1, A2]| ≥ 2. If not, we may assume that |E[A1, B2]| ≤ 1

by symmetry. Let e ∈ E[A1, B2]. Then G(A,B)\e has no edges joining vertices of A1 to vertices B2.

Since G1(A1, B1) is balanced, any perfect matching of G(A,B)\e does not contain edges from E[B1, A2].

Therefore, G(A,B)\e is not matching-covered. Hence G(A,B) is not strongly coverable, a contradiction

to the assumption that G(A,B) is strongly coverable.

In the following, assume that every edge-cut S separating G(A,B) into two balanced components

G1(A1, B1) and G2(A2, B2) satisfies |E[A1, B2]| ≥ 2 and |E[A2, B1]| ≥ 2. We need to show that G(A,B)

is strongly coverable. In other words, for any edge e, G(A,B)\e is matching-covered. If not, then

G(A,B) has an edge e such that G(A,B)\e is not matching-covered. Let G = {Q1, Q2, ..., Qk} be the

Dulmage-Mendelsohn Decomposition of G(A,B)\e, and let D be the Dulmage-Mendelsohn digraph. By

Lemma 3.4, D is a cyclic. By Theorem 3.5, adding one more arc to D generates a strongly connected

digraph D′. Therefore, D has only exactly one sink and one source. Without loss of generality, assume

q1 and qk be the source and sink of D, respectively, where q1 and qk correspond to the graphs Q1 and Qk.

By the definition of D, all edges of G(A,B)\e joining vertices of Q1 to vertices Qi with i 6= 1 are incident

with vertices in Q1∩B. So the edge e joins a vertex in Q1∩A and a vertex in Qk ∩B. Let S = ∇V (Q1),

the set of all edges joining vertices of Q1 and vertices of its component in G(A,B). Then S is an edge-cut

separating G(A,B) into G1(A1, B1) = Q1 and G2(A2, B2) = G(A,B)\Q1, where A1 = V (Q1) ∩ A and

B1 = V (Q1) ∩ B. Note that both G1(A1, B1) and G2(A2, B2) are matchable and therefore balanced.

However, |E(A1, B2)| = |{e}| = 1, a contradiction to the assumption. This completes the proof.

Proof of Theorem 1.6. Let G(A,B) be a matching-covered bipartite graph.

First, assume that G(A,B) has a 2-edge-cut S which separatesG(A,B) into two balanced components

G1(A1, B1) and G2(A2, B2). Then G1(A1, B1) has an even number of vertices because |A1| = |B1|.

Therefore, every perfect matching M of G(A,B) has an even number of edges of S. Hence, |S ∩M | = 0

or |S ∩M | = 2. In other words, S ∩M = ∅ or S ⊆ M . So S is an equivalent class of G(A,B).

In the following, assume that G(A,B) has an equivalent class K. Let e, e′ ∈ K. It suffices to show

that e is contained by a 2-edge-cut S which separates G(A,B) into two balanced components. Since e is
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equivalent to e′, it follows that G(A,B)\e has no perfect matching containing e′. Let G = {Q1, .., Qk} be

the Dulmage-Mendelsohn Decomposition of G(A,B)\e and let D be the Dulmage-Mendelsohn digraph.

By Lemma 3.3, every Qi is matching-covered and e′ joins two vertices from different components, say Qi

and Qj with i 6= j. Without loss of generality, assume that qiqj is an arc of D where qi and qj correspond

to Qi and Qj. By the definition of the Dulmage-Mendelsohn digraph, e′ joins a vertex of Qi ∩ B and a

vertex of Qj ∩ A.

Claim: The arc qiqj is a cut-edge of D.

Proof of Claim. If not, let T be a directed cut containing qiqj . Then T contains another arc, say e′′. By

Lemma 3.4, D is acyclic. Since G(A,B) is matching-covered, by Theorem 3.5, D has one directed path P

intersecting all directed cuts. So D has exactly one source and one sink, say q1 and qk respectively, where

q1 and qk correspond to Q1 and Qk. By Theorem 3.5, adding an arc from qk to q1 generates a strongly

connected digraph D′. So there is a directed cycle C containing e′′. Note that C contains exactly one

arc in T . It follows that C is still a directed cycle of D′\qiqj . The directed cycle C corresponds to an M -

alternating cycle of G(A,B)\e′ containing the edge e for some perfect matching M of G(A,B). Therefore,

G(A,B) has a perfect matching containing e but not e′, contradicting that e and e′ are equivalent to

each other. This completes the proof of Claim.

By Claim, E(Qi, Qj)∪{e} is an edge-cut of G(A,B). All edges in E(Qi, Qj)\{e} join a vertex of Qi∩B

and a vertex of Qj∩A. If E(Qi, Qj) contains an edge f other than e and e′, then G(A,B)\e′ is matching-

covered because the Dulmage-Mendelsohn digraph of G(A,B)\{e, e′} is the same as D. Therefore, adding

the edge emakesG(A,B)\{e′}matching-covered. So G(A,B) has a perfect matching containing e but not

e′, contradicting e, e′ ∈ K again. The contradiction implies that {e, e′} is a 2-edge-cut, which separates

G(A,B) into two components such that, for any Qm with 1 ≤ m ≤ k, a component of G(A,B)\{e, e′}

either contains Qm or does not intersect Qm. Hence, every component of G(A,B)\{e, e′} is balanced.

This completes the proof.

Remark. In [2], Carvalho et. al. proved that two equivalent edges e and e′ of a matching-covered

bipartite graph form an edge cut. Theorem 1.6 can be proved by the result of Carvalho et. al. easily.

The proofs of Theorems 1.4 and 1.6 in this paper are based on the Dulmage-Mendelsohn Decomposition

which provides insight into the structure of matchable bipartite graphs.
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