
ar
X

iv
:1

70
7.

04
29

7v
1 

 [
m

at
h.

C
O

] 
 1

3 
Ju

l 2
01

7

THE SIZE-RAMSEY NUMBER OF POWERS OF PATHS

DENNIS CLEMENS, MATTHEW JENSSEN, YOSHIHARU KOHAYAKAWA, NATASHA MORRISON,

GUILHERME OLIVEIRA MOTA, DAMIAN REDING, AND BARNABY ROBERTS

Abstract. Given graphs G and H and a positive integer q say that G is q-Ramsey for H ,

denoted G Ñ pHqq, if every q-colouring of the edges of G contains a monochromatic copy of H .

The size-Ramsey number r̂pHq of a graph H is defined to be r̂pHq “ mint|EpGq| : G Ñ pHq2u.

Answering a question of Conlon, we prove that, for every fixed k, we have r̂pP k
n q “ Opnq,

where P k
n is the kth power of the n-vertex path Pn (i.e. , the graph with vertex set V pPnq

and all edges tu, vu such that the distance between u and v in Pn is at most k). Our proof is

probabilistic, but can also be made constructive.

§1. Introduction

Given graphs G and H and a positive integer q say that G is q-Ramsey for H, denoted

G Ñ pHqq, if every q-colouring of the edges of G contains a monochromatic copy of H. When

q “ 2, we simply write G Ñ H. In its simplest form, the classical theorem of Ramsey [24] states

that for any H there exists an integer N such that KN Ñ H. The Ramsey number rpHq of a

graph H is defined to be the smallest such N . Ramsey problems have been well studied and many

beautiful techniques have been developed to estimate Ramsey numbers. For a detailed summary

of developments in Ramsey theory, see the excellent survey of Conlon, Fox and Sudakov [7].

A number of variants of the classical Ramsey problem are also under active study. In particular,

Erdős, Faudree, Rousseau and Schelp [12] proposed the problem of determining the smallest

number of edges in a graph G such that G Ñ H. Define the size-Ramsey number r̂pHq of a

graph H to be

r̂pHq :“ mint|EpGq| : G Ñ Hu.

In this paper, we are concerned with finding bounds on r̂pHq in some specific cases.

For any graph H it is not difficult to see that r̂pHq ď
`

rpHq
2

˘

. A result due to Chvátal (see,

e.g., [12]) shows that in fact this bound is tight for complete graphs. For the n-vertex path Pn,

Erdős [11] asked the following question.
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Question 1.1. Is it true that

lim
nÑ8

r̂pPnq
n

“ 8 and lim
nÑ8

r̂pPnq
n2

“ 0?

Using a probabilistic construction, Beck [3] proved that the size-Ramsey number of paths is

linear, i.e., r̂pPnq “ Opnq. Alon and Chung [2] provided an explicit construction of a graph G

with Opnq edges such that G Ñ Pn. Recently, Dudek and Prałat [10] gave a simple alternative

proof for this result (see also [21]). More generally, Friedman and Pippenger [14] proved that the

size-Ramsey number of bounded degree trees is linear (see also [8,15,17]) and it is shown in [16]

that cycles also have linear size-Ramsey numbers.

A question posed by Beck [4] asked whether r̂pGq is linear for all graphs G with bounded

maximum degree. This was negatively answered by Rödl and Szemerédi, who showed that there

exists an n vertex graph H and maximum degree 3 such that r̂pHq “ Ωpn log1{60 nq. The current

best upper bound for bounded degree graphs is proved in [19], where it is shown that for every

∆ there is a constant c such that for any graph H with n vertices and maximum degree ∆:

r̂pHq ď cn2´1{∆ log1{∆ n.

For further results on size-Ramsey numbers the reader is referred to [5, 18,25].

Given an n-vertex graph H and an integer k ě 2, the kth power Hk of H is the graph with

vertex set V pHq and all edges tu, vu such that the distance between u and v in H is at most k.

Answering a question of Conlon [6] we prove that all powers of paths have linear size-Ramsey

numbers. The following theorem is our main result.

Theorem 1.2. For any integer k ě 2,

r̂pP k
n q “ Opnq. (1.3)

Since Ck
n Ď P 2k

n , the next corollary follows directly from Theorem 1.2.

Corollary 1.4. For any integer k ě 2,

r̂pCk
nq “ Opnq. (1.5)

Throughout the paper we use big O notation with respect to n Ñ 8, where the implicit

constants may depend on other parameters. For a path P , we write |P | for the number of

vertices in P . For simplicity, we omit floor and ceiling signs when they are not essential.

The paper is structured as follows. In Section 2 we introduce some preliminary definitions

and give an outline of the proof is given. The proof of Theorem 1.2 is given in Section 3. In

Section 4, we mention some related open problems.

§2. Outline of the proof

To prove Theorem 1.2, we will show that there exists a graph G with Opnq edges such that G Ñ
P k

n .
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To construct G we begin by taking a pseudo-random graph H with bounded degree. The

existence of such an H will be proved in Lemma 3.1. Given Hk, we then take a complete blow-up,

defined as follows.

Definition 2.1. Given a graph H and a positive integers t, the complete-t-blow-up of H, denoted

Ht is the graph obtained by replacing each vertex v of H by a complete graph with rpKtq vertices,

the cluster Cpvq, and by adding, for every tu, vu P EpHq, every edge between Cpuq and Cpvq.

Note that we replace each vertex with a clique on rpKtq vertices rather than t vertices as might

have been expected.

We will now see that complete blow-ups of powers of bounded degree graphs have a linear

number of edges. This makes them valid candidates for showing r̂pP k
n q “ Opnq.

Fact 2.2. Let k, t, a and b be positive constants. If H is a graph with |V pHq| “ an and

∆pHq ď b, then |EpHk
t q| “ Opnq.

Proof. Since ∆pHq ď b, we have |EpHkq| “ Opnq. Therefore, |EpHk
t q| ď rpKtq2 ¨ |EpHkq| `

rpKtq2 ¨ an “ Opnq. �

The heart of the proof is to show that, given any 2-colouring of the edges of Hk
t , we can find a

monochromatic copy of Pn. To do this we will use the fact that H satisfies a particular property

(Lemma 3.5). We shall also make use of the following result.

Theorem 2.3 (Pokrovskiy [23, Theorem 1.7]). Let k ě 1. Suppose that the edges of Kn are

coloured with red and blue. Then Kn can be covered by k vertex-disjoint blue paths and a vertex-

disjoint red balanced complete pk ` 1q-partite graph.

We remark that we do not need the full strength of this result, in the sense that we do not

need the complete pk ` 1q-partite graph to be balanced; it suffices for us to know that the vertex

classes are of comparable cardinality. Such a result can be derived easily by iterating Lemma 1.5

in [23], for which Pokrovskiy gives a short and elegant proof (see also [22, Lemma 1.10]).

We shall also use the classical Kővári–T. Sós–Turán theorem [20], in the following simple form.

Theorem 2.4. Let G be a balanced bipartite graph with t vertices in each vertex class. If G

contains no Ks,s, then G has at most 4t2´1{s edges.

Let us now give a brief outline of how we find our monochromatic copy of Pn. Suppose the edges

of Hk
t have been coloured red and blue by a colouring χ. Recall that Hk

t is obtained by blowing

up Hk; in particular, the vertices v of Hk become large complete graphs Cpvq. By the choice of

parameters, Ramsey’s theorem tells us that each such Cpvq contains a monochromatic Kt. We

suppose that at least half of the Cpvq contain a blue Kt and let F be the subgraph of H induced

by the corresponding vertices v.

We shall define an auxiliary edge-colouring χ1 of F k and use the fact that F k Ñ Pn. If we find

a blue Pn in F k with the colouring χ1, then we shall be able to find a blue P k
n in Hk

t . On the other
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hand, if no such blue path Pn exists in F k, then we shall be able to find a red Pn in F Ď H (not

in F k), with certain additional properties. More precisely, such a red Pn Ď F Ď H will be found

as in Lemma 3.5, with the sets Ai being the vertex classes of a red pk `1q-partite subgraph of F k

as given by Theorem 2.3, applied to a suitable red/blue coloured complete graph (we complete F k

with its auxiliary colouring χ1 to a red/blue coloured complete graph by considering non-edges

of F k red). It will then be easy to find a red P k
n in Hk

t . The idea of defining an auxiliary graph

on monochromatic cliques as above was used in [1].

§3. Proof of Theorem 1.2

Our first lemma guarantees the existence of bounded degree graphs with the pseudo-randomness

property we require.

Lemma 3.1. For every integer k ě 1 and every ε ą 0 there exists a0 such that the following

holds. For any a ě a0 there is a constant b such that, for any large enough n, there is a graph

H with vpHq “ an such that:

(1) For every pair of disjoint sets S, T Ď V pHq with |S|, |T | ě εn, we have |EHpS, T q| ą 0.

(2) ∆pHq ď b.

Proof. Fix k ě 1 and ε ą 0. Let

a0 “ 2 ` 4

εpk ` 1q , (3.2)

and suppose a ě a0 is given. Let

c “ 4a

ε2
(3.3)

and

b “ 4ac. (3.4)

Let n be sufficiently large and G “ Gp2an, pq be the binomial random graph with p “ c{n. By

Chernoff’s inequality, with high probability we have |EpGq| ă p4a2cqn. Moreover, with high

probability G satisfies (1) (with H “ G) by the following reason: Let X be the number of pairs

of disjoint subsets of V pGq of size εn with no edges between them. Then, recalling (3.3) and

using Markov’s inequality, we have

PrX ě 1s ď ErXs ď
ˆ

2an

εn

˙2 ´

1 ´ c

n

¯pεnq2

ă 24an ¨ e´cε2n “ op1q.

Thus, we can fix a graph G satisfying these properties.

Now let H be a subgraph of G obtained by iteratively removing a vertex of maximum degree

until exactly an vertices remain. Then ∆pHq ď b, as otherwise we would have deleted more than

b ¨ an ą |EpGq| edges from G during the iteration, which, in view of (3.4), is a contradiction.

Moreover, as H is an induced subgraph of G, (1) is maintained. This completes the proof of the

lemma. �

We now show that any graph satisfying the hypothesis of Lemma 3.1 and property (1) also

satisfies an additional property. In what follows, a0 will be as defined in Lemma 3.1.
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Algorithm 1:

Input : a graph H with vpHq “ an satisfying (1) and sets Ai Ď V pHq (1 ď i ď k ` 1)

with Ai X Aj “ ∅ for all i ‰ j and |Ai| ě εan for all i.

Output : a path Pn “ px1, . . . , xnq in H with xi P Aj for all i, where j ” i pmod k ` 1q.
1 foreach 1 ď i ď k ` 1 do

2 Ui Ð Ai; Di Ð ∅

3 while |Di| ď |Ai|{2 for all i do

4 pick x1 P U1 and let P “ px1q; r Ð 1; U1 Ð U1 r tx1u
5 while 1 ď |P | ă n do

// P “ px1, . . . , xrq with r ě 1

6 if Du P Ur`1 with txr, uu P EpHq then

7 xr`1 Ð u; Ur`1 Ð Ur`1 r tuu
8 P Ð px1, . . . , xr, xr`1q; r Ð r ` 1

9 else

10 Dr Ð Dr Y txru
11 P Ð px1, . . . , xr´1q; r Ð r ´ 1

12 if |P | “ n then

13 return P // path has been found

14 STOP with failure // this will not happen

Lemma 3.5. Let H be a graph with vpHq “ an, for a ě a0, with property (1). Then, for any

family of pairwise disjoint sets A1, . . . , Ak`1 Ď V pHq each of size at least εan, there is a path

Pn “ px1, . . . , xnq in H with xi P Aj for all i, where j ” i pmod k ` 1q.

To prove this lemma, we analyse a depth first search algorithm, adapting a proof idea in [5,

Lemma 4.4]. More specifically, we run an algorithm (stated formally as Algorithm 1). Our

algorithm receives as input a graph H with vpHq “ an satisfying Property (1) and a family of

pairwise disjoint sets A1, . . . , Ak`1 Ď V pHq with |Ai| ě εan for all i. The output of A is a path

Pn “ px1, . . . , xnq in H with xi P Aj for all i, where j ” i pmod k ` 1q.
As it runs, the algorithm builds a path P “ px1, . . . , xrq with xi P Aj for all i and j with j ” i

pmod k ` 1q. Furthermore, it maintains sets Uj and Dj Ď Aj for all j, with the property that Uj ,

Dj, and V pP q X Aj form a partition of Aj for every j. The cardinality of the sets Uj decrease as

the algorithm runs, while the Dj increase. As the algorithm runs, we have r “ |P | ă n and it

searches for an edge txr, uu P EpHq where u belongs to the set Ur`1 of unused vertices in Ar`1.

If such a vertex u P Ur`1 is found, then P is made one vertex longer by adding u to it. If there is

no such vertex u, then xr is declared a dead end and it is put into Dr. Moreover, the path P is
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shortened by one vertex; it becomes P “ px1, . . . , xr´1q. Our algorithm iterates this procedure.

If we find a path P with n vertices this way, then we are done.

We now analyse Algorithm 1.

Proof of Lemma 3.5. We will prove that Algorithm 1 returns a path P on line 13 as desired,

instead of terminating with failure on line 14.

First recall that Ui, Di, and V pP q X Ai form a partition of Ai for every i. Since the path P

is always empty on line 4, at this point we have |U1| ě |A1| ´ |D1| ě |A1|{2 ą 0. Then, line 4 is

always executed succesfully.

Suppose now that A stops with failure on line 14. Then, for some i, say i “ r, the set Di “ Dr

became larger than |Ar|{2 ě εan{2 ě εn. Furthermore, we have |P | ă n and |Dr`1| ď |Ar`1|{2

(indices modulo k ` 1) and hence,

|Ur`1| ě |Ar`1| ´ |Dr`1| ´ |V pP q X Ar`1| ě 1

2
|Ar`1| ´

R

n

k ` 1

V

ě 1

2
εan ´ 2n

k ` 1
ą εn.

Applying Property (1) of Lemma 3.1 to the pair pDr, Ur`1q, we see that there is an edge tx, uu P
EpHq with x P Dr and u P Ur`1. Consider the moment in which x was put into Dr. This

happened on line 10, when P had x as its foremost vertex and A was trying to extend P further

into Ur`1. At this point, because of the edge tx, uu P EpHq, we must have had u R Ur`1 (see

line 6). Since the set Ur`1 decreases as A runs, this is a contradiction and hence A does not

terminate on line 14.

Algorithm 1 terminates as
ř

1ďiďk`1

`

|Di| ´ |Ui|
˘

increases as it runs. We conclude that it

returns a suitable path P as claimed. �

We are now ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Fix k ě 1 and let ε “ 1{3pk ` 1q. Let a0 be the constant given by an

application of Lemma 3.1 with parameters k and ε. Set a “ maxt6k, a0u and let b be given by

Lemma 3.1 for this choice of a. Moreover, let H be a graph with |V pHq| “ an and ∆pHq ď b be

as in Lemma 3.1. Finally, put t “ p64kq2k and s “ 2k.

Let Hk
t be a complete-t-blow-up of Hk, as in Definition 2.1, and let χ : EpHk

t q Ñ tred, blueu be

an edge-colouring of Hk
t . We shall show that Hk

t contains a monochromatic copy of P k
n under χ.

By the definition of Hk
t , any cluster Cpvq contains a monochromatic copy Bpvq of Kt. Without

loss of generality, the set W :“ tv P V pHq : Bpvq is blueu has cardinality at least vpHq{2. Let

F :“ HrW s be the subgraph of H induced by W , and let F 1 be the subgraph of F k
t Ď Hk

t

induced by
Ť

wPW V pBpwqq.
Given the above colouring χ, we define a colouring χ1 of F k as follows. An edge tu, vu P EpF kq

is coloured blue if the bipartite subgraph F 1rV pBpuqq, V pBpvqqs of F 1 naturally induced by the

sets V pBpuqq and V pBpvqq contains a blue Ks,s. Otherwise tu, vu is coloured red.

Claim 3.6. Any 2-colouring of EpF kq has either a blue Pn or a red P k
n .
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Proof. We apply Theorem 2.3 to F k, where if an edge is not present in F k, then we consider it

to be in the red colour class. If F k contains a blue copy of Pn, then we are done. Hence we may

assume F k contains a balanced, complete pk ` 1q-partite graph K with parts A1, . . . , Ak`1 on at

least vpF kq ´ kn ě an{2 ´ kn vertices, with no blue edges between any two parts. As a ě 6k,

each one of these parts has size at least

1

k ` 1

ˆ

1

2
a ´ k

˙

n ě εan. (3.7)

By Property 3.5 of Lemma 3.1 applied to the collection of sets of vertices A1, . . . , Ak`1 of F Ď H

(specifically F and not F k), we see that F rV pKqs contains a path with n vertices such that any

consecutive k ` 1 vertices are in distinct parts of K. Therefore F krV pKqs contains a copy of P k
n

in which every pair of adjacent vertices are in distinct parts of K. By definition of K, such a

copy is red. �

By Claim 3.6, F k contains a blue copy of Pn or a red copy of P k
n under the edge-colouring χ1.

Thus, we can split our proof into these two cases.

(Case 1 ) First suppose F k contains a blue copy px1, . . . , xnq of Pn. Then, for every 1 ď i ď
n´1, the bipartite graph F 1rV pBpxiqq, V pBpxi`1qqs contains a blue copy of Ks,s, with, say, vertex

classes Xi Ď V pBpxiqq and Yi`1 Ď V pBpxi`1qq. As |Xi| “ |Yi| “ s “ 2k for all 2 ď i ď n ´ 1,

we can find sets X 1
i Ď Xi and Y 1

i Ď Yi such that |X 1
i| “ |Y 1

i | “ k and X 1
i X Y 1

i “ ∅ for all

2 ď j ď n ´ 1. Let X 1
1 “ X1 and Y 1

n “ Yn.

We now show that the set U :“ Ťn´1
i“1 X 1

i Y Ťn
i“2 Y 1

i provides us with a blue copy of P k
2kn

in F 1 Ď Hk
t . Note first that |U | “ 2k ` 2kpn ´ 2q ` 2k “ 2kn. Let u1, . . . , u2kn be an ordering

of U such that, for each i, every vertex in X 1
i comes before any vertex in Y 1

i`1 and after every

vertex in Y 1
i . By the definition of the sets X 1

i and Y 1
i and the construction of F 1 Ď F k

t Ď Hk
t ,

each vertex uj is adjacent in blue to tuj1 P U : 1 ď |j ´ j1| ď ku. Thus, U contains a blue copy

of P k
2nk, as claimed.

(Case 2 ) Now suppose F k contains a red copy P of P k
n . That is, F k contains a set of vertices

tx1, . . . , xnu such that xi is adjacent in red to all xj with 1 ď |j ´ i| ď k. We shall show that,

for each 1 ď i ď n, we can pick a vertex yi P V pBpxiqq so that y1, . . . , yn define a red copy of P k
n

in F 1 Ď F k
t Ď Hk

t . We do this by applying the local lemma [13, p. 616] (a greedy strategy also

works).

We have to show that it is possible to pick the yi (1 ď i ď n) in such a way that tyi, yju is a

red edge in F 1 for every i and j with 1 ď |i ´ j| ď k. Let us choose yi P V pBpxiqq (1 ď i ď n)

uniformly and independently at random. Let e “ txi, xju be an edge in P Ď F k. We know that e

is red. Let Ae be the event that tyi, yju is a blue edge in F 1. Since the edge e is red, we know

that the bipartite graph F 1rV pBpxiqq, V pBpxjqqs contains no blue Ks,s. Theorem 2.4 then tells

us that PrAes ď 4t´1{s.

The events Ae are not independent, but we can define a dependency graph D for the collection

of events Ae (e P EpP q) by adding an edge between Ae and Af if and only if e X f ‰ ∅.
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Then ∆pDq ď 4k. Given that

4∆PrAes ď 64kt´1{s “ 1 (3.8)

for all e, the Local Lemma tells us that P
“
Ş

ePEpP q Āe

‰

ą 0, and hence a simultaneous choice of

the yi (1 ď i ď n) as required is possible. This completes the proof of Theorem 1.2. �

Throughout our proof we have used probabilistic methods to show the existence of G. We

now briefly discuss how our proof could be made constructive. First observe that one could give

an explicit construction of H. For instance, it suffices to take for H a suitable pn, d, λq-graph as

in Alon and Chung [2], namely, it is enough to have λ “ Op
?

dq and d large enough with respect

to k and 1{ε.

§4. Open questions

We make no attempts to optimise the constant given by our argument, so the following question

is of interest.

Question 4.1. For any integer k ě 2, what is lim sup
nÝÑ8

pr̂pP k
n q{nq?

It is also interesting to consider what happens when more than two colours are at play. For

q P N, let r̂qpHq denote the q-colour size-Ramsey number of H; the smallest number of edges in

a graph that is q-Ramsey for H.

Conjecture 4.2. For any q, k P N we have r̂qpP k
n q “ Opnq.

It is conceivable that in hypergraphs the size-Ramsey number (defined analogously as for

graphs) of tight paths may be linear. Let H
pkq
n denote the tight path of uniformity k on n

vertices; that is V pHpkq
n q “ rns and EpHpkq

n q “
 

t1, ..., ku, t2, ..., k ` 1u, ..., tn ´ k ` 1, ..., nu
(

. The

following question appears as Question 2.9 in [9].

Question 4.3. For any k P N, do we have r̂pHpkq
n q “ Opnq?

Finally we note that for fixed k, our main result implies the linearity of the size Ramsey

number for the grid graphs Gk,n, the cartesian product of the paths Pk and Pn. Indeed our main

result implies the linearity of the size Ramsey number for any sequence of graphs with bounded

bandwidth. For the d-dimensional grid graph Gd
n, obtained by taking the cartesian product of d

copies of Pn, we raise the following question.

Question 4.4. For any integer d ě 2, is r̂pGd
nq “ Opndq?
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