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Shorter signed circuit covers of graphs

Tomáš Kaiser, Robert Lukot’ka, Edita Máčajová, Edita Rollová

Abstract

A signed circuit is a minimal signed graph (with respect to inclusion) that admits
a nowhere-zero flow. We show that each flow-admissible signed graph on m edges
can be covered by signed circuits of total length at most (3 + 2/3) · m, improving
a recent result of Cheng et al. [manuscript, 2015]. To obtain this improvement
we prove several results on signed circuit covers of trees of Eulerian graphs, which
are connected signed graphs such that removing all bridges results in a collection of
Eulerian graphs.

1 Introduction

A circuit cover of a bridgeless graph G is a collection of circuits such that each edge
of G belongs to at least one of them. One of the most studied problems concerning
circuit covers is finding a circuit cover of the graph with small total length. A
conjecture by Alon and Tarsi [1] bounds the length of the shortest circuit cover of a
bridgeless graph from above.

Conjecture 1.1 (Short Cycle Cover conjecture). Every bridgeless graph G has a
circuit cover of total length at most 7/5 · |E(G)|.

The best general upper bound on the length of a shortest cycle cover is a result ob-
tained independently by Bermond, Jackson, and Jaeger [2] and by Alon and Tarsi [1].

Theorem 1.2. [1, 2] If G is a bridgeless graph, then it admits a circuit cover of total
length at most 5/3 · |E(G)|.

The Short Cycle Cover Conjecture has connections to many well-known conjectures:
for instance, it is implied by the Petersen Flow Conjecture (alternatively known as
the Petersen Colouring Conjecture) of Jaeger [7, Section 7], while it implies the Cycle
Double Cover Conjecture [8].
In parallel to the classical graph theory there is a fast-growing theory of signed graphs,
graphs where each edge has a positive or a negative sign. More formally, a signed
graph (G,σ) is a graph G endowed with a function σ called signature which assigns
values either 1 (positive edges) or −1 (negative edges) to the edges. A circuit C in G
is balanced if the number of negative edges in C is even, and unbalanced otherwise.
Two signed graphs (G,σ1) and (G,σ2) are equivalent if they have the same set of
balanced circuits. Equivalent signed graphs are considered to be the same, and one
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can freely replace the signature of a signed graph with the signature of any equivalent
signed graph. We say that a signature σ is a minimum signature of (G,σ) if there is
no signed graph equivalent to (G,σ) with fewer negative edges.

Many fundamental concepts in graphs, such as colourings, flows, homomorphisms,
or surface embeddings found their analogues in signed graphs [18, 3, 14, 15]. In this
paper we will study a problem of short circuit covers for signed graphs introduced
by Máčajová et al. in [12]. We refer the reader to [9] for a survey on circuit covers
and nowhere-zero flows in signed graphs, and to [19] for an extensive bibliography
on signed graphs.

According to [12], a signed circuit of a signed graph is one of the following sub-
graphs: (1) a balanced circuit, (2) the union of two unbalanced circuits which meet at
a single vertex — a short barbell, or (3) the union of two disjoint unbalanced circuits
with a path which meets the circuits only at it ends—a long barbell. A barbell is
either a short or a long barbell.

The definition of signed circuit is chosen so that several important correspon-
dences are preserved. A signed circuit in a signed graph G forms a signed circuit
in the signed graphic matroid M(G) and vice versa [17, Theorem 5.1]. Moreover, a
signed graph is flow-admissible, that is it admits a signed nowhere-zero flow, if and
only if every edge of the signed graph belongs to a signed circuit [3, Proposition 3.1].
Furthermore, signed circuits are the minimal graphs that are flow-admissible, a prop-
erty that circuits satisfy in ordinary graphs.

Let C be a collection of subgraphs of a signed graph G. We say that C is a cover
if each edge of G is covered by C (i.e. it is contained in at least one subgraph from
C), and it is a signed circuit cover if each element of C is a signed circuit. The length
of C is the sum

∑

F∈C |E(F )|. The width ωC(e) of an edge e with respect to C is
defined as the number of subgraphs from C containing e. If ωC(e) = k, then we also
say that e is covered k times by C. The width of the collection C, denoted by ω(C),
is the maximum width of an edge with respect to C over all edges of G.

If C1, . . . ,Cℓ are collections of subgraphs of G, then the total length of {C1, . . . ,Cℓ}
is the sum of lengths of all the Ci (i ∈ {1, . . . , ℓ}). The total width of an edge e with
respect to the collection {C1, . . . ,Cℓ} is defined as

ωC1,...,Cℓ
(e) =

ℓ
∑

i=1

ωCi
(e).

Again, the total width of the collection {C1, . . . ,Cℓ}, denoted by ω(C1, . . . ,Cℓ), is the
maximum width of an edge with respect to this collection over all edges of G.

Máčajová et al. [12] proved that every flow-admissible signed graph with m edges
has a signed circuit cover of length at most 11 · m. Cheng, Lu, Luo and Zhang [4]
announced in 2015 an improvement of the bound to 14/3 · m − 5/3 · εN − 4 for
flow-admissible signed graphs with εN negative edges in a minimum signature. A
refinement of their proof idea leads to the following improvement.

Theorem 1.3. Let (G,σ) be a flow-admissible signed graph with m edges and let εN
be the number of negative edges in a minimum signature of (G,σ). Then there is a
signed circuit cover of (G,σ) of length at most 11/3 ·m− 5/3 · εN .
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In Section 5 we provide several variants of Theorem 1.3 comparable to the results
provided by Cheng et al. [4]. We note that for bridgeless cubic signed graphs, it is
possible to obtain even better bounds on the length of a short signed circuit cover as
suggested by a recently announced result by Wu and Ye [16].

Despite these improvements, the bounds on the length of the shortest signed
circuit cover are probably far from tight. Indeed, we are not aware of any flow-
admissible signed graph (G,σ) with a shortest cycle cover of length exceeding 5/3 ·
|E(G)|. An example that attains this value is the Petersen graph with five negative
edges forming a 5-cycle [12].

2 Covering auxiliary structures

In this section we will introduce the necessary notions and prove several key lemmas.
Graphs in this paper may have parallel edges and loops. For convenience, we define
the subtraction of two subgraphs A1 and A2 of a graph, denoted by A1 − A2, as
follows: from A1, we remove all edges that are contained in A2 and delete isolated
vertices. A cut-vertex is a vertex whose deletion increases the number of components
of a graph. Note that a vertex incident with a loop is not necessarily a cut-vertex.
A graph is 2-connected if it has no cut-vertex. Note that graphs consisting either of
a vertex with loops incident to it or of an edge with loops incident to its end-vertices
are both 2-connected. A cycle is a graph with all degrees even. A connected cycle is
an Eulerian graph (in particular, the graph with a single vertex is an Eulerian graph,
and we refer to it as trivial). A circuit is a connected 2-regular graph (note that
a loop is a circuit). Recall that a signed circuit is a signed graph that is either a
balanced circuit or a barbell.

Let H be a connected signed graph. Delete all bridges of H to obtain H ′. We let
ε(H) denote the number of negative edges in H, and let ε′(H) denote the number of
negative edges in H ′.

If each component of H ′ is an Eulerian graph, then H is a tree of Eulerian graphs.
In the further text the notion of a balloon will be crucial. A balloon of H (or simply a
balloon if H is clear from the context) is either a negative loop of H ′ or a component
of H ′ from which all the loops have been deleted. If each balloon of H ′ is either an
isolated vertex or a circuit, then H is a tree of circuits. Note that a tree of circuits
is a special case of a tree of Eulerian graphs.

Let B be a balloon of a tree of Eulerian graphs H. We say that B is trivial if B
is a single vertex, and non-trivial otherwise. The valency of B is 1 if B is a negative
loop, and otherwise it is the number of its incident bridges and loops. The balloon
B is a leaf balloon if its valency is 1, and an inner balloon otherwise. In the case that
B is a circuit, we use the terms leaf circuit or inner circuit. The balloon B is even
or odd according to ε(B) being even or odd, respectively. An endblock of H is an
inclusion-wise maximal subgraph of H which contains at most one cut-vertex and is
different from a loop.

The following definitions and two lemmas are based on the ideas of [10] and [11].
Suppose for now that H is a tree of circuits. Let c(H) and u(H) denote the number
of circuits and the number of unbalanced circuits of H, respectively. Suppose that
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H is a tree of circuits such that every leaf circuit is unbalanced. Note that if H has
at least two leaf circuits, it is flow-admissible. Let ~H be a digraph obtained from H
by the following operations:

• orienting the edges of each circuit in H in such a way that it becomes a directed
circuit,

• replacing all bridges by directed 2-circuits.

Since ~H is an Eulerian digraph, it admits an Eulerian trail W . Traverse W starting
from some vertex of ~H and enumerate all circuits of H as

C0, C1, . . . , Ck−1,

in the order in which W visits them for the first time. (Thus, each circuit of H
appears exactly once in the sequence.) Let us say that two leaf circuits Ci, Cj are
consecutive leaf circuits if none of Ci+1, . . . , Cj−1 is a leaf circuit (where the counting
is modulo k). Consecutive unbalanced circuits are defined in an analogous way. For
any two indices s, t ∈ {0, . . . , k − 1}, let Wst be a shortest subtrail of W starting at a
vertex of Cs and ending at a vertex of Ct. Define Bst to be the barbell in H obtained
as the union of Cs, Ct and the path corresponding to Wst.

Lemma 2.1. Let H be a tree of circuits with u(H) 6= 1 such that every leaf circuit is
unbalanced. Then H admits a signed circuit cover C such that the width of the edges
of leaf circuits and bridges with respect to C is 2, and the width of the edges of inner
circuits with respect to C is 1.

Proof. If H is balanced, then since each leaf is unbalanced, we have c(H) = 1. As
u(H) 6= 1 the circuit is balanced and we set C = {H}. Thus, we may assume that
u(H) ≥ 2.

Define C as the collection of all barbells Bst such that Cs and Ct are consecutive
leaf circuits. Clearly, edges of leaf circuits and bridges have width 2 with respect to
C while edges of an inner circuit have width 1 with respect to C.

A collection C of subgraphs of a signed graph H is a weak signed circuit cover if
all the elements of C are signed circuits and each non-bridge edge of H is covered by
C.

Lemma 2.2. Let H be a tree of circuits with u(H) even. Then H admits three
weak signed circuit covers C1, C2, C3 of total width at most 4 such that C1 covers all
negative loops exactly twice.

Proof. We proceed by induction on the number of edges of H. If H is balanced,
then we set C1,C2, and C3 to be the set of circuits of H. If there is a bridge e of
H such that some component of H − e is balanced, then we cover each component
of H − e by the induction hypothesis and define each Ci as the union of the two
obtained respective covers. Therefore, we may assume that every leaf balloon of H
is unbalanced. Note that u(H) ≥ 2.

Let us define the signed circuit covers C1, C2 and C3. Let C1 be the weak signed
circuit cover defined in Lemma 2.1. The other two weak signed circuit covers C2 and
C3 are defined as follows.
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Let K be the collection of balanced circuits of H and suppose that the unbalanced
circuits of H are Ci0 , . . . , Ciu−1

, where u = u(H) and 0 ≤ i0 < · · · < iu−1 ≤ u− 1. If
B∗

rs denotes the barbell Biris , then

C2 =
{

B∗
01, B

∗
23, . . . , B

∗
u−2,u−1

}

∪K,

C3 =
{

B∗
12, B

∗
34, . . . , B

∗
u−1,0

}

∪K.

Let us check that the total width of C1, C2 and C3 is at most 4. If e is an edge of
a leaf circuit, it is covered twice by C1, once by C2 and once by C3. If e is a bridge, it
is covered twice by C1 and twice by C2∪C3, because the paths Wi,i+1 (0 ≤ i ≤ u− 1)

are edge-disjoint (in ~H). For the same reason, an edge e of an inner circuit is covered
once by some Wi,i+1 and once by a circuit of each of C2 and C3. Since by Lemma 2.1
the edges of inner circuits have width 1 in C1, we have found the required covers.

We now proceed to trees of Eulerian graphs.

Lemma 2.3. Let A be a 2-connected non-trivial signed Eulerian graph without ne-
gative loops, and let v be a vertex of A. Then either A is a circuit, or it can be edge-
decomposed into two nontrivial Eulerian graphs A1 and A2 such that A1 contains v
and ε(A2) is even.

Proof. Since A is Eulerian, there is a circuit C containing v. Let A′ be a component
of A − C (recall that A − C has no isolated vertices due to our definition of graph
subtraction). If ε(A′) is even, A can be decomposed into A′ and A−A′.

Suppose then that ε(A′) is odd. By the assumption of the lemma, A′ is not a
loop, and by the 2-connectivity of A, |V (C) ∩ V (A′)| ≥ 2. Let v1 and v2 be vertices
of C ∩A′. Let P be a v1-v2-path of C that does not contain v as an internal vertex.
Since A is Eulerian, A′ is Eulerian as well, so it admits a closed Eulerian trail W .
The trail W consists of two v1-v2 trails, W1 and W2. Since ε(A′) is odd, we may
assume without loss of generality that ε(W1) has the same parity as ε(P ). The sought
decomposition is W1 ∪ P and A− (W1 ∪ P ).

To deal with loops we define two operations on Eulerian graphs: compression and
decompression. Let (G,σ) be a signed Eulerian graph with a non-loop edge, and let L
be a set of negative loops of G. Let f : L → (E(G)−L) be a function that assigns to
each loop edge an adjacent non-loop edge of G. We say that (G∗, σ∗) is a compression
of (G,σ) with respect to f if G∗ = G − L and σ∗(e) := σ(e) · (−1)|f

−1(e)| for every
edge e of G∗. Let (G∗

0, σ
∗) be a subgraph of (G∗, σ∗). (We take the liberty of using

the same symbol for the induced signature of the subgraph.) The decompression
of (G∗

0, σ
∗) with respect to f is the subgraph (G0, σ) of (G,σ) induced by the edges

E(G∗
0) ∪ f−1(E(G∗

0)). Note the following.

Observation 2.4. Compression and decompression preserve the parity of the number
of negative edges. If two subgraphs partition the compressed graph, then the decom-
pressed subgraphs partition the original graph. If the original graph is 2-connected,
then so is the compressed graph.
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The following lemma and its corollary generalise the result of [10] and [11] stating
that every signed Eulerian graph G with even number of negative edges admits a
signed circuit cover of total length 4/3 · |E(G)|.

Lemma 2.5. Let H be a tree of Eulerian graphs such that ε′(H) is even. Then H
admits three weak signed circuit covers C1, C2, C3 of total width at most 4 such that
ω(Ci) ≤ 2 for each i ∈ {1, 2, 3} and C1 covers all negative loops exactly twice.

Proof. Let H be a counterexample to the lemma with minimum number of edges.
Clearly, H has no balanced loops.

Assume that H is not 2-connected, and consider an end-block H1 of H incident
with a cut-vertex v. Recall that by the definition of an end-block, H1 is different
from a loop. Let H2 be obtained from H by removing V (H1)− v.

Assume first that ε′(H1) is even. Then since ε′(H) is even, so is ε′(H2). Since
both H1 and H2 contain fewer edges than H, they admit the weak signed circuit
covers described in the statement of the lemma. The combination of these covers
gives the sought weak signed circuit covers of H, a contradiction.

Thus, both ε′(H1) and ε′(H2) are odd (hence each of H1,H2 has at least two
edges). For i ∈ {1, 2}, we add to Hi a negative loop ei at v to obtain H ′

i. Both
H ′

1 and H ′
2 contain fewer edges than H, and hence they admit the weak signed

circuit covers with the requested properties. Note that e1 and e2 must be covered by
barbells, and each of them is covered twice by the first cover and once by the two
other covers. To obtain the sought weak signed circuit covers of H, we combine the
found signed circuit covers of H ′

1 and H ′
2 by merging the barbells containing loops

e1 and e2. This contradicts the minimality of H.
It follows that H is 2-connected. There are several possibilities: either H is a

vertex with loops incident with it, or H consists of an edge and loops incident with
the end-vertices of the edge, or H is bridgeless (on at least two vertices). In the first
two cases, it is easy to find the weak signed circuit covers directly. Thus, it suffices
to consider the third case, where H consists of one non-loop non-trivial balloon and
possibly some unbalanced loops incident with it.

Let H∗ be a compression of H with respect to an arbitrary assignment f . Let
v be an arbitrary vertex of H∗. By Lemma 2.3, either H∗ is a circuit or it can be
decomposed into two Eulerian graphs each having even number of negative edges.
In the first case, Lemma 2.2 provides the desired covers. Assume thus that H∗

decomposes into nontrivial Eulerian graphs H∗
1 and H∗

2 with ε(H∗
1 ) and ε(H∗

2 ) even.
Let H1 and H2 be decompressions of H∗

1 and H∗
2 . By Observation 2.4, ε(H1) and

ε(H2) is even and each of H1 and H2 has fewer edges than H. Hence they admit the
sought weak signed circuit covers. Since H1 and H2 partition H by Observation 2.4,
the covers of H1 andH2 combine to form the required covers of H. This contradiction
concludes the proof.

Corollary 2.6. Let H be a tree of Eulerian graphs with ε′(H) even. Then H admits
a weak signed circuit cover of length 4/3 · |E(H)|.

Lemma 2.7. Let H be a tree of Eulerian graphs such that it has at least two leaf
balloons, and each leaf balloon is odd. Then H admits a signed circuit cover of width
at most 2 that covers every loop of H exactly twice.
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Proof. Let H be a counterexample to the lemma with the minimum number of edges.
Clearly, H has no balanced loops.

We prove that H is 2-connected. Suppose that this is not the case. Consider an
end-block H1 of H incident with a cut-vertex v, and let H2 be obtained from H by
removing all the vertices of H1 except v.

Assume that H1 contains only one balloon and that balloon is even (hence H1 has
no loops). By Lemma 2.5, H1 admits a signed circuit cover of width at most 2. Any
leaf balloon of H2 is either a leaf balloon of H, or it is obtained from a leaf balloon
of H by deleting H1. By the assumption that ε(H1) is even, every leaf balloon of H2

is odd, and there are at least two of them. Since H2 contains fewer edges than H, it
admits the desired signed circuit cover and so does H, a contradiction.

Thus, either H1 is an odd balloon, or H1 contains at least two balloons, at least
one of which is a leaf balloon of H, and hence it is odd. We conclude that H1 contains
an odd balloon. By symmetry, H2 contains an odd balloon. Note that in each of H1

and H2, every leaf balloon (except possibly for one containing v) is a leaf balloon of
H. For i ∈ {1, 2}, we define H ′

i as the graph obtained from Hi by adding a negative
loop ei at v. For i ∈ {1, 2}, each leaf balloon of H ′

i is odd and there are at least two
of them. Since H1 and H2 contain fewer edges than H, they admit signed circuit
covers described in the statement. Note that e1 and e2 must be covered by barbells,
and each of them is covered exactly twice. To obtain the sought signed circuit cover
of H, we combine the found signed circuit covers of H1 and H2 by merging barbells
containing loops e1 and e2. This contradicts the choice of H.

Thus, H is 2-connected. That is, either H is a vertex with loops incident with
it, or H consists of an edge and loops incident with end-vertices of the edge, or H
is bridgeless (on at least two vertices). In the first two cases, it is easy to find the
desired signed circuit cover directly. In the third case, H consists of one non-loop
balloon and possibly unbalanced loops incident with vertices of the balloon. As H
has at least two leaf balloons, it contains at least one loop. If H has exactly one
negative loop, then the non-loop balloon is odd and the cover C1 from Lemma 2.5
provides a contradiction. Thus, H has at least two loops. Denote by e1 and e2
two arbitrary distinct loops of H, and by v1 and v2 the end-vertices of e1 and e2,
respectively; it may happen that v1 = v2.

Let H∗ be a compression of H −{e1, e2} with respect to an arbitrary assignment
f . If we partition H∗ into Eulerian subgraphs in such a way that one of them,
denoted by H∗

S, contains v1 and v2 and every other either contains even number of
negative edges or its decompression contains at least two loops, then we can produce
a cover of H as follows. We take the decompression of all subgraphs. The union
of the decompression of H∗

S with e1 and e2, denoted by HS, has fewer edges than
H and as H is a smallest counterexample to the lemma, HS can be covered so that
the conditions of the lemma are satisfied. The decompressions of other subgraphs
either satisfy assumptions of Lemma 2.5 (those subgraphs that have even number of
negative edges), or they have at least two loops and satisfy assumptions of this lemma
while having fewer edges than H. Thus we can cover them as required. A cover of
H is then obtained as the union of the covers of the subgraphs under consideration.
Therefore, finding such a partition of H∗ provides a contradiction with the choice of
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H.
If H∗ is a circuit, then Lemma 2.1 provides the desired cover. If v1 = v2, then by

Lemma 2.3, H∗ can be partitioned into Eulerian subgraphs H∗
S and H∗

2 , such that
H∗

S contains v1 and ε(H∗
2 ) is even, a contradiction. Thus, v1 6= v2.

Since H∗ is 2-connected, there exist two internally vertex-disjoint v1-v2-paths, P1

and P2. As H∗ is not a circuit, H∗ − P1 − P2 is non-empty. Let A be a component
of H∗ − P1 − P2. Assume that A contains a cut-vertex r and let A1 and A2 be
subgraphs of A such that A1 ∪A2 = A and A1 ∩A2 = {r}. Since H∗ is 2-connected,
both A1 and A2 intersect H∗ − A. If one of A1 and A2, say A1, is even, then H∗

can be decomposed into A1 and H∗ −A1 which leads to a contradiction. Thus both
A1 and A2 are odd which implies that A is even and so H∗ can be decomposed into
A and H∗ − A which are smaller graphs that fulfill the conditions of the lemma, a
contradiction. Therefore we can assume that A is 2-connected.

Let w ∈ V (A) ∩ V (P1 ∪ P2). By Lemma 2.3, either A is a circuit, or it can
be decomposed into Eulerian subgraphs H∗

1 and H∗
2 such that H∗

1 contains w and
ε(H∗

2 ) is even. In the latter case, the decomposition of H∗ into H∗
S = H∗ −H∗

2 and
H∗

2 provides a contradiction. Therefore A is a circuit. If A is balanced, then we
get a contradiction by decomposing H∗ into H∗

S = H∗ − A and A. Hence, A is an
unbalanced circuit.

If A intersects P1 in more than one vertex, say A intersects P1 in distinct vertices
u1, u2, then we can decomposeH∗ as follows. One subgraph, denoted by B, is a union
of a subpath P ′

1 of P1 between u1 and u2, and of every component of H∗−P1−P2 that
intersects P ′

1 and does not intersect (P1 ∪ P2)− P ′
1, and of a u1-u2 path of A chosen

in such a way that B has even number of negative edges (since A is unbalanced, this
is possible). The second subgraph is defined as H∗

S = H∗ − E(B). Again, we find
a contradictory decomposition of H∗. Thus A intersects P1 in at most one vertex.
Similarly, A intersects P2 in at most one vertex. As H∗ is 2-connected, A intersects
both P1 and P2 in exactly one vertex (and these vertices are distinct).

Now we are ready to define the cover of H. First, we define a set of unbalanced
circuits S and a closed trail T such that S ∪ T = H. Let L be a set of loops whose
intersection with V (P1 ∪ P2) is nonempty. The set S contains all loops of H and all
components of H − P1 − P2 − L that are unbalanced circuits. Note that any two
unbalanced circuits of S that are not loops are vertex-disjoint, since they arise from
two different components of H∗−P1−P2. The closed trail T starts at v1 and traverses
every edge of H that is not contained in any circuit from S in such a way that edges of
P2 are the last edges of the trail. We label the elements of S according to the order in
which T visits them for the first time, starting with the unbalanced loop e1. Thus we
obtain an ordered n-tuple of unbalanced circuits (C1 = e1, C2, . . . , Cn). For Ci, define
ui to be the first vertex of Ci visited by T . We define barbells covering H as follows.
Take Ci, Ci+1 and the segment of T between ui and ui+1, for i ∈ {1, 2, . . . , n − 1}.
Moreover, take the barbell containing Cn, C1 and the segment of T after un. Next,
we will prove that the constructed elements are, indeed, barbells.

Note that between any two occurrences of the same vertex on the trail T there is
a vertex that is incident to a loop. Thus ui-ui+1 subtrails of T contain no circuits,
for i ∈ {1, 2, . . . , n}. If two unbalanced circuits, say Ci and Cj , intersect, then due to

8



the definition of S at least one of them is a loop, for i, j ∈ {1, 2, . . . , n}. Moreover,
the trail segments do not internally intersect the unbalanced circuits, because the
components of H − P1 − P2 intersect P1 only in one vertex and the segments of T
containing edges of P1 and P2 are separated by the loop e2. Therefore the constructed
cover consists of barbells. It covers the edges of circuits in S, which contains all loops,
exactly twice, while the edges in T are covered once. Thus the cover satisfies the
statement of the lemma which contradicts the fact that H is a counterexample.

3 Proof of Theorem 1.3

In this section, we follow ideas of [4] to provide the framework for the proof of
Theorem 1.3. We will show a straightforward proof of the bound 4 · |E(G)|−5/3 · εN
instead of 11/3 · |E(G)|−5/3 ·εN . Further, we will analyse the straightforward proof.
We identify the places that require an improvement in order to prove Theorem 1.3,
and postpone the technical details to Section 4. The following is an easy observation.

Lemma 3.1. Let σ be a minimum signature of (G,σ). Then for every edge-cut of
(G,σ) the number of negative edges does not exceed the number of positive ones.

Given a set E of vertex-disjoint Eulerian subgraphs of a signed graph (G,σ),
connecting E into a tree of Eulerian graphs means taking the disjoint union of the
graphs in E and adding the minimum number of edges of G needed to get a tree of
Eulerian graphs.

We are going to prove Theorem 1.3. Thus, let (G,σ) be a flow-admissible signed
graph; without loss of generality, we assume that it is connected and that σ is a
minimum signature. Let X be the set of negative edges of (G,σ). If X = ∅, the
result follows by Theorem 1.2. Furthermore, we may assume that |X| ≥ 2 for if
|X| = 1, then (G,σ) is not flow-admissible.

Let B be the set of such edges b of (G,σ) that G − b has two components, each
of them being unbalanced. Note that since (G,σ) is flow-admissible, B is the set of
all bridges of G. Moreover, as σ is minimum, by Lemma 3.1, we have B ∩ X = ∅.
Let S be the set of such edges s of (G,σ) that there exists a 2-edge-cut {s, t}, where
t ∈ X. Note that by Lemma 3.1 and the minimality of σ, S ∩X = ∅. Furthermore,
S is exactly the set of bridges in G−X −B. This implies the following claim.

Claim 1. G−X −B − S is a bridgeless balanced graph.

By Claim 1 and Theorem 1.2, G−X −B−S has a signed circuit cover of length
at most 5/3 · |E(G −X − B − S)|. We will construct a collection of signed circuits
C that covers the edges of X ∪B ∪ S with total length at most 2 · |E(G)|. This will
prove Theorem 1.3.

Let T be a spanning tree of the connected graph G−X, and we denote T ∪X by
(G′, σ′), where σ′ is the restriction of σ to G′. Note that σ′ may not be a minimum
signature of (G′, σ′). Let X ′, B′, S′ be defined on (G′, σ′) in the same way as X,B, S
on (G,σ), respectively.

Claim 2. X ′ = X, B′ ⊇ B and S′ ⊇ S.

9



This straightforward claim guarantees that it is enough to find a collection of
signed circuits of (G′, σ′) that covers X ′∪B′∪S′. To finish the proof of Theorem 1.3,
we will prove the following lemma.

Lemma 3.2. Let (G′, σ′) be a signed graph such that G′ −X ′ is a spanning tree of
G′, where X ′ denotes the set of negative edges of G′. Let B′ be the set of bridges of
G′ which separate two unbalanced subgraphs, and let S′ be the set of such edges of
(G′, σ′) that there exists a 2-edge-cut {s′, t′}, where t′ ∈ X ′. If |X ′| ≥ 2, then there
exists a collection of signed circuits C′ of (G′, σ′) that covers the edges of X ′∪B′∪S′

with total length at most 2 · |E(G′)|. Moreover, C′ covers every negative loop of G′

exactly twice.

Proof. For the sake of a contradiction, suppose that (G′, σ′) is a counterexample with
the minimum number of edges. Clearly, (G′, σ′) has no balanced loops. Also (G′, σ′)
has no vertex of degree 1 as the incident bridge does not belong to X ′ ∪B′ ∪ S′.

We prove that G′ is 2-connected. Suppose it is not. Let G′
1 be an end-block of

G′ incident with a cut-vertex v, and let G′
2 be obtained by removing all vertices of

G′
1 except v. Each of these graphs inherits a signature from G′ that will be omitted

from the notation. Since G′ contains no vertex of degree 1, both G′
1 − T and G′

2 − T
are non-empty and thus G′

1 and G′
2 are unbalanced. For i ∈ {1, 2}, we add a negative

loop ei to G′
i at v and denote the resulting graph by G′′

i . The signed graphs G′′
1 and

G′′
2 satisfy the conditions of the lemma, because they have fewer edges than G′ and

each of them has at least two negative edges. Note that e1 and e2 must be covered
by barbells, and that each of them is covered exactly twice. To obtain the sought
collection of signed circuits for (G′, σ′), we combine the found signed circuit covers of
G′′

1 and G′′
2 by merging the barbells containing loops e1 and e2. Taking into account

that the e1 and e2 are covered exactly twice, we can bound the length of the cover
of (G′, σ′) by

2 · |E(G′′
1)| − 2 + 2 · |E(G′′

2)| − 2 = 2 · |E(G′
1)|+ 2 · |E(G′

2)| = 2 · |E(G′)|,

a contradiction.
Thus, G′ is 2-connected as claimed. This means that G′ is either a vertex with

loops incident with it, or an edge with loops incident to its end-vertices, or a bridgeless
graph with at least two vertices. In the first two cases, the required collections are
easy to find directly. It follows that G′ is bridgeless (with |V (G′)| ≥ 2) and hence
B′ = ∅, so it suffices to cover the edges of X ′ ∪ S′.

For x ∈ X ′, let Cx be the unique circuit of T ∪ x. For A ⊆ X ′, let CA be the
symmetric difference of all circuits Ca for a ∈ A. Given x ∈ X ′, let S′

x be the set of
such edges s of S′ that belong to a 2-edge-cut {s, x} of (G′, σ′). For A ⊆ X ′, let S′

A

be the union of S′
a over all a ∈ A. Since X ′ contains no 2-edge-cut, S′

x ∩ S′
y = ∅ for

x 6= y.

Claim 3. For A ⊆ X ′, CA contains every edge of A ∪ S′
A.

Since the intersection of two paths in a tree is either a path (possibly trivial) or
the empty graph, the following holds.
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Claim 4. If |A| = 2, then CA is either a balanced circuit, or a short barbell, or a
union of two vertex-disjoint unbalanced circuits.

We will distinguish three cases based on the number of loops of G′.

Case A: The graph G′ contains at least two loops.

Consider CX′ and note that it contains all loops of G′ as well as X ′∪S′ according
to Claim 3. We connect CX′ into a tree of Eulerian graphs H. If H contains an
even leaf balloon F , then by Corollary 2.6, F can be covered by a signed circuit
cover of total length at most 4/3 · |E(F )|. Thus we may consider the signed graph
H − E(F ), which has fewer edges than H (and at least two negative loops). We
repeat this process until we obtain a signed graph H∗ that does not contain any even
leaf balloon. By Lemma 2.7, H∗ admits a signed circuit cover C of length at most
2 · |E(H∗)| such that every loop of H∗ is covered exactly twice. The combination of
this cover with the ones found for even leaf balloons provides a signed circuit cover
of G′ that satisfies the lemma, which is a contradiction with the choice of G′.

Case B: The graph G′ contains exactly one loop.

Let ℓ ∈ X ′ be the unique loop of G′. Suppose first that |X ′| is even. Connecting
CX′ into a tree of Eulerian graphs H and applying Lemma 2.5, we find a collection of
signed circuits of total length at most 2 · |E(H)| covering CX′ such that ℓ is covered
twice. By Claim 3, this cover of X ′ ∪ S′ provides a counterexample.

Thus, |X ′| is odd. Let a and b be distinct negative edges different from ℓ. Consider
CX′−{a}, which has an even number of negative edges, and connect it into a tree of
Eulerian graphs H. By Corollary 2.6, H admits a collection of signed circuits C of
total length at most 4/3 · |E(H)| that covers the edges of CX′−{a} and has width at
most 2. We now augment C by another signed circuit C2 to cover a and cover ℓ for
a second time if necessary.

If C covers ℓ once, then we find C2 by connecting C{ℓ,a} into a barbell. If C covers
ℓ twice, then we apply Claim 4 and define C2 either as C{a,b} (if it is a balanced
circuit or a short barbell), or as a barbell obtained by joining the components of
C{a,b} (if it is a disjoint union of unbalanced circuits). In either case, the length
of C2 is at most |E(G′)|, and adding C2 to the collection C, we obtain a signed
circuit cover of X ′ ∪ S′ of total length at most (2 + 1/3) · |E(G′)| covering ℓ twice, a
contradiction (if we consider the statement of Lemma 3.2 where 2 · |E(G′)| is replaced
by (2 + 1/3) · |E(G′)|).

In Section 4.2, we refine the analysis as follows. We show how to choose the edges
a and b, and one of the three signed circuit covers of CX′−{a} given by Lemma 2.5, in
such a way that total length of the cover is at most 2 · |E(G′)|. The only case when
this is not possible is when G′ is homeomorphic to a certain graph. In the latter case,
it is easy to find the necessary cover directly.

Case C: The graph G′ contains no loops.

Suppose first that |X ′| is even. Connecting CX′ into a tree of Eulerian graphs
H and using Corollary 2.6, we find a collection of signed circuits of total length at
most 4/3 · |E(H)| covering CX′ , which covers X ′ ∪ S′ by Claim 3 and leads to a
contradiction.
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Thus, |X ′| is odd. We apply an argument similar to the one used in Case B. Let
a and b be distinct negative edges. Connect CX′−{a} into a tree of Eulerian graphs
H and note that ε′(H) is even. By Corollary 2.6, H admits a collection of signed
circuits C of total length at most 4/3 · |E(H)| covering the edges of CX′−{a}. Using
Claim 4, we find a signed circuit C2 containing C{a,b} (of length at most |E(G′)|),
and we add it to C. The resulting collection C ∪ {C2} covers X ′ ∪ S′ and its length
is at most (2 + 1/3) · |E(G′)|, which is a contradiction (if we consider the statement
of Lemma 3.2 where 2 · |E(G′)| is replaced by (2 + 1/3) · |E(G′)|).

In Section 4.1, we refine the analysis as follows. We show how to choose the edges
a and b in such a way that the length of C{a,b} is at most 2/3·|E(G′)|. We characterise
the case when this is not possible, and show how to find the cover explicitly in this
case.

4 Finishing Cases B and C

In this section, we finish the proof of Lemma 3.2, retaining the notation introduced
in Section 3. We will first introduce some further notation and a lemma that will be
used to finish the arguments of Case B and Case C. Recall that (G′, σ′) is a minimal
counterexample to Lemma 3.2 and has been found to be 2-connected and bridgeless
with at least two vertices, and to contain at most one loop. Furthermore, X ′ is the
set of negative edges of G′, and G′ −X ′ is a spanning tree T of G′.

For A ⊆ X ′, let DA be the graph obtained as a union of Ca over all a ∈ A. Note
that Cx = D{x} for any x ∈ X ′. Due to the construction of G′, DA − A is a forest
and has the same number of components as DA.

In the following lemma we will show how to extend a 2-connected graph DA by
adding a suitable edge x to A.

Lemma 4.1. Let A ⊆ X ′ be such that DA is 2-connected. If X ′ − A contains no
loop, then either

(i) A = X ′ and DA = G′, or

(ii) there exists x ∈ X ′−A such that DA∩Cx is a non-trivial path and hence DA∪{x}

is 2-connected, or

(iii) A contains only loops.

Proof. Since DA is connected, DA − A is a subtree of T . If DA contains a single
vertex, then A contains only loops and (iii) holds. Therefore, DA contains at least
two vertices. If DA = G′, then (i) holds. Assume thus that there is an edge e in
E(G′) − E(DA). If every edge of E(G′) − E(DA) belongs to X ′, then T ⊆ DA,
and thus (ii) holds. Hence we may assume that e ∈ T . Since G′ is connected, we
may further choose e whose end-vertex belongs to V (DA). We may assume that
exactly one end-vertex of e (say v) belongs to DA, since otherwise e ∈ X ′. Consider
a component K of T −DA that contains e. Since G′ is 2-connected, there is an edge
x connecting a vertex from K − {v} to a vertex from V (G′) − V (K). Observe that
x ∈ X ′, because T is a tree. It is easy to see that DA ∩Cx is a non-trivial path.
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In proofs of both Claim B and Claim C, we will need to define certain barbells.
The unbalanced circuits of the barbells can be defined easily using elements of X ′,
since Cx is a uniquely defined elementary circuit of G′ for any x ∈ X ′. If Cx and Cy

are disjoint, then we define the barbell BY
x,y, where Y ⊆ X ′, as follows. We contract

Cx and Cy into two new vertices vx and vy. Positive edges of the graph still form a
tree. Consider the path Px,y consisting of edges of T that connects vx and vy. If the
symmetric difference of Px,y and all elementary circuits containing edges from Y is a
path, denoted by P Y

xy, then we set BY
x,y = P Y

x,y ∪ Cx ∪ Cy.

4.1 Case C

Recall that the graph G′ has odd number of negative edges (and more than one
negative edge) and no loops. We want to find edges a, b ∈ X such that C{a,b} can be
covered by a signed circuit of length at most 2/3 · |E(G′)|. If this is not possible, we
want to find a cover of G′ that satisfies Lemma 3.2.

Lemma 4.2. Suppose that there are x, y, z ∈ X ′ such that Cx∩Cy 6= ∅, Cx∩Cz 6= ∅,
and Cy ∩ Cz 6= ∅. Then there are two edges a, b ∈ X ′ such that C{a,b} is either a
balanced circuit or a short barbell of length at most 2/3 · |E(G′)|.

Proof. By Claim 4, the subgraphs C{x,y}, C{x,z}, and C{y,z} are balanced circuits or
short barbells. Each edge e of D{x,y,z} belongs to one, two or three circuits among
Cx, Cy, and Cz. If e belongs to exactly one of the circuits, say Cx, then e 6∈ C{y,z}.
If e belongs to two of the circuits, say Cx and Cy (and possibly Cz), then e 6∈ C{x,y}.
Thus C{x,y}∩C{x,z}∩C{y,z} has no edge, and |E(C{x,y})|+ |E(C{x,z})|+ |E(C{y,z})| ≤
2 · |E(G′)|. The lemma follows.

Let x ∈ X ′. Since |X ′| ≥ 3, by Lemma 4.1 there is y ∈ X such that Cx ∩ Cy is
a non-trivial path. Again by Lemma 4.1, there exists z such that Cz ∩ D{x,y} is a
non-trivial path. Due to Lemma 4.2 we may assume, without loss of generality, that
Cx ∩ Cz = ∅. An example of the graph D{x,y,z} is depicted in Fig. 1.

x z

y

Figure 1: Possible configuration of graph D{x,y,z}. As in the subsequent figures, the edges
of T are represented by thin lines and the edges of X ′ are shown by thick lines.

If G′ = D{x,y,z}, then we can cover the edges of G′ by two barbells B∅
x,z and

B
{y}
x,z . This cover has the property stated in Lemma 3.2. Therefore, we may assume

that G′ 6= D{x,y,z}. By Lemma 4.1 there is an edge w ∈ X ′ − {x, y, z} such that
Cw ∩D{x,y,z} is a non-trivial path. If some three of the circuits Cx, Cy, Cz, Cw have
pairwise non-empty intersection, then we can apply Lemma 4.2.
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First, let us assume that one of the circuits Cx, Cy, Cz, Cw, say Cy, intersects all
the other circuits. Due to Lemma 4.2, Cw ∩ Cx = ∅ and Cw ∩ Cz = ∅. Therefore,

either Cw ∩ Cy ⊆ B∅
xz or Cw ∩ Cy ⊆ B

{y}
xz . We deal with the first case, which is

depicted in Fig. 2. The latter case is similar.

x z

y

w

Figure 2: Possible configuration of D{x,y,z,w} in case Cy intersects all other circuits.

The barbells B
{y}
x,z , B∅

x,w, B
∅
z,w do not cover any edge of G′ more than twice in

total, therefore one of them has length at most 2/3 · |E(G′)|.
It remains to consider that none of the circuits Cx, Cy, Cz, Cw intersects all the

other circuits. Without loss of generality suppose that Cx ∩ Cy 6= ∅, Cy ∩ Cz 6= ∅,
and Cz ∩Cw 6= ∅. An example of the graph D{x,y,z,w} is depicted in Fig. 4.

x z

y

w

Figure 3: Possible configuration of D{x,y,z,w} in case that none of Cx, Cy, Cz and Cw inter-
sects all other circuits.

Note that C{x,y}, C{y,z}, and C{z,w} are balanced circuits and no edge is contained
in all three of them. Therefore, one of them has length at most 2/3 · |E(G′)|, which
gives the desired choice of a and b.

4.2 Case B

Recall that in Case B, the graph G′ is 2-connected, ε(G′) ≥ 3 is odd, and G′ contains
one (unbalanced) loop ℓ. A solution S in G′ is a quadruple (a, b, C1, C2) such that
a, b ∈ X ′, C1 is a signed circuit that contains C{ℓ,a}, and C2 is a signed circuit that
contains C{a,b}. The cover corresponding to the solution (a, b, C1, C2) is the collection
{C1, C1, C2}.
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Lemma 4.3. There are no k solutions in G′ such that the union of covers corre-
sponding to these k solutions has width at most 2k.

Proof. For the sake of a contradiction, assume that the k solutions exist. Let S =
(a, b, C1, C2) be one of them. Consider CX′−{a}, which has even number of negative
edges, and connect it into a tree of Eulerian graphs H. By Lemma 2.5, there are
three weak signed circuit covers C1, C2, C3 of H that cover edges of CX′−{a} with
total width at most 4. Moreover, C1 covers the loop ℓ exactly twice, and each of C2

and C3 covers ℓ exactly once. We define three collections of signed circuits as follows:
C1 ∪ {C2}, C2 ∪ {C1} and C3 ∪ {C1}.

We follow this procedure for all k solutions to obtain 3k collections that cover
edges of X ′ ∪B′ ∪ S′. The total width of these 3k collections is obtained as the sum
of total width of covers corresponding to the k solutions, which is at most 2k by the
assumption, and the total width of 3k covers obtained from k uses of Lemma 2.5,
which is at most 4k; hence the total width of the 3k collections thus defined is at most
6k. We conclude that one of the collections must have length at most 2·|E(G′)|. Since
each of the collections covers the loop ℓ exactly twice, we obtained a contradiction
with the assumption that G′ is a counterexample to Lemma 3.2.

Lemma 4.4. There are no two edges x, y ∈ X ′ such that Cx ∩ Cy ∩ Cℓ 6= ∅.

Proof. Suppose that edges x, y ∈ X ′ have the stated property. We construct two
solutions of width 4:

S1 = (x, y, C{ℓ,x}, C{x,y}),

S2 = (y, x,C{ℓ,y}, C{y,x}).

These solutions provide a contradiction with Lemma 4.3.

Choose x such that the graph D{ℓ,x} is connected and note that D{ℓ,x} is 2-
connected. Since |X ′| ≥ 3, by Lemma 4.1, there exists an edge y ∈ X ′ such that
D{ℓ,x,y} is 2-connected. By Lemma 4.4, Cℓ ∩ Cx ∩ Cy = ∅. An example showing
D{ℓ,x,y} is given in Fig. 4.

x y

l

Figure 4: Possible configuration of D{ℓ,x,y}.

If G′ = D{ℓ,x,y}, then a collection of signed circuits required by Lemma 3.2 that

provides a contradiction is
{

C{ℓ,x}, B
∅
ℓ,y

}

. Otherwise, by Lemma 4.1, there exists

an edge z ∈ X ′ such that Cz ∩D{ℓ,x,y} is a non-trivial path P . We will discuss the
possible positions of P with respect to the segments of D{ℓ,x,y}.

15



By Lemma 4.4, Cz ∩Cx ∩Cℓ = ∅. Suppose first that P intersects Cx −Cy. Then
there exist two edge-disjoint paths P1 and P2 in D{ℓ,x,y,z} − Cy − Cz, P1 connecting
ℓ to Cy and P2 connecting ℓ to Cz. Then the following collections of solutions satisfy
Lemma 4.3, which is a contradiction. Define C∗ to be either a barbell containing
C{y,z} and not containing V (ℓ) (for E(Cy) ∩E(Cz) = ∅) or a balanced circuit C{y,z}

(otherwise). We set S1 = (y, z, C{ℓ,y} ∪ P1, C
∗) and S2 = (z, y, C{ℓ,z} ∪ P2, C

∗). Note
that when C{y,z} is a circuit, the edges of Cy ∩ Cz are covered by both barbells but
not by C∗.

Suppose finally that P does not intersect Cx − Cy. Then P ⊆ Cy and there are
three possible subcases:

(i) P ⊆ Cy − Cx and B∅
l,z does not contain any edge of Cx ∩ Cy,

(ii) P ⊆ Cy − Cx and B∅
l,z does contain an edge of Cx ∩ Cy,

(iii) P ⊆ Cx ∩ Cy.

Examples for these subcases are depicted in Fig. 5.

x y

z

l

x y

z

l

x yz

l

Figure 5: Possible configurations of D{ℓ,x,y,z}.

For each of the subcases, there are three solutions such that the corresponding
covers have total width at most 6. These solutions are given in Table 1. This
contradiction to Lemma 4.3 finishes the discussion of Case B and hence also the
proof of Lemma 3.2.
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case solutions

(i) (x, y, C{ℓ,x}, C{x,y}), (y, z, B
∅
ℓ,y, C{y,z}), (z, x, B

{x,y}
ℓ,z , B∅

x,z)

(ii) (x, y, C{ℓ,x}, C{x,y}), (y, z, B
∅
ℓ,y, C{y,z}), (z, x, B

{x}
ℓ,z , B

{y}
x,z )

(iii) (x, y, C{ℓ,x}, C{x,y}), (z, x, B
∅
ℓ,z, C{z,x}), (z, y, B

{x}
ℓ,z , C{z,y})

Table 1: Solutions for subcases (i)–(iii) when P does not intersect Cx − Cy.

5 Alternative bounds

In this section we provide several alternative bounds on the length of a shortest
signed circuit cover of a flow-admissible signed graph. We compare these bounds to
results of Cheng et al. [4]. We will follow notation from Section 3.

The graph G − X − B − S has at most |E(G)| − |X| edges. The graph G′ has
at most |V (G)| − 1 + |X| edges. By Theorem 1.2, we can cover G − X − B − S
with a circuit cover of length at most 5/3 · (|E(G)| − |X|) and by Lemma 3.2 we
can cover the edges X ∪ B ∪ S in G′ with signed circuits of total length at most
2 · |V (G)| + 2|X| − 2. Altogether, the constructed signed circuit cover has length
at most 5/3 · |E(G)| + 2|V (G)| + 1/3 · |X| − 2, while the bound obtained by Cheng
et al. [4] is 5/3 · |E(G)| + 3|V (G)| + 4/3 · |X| − 7. Due to minimality of X and
connectivity of G we have |E| ≥ |X| + |V | − 1. Using this inequality we obtain the
bound 11/3 · |E(G)| − 5/3 · |X| from Theorem 1.3.

For dense bridgeless graphs a result of Fan [6] provides a better bound on shortest
circuit covers of bridgeless graphs than Theorem 1.2. Fan showed that a bridgeless
graph on n vertices and m edges can be covered with circuits of total length at most
n+m−1. This implies that G−X−B−S can be covered by circuits of total length
at most |E(G)| − |X| + |V (G)| − 1. Together with the cover of X ∪ B ∪ S in G′ we
obtain a signed circuit cover of G of length at most |E(G)| + 3 · |V (G)| + |X| − 3,
while the bound obtained by Cheng et al. [4] is |E(G)| + 4 · |V (G)|+ 2 · |X| − 8.
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[13] E. Máčajová, M. Škoviera: Nowhere-zero flows on signed eulerian graphs,
manuscript (2014) available at www.arxiv.org as arXiv:1408.1703.

[14] R. Naserasr, E. Rollová, É. Sopena: Homomorphisms of signed graphs, J. Graph
Theory 79 (2015), 178–212.
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