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Abstract

Let G be a matching-covered graph, i.e., every edge is contained in a perfect matching. An edge
subset X of G is feasible if there exists two perfect matchings M7 and Ma such that [M1NX| # |[M2NX|
(mod 2). Lukot’ka and Rollovd proved that an edge subset X of a regular bipartite graph is not
feasible if and only if X is switching-equivalent to @, and they further ask whether a non-feasible set
of a regular graph of class 1 is always switching-equivalent to either § or E(G)? Two edges of G
are equivalent to each other if a perfect matching M of G either contains both of them or contains
none of them. An equivalent class of G is an edge subset K with at least two edges such that the
edges of K are mutually equivalent. An equivalent class is not a feasible set. Lovdasz proved that
an equivalent class of a brick has size 2. In this paper, we show that, for every integer k > 3, there
exist infinitely many k-regular graphs of class 1 with an arbitrarily large equivalent class K such that
K is not switching-equivalent to either § or E(G), which provides a negative answer to the problem
proposed by Lukot’ka and Rollovd. Further, we characterize bipartite graphs with equivalent class,

and characterize matching-covered bipartite graphs of which every edge is removable.

1 Introduction

Let G be a graph. A perfect matching of G is a set of independent edges which covers all vertices of G.
A graph with a perfect matching is called a matchable graph. A graph G is k-extendable if G has at least
2k + 2 vertices and, for any k independent edges of GG, there is a perfect matching containing them. It
has been shown by Plummer [I3] that a k-extendable graph is (k + 1)-connected. A 1-extendable graph
is also called matching-covered, or coverable. A 2-extendable bipartite graph is called a brace. By the
result of Plummer [I3], a brace is a 3-connected bipartite graph. A brick is a 3-connected graph such
that, for any two vertices v and v, G\{u, v} has a perfect matching. It is not hard to see that a brick is
matching-covered but not bipartite. Plummer [I3] proved that a 2-extendable graph is either a brace or
a brick. But a brick is not necessarily 2-extendable. A matching-covered graph can be decomposed into

a family of bricks and braces by the Lovéasz’s Tight-Cut Decomposition [9].
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A set of edges X of a matching-covered graph G is feasible if G has two perfect matchings M; and
M> such that |M; N X| #£ |[M2N X| (mod 2). Note that, every edge of G is contained by some perfect
matchings but avoid by others. So a single edge of a matching-covered graph forms a trivial feasible edge
set. On the other hand, if X is an edge-cut of G, the parity of X N M depends on the parities of the
orders of components of G\ X and hence X is always non-feasible.

A matching-covered regular graph may have many distinct perfect matchings. It has been conjectured
by Lovész and Plummer [I1] that every matching-covered regular graph has exponentially many perfect
matchings, which has been verified by Schrijver [15] for regular bipartite graphs and by Esperet et. al. [5]
for cubic graphs. As a matching covered regular graph has many perfect matchings, it seems reasonable
to believe that non-feasible edge sets are rare. It can be determined in randomized polynomial time
whether a given edge set is feasible or not by using a probabilistic algorithm for exact matching (cf.
Section 3.3 in [I0]). Lukot’ka and Rollova [7] show that the feasible sets in cubic graphs could be used
to show the existence of spanning bipartite qudrangulations (cf. [I2]) and certain cycle covers in signed
cubic bipartite graphs [7].

Let v be a vertex of G and E(v) be the set of all edges incident with v. For a given edge set X, the
switching-operation of X on E(v) is to be defined as the symmetric difference of F(v) and X, denoted
by E(v) ® X = (E(v) UX)\(E(v) N X). As a perfect matching always contains exactly one edge from
E(v), the symmetric difference F(v) @ X is feasible if and only if X is feasible. Two edge sets X; and
Xy are switching-equivalent if X; can be obtained from Xy by a series of switching-operations and vice
visa. For two switching-equivalent edge sets X; and Xy, by the definition of switching-operation, X is

feasible if and only if X5 is feasible.

Theorem 1.1 (Lukot’ka and Rollové, [7]). Let G be a regular bipartite graph and X C E(G). Then X

is not feasible if and only if X is switching-equivalent to ().

Lukot’ka and Rollové [7] found that the Petersen graph has a non-feasible edge set which is not
switching-equivalent to either () or F(G), and believe that an easy characterization of feasible edge sets
for regular non-bipartite graphs seems not possible. More examples can be found in [I2]. But all of these
examples are not 3-edge-colorable cubic graphs, which are so-called snarks. For regular nonbipartite

graphs of class 1, Lukot’ka and Rollova propose the following problem.

Problem 1.2 (Lukot’ka and Rollové, [7]). Let G be a regular graph of class 1 and let X be a subset of
edges of G. Is it true that X is not feasible if and only if X is switching-equivalent to either ) or E(G)?

In this paper, we provide a negative answer to the above problem by showing the following result.

Theorem 1.3. For any integer k > 3, there are infinitely many k-reqular nonbipartite graphs of class 1

with a non-feasible set X which is not switching-equivalent to either O or E(QG).

An edge e of a matching-covered graph G is removable if G\{e} is still matching-covered. A removable
edge is also called a removable ear in Ear Decomposition of matching-covered graph [3| 8], which provides
a fundamental construction of matching-covered graphs [2] [8, [16] (see also [I1]). A graph G is strongly
coverable if every edge of G is removable. A strongly coverable graph is also called a graph with property
E(1,1) (cf. [I]). Note that a 2-extendable graph is strongly coverable [I4]. Therefore, any two independent
edges of a 2-extendable graph G form a feasible set of G. Aldred et. al. [I] show that a strongly coverable



Figure[} A 3-connected bipartite graph with a non-removable edge e.

bipartite graph is 3-connected. But a 3-connected bipartite graph is not necessarily strongly coverable.
The bipartite graph in Figure [[lis 3-connected but not strongly coverable.

A matchable bipartite graph G(A, B) is always balanced, i.e. |A| = |B|. For two subsets X and YV
of V(G(A, B)), let E[X,Y] denote the set of all edges joining a vertex in X and a vertex in Y. In this

paper, we characterize all strongly coverable bipartite graphs as follows.

Theorem 1.4. Let G(A, B) be a matching-covered bipartite graph. Then G(A, B) is strongly coverable if
and only if every edge-cut S separating G(A, B) into two balanced components G1(A1, B1) and G2(Az, B2)
satisfies that |E[A1, B2]| > 2 and |E[By, As]| > 2.

Two edges of a matching-covered graph G are equivalent to each other if a perfect matching of G
either contains both of them or contains none of them. An equivalent class of G is a subset of E(G)
with at least two edges such that any two edges of K are equivalent to each other. An equivalent class
of a matching-covered graph is not a feasible set. A matching-covered graph with an equivalent class K
is not strongly coverable because any edge of K is not removable. However, a matching-covered graph
without an equivalent class may not be strongly coverable, even for bipartite graphs. For example, the
graph in Figure [[lhas no equivalent class but does have a non-removable edge e and hence is not strongly

coverable.

Theorem 1.5 (Lovész, [9]). Let G be a brick and K be an equivalent class. Then |K| =2 and G\K s
bipartite.

In this paper, we obtain a characterization for bipartite graphs with an equivalent class as follows.

Theorem 1.6. Let G(A, B) be a matching-covered bipartite graph. Then G(A, B) has an equivalent class
if and only if G(A, B) has a 2-edge-cut which separates G(A, B) into two balanced components.

The above result implies that a 3-connected matching-covered bipartite graph has no equivalent class.
Therefore, a brace has no equivalent class. Together with Theorem [[L] a final graph in the Lovasz’s
Tight-Cut Decomposition either has no equivalent class or has an equivalent class of size two.

Let Fmc, Fsc, Fo-ext and Fnec denote the families of matching-covered graphs, strongly coverable
graphs, 2-extendable graphs and graphs without equivalent class, respectively. Then we have the following
nested relation:

Foext & Fsc € Fnec € Fme-

In Section 2, we are going to prove Theorem The proofs of Theorems [[.4] and are given in Section
3.



2 Proof of Theorem [1.3

A signed graph (G, o) is a graph associated with a mapping o : E(G) — {—1,1} which is called a
signature. Let E~(G,0) = {e |o(e) = —1}. Two signed graphs (G,o1) and (G, o02) are switching-
equivalent if E~(G,o01) is switching-equivalent to E~(G,02). A signed graph (G,o) is balanced if its
negative edge set is switching-equivalent to the empty set. For a subset U C V(G), let VU denote the
set of all edges joining a vertex in U and a vertex in V(G)\U. The following is a characterization of a

balanced signed graph.

Lemma 2.1 (Harary, [6]). A signed graph (G, o) is balanced if and only if E~(G,0) = VU for some
UCV(G).

Let G be a graph and X C E(G). Define ox : E(G) — {—1,1} such that ox(e) = —1 if e € X and
ox(e) = 1 otherwise. Then we have a signed graph (G,ox) for a graph G and a given edge subset X.
The following is a straightforward observation by applying the above lemma to signed graphs (G,ox)
and (G,0p(@)\x)-

Observation 2.2. Let G be a graph and X C E(G). Then X is switching-equivalent to () if and only if
X = VU for some U C V(G); and X is switching-equivalent to E(G) if and only if E(G)\X = VU for
some U C V(G).

Now, we are going to prove our main result, Theorem

Proof of Theorem [I.3l For any integer k£ > 3, take a copy of the complete bipartite graph Ky .
Assume that (A, B) be the bipartition of K} . The bipartite graph Ky is k-edge-colorable and let
¢: E(Kir) — {1,...,k} be a k-edge-coloring. Let e; = ujv1 and ez = ugvs be two edges of Ky, i with the
same color, say c(ey) = c¢(e2) = 1. Without loss of generality, assume that {u1,us} C A and {v1,v2} C B.
Delete e; and eg from Ky i, and let Gi (A, B) be the resulting bipartite graph. Note that Gi(A, B) has a
Hamilton cycle.

Take m copies of Gy (A, B) (m > 2) and denote them by G}(A', BY), G3(A?, B?),...,G*(A™, B™).
Add the following edges to join these copies of G, to get a new k-regular non-bipartite graph G(k,m):

uyug, viud, vpud, -, vjurtt, vhustt e T o T ey oftep!

where v}, v}, ul, ub € V(GY) with degree k — 1. Let K be the set of these new edges. For example, see
(G(3,2) in Figure

u, u, u’ u:

Vi V) Vi V)

Figure 2 An example G(3,2): the set K consisting of all blue edges.



Since Gk (A, B) has a Hamiltonian cycle, the copy of G} (A!, B') has a Hamilton cycle C' which
together with ulud contains two odd cycles. Hence G(k,m) is not bipartite. On the other hand, G(k,m)
has a k-edge-coloring which comes from a k-edge-coloring of G together coloring all new edges by the
color c(e1) = c(ez). Hence G(k,m) is a k-regular non-bipartite graph of class 1. Let K be the set of all

new edges.

Claim: The edge set K is an equivalent class of G(k, m).
Proof of Claim. In the graph G(k,m), two edges viui“ and v%uz;'l form a 2-edge-cut which separates

G(k,m) into two components with an even number of vertices. Hence a perfect matching of G(k,m)

contains either none of them or both of them. So viu}{™ is equivalent to viubt* for i =1,...,m — 1.
Let M be a perfect matching of G(k,m) containing both vjui™ and vjui™. Consider the copy

Gitt (A1 B71). The perfect matching M matches all vertices A"\ {u'™" us"'} to k — 2 vertices of
B!, So the remaining two vertices of B! are matched to two vertices of A2 where i +1 < m — 1.
Hence vit'uit? € M and vi™ui™ € M. A similar argument shows that K C M. So all edges in K are
dependent on v;-u;*l for any j € {1,2} and i € {1,...,m — 1}, which implies that K\{ujuf, v]"v5"} is an
equivalent class.

On the other hand, a perfect matching M of G(k,m) containing ujul matches v} and v} to u? and
u3 respectively. So all edges of K are dependent on ujul. By symmetry, all edges of K are dependent

on v too. It follows that K is an equivalent class of G(K,m). This completes the proof of Claim.

Let X = {ulu},viu?, ...,viuﬁ“, ...v{”_lui"} C K. So X is an equivalent class by Claim. Hence not

a feasible set. In the following, it suffices to show that X is not switching-equivalent to either () or
E(G(k,m)).

First, note that G(k,m)\X is connected. Therefore, there is no U C V(G(k,m)) such that X = VU.
On the other hand, G(k, m)\ X is not a bipartite graph because the edge v*v5* together with a Hamilton
cycle C of G(A™, B™) contains two odd cycles which belong to G(k,m)\X. So G(k, m) does not have
a vertex subset U such that E(G(k,m)\X = VU. Hence X is not switching-equivalent to ) or E(G) by
Observation Hence G(k,m) is a k-regular non-bipartite graph of class 1 which has a non-feasible set
X not switching-equivalent to () or E(G(k, m)).

As m > 2 could be any integer, there are infinitely many such graphs G(k,m) for any k > 3 with a
non-feasible set which is not switching-equivalent to §# or E(G(k,m)). This completes the proof of the

theorem. O

Remark. In the above construction, the complete bipartite graph K}, could be replaced by any k-
regular bipartite graph G with a Hamilton cycle C. For a k-edge-coloring of G, choose two edges with
the same color but not from the cycle C to be deleted. Let G’ be the resulting bipartite graph and then

take m copies of G’. Then the construction generates infinitely many other examples.

The graph G(k,m) from the above construction is a matching-covered graph with an equivalent class
of size 2m. So the equivalent class of a matching-covered graph could goes to arbitrarily large. However,
the edge-connectivity of G(k,m) is 2. We do not know whether there are highly connected matching-
covered graphs with a large equivalent class. Theorem[[.5shows that bricks do not have a large equivalent
class. In the next section, we show that the edge-connectivity of a matching-covered bipartite graph G

is 2 if it has an equivalent class.



3 Matchable bipartite graphs

Let G(A, B) be a matchable bipartite graph with bipartition (A4, B), and let M be a perfect matching of
G(A, B). A cycle C of G(4, B) is M-alternating if E(C) N M is a perfect matching of C. Similarly, a
path P of G(A, B) is M-alternating if E(P) N M is a perfect matching of P. Hall’s Theorem provides a
characterization of matchable graph, which says that a bipartite graph G(A, B) is matchable if and only
if |A| = |B| and for any U C A, [N(U)| > |U|. The following is a similar result for matching-covered
bipartite graph.

Lemma 3.1 (Theorem 4.1.1 in [I1]). Let G(A, B) be a bipartite graph. Then G(A, B) is matching-covered
if and only if |A| = |B| and for any proper subset U # 0 of A, IN(U)| > |U| + 1.

Let G(A, B) be a matching-covered graph. For any two vertex z € A and y € B such that zy ¢
E(G(A, B)), GU {xy} is matching-covered by Lemma Bl Hence, G U {zy} has a perfect matching M
containing zy, and another perfect matching M’ containing an edge of G incident with x. Therefore,
the symmetric difference M @& M’ has a cycle C' containing xy. Further, G has an M’-alternating path
joining xy, which is C\{zy}. So the following lemma holds.

Lemma 3.2. Let G(A, B) be a matching-covered bipartite graph. Then for any vertex x € A andy € B,

there is an M -alternating joining x and y for some perfect matching M.

For matchable bipartite graphs, the Dulmage-Mendelsohn Decomposition [4] provides a structure

characterization as follows.

Lemma 3.3 (Dulmage and Mendelsohn, [4]). Let G(A, B) be a matchable bipartite graph. Then G(A, B)
has a decomposition into disjoint matching-covered subgraphs Q1, ..., Qi such that:

(1) every Q; is vertex induced and,

(2) for any e € E[Q;, Q;] with 1,5 € {1,2,...,k}, e is not contained by any perfect matching of G.

q| QQ q3

Q1 QZ Q3

Figure 3 The Dulmage-Mendelsohn Decomposition of G(A, B) and the Dulmage-Mendelsohn digraph
D (right).

For a matchable bipartite graph, the Dulmage-Mendelsohn Decomposition is unique. Let G(A, B) be
a matchable bipartite graph and let G = {Q1, ..., Q& } be the Dulmage-Mendelsohn Decomposition. For
any 1 < i < k, identify all vertices in A N @Q; to a vertex wu; and all vertices in B N Q; to a vertex v;
and delete all multiple-edges to get a simple bipartite graph. For an edge u;v;, orient it from w; to v; if
i = j and from v; to u; if ¢ # j. Since the Dulmage-Mendelsohn Decomposition is unique, the digraph

generated this way is unique and is denoted by D’. The Dulmage-Mendelsohn digraph D is obtained from



D’ by contracting all arcs u;v; to a single vertex ¢; for all 1 <4 < k. (For example, see FigureBl) So if
G(A, B) is matching-covered, then G has only one graph and hence D has one vertex but no arcs. The

following is a property of the Dulmage-Mendelsohn digraph D of a matchable bipartite graph G(A4, B).

Lemma 3.4. Let G(A, B) be a connected matchable bipartite graph. If G(A, B) is not matching-covered,
then the Dulmage-Mendelsohn digraph D of G(A, B) is acyclic.

Proof. Let G(A, B) be a matchable bipartite graph and let G = {Q1, ..., @k} be the Dulmage-Mendelsohn
Decomposition. Since G(A, B) is not matching-covered, then k > 2. Let D be the Dulmage-Mendelsohn
digraph. Since G(A, B) is connected, D has at least one arc. Suppose to the contrary that D has
a directed cycle C. Without loss of generality, assume that C' = ¢q1q2- - ¢mq1 for some 2 < m < k
(relabeling if necessary).

By the definition of D, for each arc ¢;q;+1 where i and i + 1 are taken modulo m, G(A, B) has an
edge joining a vertex u;+1 € Q;41 N A and a vertex v; € Q; N B which is not contained by any perfect
matching of G(4, B) by (2) in Lemma In each @Q; with 1 < i < m, there exists an M;-alternating
path P; joining u; and v; for some perfect matching M; of Q; by Lemma [3.2l For m +1 <i <k, let M;
be a perfect matching of (); which is matching-covered. Let M = U¥_ M, and

O/ = (Uglf)l) U {viui+1|i,i + 1 S {1, ,m} (rnod m)}

Then M is a perfect matching of G and C” is an M-alternating cycle of G. So the symmetric difference
M @ E(C") is another perfect matching containing edges v;u;41, which contradicts that v;u;41 is not

contained in any perfect matching of G(A, B). This completes the proof. O

By Lemma [34] and the definition of the Dulmage-Mendelsohn digraph, if D has an arc g;q;, then all
edges of E(Q;, Q) join vertices of Q; N B and the vertices of Q;NA. In other words, E[Q;NA, Q;NB] = (.
On the other hand, if E[Q; N B,Q; N A] # 0, then ¢,q; is an arc of D.

Let G(A, B) be a matchable bipartite graph, but not matching-covered. Then, by Lemma [34] the
Dulmage-Mendelsohn digraph D of G(A, B) is acyclic. A directed cut S of D is a subset of arcs of D
which separates D into two components and all arcs of S are oriented from the one component to the
other. A family of directed paths P intersects all directed cuts of D if for any directed cut S of D, there
exists a path P € P such that F(P)NS # 0. The following result shows how many new edges should be

added to a non-matching-covered bipartite graph to obtain a matching-covered bipartite graph.

Theorem 3.5. Let G(A, B) be a matchable bipartite graph and let G'(A, B) be a smallest matching-
covered bipartite graph such that G(A, B) C G'(A, B). Then

|E(G'(A, B))| < |[E(G(A, B))| + ¢,

where £ is the smallest size of a family of directed paths intersecting all directed cuts of the Dulmage-
Mendelsohn digraph D of G(A, B).

Proof. Let G(A, B) be a matchable bipartite graph and let D be the Dulmage-Mendelsohn digraph. If
G(A, B) is a matching-covered graph, then D is a single vertex and P = (). The theorem holds trivially.
So in the following, assume that G(A, B) is not matching-covered. Therefore, the Dulmage-Mendelsohn
Decomposition G = {Q1,...,Qr} of G(A, B) has at least two graphs, i.e., k > 2. By Lemma B4, D is
acyclic. Let P be a family of directed paths intersecting all directed cuts of D such that |P| = £.



For any P € P, add an arc ep from the terminal vertex of P to the initial vertex of P, and let
the new digraph be D’. Since P intersects all directed cuts of D, D’ has no directed cut and hence is
strongly-connected. Hence, for any arc e of D, D’ has a directed cycle containing e.

For each new arc ep = x;x;, then add a new edge to G joining a vertex v; € BN Q; and a vertex
u; € ANQ;. Let the new bipartite graph be G'(4, B). Let e be an edge of G'(4, B). If e is an edge
of some @;, then e is contained in a perfect matching of G(A, B) which is also a perfect matching of
G'(A, B). If e is an edge of E[Q;, Q,], the digraph D’ has a directed cycle C' containing the arc g;q; or ¢;¢;.
By a similar argument as in Lemma [3.4] the directed cycle C of D’ corresponds to an M-alternating cycle
in G'(A, B) for some perfect matching M of G’(A, B). Therefore, e is contained in a perfect matching of
G'(A, B). So G'(A, B) is matching-covered. Hence, the number of edges of a smallest matching-covered
graph containing G(A, B) is at most |E(G'(4, B))| = |[E(G(A, B))| + |P| = |E(G(A, B))| + £. O

Now, we are going to prove our main results, Theorems [[.4] and

Proof of Theorem 1.4l Let G(A, B) be a matching-covered bipartite graph.

First, assume that G(A4, B) is strongly coverable. Let S be an edge-cut of G(A, B), which separates
G(A, B) into two balanced components G1(A1, By) and G3(Az, B2). Then S = E[A1, B2] U E[As, By].
We need to show that |E[A1, Bs]| > 2 and |E[By, A2]| > 2. If not, we may assume that |E[A;, Bo]| < 1
by symmetry. Let e € E[A1, Bs]. Then G(A, B)\e has no edges joining vertices of A; to vertices Bs.
Since G1 (A1, By) is balanced, any perfect matching of G(A, B)\e does not contain edges from E[B;, As].
Therefore, G(A, B)\e is not matching-covered. Hence G(A4, B) is not strongly coverable, a contradiction
to the assumption that G(A, B) is strongly coverable.

In the following, assume that every edge-cut S separating G(A, B) into two balanced components
G1(A1, By) and G2(Asz, Bs) satisfies |E[Ay, Ba]| > 2 and |E[Az, B1]| > 2. We need to show that G(A, B)
is strongly coverable. In other words, for any edge e, G(A, B)\e is matching-covered. If not, then
G(A, B) has an edge e such that G(A, B)\e is not matching-covered. Let G = {Q1,Q2,...,Qr} be the
Dulmage-Mendelsohn Decomposition of G(A, B)\e, and let D be the Dulmage-Mendelsohn digraph. By
Lemma B4 D is a cyclic. By Theorem B3] adding one more arc to D generates a strongly connected
digraph D’. Therefore, D has only exactly one sink and one source. Without loss of generality, assume
q1 and g be the source and sink of D, respectively, where ¢; and g correspond to the graphs @1 and Q.
By the definition of D, all edges of G(A, B)\e joining vertices of @1 to vertices @; with ¢ # 1 are incident
with vertices in Q1 N B. So the edge e joins a vertex in 1 N A and a vertex in QN B. Let S = VV(Q1),
the set of all edges joining vertices of Q1 and vertices of its component in G(A, B). Then S is an edge-cut
separating G(A4, B) into G1(A1, B1) = Q1 and G2(Asz, Bs) = G(A, B)\Q1, where A1 = V(Q1) N A and
B; = V(Q1) N B. Note that both G1(A1,B1) and Ga(As, Bs) are matchable and therefore balanced.
However, |E(A;1, B2)| = |{e}| = 1, a contradiction to the assumption. This completes the proof. O

Proof of Theorem Let G(A, B) be a matching-covered bipartite graph.

First, assume that G(A, B) has a 2-edge-cut S which separates G(A, B) into two balanced components
G1(A1, By) and G2(As, B2). Then G1(A1,B1) has an even number of vertices because |A;| = |By|.
Therefore, every perfect matching M of G(A, B) has an even number of edges of S. Hence, [SN M| =0
or |SN M| =2. In other words, SN M =@ or S C M. So S is an equivalent class of G(4, B).

In the following, assume that G(A, B) has an equivalent class K. Let e,e’ € K. It suffices to show

that e is contained by a 2-edge-cut S which separates G(A, B) into two balanced components. Since e is



equivalent to €', it follows that G(A, B)\e has no perfect matching containing e¢’. Let G = {Q1, .., Qr} be
the Dulmage-Mendelsohn Decomposition of G(A, B)\e and let D be the Dulmage-Mendelsohn digraph.
By Lemma[3.3] every @Q; is matching-covered and e’ joins two vertices from different components, say Q;
and Q; with ¢ # j. Without loss of generality, assume that g;q; is an arc of D where ¢; and ¢; correspond
to Q; and @Q;. By the definition of the Dulmage-Mendelsohn digraph, €’ joins a vertex of Q; N B and a
vertex of Q; N A.

Claim: The arc ¢;q; is a cut-edge of D.

Proof of Claim. If not, let T be a directed cut containing ¢;q;. Then T contains another arc, say e¢”. By
Lemmal[34l D is acyclic. Since G(A, B) is matching-covered, by Theorem [B.5, D has one directed path P
intersecting all directed cuts. So D has exactly one source and one sink, say ¢; and g respectively, where
g1 and g correspond to @1 and Q. By Theorem [3.5] adding an arc from g to g1 generates a strongly
connected digraph D’. So there is a directed cycle C' containing e¢”. Note that C' contains exactly one
arc in T It follows that C is still a directed cycle of D’\g;q;. The directed cycle C' corresponds to an M-
alternating cycle of G(A, B)\e’ containing the edge e for some perfect matching M of G(A, B). Therefore,
G(A, B) has a perfect matching containing e but not e, contradicting that e and e’ are equivalent to

each other. This completes the proof of Claim.

By Claim, E(Q;, Q;)U{e} is an edge-cut of G(A, B). All edges in E(Q;, @;)\{e} join a vertex of Q;NB
and a vertex of Q;NA. If E(Q;, Q;) contains an edge f other than e and ¢/, then G(A, B)\¢e’ is matching-
covered because the Dulmage-Mendelsohn digraph of G(A, B)\{e, e’} is the same as D. Therefore, adding
the edge e makes G(A, B)\{e'} matching-covered. So G(A, B) has a perfect matching containing e but not
€', contradicting e, e’ € K again. The contradiction implies that {e, e’} is a 2-edge-cut, which separates
G(A, B) into two components such that, for any Q,, with 1 < m < k, a component of G(A, B)\{e, e’}
either contains @Q,, or does not intersect @,,. Hence, every component of G(A, B)\{e,e'} is balanced.

This completes the proof. O

Remark. In [2], Carvalho et. al. proved that two equivalent edges e and e’ of a matching-covered
bipartite graph form an edge cut. Theorem can be proved by the result of Carvalho et. al. easily.
The proofs of Theorems [[.4] and in this paper are based on the Dulmage-Mendelsohn Decomposition

which provides insight into the structure of matchable bipartite graphs.
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