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A note on a Brooks’ type theorem for DP-coloring
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Abstract

Dvořák and Postle [8] introduced a DP-coloring of a simple graph as a generalization

of a list-coloring. They proved a Brooks’ type theorem for a DP-coloring, and Bernshteyn,

Kostochka and Pron [5] extended it to a DP-coloring of multigraphs. However, detailed
structure when a multigraph does not admit a DP-coloring was not specified in [5]. In this

note, we make this point clear and give the complete structure. This is also motivated

by the relation to signed coloring of signed graphs.
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1 Introduction

1.1 List-coloring and DP-coloring

We denote by [k] the set of integers from 1 to k. A k-coloring of a graph G is a mapping

f : V (G) → [k] such that f(u) 6= f(v) for any uv ∈ E(G). The minimum integer k such that

G admits a k-coloring is called the chromatic number of G, and denoted by χ(G).

A list assignment L : V (G) → 2[k] of G is a mapping that assigns a set of colors to each

vertex. A proper coloring f : V (G) → Y where Y is a set of colors is called an L-coloring

of G if f(u) ∈ L(u) for any u ∈ V (G). A list assignment L is called a t-list assignment

if |L(u)| ≥ t for any u ∈ V (G). The list-chromatic number or the choice number of G,

denoted by χℓ(G), is the minimum integer t such that G admits an L-coloring for each t-list

assignment L.

Since a k-coloring corresponds to an L-coloring with L(u) = [k] for any u ∈ V (G), we

have χ(G) ≤ χℓ(G). It is well-known that there are infinitely many graphs G satisfying

χ(G) < χℓ(G), and the gap can be arbitrary large: Consider for example, the complete

bipartite graph Kt,tt , which satisfies 2 = χ(Kt,tt) < χℓ(Kt,tt) = t + 1. A list assignment L

is called a degree-list assignment if |L(u)| ≥ dG(u) for any u ∈ V (G), where dG(u) denotes

the degree of u in G. A graph G is said to be degree-choosable if G admits an L-coloring

for degree-list assignment. A Brooks’ type theorem for degree-choosability was shown by

Borodin [7], and independently Erdős, Rubin, and Taylor [9]. See also [12] for a shorter

proof.

Theorem 1 A connected graph G is not degree-choosable if and only if each block of G is

isomorphic to Kn for some integer n or Cn for some odd integer n.

∗Department of Mathematics Education, Konkuk University, Korea. e-mail: skim12@konkuk.ac.kr
†This research was supported by Basic Science Research Program through the National Research Founda-

tion of Korea(NRF) funded by the Ministry of Education(NRF-2015R1D1A1A01057008).
‡Faculty of Environment and Information Sciences, Yokohama National University, Japan. e-mail:

ozeki-kenta-xr@ynu.ac.jp

1

http://arxiv.org/abs/1709.09807v1


Figure 1: Two examples of the ML-cover of C4 such that |L(u)| = 2 for any vertex u. Each

thin rectangle represents {u} × L(u) for some vertex u. In fact, the cycle C4 admits an

ML-coloring for the left, while does not for the right.

Furthermore, it is known that complete graphs and odd cycles do not have an L-coloring

for a degree-list assignment L only when all vertices have same list assignment of size exactly

their degree.

In order to consider some problems on list chromatic number, Dvořák and Postle [8]

considered a generalization of a list-coloring. They call it a correspondence coloring, but we

call it a DP-coloring, following Bernshteyn, Kostochka and Pron [5]. It was first proposed

for a simple graph, and then extended to a multigraph in [5].

Let G be a multigraph (possibly having multiple edges but no loops) and L be a list

assignment of G. For each pair of vertices u and v in G, let ML,uv be the union of µG(uv)

matchings between {u} × L(u) and {v} × L(v), where µG(uv) is the multiplicity of uv in G.

Note that if u and v are not connected by an edge in G, then µG(uv) = 0 and ML,uv is an

empty set. With abuse of notation, we sometimes regard ML,uv as a bipartite graph between

{u} × L(u) and {v} × L(v) of maximum degree at most µG(uv).

Let ML =
{
ML,uv : uv ∈ E(G)

}
, which is called a matching assignment over L. Then a

graph H is said to be the ML-cover of G if it satisfies all the following conditions:

(i) The vertex set of H is
⋃

u∈V (G)

(
{u} × L(u)

)
=

{
(u, c) : u ∈ V (G), c ∈ L(u)

}
.

(ii) For any u ∈ V (G), the set {u} × L(u) is a clique in H.

(iii) For any two vertices u and v in G, {u} × L(u) and {v} × L(v) induce in H the graph

obtained from ML,uv by adding those edges defined in (ii).

(See Figure 1 for an example.)

An ML-coloring of G is an independent set I in the ML-cover with |I| = |V (G)|. The

DP-chromatic number, denoted by χDP(G), is the minimum integer t such that G admits an

ML-coloring for each t-list assignment L and each matching assignment ML over L.

Note that when G is a simple graph and

ML,uv =
{
(u, c)(v, c) : c ∈ L(u) ∩ L(v)

}

for any edge uv in G, then G admits an L-coloring if and only if G admits an ML-coloring.

Furthermore, when L(u) = [k] for each u ∈ V (G) (that is, when we consider an ordinal k-

coloring), then the ML-cover of G is isomorphic to the graph G�Kk, which is the Cartesian

product of G and the complete graph Kk. Recall that the Cartesian product H1�H2 of

graphs H1 and H2 is the graph with V (H1�H2) = V (H1)× V (H2) and two vertices (u1, u2)

and (v1, v2) are adjacent if and only if either u1 = v1 and u2v2 ∈ E(H2) or u1v1 ∈ E(H1)

and u2 = v2. In this case, we see that G admits a k-coloring if and only if G�Kk contains
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an independent set of size |V (G)|. According to [3], this fact was pointed out by Plesnevič

and Vizing [14].

The relation in the previous paragraph implies χℓ(G) ≤ χDP(G). There are infinitely

many simple graphs G satisfying χℓ(G) < χDP(G): As we will see in Theorems 1 and

4, χ(Cn) = χℓ(Cn) = 2 < 3 = χDP(Cn) for an even integer n. Furthermore, the gap

χDP(G) − χℓ(G) can be arbitrary large. For example, Bernshteyn [2] showed that for a

simple graph G with average degree d, we have χDP(G) = Ω(d/ log d), while Alon [1] proved

that χℓ(G) = Ω(log d) and the bound is sharp. See [4] for more detailed results. Recently,

there are some works on DP-colorings; see [2, 3, 6, 8].

Bernshteyn, Kostochka and Pron [5] proved a Brooks’ type theorem for DP-coloring of

multigraphs. For a multigraph G and an integer t, we denote by Gt the multigraph obtained

from G by replacing each edge with a set of t multiples edges. A multigraph G is said to be

degree-DP-colorable if G admits an ML-coloring for each degree-list assignment L and each

matching assignment ML over L.

The following theorem gives a Brooks’ type theorem for a DP-coloring. This is an exten-

sion of Theorem 1.

Theorem 2 (Bernshteyn, Kostochka and Pron [5]) A connected multigraph G is not

degree-DP-colorable if and only each block of G is Kt
n or Ct

n for some n and t.

However, Theorem 2 does not explain the ML-colorability for a matching assignment ML

when every block of G is Kt
n or Ct

n for some n and t. The purpose of this paper is to make

this point clear and give the complete structure. As explained in the next subsection, it is

important work because of the relation to some results on signed colorings of signed graphs.

1.2 Singed colorings of signed graphs

Here, we give a relationship to signed colorings of signed graphs. A signed graph (G,σ) is a

pair of a multigraph G and a mapping σ : E(G) → {1,−1}, which is called a sign. For an

integer k, let

Nk =

{
{0,±1, . . . ,±r} if k is an odd integer with k = 2r + 1,

{±1, . . . ,±r} if k is an even integer with k = 2r.

A signed k-coloring of a signed graph (G,σ) is a mapping f : V (G) → Nk such that

f(u) 6= σ(uv)f(v) for each uv ∈ E(G). The minimum integer k such that a signed graph

(G,σ) admits a signed k-coloring is called the signed chromatic number of (G,σ). This was

first defined by Zaslavsky [16] with slightly different form, and then modified by Máčajová,

Raspaud, and Škoviera [13] to the above form so that it would be a natural extension of an

ordinally coloring.

We here point out that a signed coloring of a signed graph (G,σ) is a special case of a

DP-coloring of G. Let L be the list assignment of G with L(u) = Nk for any vertex u in G.

Then for an edge uv in G, let

ML,uv =

{{
(u, i)(v, i) : i ∈ Nk

}
if σ(uv) = 1,

{
(u, i)(v,−i) : i ∈ Nk

}
if σ(uv) = −1.

With this definition, it is easy to see that the signed graph (G,σ) admits a signed k-coloring

if and only if the multigraph G admits an ML-coloring.

A Brooks’ type theorem for a signed coloring was proven by Máčajová, Raspaud, and

Škoviera [13]. Later, Fleiner and Wiener [10] gave a short proof, using a DFS tree.
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For a signed graph (G,σ) and a mapping L from V (G) to Nk, a signed L-coloring is a

signed coloring f of G such that f(u) ∈ L(u) for each u ∈ V (G). Some results on signed L-

coloring are showed in [11, 15]. In particular, Schweser and Stiebitz [15] gave a Brooks’ type

theorem for signed list-colorings. In order to explain the exact statement, we here introduce

several definitions.

Let (G,σ) be a signed graph. A switching at a vertex v is defined as reversing the signs of

all edges incident to v. It is not difficult to see that a switching at any vertex does not change

the signed chromatic number of (G,σ). Note that a switching at v in the sense of a signed

L-coloring corresponds to taking the mapping with i 7→ −i on L(v). Two signed graphs or

two signs of a multigraph are signed-equivalent or simply equivalent if one is obtained from

the other by a sequence of switchings. A signed graph (G,σ) is balanced if σ is equivalent

to the sign with all edges positive; otherwise, (G,σ) is unbalanced. For a simple graph G, a

signed graph (G2, σ) is full if parallel edges with same end vertices have different signs on σ.

Then we are ready to state a Brooks’ type theorem for a signed coloring. This is an

extension of Theorem 1.

Theorem 3 (Schweser and Stiebitz [15]) Let (G,σ) be a signed graph, where G is con-

nected, and let L be a mapping from V (G) to Nk with |L(u)| ≥ dG(u) for each u ∈ V (G).

Then (G,σ) does not admit a signed L-coloring if and only if each block of (G,σ) is one of

the following:

• A balanced Kn for some integer n.

• A balanced Cn for some odd integer n.

• An unbalanced Cn for some even integer n.

• A full K2
n for some integer n.

• A full C2
n for some odd integer n.

1.3 Degree-DP-colorable graphs

In the previous subsections, we have seen two Brooks’ type theorems, namely that for DP-

coloring and for signed coloring. As we have seen, a signed coloring can be regarded as a

special case of a DP-coloring. Roughly speaking, Theorem 2 is an “almost” improvement of

Theorem 3. However, when there is no desired coloring, Theorem 3 completely determines

which signs and list assignments forbid to have a desired coloring, while Theorem 2 only

gives a structure of graphs. Motivated by this situation, we improve Theorem 2 so that it

completely covers Theorem 3.

Before explaining the exact statement of our main theorem, we define three special graphs.

For two graphs G and H and a vertex u of G, blowing up u to H is the operation to replace u

by H so that each vertex of H is joined to every neighbor of u in G. Let n and t be positive

integers.

• The graph H(n, t) is defined such that
{
(i, j, k) : i ∈ [n], j ∈ [n − 1], k ∈ [t]

}
is the

vertex set and (i, j, k) and (i′, j′, k′) are adjacent if and only if either i = i′ or j = j′.

See Figure 2. Note that the graph H(n, 1) is isomorphic to Kn�Kn−1, and H(n, t) is

obtained from H(n, 1) by blowing up each vertex to a complete graph Kt.

• A graph H is the t-fat ladder of length n if
{
(i, j, k) : i ∈ [n], j ∈ {1, 2}, k ∈ [t]

}
is the

vertex set and (i, j, k) and (i′, j′, k′) are adjacent if and only if either i = i′, or i′ = i+1

4



j = 1

j = 2

j = n− 1

i = 1 i = 2 i = n

Figure 2: The graph H(n, t). Each thin rectangle represents a clique. In particular, every

minimal thin rectangle corresponds to
{
(i, j, k) : k ∈ [t]

}
for some i ∈ [n] and j ∈ [n − 1],

and contains exactly t vertices.

and j = j′, where we define n + 1 as 1 for the subscript i. In other words, the t-fat

ladder of length n is obtained from the ladder of length n (i.e. Cn�K2) by blowing up

each vertex to a complete graph Kt. The left of Figure 1 is a 1-fat ladder of length 4.

• A graph H is the t-fat Möbius ladder of length n if
{
(i, j, k) : i ∈ [n], j ∈ {1, 2}, k ∈ [t]

}

is the vertex set and (i, j, k) and (i′, j′, k′) are adjacent if and only if either

– i = i′, or

– i′ = i+ 1 and j = j′ for 1 ≤ i ≤ n− 1, or

– i = n, i′ = 1 and j 6= j′.

In other words, the t-fat Möbius ladder of length n is obtained from the Möbius ladder

of 2n vertices by blowing up each vertex to a complete graph Kt. The right of Figure

1 is a 1-fat Möbius ladder of length 4.

For a vertex u in a graph G and a list assignment L of G, we denote {u} ×L(u) by L̃(u)

for simplicity. Similarly, L̃′(u) denotes {u} × L′(u) for L′(u) ⊆ L(u).

Now we are ready to state our main theorem.

Theorem 4 Let G be a connected multigraph, L be a degree-list assignment of G, and ML

be a matching assignment over L. Then G does not admit an ML-coloring if and only if each

block of G is isomorphic to Kt
n or Ct

n for some integers n and t such that all of the following

hold.

(I) For each vertex u in G, the list assignment L(u) has a partition

{
LB(u) : B is a block of G containing u

}

5



such that for any block B containing u,

|LB(u)| =

{
t(n− 1) if B is isomorphic to Kt

n,

2t if B is isomorphic to Ct
n.

(II) If B is a block of G isomorphic to Kt
n for some integers n and t, then

⋃
u∈V (B) L̃B(u)

induces the graph H(n, t) in the ML-cover of G, where each set L̃B(u) corresponds to{
(iu, j, k) : j ∈ [n− 1], k ∈ [t]

}
for some iu ∈ [n].

(III) If B is a block of G isomorphic to Ct
n for some integers n and t with n odd, then⋃

u∈V (B) L̃B(u) induces a t-fat ladder of length n in the ML-cover of G, where each set

L̃B(u) corresponds to
{
(iu, j, k) : j ∈ {1, 2}, k ∈ [t]

}
for some iu ∈ [n].

(IV) If B is a block of G isomorphic to Ct
n for some integers n and t with n even, then⋃

u∈V (B) L̃B(u) induces a t-fat Möbius ladder of length n in the ML-cover of G, where

each set L̃B(u) corresponds to
{
(iu, j, k) : j ∈ {1, 2}, k ∈ [t]

}
for some iu ∈ [n].

We see that Theorem 4 is an extension of Theorems 1, 2 and 3. Note that LB in the

“only if” part is a degree-list assignment of B, where B is a block of G. Furthermore, we

also see the following, which will be used in our proof.

Remark 5 If each block of a graph G is isomorphic to Kt
n or Ct

n for some integers n and t

and (I) holds for a list assignment L of G, then |L(u)| = dG(u) for each u ∈ V (G).

2 Proof of Theorem 4

The proof of Theorem 4 uses a lemma, which will be shown in the first subsection, and then

we give a proof of Theorem 4.

2.1 Greedy method to find an ML-coloring

As described in [8], greedily choice of a color in L(u) gives an ML-coloring for a (k + 1)-list

assignment L of any k-degenerate graph G. We use the same idea in this subsection to obtain

a useful lemma.

Let G be a connected multigraph, let L be a list assignment of G, and let ML be a

matching assignment over L. For u ∈ V (G) and c ∈ L(u), let G(u) := G− u and

L(u,c)(v) = L(v)−
{
c′ ∈ L(v) : (u, c)(v, c′) ∈ ML,uv

}

for each v ∈ V (G)− {u}. Note that the vertex (u, c) has at most µ neighbors in L̃(v) and v

lost µ edges from G to G(u), where µ is the multiplicity between u and v in G. Thus, if L

is a degree-list assignment of G, then L(u,c) is a degree-list assignment of G(u). We naturally

denote by ML(u,c) the restriction of ML into G(u) and L(u,c): That is, for each pair of vertices

v and w in G(u), ML(u,c),vw is the union of matchings of ML,vw with end vertices contained

in L̃(u,c)(v) and L̃(u,c)(w). Let ML(u,c) =
{
ML(u,c),vw : vw ∈ E

(
G(u)

)}
.

Suppose that G(u) admits an ML(u,c)-coloring, that is, there is an independent set Iu in

the ML(u,c)-cover of G with |Iu| = |V (G(u))| = |V (G)| − 1. For each (v, cv) in Iu, it follows

from the choice of L(u,c)(v) that (v, cv) is not a neighbor of (u, c) in the ML-cover of G.

Therefore, Iu ∪{(u, c)} is an independent set in the ML-cover of G
(u) with |I| = |V (G)|, and

hence G admits an ML-coloring. This gives the following lemma.
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Lemma 6 Let G be a connected multigraph, let L be a list assignment of G, and let ML be a

matching assignment over L. For u ∈ V (G) and c ∈ L(u), if G(u) admits an ML(u,c)-coloring,

then G admits an ML-coloring.

2.2 Proof of Theorem 4

It is not difficult to check the “if part” (see [5, Lemmas 7 and 8]), and hence we show the

“only if part” by induction on |V (G)|. Suppose that G does not admit an ML-coloring. By

Theorem 2, each block of G is isomorphic to Kt
n or Ct

n for some integers n and t. Let B0 be

an end block of G and let H be the ML-cover of G.

Case 1. B0 is isomorphic to Kt
n for some integers n and t.

Take a vertex u in B0 that is not a cut vertex of G. For an element c ∈ L(u), consider the

multigraph G(u) = G−u together with the list assignment L(u,c) of G(u) and the matching as-

signmentML(u,c) . Note that each block of G(u) is isomorphic toKt′

n′ or Ct′

n′ for some integers n′

and t′. If some of (I)–(IV) do not hold for G(u), L(u,c) and ML(u,c) , then by induction hypoth-

esis G(u) admits an ML(u,c)-coloring. However, Lemma 6 gives an ML-coloring in G, a contra-

diction. Therefore, we may assume that all of (I)–(IV) hold: That is, (I) for each vertex v in

G(u), the list assignment L(u,c)(v) has a partition
{
L′
B(v) : B is a block of G(u) containing v

}

such that for any block B containing v,

|L′
B(v)| =

{
t′(n′ − 1) if B is isomorphic to Kt′

n′ ,

2t′ if B is isomorphic to Ct′

n′ ,

and (II)–(IV) holds. In particular, Remark 5 implies that |L(u,c)(v)| = dG(u)(v) for each

v ∈ V (G(u)). Let B′
0 be the subgraph of G(u) induced by V (B0)− {u}. Since u is not a cut

vertex of G, B′
0 is a block of G(u) that is isomorphic to Kt

n−1.

By (II),
⋃

v∈V (B′
0)
L̃′
B′

0
(v) induces the graphH(n−1, t), where each set L̃′

B′
0
(v) corresponds

to
{
(iv, j, k) : j ∈ [n − 2], k ∈ [t]

}
for some iv ∈ [n − 1]. For v ∈ V (B′

0) and j ∈ [n − 2],

let Lj(v) be the set of elements cv ∈ L(u,c)(v) such that (v, cv) corresponds to a vertex in{
(iv , j, k) : k ∈ [t]

}
, and let

Ln−1(v) =
{
cv ∈ L(v) : (u, c)(v, cv) ∈ ML,uv

}
.

Note that |Lj(v)| = t for any j ∈ [n − 2]. So, if v is not a cut vertex of G, then L(v) =⋃n−1
j=1 Lj(v) and |Ln−1(v)| = |L(v)| − t(n − 2) ≥ t. In particular, we have |Ln−1(v)| = t.

Similarly, we obtain the same equality even if v is a cut vertex of G. Let

LB(v) =





L′
B(v) if v ∈ V (G)− V (B0) or B 6= B0,

L(u) if v = u and B = B0,

L′
B′

0
(v) ∪ Ln−1(v) if v ∈ V (B0)− {u} and B = B0.

Note that this satisfies (I), and also (II)–(IV) for all blocks B with B 6= B0. Since B0 is

isomorphic to Kt
n, it suffices to show (II) for B0.

Note that for any two vertices v and w in B0 − {u}, since ML,vw is the union of at most

t matchings and L̃j(v) and L̃j(w) are all adjacent for j ∈ [n − 2], there is no edge between

L̃j(v) and L̃j′(w) if j 6= j′.

Next, we show the following claim.
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Claim 1 For j 6= j′ with j, j′ ∈ [n− 1], there is no element c′ ∈ L(u) such that (u, c′) has a

neighbor both in L̃j(v) and in L̃j′(w) for some v,w ∈ V (B0)− {u}.

Proof. Suppose that there exists an element c′ ∈ L(u) such that (u, c′) has a neighbor both

in L̃j(v) and in L̃j′(w) for some v,w ∈ V (B0) − {u} and j, j′ ∈ [n − 1] with j 6= j′. Note

that in this case, we have n ≥ 3. Then consider the list assignment L(u,c′) of G(u) and the

matching assignment ML(u,c′) .

• Assume v 6= w. By symmetry between v and w, we may assume that w is not a cut

vertex of G. Since (u, c′) has a neighbor in L̃j′(w), there is an element cw ∈ Lj(w) that

still remains in L(u,c′)(w). For j ∈ [n − 1], since each vertex in L̃j(w) does not have a

neighbor in L̃(v)− L̃j(v), the existence of a neighbor of (u, c′) in L̃j(v) implies that the

vertex (w, cw) has at most t− 1 neighbors in L̃(u,c′)(v). Thus, L̃(u,c′)(w) cannot be the

set
{
(i, j, k) : j ∈ [n− 2], k ∈ [t]

}
in H(n− 1, t). Hence the ML(u,c′)-cover of B′

0 is not

isomorphic to H(n − 1, t). By induction hypothesis G(u) admits an M
L(u,c′)-coloring,

but Lemma 6 gives an ML-coloring in G, a contradiction.

• Assume v = w. Then consider a vertex z 6= v and an element cz in Lj(z) ∪ Lj′(z)

that remains in L(u,c′)(z). (Such an element cz exists, since |Lj(z)|+ |Lj′(z)| = 2t and

(u, c′) has at most t neighbors in L̃j(z) ∪ L̃j′(z).) By symmetry, we may assume that

cz ∈ Lj(z). Since (u, c′) has a neighbor in L̃j(v) in H, the vertex (z, cz) has at most

t − 1 neighbors in L̃(u,c′)(v). Therefore, by the same reason as above, we see that the

ML(u,c′)-cover of B′
0 is not isomorphic to H(n−1, t), and hence the induction hypothesis

and Lemma 6 give a contradiction, again.

Thus, the claim holds. �

Claim 1 directly implies that LB0(u) can be divided into n − 1 sets L1(u), . . . , Ln−1(u)

such that for each j ∈ [n − 1] and c′ ∈ Lj(u), the vertex (u, c′) has neighbors only in

L̃B0(u) ∪
⋃

v∈V (B′
0)
L̃j(v) in H.

Next, we will prove the following Claim.

Claim 2 (1) For each j ∈ [n−1] and c′ ∈ Lj(u), every vertex in
⋃

v∈V (B′
0)
L̃j(v) is a neighbor

of (u, c′) in H.

(2) L̃n−1(v) and L̃n−1(w) are all adjacent in H for any v,w ∈ V (B0)− {u}.

Proof. (1) If for some j ∈ [n − 1] and c′ ∈ Lj(u), some vertex in
⋃

v∈V (B′
0)
L̃j(v) is not a

neighbor of the vertex (u, c′) in H, then |L(u,c′)(v)| ≥ |L(v)| − (t − 1) ≥ dG(u)(v) + 1, and

hence the ML(u,c′)-cover of B′
0 is not isomorphic to H(n − 1, t). (See Remark 5.) By the

induction hypothesis G(u) admits an ML(u,c′)-coloring, but Lemma 6 gives an ML-coloring in

G, a contradiction. Thus, (1) holds. �

(2) If some vertex in L̃n−1(v) and some vertex in L̃n−1(w) are not adjacent in H for

v,w ∈ V (B0) − {u}, then taking c′ ∈ Lj(u) with j ∈ [n − 2], the vertex in L̃n−1(v) has

at most t− 1 neighbors in L̃n−1(w). This implies again that the ML(u,c′)-cover of B′
0 is not

isomorphic to H(n−1, t). the induction hypothesis and Lemma 6 give a contradiction, again.

This completes the proof of Claim 2. �

Claim 2 implies that
⋃

v∈V (B0)
L̃B0(v) induces the graph H(n, t), where each set L̃B0(v)

corresponds to
{
(iv , j, k) : j ∈ [n − 1], k ∈ [t]

}
for some iv ∈ [n]. This shows that B0 also

satisfies (II), and completes the proof of Case 1.
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Case 2. B0 is isomorphic to Ct
n for some integers n and t.

Since Ct
3 is isomorphic to Kt

3, we may assume that n ≥ 4. Let un−1, un, u1 be the three

consecutive vertices of Ct
n such that un is not a cut vertex of G. Let cn ∈ L(un).

Suppose first that the vertex (un, cn) in H has at most t − 1 neighbors in L̃(u1). In

this case, consider the graph G(un) = G − un, the list assignment L(un,cn) of G(un) and the

matching assignment ML(un,cn) as in Subsection 2.1. Since the vertex (un, cn) has at most

t− 1 neighbors in L̃(u1), we see that

|L(un,cn)(u1)| ≥ |L(u1)| − (t− 1) ≥ dG(u1)− (t− 1) = dG(un)(u1) + 1.

Thus, by Remark 5, (I) does not hold for G(un), L(un,cn) andML(un,cn) , and hence by induction

hypothesis G(un) admits an ML(un,cn)-coloring. However, Lemma 6 gives an ML-coloring in

G, a contradiction. Therefore, the vertex (un, cn) in H has exactly t neighbors in L̃(u1). By

the same argument, the vertex (un, cn) in H has exactly t neighbors in L̃(un−1). Similarly,

we can prove that |L(u1)| = |L(un−1)| = 2t.

For i = 1, n−1, let L1(ui) be the set of elements ci ∈ L(ui) such that (ui, ci) is a neighbor

of (un, cn) in H, and let L2(ui) = L(ui) − L1(ui). Since |L1(ui)| = t and |L(ui)| = 2t, we

have |L2(ui)| = |L(ui)| − |L1(ui)| = t. Then we construct the graph G′ from G − un by

adding t multiple edges connecting un−1 and u1. Let B′
0 be the subgraph of G′ induced

by V (B0) − {un}. Since n ≥ 4 and un is not a cut vertex of G, B′
0 is a block of G′ that

is isomorphic to Ct
n−1. Let L′ be the restriction of L into V (G′), let M ′

L′,vw = ML,vw for

vw ∈ E(G′)−{un−1u1}, let M
′
L′,un−1u1

be the set of all possible edges between L̃j(un−1) and

L̃j′(u1) for {j, j
′} = {1, 2}, and let M′

L′ =
{
M ′

L′,vw : vw ∈ E(G′)
}
.

Suppose that G′ admits an M
′
L′-coloring, that is, the M

′
L′-cover of G′ contains an in-

dependent set I ′ of size |V (G′)| = |V (G)| − 1. For i = 1, n − 1, let ci ∈ L(ui) with

(ui, ci) ∈ I ′. If c1 ∈ L2(u1) and cn−1 ∈ L2(un−1), then I ′ ∪ {(un, cn)} is an independent

set in H of size |V (G)|, a contradiction. Thus, we may assume that either c1 ∈ L1(u1) or

cn−1 ∈ L1(un−1). Since (u1, c1) and (un−1, cn−1) are not adjacent in the M
′
L′-cover of G′,

the choice of M ′
L′,un−1u1

implies that both c1 ∈ L1(u1) and cn−1 ∈ L1(un−1) hold. Further-

more, for any c′n ∈ L(un), since I ′ ∪ {(un, c
′
n)} is not an independent set in H, the vertex

(un, c
′
n) must be a neighbor of either (u1, c1) or (un−1, cn−1). Since (un, cn) is a neighbor of

both (u1, c1) and (un−1, cn−1), there are at least |L(u1)| + 1 ≥ 2t + 1 edges in H between{
(u1, c1), (un−1, cn−1)

}
and L̃(un). This contradicts that both (u1, c1) and (un−1, cn−1) have

at most t neighbors in L̃(un). Therefore, we have

(P1) : the M
′
L′-cover of G′ contains no independent set of size |V (G′)|.

By induction hypothesis, all of (I)–(IV) hold for G′, L′ and M
′
L′ : That is, (I) for each ver-

tex v inG′, the list assignment L′(v) has a partition
{
L′
B(v) : B is a block of G′ containing v

}

such that for any block B containing v,

|L′
B(v)| =

{
t′(n′ − 1) if B is isomorphic to Kt′

n′ ,

2t′ if B is isomorphic to Ct′

n′ ,

and (II)–(IV) holds. For v ∈ V (G) and for a block B containing v, let

LB(v) =

{
L′
B(v) if v 6= un,

L(v) if v = un and B = B0.
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Note that this satisfies (I), and also (II)–(IV) for all blocks B with B 6= B0. Since B0 is

isomorphic to Ct
n, it suffices to show (III) and (IV) for B0.

Suppose that there are three elements c′n−1 ∈ L1(un−1), c
′
n ∈ L(un) and c′1 ∈ L2(u1) such

that neither (un−1, c
′
n−1) nor (u1, c

′
1) is a neighbor of (un, c

′
n) in H. Let M−

L′,vw = ML,vw for

vw ∈ E(G′)− {un−1u1}, let

M−
L′,un−1u1

= M ′
L′,un−1u1

−
{
(un−1, c

′
n−1)(u1, c

′
1)
}
,

and let M
−
L′ =

{
M−

L′,vw : vw ∈ E(G′)
}
. Since G′, L′ and M

′
L′ satisfy (I)–(IV) and the

M
−
L′-cover of G′ is obtained from the M

′
L′-cover of G′ by deleting one edge, we see that

G′, L′ and M
−
L′ do not satisfy (III) or (IV). Therefore, by the induction hypothesis, G′ ad-

mits an M
−
L′-coloring: That is, the M

−
L′-cover of G′ contains an independent set I− of size

|V (G′)| = |V (G)| − 1. If either (un−1, c
′
n−1) 6∈ I− or (u1, c

′
1) 6∈ I−, then I− is also an inde-

pendent set of the M
′
L′-cover of G′, which contradicts (P1). Thus, (un−1, c

′
n−1) ∈ I− and

(u1, c
′
1) ∈ I− and hence I− ∪

{
(un, c

′
n)
}
is an independent set in H of size |V (G)|, again a

contradiction. Therefore, the following holds.

(P2) : There are no three elements c′n−1 ∈ L1(un−1), c
′
n ∈ L(un) and c′1 ∈ L2(u1)

such that neither (un−1, c
′
n−1) nor (u1, c

′
1) is a neighbor of (un, c

′
n) in H.

Furthermore, by symmetry, there are no three elements c′n−1 ∈ L2(un−1), c
′
n ∈ L(un) and

c′1 ∈ L1(u1) such that neither (un−1, c
′
n−1) nor (u1, c

′
1) is a neighbor of (un, c

′
n) in H.

Then, we can show the following property.

(P3) : For any c′n ∈ L(un), either all vertices in L̃1(un−1) or all vertices in L̃2(un−1)

are neighbors of (un, c
′
n).

Suppose that for c′n ∈ L(un), there are a vertex in L̃1(un−1) and a vertex in L̃2(un−1)

neither of which are neighbors of (un, c
′
n) in H. Since (un, c

′
n) has at most t neighbors in

L̃(u1), there exists an element c′1 ∈ L(u1) such that (u1, c
′
1) is not a neighbor of (un, c

′
n). We

here assume c′1 ∈ L2(u1), but the other case is symmetric. (Here we do not use cn). Let

c′n−1 ∈ L1(un−1) such that (un−1, c
′
n−1) is not a neighbor of (un, c

′
n). Then the three elements

c′n−1 ∈ L1(un−1), c
′
n ∈ L(un) and c′1 ∈ L2(u1) contradict (P2). Thus (P3) holds.

Thus we have followings:

• For any c′n ∈ L(un), since (un, c
′
n) has at most t neighbors in L̃(un−1) and |L̃1(un)| =

|L̃2(un)| = t, (P3) directly implies that the vertex (un, c
′
n) has no neighbor either in

L̃1(un−1) or in L̃2(un−1).

• Thus, L(un) can be divided into two sets L1(un) and L2(un) such that for each j ∈ {1, 2}

and c′n ∈ Lj(un), the set of neighbors of (un, c
′
n) in L̃(un−1) is L̃j(un−1). Note that

cn ∈ L1(un).

• Let c′n ∈ L2(un). Since (un, c
′
n) has no neighbors in L̃1(un−1), (P2) implies that all

vertices in L̃2(u1) are neighbors of (un, c
′
n) in H. Since (un, c

′
n) has at most t neighbors

in L̃(u1), no vertices in L̃1(u1) are neighbors of (un, c
′
n) in H.

• Similarly, for c′n ∈ L1(un), all vertices in L̃1(u1) are neighbors of (un, c
′
n) in H and no

vertices in L̃2(u1) are neighbors of (un, c
′
n).

Recall that M ′
L′,un−1u1

is the set of all possible edges between L̃j(un−1) and L̃j′(u1) for

{j, j′} = {1, 2}. Then the above conditions imply that ML,un−1un
is the set of all possible
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edges between L̃j(un−1) and L̃j(un) for j ∈ {1, 2}, and ML,unu1 is the set of all possible edges

between L̃j(un) and L̃j(u1) for j ∈ {1, 2}.

When n is odd, it follows from (IV) for B′
0 that

⋃
v∈V (B′

0)
L̃′

B′
0
(v) induces a t-fat Möbius

ladder of length n−1 in theM′
L′-cover ofG′. Then it is not difficult to see that

⋃
v∈V (B0)

L̃B0(v)

induces a t-fat ladder of length n. Therefore, (III) and trivially (IV) hold for B0.

By the same way, we show that when n is even,
⋃

v∈V (B0)
L̃B0(v) induces a t-fat Möbius

ladder of length n. Therefore, (IV) and trivially (III) hold for B0. This completes the proof

of Theorem 4. �
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