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Abstract

Let G = (V,E) be a simple graph with V = {1, 2, · · · , n} and χ(G, x) be its
chromatic polynomial. For an ordering π = (v1, v2, · · · , vn) of elements of V , let δG(π)
be the number of i’s, where 1 ≤ i ≤ n − 1, with either vi < vi+1 or vivi+1 ∈ E. Let
W(G) be the set of subsets {a, b, c} of V , where a < b < c, which induces a subgraph
with ac as its only edge. We show that W(G) = ∅ if and only if (−1)nχ(G,−x) =
∑

π

(

x+δG(π)
n

)

, where the sum runs over all n! orderings π of V . To prove this result,
we establish an analogous result on order polynomials of posets and apply Stanley’s
work on the relation between chromatic polynomials and order polynomials.

Keywords: graph, order polynomial, chromatic polynomial

1 Introduction

1.1 Chromatic polynomials

For a simple graph G = (V,E), the chromatic polynomial of G is defined to be the poly-

nomial χ(G,x) such that χ(G, k) counts the number of proper k-colourings of G for any

positive integer k (for example, see [1, 2, 3, 7, 8, 16]). This concept was first introduced by

Birkhoff [1] in 1912 in the hope of proving the four-color theorem (i.e., χ(G, 4) > 0 holds

for any loopless planar graph G). The study of chromatic polynomials is one of the most

active areas in graph theory and many celebrated results on this topic have been obtained

(for example, see [2, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 17]).

One of the main purposes of this paper is to prove a new identity for χ(G,x) when G

satisfies a certain condition. Assume that V = [n], where [n] = {1, 2, · · · , n}. For u, v ∈ V ,

∗Email: fengming.dong@nie.edu.sg.

1

http://arxiv.org/abs/1909.02310v1


define

δG(u, v) =

{

1, u < v or uv ∈ E;
0, otherwise.

(1.1)

Let P(V ) denote the set of orderings of elements of V . Obviously, |P(V )| = n!. Define

Ψ(G,x) =
∑

π∈P(V )

(

x+ δG(π)

n

)

, (1.2)

where for any π = (u1, u2, · · · , un) ∈ P(V ),

δG(π) =
∑

1≤i≤n−1

δG(ui, ui+1). (1.3)

Clearly the function Ψ(G,x) depends on the structure of G and also on the labeling

of its vertices. For a bijection ω : V → [n], let Gω denote the graph obtained from

G by relabeling each vertex v in G by ω(v). Thus Gω
∼= G but it may be not true

that Ψ(Gω, x) = Ψ(G,x). Hence, in this article, isomorphic graphs with different vertex

labellings are considered to be different.

For a graph G = (V,E), where V = [n], let W(G) be the set of 3-element subsets {a, b, c}

of V with a < b < c such that ac is the only edge in the subgraph of G induced by {a, b, c}.

Note that W(G) may be different from W(Gω) for a bijection ω : V → [n].

In Section 4, we will prove the following result on χ(G,x).

Theorem 1.1 Let G = (V,E) be a simple graph with V = [n]. Then

(−1)nχ(G,−x) = Ψ(G,x) =
∑

π∈P(V )

(

x+ δG(π)

n

)

(1.4)

if and only if W(G) = ∅.

To prove Theorem 1.1, we will first establish an analogous result on the order polynomial

of D̄ (i.e., Theorem 1.4), where D is an acyclic digraph and D̄ is the poset which is

the reflexive transitive closure of D, and apply Stanley’s work on the relation between

chromatic polynomials and order polynomials.

1.2 Order polynomials and strict order polynomials

In 1970, Stanley [13] introduced the order polynomial and the strict order polynomial of a

poset (i.e. partially ordered set). Let P be a poset on n elements with a binary relation �.

For u, v ∈ P , let u ≺ v mean that u � v but u 6= v. A mapping σ : P → [m] is said to be

order-preserving (resp., strictly order-preserving) if u � v implies that σ(u) ≤ σ(v) (resp.,
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u ≺ v implies that σ(u) < σ(v)). Let Ω(P, x) (resp., Ω̄(P, x)) be the function which counts

the number of order-preserving (resp., strictly order-preserving) mappings σ : P → [m]

whenever x = m is a positive integer. Both Ω(P, x) and Ω̄(P, x) are polynomials in x of

degree n (see Theorem 1 in [13]) and are respectively called the order polynomial and the

strict order polynomial of P .

An ordering π = (v1, v2, · · · , vn) of the elements of P is said to be P -respecting if vi ≺ vj

always implies that i < j (i.e., vi appears before vj in π). Let OP(P ) be the set of

P -respecting orderings π of the elements of P .

Let ω be a fixed surjective order-preserving mapping ω : P → [n]. For a P -respecting

ordering π = (v1, v2, · · · , vn), a “decent” (resp. “accent”) means ω(vi) > ω(vi+1) (resp.

ω(vi) < ω(vi+1)) for some i with 1 ≤ i ≤ n−1. Let κP (π) (resp., κ̄P (π)) denote the number

of times when a “decent” (resp. an “accent”) occurs in π. Clearly, 0 ≤ κ̄P (π), κP (π) ≤ n−1

and κ̄P (π) + κP (π) = n− 1 for each π ∈ OP(P ). For an integer s with 0 ≤ s ≤ n− 1, let

ws(P ) (resp., w̄s(P )) be the number of π ∈ OP(P ) with κP (π) = s (resp., κ̄P (π) = s).

Stanley’s Theorem 2 in [13] gives the following interpretations for Ω(P,m) and Ω̄(P,m).

Theorem 1.2 (Stanley [13]) For any integer m ≥ 1,

Ω(P,m) =
n−1
∑

s=0

ws(P )

(

m+ n− 1− s

n

)

and Ω̄(P,m) =
n−1
∑

s=0

w̄s(P )

(

m+ n− 1− s

n

)

.

(1.5)

As κP (π)+ κ̄P (π) = n−1 for each π ∈ OP(P ), by applying Theorem 1.2, it is not difficult

to deduce that

Ω(P,m) =
∑

π∈OP(P )

(

m+ κ̄P (π)

n

)

. (1.6)

By Theorem 1.2, a relation between Ω(P,m) and Ω̄(P,m) can also be deduced easily and

it appeared in Stanley’s Theorem 3 in [13]: for any m ∈ Z
+,

Ω̄(P,m) = (−1)nΩ(P,−m). (1.7)

From now on we focus on the order polynomial of a poset that is reflexive transitive closure

of an acyclic digraph.

A digraph D = (V,A) is called acyclic if it does not contain any directed cycle. Let D

be an acyclic digraph with |V | = n. For convenience of notation, we simply assume that

V = [n]. An ordering π = (u1, u2, · · · , un) of elements of V is said to be D-respecting if

(ui, uj) ∈ A implies that i < j holds (i.e., ui appears before uj in π). Let OP(D) be the

3



✇ ✇ ✇

✻ ✻ ✻

✈ ✈ ✈

3 1 1

1 3 2

✉ ✉ ✉2 2 3

(a) D1 (b) D2 (c) D3

Figure 1: Isomorphic digraphs D1,D2 and D3

OP(D1) δD1(πi) OP(D2) δD2(π
′
i) OP(D3) δD3(π

′′
i )

π1 = (2, 1, 3) 1 π′
1 = (2, 3, 1) 2 π′′

1 = (3, 2, 1) 1

π2 = (1, 2, 3) 2 π′
2 = (3, 2, 1) 0 π′′

1 = (2, 3, 1) 1

π3 = (1, 3, 2) 1 π′
3 = (3, 1, 2) 2 π′′

1 = (2, 1, 3) 2

Table 1: Members of OP(Di) and values δDi(π) for π ∈ OP(Di)

set of D-respecting orderings of elements of V . For example, for the digraphs in Figure 1,

OP(Di) has exactly three members given in Table 1 for i = 1, 2, 3.

Clearly, an ordering π of elements of V is D-respecting if and only if it is D̄-respecting.

Thus OP(D) = OP(D̄).

For a, b ∈ Z
+, let κ̄(a, b) = 1 if a < b, and κ̄(a, b) = 0 otherwise. For an ordering

π = (a1, a1, · · · , an) of n different numbers in Z
+, let

κ̄(π) =
n−1
∑

i=1

κ̄(ai, ai+1).

Thus κ̄(π) is actually the number of times when an “accent” occurs in the ordering π.

Note that the definition of κ̄(π) is only related to the numbers in the ordering π and has

no relation with D.

Let Re(D) = {(a, b) ∈ A : a > b}. Assume that Re(D) = ∅. As V = [n], this assumption

is equivalent to a surjective mapping ω : V → [n] with the property that (u, v) ∈ A

implies ω(u) < ω(v). Observe that for any π ∈ OP(D), κ̄(π) = κ̄D̄(π) holds. Thus, by

(1.6), Ω(D̄,m) has the following expression in terms of κ̄(π) under the assumption that

Re(D) = ∅:

Ω(D̄,m) =
∑

π∈OP(D)

(

m+ κ̄(π)

n

)

. (1.8)

Note that if Re(D) 6= ∅, (1.8) may be not true, unless κ̄(π) is replaced by another suitable

function. In the following, we remove the assumption that Re(D) = ∅ and replace κ̄(π)

by a new function δD(π). We will see for which labellings of vertices of D an identity

analogous to (1.8) holds even if Re(D) 6= ∅.
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1.3 A new function Ψ(D, x) for an acyclic digraph D

Let D = (V,A) be an acyclic digraph with V = [n]. For a, b ∈ V , define

δD(a, b) =

{

1, either a < b or (a, b) ∈ A;
0, otherwise.

(1.9)

Clearly κ(a, b) ≤ δD(a, b) for every pair of members a and b of V . When Re(D) = ∅,

(a, b) ∈ A implies that a < b. Thus, in this case, δD(a, b) = κ̄(a, b) holds for every pair of

numbers a and b in V , no matter whether (a, b) ∈ A or not. However, when Re(D) 6= ∅,

for each (a, b) ∈ A with a > b, we have δD(a, b) = 1 and κ̄(a, b) = 0.

Let Ψ(D,x) be the function defined below:

Ψ(D,x) =
∑

π∈OP(D)

(

x+ δD(π)

n

)

, (1.10)

where for any π = (a1, a2, · · · , an) ∈ OP(D),

δD(π) =

n−1
∑

i=1

δD(ai, ai+1). (1.11)

Note that Ψ(D,x) is a function defined on an acyclic digraph D = (V,A) with V a linearly

ordered set of n vertices and its definition does not rely on a fixed mapping ω : V → [n]

with the property that (vi, vj) ∈ A implies ω(vi) < ω(vj).

Clearly, if Re(D) = ∅, then δD(π) = κ̄(π) holds for every π ∈ OP(D), and thus (1.8) and

(1.10) imply the following conclusion.

Proposition 1.1 Let D = ([n], A) be an acyclic digraph. If Re(D) = ∅, then

Ω(D̄, x) = Ψ(D,x) =
∑

π∈OP(D)

(

x+ δD(π)

n

)

. (1.12)

If Re(D) 6= ∅, it is possible that δD(π) 6= κ̄(π) for some π ∈ OP(D), and thus it is

possible that Ω(D̄, x) 6= Ψ(D,x). For example, for the isomorphic digraphs D1,D2 and

D3 in Figure 1, by the data in Table 1,we have

Ψ(D1, x) = Ψ(D3, x) =

(

x+ 2

3

)

+ 2

(

x+ 1

3

)

6= Ψ(D2, x) = 2

(

x+ 2

3

)

+

(

x

3

)

. (1.13)

As Re(D1) = ∅, by Proposition 1.1, we have Ψ(D3, x) = Ψ(D1, x) = Ω(D̄1, x) = Ω(D̄3, x).

But Ψ(D2, x) 6= Ψ(D1, x) = Ω(D̄1, x) = Ω(D̄2, x).

Notice that Re(D3) 6= ∅, although Ψ(D3, x) = Ω(D̄3, x). Thus, Ψ(D,x) = Ω(D̄, x) does

not imply Re(D) = ∅. The main aim of this article is to determine exactly when the

identity Ω(D̄, x) = Ψ(D,x) holds.
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Let D = (V,A) be an acyclic digraph, where V = [n]. For distinct a, b ∈ V , write a ≺D b

if there exists a directed path in D connecting from a to b, and a 6≺D b otherwise. Write

a 6≈D b if a 6≺D b and b 6≺D a. Let W(D) be the set of 3-element subsets {a, b, c} of V

with a < b < c such that (c, a) ∈ A but a 6≈D b and c 6≈D b. Observe that if (c, a) ∈ A,

then b ≺D c implies that b ≺D a, and a ≺D b implies that c ≺D b. Thus, for {a, b, c} ⊆ V

with a < b < c and (c, a) ∈ A, {a, b, c} ∈ W(D) if and only if c 6≺D b and b 6≺D a.

For example, for the digraphs D1,D2 and D3 in Figure 1, only W(D2) is not empty, and

for the digraph D in Figure 2 on Page 8, W(D) has exactly one member {2, 3, 5}.

Clearly, Re(D) = ∅ implies that W(D) = ∅. But the converse does not hold.In Section 2,

we will show that if W(D) = ∅,then there exists D′ obtained from D by relabeling ver-

tices in D such that Re(D′) = ∅ and Ψ(D,x) = Ψ(D′, x). By Proposition 1.1, we have

Ψ(D′, x) = Ω(D̄′, x) = Ω(D̄, x). Thus we establish the following result.

Theorem 1.3 Let D = ([n], A) be an acyclic graph and W(D) be defined as above. If

W(D) = ∅, then Ψ(D,x) = Ω(D̄, x) holds.

The converse of Theorem 1.3 also holds, as stated in the following result.

Theorem 1.4 Let D = ([n], E) be an acyclic graph, where n ≥ 3. Then

Ψ(D,x)− Ω(D̄, x) =
n−3
∑

i=0

di

(

x+ i

n− 2

)

, (1.14)

where d0, d1, · · · , dn−3 are non-negative integers. Furthermore, di = 0 for every i =

0, 1, · · · , n− 3 if and only if W(D) = ∅.

Clearly, Theorem 1.4 implies that Ψ(D,x) = Ω(D̄, x) if and only if W(D) = ∅. To prove

Theorem 1.4 in Section 3, we will first compare Ψ(D,x) with Ψ(Da→r, x), where Da→r is

the digraph obtained from D by relabeling vertex a by by a suitable number r. The new

digraph Da→r has the property that W(Da→r) = W(D) − {W ∈ W(D) : a ∈ W} and

Ψ(D,x)−Ψ(Da→r, x) =
n−3
∑

i=0
di
(

x+i
n−2

)

, where di ≥ 0 for all i, and d0 + · · ·+ dn−3 = 0 if and

only if W(D) = ∅.

While Theorem 1.3 is implied by Theorem 1.4, the derivation of Theorem 1.4 is indepen-

dent of Theorem 1.3. For a special case, the numbers di in Theorem 1.4 are given an

interpretation (see Proposition 5.5).

Let AO(G) be the set of acyclic orientations of G. The expression (1) in [12] gives a

6



relation between χ(G,x) and Ω̄(D̄, x):

χ(G,x) =
∑

D∈AO(G)

Ω̄(D̄, x). (1.15)

Thus, (1.6), (1.7) and (1.15) imply the following result.

Theorem 1.5 (Stanley [12]) Let G = (V,E) be a simple graph. Then

(−1)|V |χ(G,−x) =
∑

D∈AO(G)

Ω(D̄, x). (1.16)

Note that for each D ∈ AO(G), determining Ω(D̄, x) by (1.8) is based on a relabeling of

vertices such that a < b holds for each arc (a, b) in D. Thus, the summation of (1.16)

cannot be replaced by a summation over all |V |! orderings of elements of V if the labeling

of elements of V is fixed, although the union of OP(D)’s for all D ∈ AO(G) is exactly the

set of all |V |! orderings of elements of V . This is another motivation for extending (1.8)

to an analogous expression with an arbitrary relabeling of vertices in D and the result can

be applied to express χ(G,x) as the summation over all |V |! orderings of elements of V .

Applying Theorems 1.4 and 1.5, we can prove Theorem 1.1 in Section 4.

2 Proof of Theorem 1.3

Let D = (V,A) be an acyclic digraph with vertex set V , where V = [n]. In this section,

we shall show that Ψ(D,x) = Ω(D̄, x) whenever W(D) = ∅.

For S ⊆ V , let D[S] be the subdigraph of D induced by S. For u ∈ V , u is called a sink

of D if FD(u) = ∅, where FD(u) = {v : (u, v) ∈ A}. We first define a bijection L : V → [n]

by the following algorithm:

Algorithm A:

Step 1. Set S := V ;

Step 2. Let u be the largest number among all sinks of D[S];

Step 3. Set L(u) := |S| and S := S \ {u};

Step 4. If S 6= ∅, go to Step 2; otherwise, output L(v) for all v ∈ V .

The bijection L defined above will be written as LD when there is a possibility of confusion.

7



Example 2.1 If D is the acyclic digraph in Figure 2, then

L(3) = 5, L(2) = 4, L(5) = 3, L(4) = 2, L(1) = 1.

✇

✇

✈

✈ ✈
5

4

2

3
✸

s ❘

1

✲

✲

Figure 2: An acyclic digraph

Recall that for distinct u, v ∈ V , u ≺D v if D has a directed path from u to v; and for

u ∈ V , RD(u) (or simply R(u)) denote the set {v ∈ V : u ≺D v}. Let RD[u] = {u}∪RD(u).

Then u ∈ RD[u] but u /∈ RD(u).

By definitions of ≺D and LD, we have the following basic properties of ≺D and LD.

Proposition 2.1 Let a, b and c be distinct vertices in D.

(i) If a ≺D b and b ≺D c, then a ≺D c.

(ii) If a ≺D b, then L(a) < L(b).

For distinct vertices b, c in D, let ND[c, b] = {c′ ∈ RD[c] \ RD[b] : ∀y ∈ RD(c) ∩

RD(b), L(c
′) < L(y)}.

Example 2.2 For the digraph D in Figure 2, ND[5, 3] = {5, 2} and ND[5, 4] = {5}.

Proposition 2.2 Let b and c be distinct vertices in D with c /∈ RD(b). Then

(i) c ∈ ND[c, b];

(ii) when RD(c) ⊆ RD(b), ND[c, b] = {c} holds.

Proof. (i). Clearly c ∈ RD[c] \RD[b]. As RD(c) ∩RD(b) ⊆ RD(c), we have L(c) < L(y)

for all y ∈ RD(c) ∩ RD(b) by Proposition 2.1 (ii), implying that c ∈ ND[c, b]. Thus (i)

holds.

(ii). By the result in (i), c ∈ ND[c, b]. As RD(c) ⊆ RD(b), RD[c] \RD[b] = {c}. Thus (ii)

holds. ✷

8



For an non-empty finite set S of Z
+, let minS and maxS denote the minimum value

and the maximum value of S respectively. In case of any confusion, minS and maxS are

respectively written as min(S) and max(S).

The bijection LD : V → {1, 2, · · · , n} has the following property.

Proposition 2.3 Let a, b and c be distinct vertices in D.

(i) If c 6≈D b, then L(c) < L(b) if and only if min(ND[c, b]) < min(ND[b, c]);

(ii) If c 6≈D b, L(c) < L(b) and b < c, then there exist a, c′ ∈ RD[c] \ RD[b] such that

{a, b, c′} ∈ W(D);

(iii) If W(D) = ∅, b < c and c 6≺D b, then L(b) < L(c).

Proof. (i). Assume that c 6≈D b. It suffices to prove that if min(ND[c, b]) < min(ND[b, c]),

then L(c) < L(b), as exchanging b and c yields that if min(ND[b, c]) < min(ND[c, b]), then

L(b) < L(c).

By Proposition 2.2 (i), c ∈ ND[c, b] and b ∈ ND[b, c]. Let c0 = min(ND[c, b]). By Proposi-

tion 2.1 (ii), L(c) ≤ L(c0).

Let S′ be the set of sinks of D and let w = maxS′. Then L(w) = |V |. Now we want to

prove the two following claims under the assumption that c0 < min(ND[b, c]).

Claim 1: w 6= c0.

Assume that w = c0. As L(c0) = |V |, c0 is the largest sink of D. Note that S′∩RD[b] 6= ∅.

Let b0 = max(S′∩RD[b]). As c0 ∈ RD[c]\RD[b], we have b0 6= c0 and so b0 < c0 and L(b0) <

L(c0) = |V |. As b0 < c0 < min(ND[b, c]) and b0 ∈ RD[b], we have b0 ∈ RD[b] \ ND[b, c].

By the assumption on ND[b, c], b0 ∈ RD[b] \ND[b, c] implies that b0 ∈ RD(c) ∩ RD(b) or

L(b0) > L(y) for some y ∈ RD(c)∩RD(b). Thus L(b0) ≥ L(y) for some y ∈ RD(c)∩RD(b).

As L(c0) < L(y) for all y ∈ RD(c) ∩RD(b), we have L(c0) < L(b0), a contradiction.

Claim 2: L(c0) < L(b).

This claim is trivial when |V | = 2. Now assume |V | ≥ 3 and that this claim fails. Thus

L(b) < L(c0) ≤ |V |.

By Claim 1, w 6= c0. Then L(c) ≤ L(c0) < L(w) = |V |. As Claim 1 holds for D − w, by

induction, and

min(ND−w[c, b]) = min(ND[c, b]) = c0 < min(ND[b, c]) = min(ND−w[b, c]),

9



we have LD−w(c0) < LD−w(b). Since LD−w(c0) = LD(c0) and LD(b) = LD−w(b), we have

LD(c0) < LD(b), a contradiction. Thus Claim 2 holds.

As L(c) ≤ L(c0), Claim 2 implies L(c) < L(b) under the condition that min(ND(c, b)) <

min(ND(b, c)). Thus (i) holds.

(ii). Assume that b 6≈D c, b < c and L(c) < L(b). By (i), min(ND[c, b]) < min(ND[b, c]).

Let c1 = min(ND[c, b]). Then c1 < min(N [b, c]) ≤ b < c. As c1 ∈ ND[c, b] ⊆ RD[c], there

is a path in D from c to c1: c → a1 → · · · → ak, where ak = c1 and ai → ai+1 is short for

(ai, ai+1) ∈ A. As ak = c1 < b < c, there exists i : 1 ≤ i ≤ k − 1 such that ai > b > ai+1.

As c1 ∈ ND[c, b] ⊆ RD[c] \RD[b], we have ai, ai+1 ∈ RD[c] \RD[b], implying that b 6≈D ai

and b 6≈D ai+1. Thus {ai+1, b, ai} ∈ W(D) and the result holds.

(iii). Assume that W(D) = ∅, b < c and c 6≺D b. If b ≺D c, then Proposition 2.1 (ii)

implies that L(b) < L(c). Now assume that b 6≺D c. Thus b 6≈D c. As W(D) = ∅ and

b < c, by (ii), we have L(b) < L(c) in this case. ✷

Let DL be the digraph obtained from D by relabeling each vertex y in D as L(y). Clearly,

DL is isomorphic to D and Proposition 2.1 (ii) implies that Re(DL) = ∅. By Proposi-

tion 1.1, Ψ(DL, x) = Ω(D̄L, x) = Ω(D̄, x).

For π = (a1, a2, · · · , an) ∈ OP(D), let L(π) = (L(a1), L(a2), · · · , L(an)).

Proposition 2.4 Let π = (a1, a2, · · · , an) ∈ OP(D). If W(D) = ∅, then

(i) δD(ai, ai+1) = δDL
(L(ai), L(ai+1)) holds for i = 1, 2, · · · , n− 1; and

(ii) δD(π) = δDL
(L(π)) holds.

Proof. (i). As π = (a1, a2, · · · , an) ∈ OP(D), we have ai+1 6≺ ai. Thus, either ai ≺D

ai+1 or ai 6≈D ai+1.

First consider the case that ai ≺D ai+1. As π = (a1, a2, · · · , an) ∈ OP(D), if aj1 → aj2 →

· · · → ajk is a path in D, then j1 < j2 < · · · < jk. Thus ai ≺D ai+1 implies that (ai, ai+1) ∈

A, and so δD(ai, ai+1) = 1. As (ai, ai+1) ∈ A, we have (L(ai), L(ai+1)) ∈ A(DL) and so

δDL
(L(ai), L(ai+1)) = 1.

Now assume that ai 6≈D ai+1. As W(D) = 0, by Proposition 2.3 (iii), if ai < ai+1 then

L(ai) < L(ai+1); if ai+1 < ai then L(ai+1) < L(ai). As ai 6≈D ai+1, we have (ai, ai+1) /∈

A(D) and (L(ai), L(ai+1)) /∈ A(DL). By definition of δD(ai, ai+1), δDL
(L(ai), L(ai+1)) =

δD(ai, ai+1) holds in this case.

Thus (i) holds. By the result in (i), (ii) follows directly from the definition of δD(π). ✷
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Corollary 2.1 If W(D) = ∅, then Ψ(D,x) = Ψ(DL, x)

Proof. Note that π ∈ OP(D) if and only if L(π) ∈ OP(DL). Thus

OP(DL) = {L(π) : π ∈ OP(D)}.

By Proposition 2.4 (ii), δD(π) = δDL
(L(π)) holds for each π ∈ OP(D). By definition of

Ψ(D,x), Ψ(D,x) = Ψ(DL, x) holds. ✷

Since Re(DL) = ∅, Proposition 1.1 implies that Ψ(DL, x) = Ω(D̄L, x) = Ω(D̄, x). Thus

Theorem 1.3 follows from Corollary 2.1.

3 Proof of Theorem 1.4

In this section, we assume that D = (V,A) is an acyclic digraph with V ⊂ Z
+ and |V | = n,

where n ≥ 3. For a ∈ V and r ∈ Z
+ \ V , let Da→r be the digraph obtained from D by

relabeling a by r. We will compare Ψ(D,x) with Ψ(Da→r, x) and apply the result on

Ψ(D,x)−Ψ(Da→r, x) to prove Theorem 1.4.

Clearly, if V = [n], then r ≥ n + 1 and the vertex set of Da→r is ([n] \ {a}) ∪ {r} which

is no longer [n]. Thus, for the purpose of comparing Ψ(D,x) with Ψ(Da→r, x), in this

section the vertex set V is allowed to be any subset of Z+ and it is possible that V 6= [n].

Note that if V = {v1, v2, · · · , vn} with 1 ≤ v1 < v2 < · · · < vn, then Ψ(D,x) = Ψ(D′, x)

holds, where D′ is obtained from D by relabeling each vi by i. So the function Ψ(D,x) is

not affected even if V 6= [n].

3.1 Relabel a vertex in D by a sufficiently large number

Define

∆(D, z) =
∑

π∈OP(D)

zδD(π). (3.17)

By definitions of Ψ(D,x) and ∆(D, z), for any two acyclic digraphs D1 and D2 of the

same order, ∆(D1, z) = ∆(D2, z) if and only if Ψ(D1, x) = Ψ(D2, x).

In this subsection, we always assume that a is a fixed vertex in D and m is a number in

Z
+ \ V with m > y for all y ∈ V \ RD[a]. We compare ∆(D, z) with ∆(Da→m, z) under

this assumption. This result will be applied in the next subsection for relabeling vertex

a by a suitable number r so that D can be replaced by Da→r for the purpose of proving

Theorem 1.4.
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3.1.1 A function ∆D,π0(z)

Let π0 = (a1, a2, · · · , an−1) be a fixed member of OP(D − a), where D − a is the digraph

obtained from D by removing vertex a. Let OP(D,π0) be the set of those members π ∈

OP(D) such that π−a = π0, where π−a is obtained from π by removing a. For example,

if π = (2, 1, 3, 4), then π − 2 = (1, 3, 4). Observe that (a1, a2, · · · , an−1, a) ∈ OP(D,π0) if

and only if a is a sink of D, and (a1, · · · , ai, a, ai+1, · · · , an−1) ∈ OP(D,π0) if and only if

(aj , a) /∈ A for all j = i+ 1, · · · , n− 1 and (a, aj) /∈ A for all j = 1, · · · , i.

A vertex u of D is called a source if (v, u) 6∈ A for all v ∈ V . Throughout this section, let

s and t be the two numbers defined below:

(i) let s = 0 if a is a source of D, and let s = max{1 ≤ k ≤ n − 1 : (ak, a) ∈ A}

otherwise;

(ii) let t = n if a is a sink of D, and let t = min{1 ≤ k ≤ n− 1 : (a, ak) ∈ A} otherwise.

If s = 0 or t = n, then clearly s < t. Otherwise, (as, a) ∈ A and (a, at) ∈ A imply that

as ≺D at, and so s < t by the assumption that π0 ∈ OP(D − a). Hence we always have

s < t.

By definition of OP(D) and the assumptions on s and t, we have

OP(D,π0) = {(· · · , ai, a, ai+1, · · · ) : s ≤ i ≤ t− 1}. (3.18)

For π ∈ OP(D), let πa→m be the ordering obtained from π by replacing a by m. Then,

OP(Da→m, π0) = {πa→m : π ∈ OP(D,π0)} = {(· · · , ai,m, ai+1, · · · ) : s ≤ i ≤ t− 1}.

(3.19)

Define

∆D,π0(z) =
∑

π∈OP(D,π0)

zδD(π)−δD−a(π0). (3.20)

By (3.18), we have

∆D,π0(z) =
∑

s≤i≤t−1

zδD(ai,a)+δD(a,ai+1)−δD(ai,ai+1), (3.21)

where the following numbers are assumed in case that s = 0 or t = n:

1 = δD(a0, a1) = δD(a0, a) = δD(an−1, an) = δD(a, an). (3.22)
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3.1.2 Expression for ∆(D, z)−∆(Da→m, z)

Let U1 and U2 be the two disjoint subsets of {i : s+ 1 ≤ i ≤ t− 2} defined below:

{

U1 = {s+ 1 ≤ i ≤ t− 2 : ai > a > ai+1},
U2 = {s+ 1 ≤ i ≤ t− 2 : ai < a < ai+1}.

(3.23)

Lemma 3.1 (i) ∆D,π0(z) has the following expression:

∆D,π0(z) = z1+δD(a,as+1)−δD(as,as+1) + z1+δD(at−1,a)−δD(at−1,at) +
∑

i∈U1

z−δD(ai,ai+1)

+
∑

i∈U2

z2−δD(ai,ai+1) +
∑

s+1≤i≤t−2
i/∈U1∪U2

z1−δD(ai,ai+1). (3.24)

(ii) If m ∈ Z
+ \ V and m > y for all y ∈ V \RD[a], then

∆Da→m,π0(z) = z2−δD(at−1,at) +
∑

s≤i≤t−2

z1−δD(ai,ai+1). (3.25)

Proof. (i). We will prove this result by applying (3.21). Note that δD(as, a) =

δD(a, at) = 1 as as → a and a → at in D. For any i with s + 1 ≤ i ≤ t − 2, by

(3.23), we have

δD(ai, a) + δD(a, ai+1) =







0, if i ∈ U1;
2, if i ∈ U2;
1, otherwise.

(3.26)

Thus (3.24) follows from (3.21).

(ii). Recall that FD(a) = {v : (a, v) ∈ A}. By the assumption on t, FD(a) ⊆ {aj : t ≤ j ≤

n − 1}. As π0 = (a1, a2, · · · , an−1) ∈ OP(D − a), we have RD(a) ⊆ {aj : t ≤ j ≤ n − 1}.

Thus V (D) \RD[a] ⊆ {aj : 1 ≤ j ≤ t− 1}. By the assumption on m, m > ai holds for all

i : 1 ≤ i ≤ t− 1, implying that

δDa→m(ai,m) + δDa→m(m,ai+1) =

{

1, if s ≤ i ≤ t− 2;
2, if i = t− 1.

(3.27)

As δDa→m(ai, ai+1) = δD(ai, ai+1), (3.25) follows from (3.21) by replacing D by Da→m. ✷

Let
{

Q(a, π0) = {s+ 1 ≤ i ≤ t− 2 : ai > a > ai+1, (ai, ai+1) ∈ A};
p(a, π0) = (1− δD(as, as+1))δD(a, as+1)− (1− δD(at−1, at))δD(a, at−1).

(3.28)

When there is no confusion, Q(a, π0) and p(a, π0) are simply written as Q and p respec-

tively. Applying Lemma 3.1, we can express ∆D,π0(z) −∆Da→m,π0(z) in terms of Q and

p.
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Proposition 3.1 If m ∈ Z
+ \ V and m > y holds for all y ∈ V \RD[a], then

∆D,π0(z)−∆Da→m,π0(z) =
(

p+ |Q|z−1
)

(z − 1)2.

Proof. By (3.24) and (3.25) in Lemma 3.1,

∆D,π0(z)−∆Da→m,π0(z)

= z1−δD(as,as+1)(zδD(a,as+1) − 1) + z1−δD(at−1,at)(zδD(at−1,a) − z)

+(z−1 − 1)
∑

i∈U1

z1−δD(ai,ai+1) + (z − 1)
∑

i∈U2

z1−δD(ai,ai+1)

= z1−δD(as,as+1)(zδD(a,as+1) − 1) + z1−δD(at−1,at)(zδD(at−1,a) − z)

+|Q|(z−1 − 1) + (|U1| − |Q|)(1− z) + |U2|(z − 1)

= z1−δD(as,as+1)(zδD(a,as+1) − 1) + z1−δD(at−1,at)(zδD(at−1,a) − z)

+(|U2| − |U1|)(z − 1) + |Q|z−1(z − 1)2, (3.29)

where the second last equality follows from the fact that for any i with s+ 1 ≤ i ≤ t− 2,

δD(ai, ai+1) =

{

1, if i ∈ Q ∪ U2;
0, if i ∈ U1 \Q.

By definitions of U1 and U2, it can be verified that

|U2| − |U1| =















0, if a > as+1 and a > at−1;
1, if a > as+1 and a < at−1;
−1, if a < as+1 and a > at−1;
0, if a < as+1 and a < at−1.

(3.30)

Then, by (3.30),

z1−δD(as,as+1)(zδD(a,as+1) − 1) + z1−δD(at−1,at)(zδD(at−1,a) − z) + (|U2| − |U1|)(z − 1)

=















0, if a > as+1 and a > at−1;

z1−δD(at−1,at)(1− z) + (z − 1), if a > as+1 and a < at−1;

z1−δD(as ,as+1)(z − 1)− (z − 1), if a < as+1 and a > at−1;

z1−δD(as ,as+1)(z − 1) + z1−δD(at−1,at)(1− z), if a < as+1 and a < at−1

=















0, if a > as+1 and a > at−1;
(δD(at−1, at)− 1)(z − 1)2, if a > as+1 and a < at−1;
(1− δD(as, as+1))(z − 1)2, if a < as+1 and a > at−1;
(δD(at−1, at)− δD(as, as+1))(z − 1)2, if a < as+1 and a < at−1.

(3.31)

By (3.28), (3.29) and (3.31), the result holds. ✷

By applying Proposition 3.1, an expression for ∆(D, z) −∆(Da→m, z) can be obtained.

Theorem 3.1 If m ∈ Z
+ \ V and m > y holds for all y ∈ V \RD[a], then

∆(D, z)−∆(Da→m, z) = (z − 1)2
∑

π0∈OP(D−a)

[

p(a, π0) + |Q(a, π0)|z
−1

]

zδD−a(π0). (3.32)
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Proof. Observe that

∆(D, z)−∆(Da→m, z)

=
∑

π1∈OP(D)

zδD(π1) −
∑

π2∈OP(Da→m)

zδDa→m (π2)

=
∑

π0∈OP(D−a)

∑

π1∈OP(D,π0)

zδD(π1) −
∑

π0∈OP(D−a)

∑

π2∈OP(Da→m,π0)

zδDa→m(π2)

=
∑

π0∈OP(D−a)

zδD−a(π0)∆D,π0(z)−
∑

π0∈OP(D−a)

zδD−a(π0)∆Da→m,π0(z)

=
∑

π0∈OP(D−a)

[∆D,π0(z)−∆Da→m,π0(z)] z
δD−a(π0)

= (z − 1)2
∑

π0∈OP(D−a)

[

p(a, π0) + |Q(a, π0)|z
−1

]

zδD−a(π0), (3.33)

where the last equality follows from Proposition 3.1. ✷

3.2 Compare D with Da→r for some r > a

Let D = (V,A) be an acyclic digraph with |V | = n. Recall that for u ∈ V (D), FD(u) =

{v ∈ V : (u, v) ∈ A}. Let BD(u) = {v ∈ V : (v, u) ∈ A} and BD[u] = BD(u) ∪ {u}. Thus

u is a sink of D if and only if FD(u) = ∅, and u is a source of D if and only if BD(u) = ∅.

A vertex u of D is called a turning vertex if either FD(u) = ∅ or minFD(u) ≥ 2 +

max(PD(u)) holds, where

PD(u) = BD[u] ∪ {c ∈ V : ∃b < c, (c, b) ∈ A}. (3.34)

In this subsection, we always assume that a is a turning vertex of D and r is a number in

Z
+ \ V such that r > maxPD(a) whenever FD(a) = ∅, and minFD(a) > r > maxPD(a)

otherwise. Thus y1 > r > y2 holds for all y1 ∈ FD(a) and y2 ∈ PD(a). Clearly r > a

holds, as a ∈ BD[a] ⊆ PD(a). In this section, the assumptions on a and r will not be

mentioned again and we shall compare D with Da→r under this assumption.

For u ∈ V , let W(D,u) = {W ∈ W(D) : u ∈ W}. So W(D,u) = W(D) \ W(D − u), and

W(D,u) = ∅ iff W(D) = W(D − u).

Lemma 3.2 W(Da→r, r) = ∅ and so W(Da→r) = W(D − a).

Proof. Clearly W(Da→r) = W(D − a) ∪ W(Da→r, r). Thus it suffices to prove that

W(Da→r, r) = ∅, i.e., r 6∈ W for every W ∈ W(Da→r).
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Suppose that W = {r, b, c} ∈ W(Da→r), where b < c. Assume that r = maxW . Then

r → b in Da→r by definition of W(Da→r). But r → b in Da→r implies that a → b in D

and so b ∈ FD(a). By the given condition on r, r < minFD(a) ≤ b, contradicting the

assumption that r = maxW > b. Hence r < maxW and so maxW = c.

If r = minW , then, by definition of W(Da→r), c > b > r and c → r in Da→r, where the

later implies that c → a in D. So c ∈ BD(a) ⊆ PD(a). By the given condition on r, we

have r > maxPD(a) ≥ c, a contradiction.

By the above conclusions, we have minW < r < maxW , i.e., b < r < c. As W ∈

W(Da→r), we have c → b in both Da→r and D. Thus c ∈ PD(a). But r > maxPD(a)

implies that r > c, a contradiction again.

Hence the result holds. ✷

Lemma 3.3 Let π0 = (a1, a2, · · · , an−1) ∈ OP(D−a) and s and t be the numbers defined

in Subsubsection 3.1.1 with respect to a and π0 ∈ OP(D − a). Then

(i) Q(r, π0) = ∅;

(ii) p(a, π0)− p(r, π0) = 1 if {a, as+1, as} ∈ W(D), and p(a, π0)− p(r, π0) = 0 otherwise.

Proof. (i) By definition,

Q(r, π0) = {s+ 1 ≤ i ≤ t− 2 : ai > r > ai+1, ai → ai+1}.

Assume that k ∈ Q(r, π0). Then ak > ak+1 and ak → ak+1, implying that ak ∈ PD(a). By

the assumption on r, we have r > maxPD(a) ≥ ak. However, k ∈ Q(r, π0) implies that

r < ak, a contradiction. Thus Q(r, π0) = ∅.

(ii) By definition of p(a, π0), we have

p(a, π0)− p(r, π0) = (1− δD(as, as+1)) [δD(a, as+1)− δDa→r(r, as+1)]

+(1− δD(at−1, at)) [δDa→r(r, at−1)− δD(a, at−1)] . (3.35)

Claim 1: p(a, π0)− p(r, π0) = (1− δD(as, as+1)) [δD(a, as+1)− δDa→r(r, as+1)].

By (3.35), it suffices to show that (1 − δD(at−1, at)) [δDa→r(r, at−1)− δD(a, at−1)] = 0.

Suppose that it does not hold. Then δD(at−1, at) = 0. Thus t < n and at−1 > at. By the

assumption on t, we have (a, at) ∈ A, implying that at ∈ FD(a). Since a < r < minFD(a),

we have a < r < at. As at < at−1, we have a < r < at−1 and

δDa→r(r, at−1) = δD(a, at−1) = 1.
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So (1 − δD(at−1, at)) [δDa→r(r, at−1)− δD(a, at−1)] = 0, a contradiction. Hence Claim 1

holds.

Claim 2: p(a, π0)− p(r, π0) ≥ 0.

As r > a, δD(a, as+1)− δDa→r(r, as+1) ≥ 0. Then Claim 2 follows from Claim 1.

Claim 3: p(a, π0)− p(r, π0) = 1 if and only if {a, as, as+1} ∈ W(D).

By Claims 1 and 2, p(a, π0)− p(r, π0) ∈ {0, 1}.

Assume that {a, as, as+1} ∈ W(D). By definition of s, as → a in D. By definition

of W(D), as > as+1 > a, a 6→ as+1 and as 6→ as+1 in D. So δD(as, as+1) = 0 and

δD(a, as+1) = 1. As as ∈ BD[a] ⊆ PD(a), by the assumption on r, r > as holds, im-

plying that r > as > as+1. Since a 6→ as+1 in D, we have r 6→ as+1 in Da→r. Thus

δDa→r(r, as+1) = 0. By Claim 1, we have p(a, π0)− p(r, π0) = 1

Now assume that p(a, π0)− p(r, π0) = 1. By Claim 1, δD(as, as+1) = 0 and δD(a, as+1)−

δDa→r(r, as+1) = 1, where the later implies that δD(a, as+1) = 1. Observe that δD(as, as+1) =

0 implies that as > as+1 and as 6→ as+1, and δD(a, as+1) = 1 implies that a < as+1 or

a → as+1 in D. However, if a → as+1 in D, then r → as+1 in Da→r, implying that

δD(a, as+1) − δDa→r(r, as+1) = 1 − 1 = 0, a contradiction. Thus as > as+1 > a, but

as 6→ as+1 and a 6→ as+1 in D. By definition of s, as → a. Hence {a, as, as+1} ∈ W(D)

and the claim holds. ✷

For an integer j with 0 ≤ j ≤ n− 1,

(i) let cj(D, a) be the number of π = (a1, · · · , ai, a, ai+1, · · · , an−1) ∈ OP(D) such that

δD(π) = j and {a, ai, ai+1} ∈ W(D) for some i with 1 ≤ i ≤ n−1, where (ai, a) ∈ A;

(ii) let c′j(D, a) be the number of π = (a1, · · · , ai, a, ai+1, · · · , an−1) such that δD(π) = j

and {a, ai, ai+1} ∈ W(D) for some i with 1 ≤ i ≤ n− 1, where (ai, ai+1) ∈ A.

Clearly cj(D, a)+C ′
j(D, a) is not more than the number of π’s in OP(D) with δD(π) = j,

and cj(D, a) = C ′
j(D, a) = 0 whenever W(D, a) = 0.

Lemma 3.4 cj(D, a) = 0 for j = 0, 1, and c′j(D, a) = 0 for j ≥ n− 2.

Proof. For any π = (a1, · · · , ai, a, ai+1, · · · , an−1) ∈ OP(D), if {a, ai, ai+1} is a member

of W(D) with a < ai+1 < ai and (ai, a) ∈ A, then δD(ai, a) = δD(a, ai+1) = 1, implying

that δD(π) ≥ 2. Thus cj(D, a) = 0 for j ≤ 1 by definition of cj(D, a).

For any π = (a1, · · · , ai, a, ai+1, · · · , an−1) ∈ OP(D), if {a, ai, ai+1} is a member of W(D)

with ai+1 < a < ai and (ai, ai+1) ∈ A, then ai 6≈ a and a 6≈ ai+1, implying that δD(ai, a) =
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δD(a, ai+1) = 0. Thus δD(π) ≤ n− 3. By definition of c′j(D, a), c′j(D, a) = 0 for j ≥ n− 2.

✷

Theorem 3.2 Assume that n = |V | ≥ 3. Then

∆(D, z) −∆(Da→r, z) = (z − 1)2
∑

0≤j≤n−3

(cj+2(D, a) + c′j(D, a))zj . (3.36)

Furthermore, ∆(D, z) = ∆(Da→r, z) if and only if W(D, a) = ∅.

Proof. Let m be a number in Z
+ \ V such that m > y for all y ∈ V \ RD[a]. By

Theorem 3.1, we have

∆(D, z)−∆(Da→m, z) = (z − 1)2
∑

π0∈OP(D−a)

[

p(a, π0) + |Q(a, π0)|z
−1

]

zδD−a(π0). (3.37)

By Lemma 3.3 (i), Q(r, π0) = ∅. Replacing D by Da→r in (3.37) gives that

∆(Da→r, z)−∆(Da→m, z) = (z − 1)2
∑

π0∈OP(D−a)

p(r, π0)z
δD−a(π0). (3.38)

By (3.37) and (3.37), ∆(D, z)−∆(Da→r, z) has the following expression:

(z − 1)2
∑

π0∈OP(D−a)

[

p(a, π0)− p(r, π0) + |Q(a, π0)|z
−1

]

zδD−a(π0). (3.39)

The proof will be completed by establishing the following claims.

Claim 1: For each π0 = (a1, a2, · · · , an−1) ∈ OP(D − a), p(a, π0)− p(r, π0) ∈ {0, 1}, and

p(a, π0)− p(r, π0) = 1 if and only if {a, as, as+1} ∈ W(D), where (as, a) ∈ A.

Claim 1 follows from Lemma 3.3 (ii).

Claim 2:
∑

π0∈OP(D−a)

(p(a, π0)− p(r, π0))z
δD−a(π0) =

n−3
∑

j=0
cj+2(D, a)xj .

Let OP∗(D − a) be the set of those π0 ∈ OP(D − a) with p(a, π0)− p(r, π0) = 1, and let

qj be the number of π0’s in OP∗(D − a) with δD−a(π0) = j, where 0 ≤ j ≤ n− 2. Then,

by Claim 1,

∑

π0∈OP(D−a)

(p(a, π0)− p(r, π0))z
δD−a(π0) =

n−2
∑

j=0

∑

π0∈OP∗(D−a)
δD−a(π0)=j

zj =

n−2
∑

j=0

qjz
j . (3.40)

For each π0 ∈ OP∗(D − a) with δD−a(π0) = j, π = (a1, · · · , as, a, as+1, · · · , an−1) is a

member of OP(D). By Claim 1, {a, as, as+1} ∈ W(D) with (as, a) ∈ A. Thus, δD(as, a) =

δ(a, as+1) = 1 but δD−a(as, as+1) = 0, implying that δD(π) = δD−a(π0) + 2 = j + 2. As
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δD−a(as, as+1) = 0, we have δD−a(π0) ≤ n−3 and so qn−2 = 0. On the other hand, for any

π = (a1, · · · , ai, a, ai+1, · · · , an−1) ∈ OP(D) with δD(π) = j+2 and {ai, a, ai+1} ∈ W(D),

where ai > ai+1 > a, π0 = (a1, · · · , ai, ai+1, · · · , an−1) is a (D − a)-respecting ordering

with s = i and δD−a(π) = j. Thus, by definition, qj = cj+2(D, a) holds and so Claim 2

holds.

Claim 3:
∑

π0∈OP(D−a)

|Q(a, π0)|z
δD−a(π0)−1 =

n−3
∑

j=0
c′j(D, a)zj .

By definition, for each π0 = (a1, a2, · · · , an−1) ∈ OP(D − a), |Q(a, π0)| is the number

of integers i with s + 1 ≤ i ≤ t − 2 such that ai > a > ai+1 and (ai, ai+1) ∈ A. As

(ai, ai+1) ∈ A, we have δD−a(π0) ≥ 1. As s+1 ≤ i ≤ t−2, the definitions of s and t imply

that D[{ai, a, ai+1}] has only one arc, i.e., (ai, ai+1). Thus {ai, a, ai+1} ∈ W(D). Clearly,

Q(a, π0) > 0 implies that δD−a(π0) ≥ 1. Thus,

∑

π0∈OP(D−a)

|Q(a, π0)|z
δD−a(π0)−1 =

n−2
∑

j=0

∑

π0∈OP(D−a)
δD−a(π0)=j

Q(a, π0)z
j−1 =

n−3
∑

j=0

q′jz
j , (3.41)

where q′j is the number of order pairs (π0, i), where π0 ∈ OP(D − a) with δD−a(π0) =

j + 1 and i is an integer with s + 1 ≤ i ≤ t − 2 such that {ai, a, ai+1} ∈ W(D), where

(ai, ai+1) ∈ A.

For each π0 = (a1, a2, · · · , an−1) ∈ OP(D − a) with δD−a(π0) = j + 1, if i is an integer

with s + 1 ≤ i ≤ t − 2 such that {ai, a, ai+1} ∈ W(D), where (ai, ai+1) ∈ A, then

π = (a1, · · · , ai, a, ai+1, · · · , an−1) is a member of OP(D). As δD(ai, a) = δD(a, ai+1) = 0

but δD−a(ai, ai+1) = 1, we have δD(π) = δD−a(π0)− 1 = j.

On the other hand, for each π = (a1, · · · , ai, a, ai+1, · · · , an−1), if {ai, a, ai+1} ∈ W(D),

where (ai, ai+1) ∈ A, by definitions of s and t, we have s + 1 ≤ i ≤ t − 2 and π0 =

(a1, · · · , ai, ai+1, · · · , an−1) is a member of OP(D − a). As δD(ai, a) = δD(a, ai+1) = 0

and δD−a(ai, ai+1) = 1, we have δD(π) = δD−a(π0)− 1 = j whenever δD−a(π0) = j + 1.

By the assumption on q′j and the above arguments, q′j equals the number of members π =

(a1, · · · , ai, a, ai+1, · · · , an−1) of OP(D) with δD(π) = j such that {ai, a, ai+1} ∈ W(D),

where (ai, ai+1) ∈ A. By definition of c′j(D, a), we have q′j = c′j(D, a). Then, by (3.41),

Claim 3 holds.

By (3.39) and Claims 2 and 3, (3.36) holds.

Claim 4: If W(D, a) 6= ∅, then cj+2(D, a) + c′j(D, a) > 0 for some j.

Assume that W = {a, b, c} ∈ W(D), where b < c. If a > c, then (a, b) ∈ A, implying

that b ∈ FD(a). But a is a turning vertex of D, implying that a < y for all y ∈ FD(a), a

contradiction. Thus, either a < b < c or b < a < c.
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Suppose that a < b < c. As {a, b, c} ∈ W (D), by definition ofW(D), (c, a) ∈ A and b 6≈D a

and b 6≈D c. It is easy to check that there exists π = (a1, · · · , as, a, as+1, · · · , an−1) ∈

OP(D), where as = c and as+1 = b. Thus {a, as, as+1} ∈ W(D). Let π0 = π−a, i.e., π0 =

(a1, · · · , as, as+1, · · · , an−1). Clearly π0 ∈ OP(D−a), δD(π) ≥ δD(as, a)+ δD(a, as+1) = 2

and δD(π) = δD−a(π0)+2 ≥ 2. By definition, cj+2(D, a) > 0 for some j with 0 ≤ j ≤ n−3.

Now suppose that b < a < c. As {a, b, c} ∈ W (D), by definition of W(D), (c, b) ∈ A and

a 6≈D b and a 6≈D c. It is easy to check that there exists π = (a1, · · · , ai, a, ai+1, · · · , an−1) ∈

OP(D), where ai = c and ai+1 = b. Let π0 = (a1, · · · , ai, ai+1, · · · , an−1). Clearly

π0 ∈ OP(D − a) and δD(π) = δD−a(π0)− 1 ≤ n− 3. By definition, c′j(D, a) > 0 for some

j with 0 ≤ j ≤ n− 3.

Thus Claim 4 holds. If W(D, a) = ∅, by definition of cj(D, a) and c′j(D, a), we have

cj(D, a) = c′j(D, a) = 0 for all i = 0, 1, · · · , n− 1. By this fact and Claim 4, W(D, a) = ∅

if and only if ∆(D, z) = ∆(Da→r, z). ✷

Applying Theorem 3.2 and the following result, we will obtain an expression for Ψ(D,x)−

Ψ(Da→r, x) in terms of cj+2(D, a) + c′j(D, a) for j = 0, 1, · · · , n − 3.

Lemma 3.5 Let D1 and D2 be any two acyclic digraphs of order n.

(i) If ∆(D1, z) −∆(D2, z) = t0 + t1z + · · ·+ tn−1z
n−1, then

Ψ(D1, x)−Ψ(D2, x) =

n−1
∑

i=0

ti

(

x+ i

n

)

; (3.42)

(ii) if ∆(D1, z)−∆(D2, z) = (z−1)2P (z), where P (z) = d0+d1z+ · · ·+dn−3z
n−3, then

Ψ(D1, x)−Ψ(D2, x) =

n−3
∑

i=0

di

(

x+ i

n− 2

)

. (3.43)

Proof. (i). Assume that

∆(D2, z) =

n−1
∑

i=0

biz
i.

Then, by the given condition,

∆(D1, z) =

n−1
∑

i=0

(bi + ti)z
i.

By the relation between ∆(Di, z) and Ψ(Di, x), we have

Ψ(D1, x) =

n−1
∑

i=0

(bi + ti)

(

x+ i

n

)

, Ψ(D2, x) =

n−1
∑

i=0

bi

(

x+ i

n

)

.
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Thus the result holds.

(ii). Note that

∆(D1, z)−∆(D2, z) = (z − 1)2
n−3
∑

i=0

diz
i =

n−3
∑

i=0

(

diz
i+2 − 2diz

i+1 + diz
i
)

.

Then, the result in (i) implies that

Ψ(D1, x)−Ψ(D2, x) =

n−3
∑

i=0

di

[(

x+ i+ 2

n

)

− 2

(

x+ i+ 1

n

)

+

(

x+ i

n

)]

=

n−3
∑

i=0

di

(

x+ i

n− 2

)

. (3.44)

✷

Theorem 3.3 Assume that n = |V | ≥ 3. Then

Ψ(D,x)−Ψ(Da→r, x) =

n−3
∑

j=0

(cj+2(D, a) + c′j(D, a))

(

x+ j

n− 2

)

. (3.45)

Furthermore, Ψ(D,x) = Ψ(Da→r, x) if and only if W(D, a) = ∅.

Proof. The result follows directly from Theorem 3.2 and Lemma 3.5(ii). ✷

Let D1 = (V1, A1) be an acyclic digraph and V ′ ⊆ V1. Let D2 = (V2, A2) be an acyclic

digraph obtained from D1 by relabeling each u ∈ V ′ by µ(u), where µ is a bijection from

V ′ to V ′′, where V ′′ is some subset of Z+\V1 with |V ′′| = |V ′|. Write D1 � D2 if conditions

(a) and (b) below are satisfied:

(a) for any 3-element subset W of V1, if W 6∈ W(D1), then W ′ 6∈ W(D2), where W ′ =

(W \ V ′) ∪ {µ(u) : u ∈ W ∩ V ′};

(b) ∆(D1, z) − ∆(D2, z) = (z − 1)2P (z), where P (z) = 0 or P (z) is a polynomial of

degree at most n1 − 3 without negative coefficients, where n1 = |V1|; furthermore,

P (z) = 0 if and only if |W(D1)| = |W(D2)|.

Proposition 3.2 If D1 � D2 and D2 � D3, then D1 � D3.

Proposition 3.3 Assume that D1 � D2. Then

(i) |W(D1)| ≥ |W(D2)|;
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(ii) if |W(D1)| = |W(D2)|, then ∆(D1, z) = ∆(D2, z) and Ψ(D1, x) = Ψ(D2, x);

(iii) if |W(D1)| > |W(D2)|, then there exists non-negative integers d0, d1, · · · , dn1−3 such

that

∆(D1, z)−∆(D2, z) = (z − 1)2
n1−3
∑

i=0

diz
i

and

Ψ(D1, x)−Ψ(D2, x) =

n1−3
∑

i=0

di

(

x+ i

n1 − 2

)

,

where di > 0 for some i.

By applying Lemma 3.2 and Theorem 3.2, we get the following conclusion on D and Da→r.

Corollary 3.1 D � Da→r.

3.3 Complete the proof of Theorem 1.4

Let D = (V,A) be an acyclic digraph. For S ⊆ V , S is said to be ideal in D if either S = ∅

or the following conditions are satisfied:

(i.1) for each y ∈ S, RD(y) ⊆ S;

(i.2) for each y ∈ S, either FD(y) = ∅ or y < minFD(y); and

(i.3) either S = V and minV ≥ 2 or minS ≥ 2 + max(V \ S).

Proposition 3.4 Let S ⊆ V be ideal in D. Then Re(D) = Re(D − S) and W(D) =

W(D − S).

Proof. We just need to consider the case that S 6= ∅. As S is ideal in D, it is easy to

verify that Re(D) = Re(D − S).

It is clear that W(D − S) ⊆ W(D). Assume that W ∈ W(D) and W ∩ S 6= ∅. As

minS ≥ 2 +max(V \ S), we have maxW ∈ S. Let c = maxW and a = minW . So c > a.

By definition of W(D), (c, a) ∈ A and so a ∈ FD(c). As S is ideal, c < minFD(c) ≤ a, a

contradiction. ✷

Assume that minS = +∞ whenever S = ∅.

Proposition 3.5 Let S ⊆ V be ideal in D and let u ∈ V \ S with FD(u) ⊆ S. Then
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(i) PD(u) ⊆ V \ S and u is a turning vertex of D;

(ii) if V = S∪{u}, then S∪{u′} is ideal in Du→u′ for any u′ ∈ Z
+ with 0 < u′ < minS;

(iii) if V 6= S ∪{u} and minS ≥ 3+max(V \S), then S ∪{u′} is ideal in Du→u′ for any

u′ ∈ Z
+ with 2 + max(V \ S) ≤ u′ < minS.

Proof. (i) The result is trivial if S = ∅. So we assume that S 6= ∅. As S is ideal in D and

u /∈ S, we have BD(u) ⊆ V \ S. For any (c, b) ∈ A, if c ∈ S, then b ∈ S by condition (i.1)

and so c < b by condition (i.2). Thus, (c, b) ∈ A and c > b imply that c /∈ S. Therefore,

PD(u) = BD[u] ∪ {c ∈ V : ∃b < c, (c, b) ∈ A} ⊆ V \ S. (3.46)

As FD(u) ⊆ S and S is ideal in D, we have

minFD(u) ≥ minS ≥ 2 + max(V \ S) ≥ 2 + maxPD(u). (3.47)

Thus, u is a turning vertex of D.

(ii) This is trivial to verify.

(iii) The result is trivial when S = ∅. Now assume that S 6= ∅. Let S′ = S ∪ {u′}. By the

given condition, to verify if S′ is ideal in Du→u′ , it suffices to show that condition (i.3) is

satisfied. As u′ = minS − 1 and minS ≥ 3 + max(V \ S), we have

minS′ = u′ ≥ 2 + max(V \ S) ≥ 2 +max(V \ (S ∪ {u}))

= 2 + max(V (Du→u′) \ S′). (3.48)

Thus S′ is ideal in Du→u′ . ✷

Proposition 3.6 Let S ⊂ V be ideal in D and u be a vertex in V \ S with FD(u) ⊆ S.

For any u′ ∈ Z
+ with max(V \ S) < u′ < minS, D � Du→u′ holds.

Proof. By Proposition 3.5 (i), PD(u) ⊆ V \ S and u is a turning vertex of D. Thus,

if max(V \ S) < u′ < minS, then maxPD(u) ≤ max(V \ S) < u′ < minS ≤ minFD(u).

Replacing r by u′ in Corollary 3.1 implies that D � Du→u′ . ✷

For an acyclic digraph D = (V,A), an ordering α = (u1, u2, · · · , un) of its vertices is

said to be a sink-elimination ordering, if ui is a sink of the subdigraph D[Vi] for all

i = 1, 2, · · · , n − 1, where Vi = {ui, ui+1, · · · , un}. Now assume that α = (u1, u2, · · · , un)

is a sink-elimination ordering of D and M = n+1+max V . Let ΓD,α denote the sequence

(D0,D1, · · · ,Dn−1) of digraphs produced from D according to α: D0 is D, and for i =

1, 2, · · · , n−1, Di is the digraph (Di−1)ui→M−i (i.e., Di is obtained fromDi−1 by relabeling
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vertex ui as M − i). For example, if D is the digraph in Figure 2, then α = (3, 2, 4, 5, 1)

is a sink-elimination ordering of its vertices, M = 11 and ΓD,α = (D0,D1, · · · ,D4), where

D0 is the digraph in Figure 2, D1,D2,D3 and D4 are shown in Figure 3.

✉ ✉ ✉ ✉

✉ ✉ ✉ ✉

t t t t

t t t tt t t t
5 5 5 7

4 4 8 8

2 9 9 9

10 10 10 10

❘ ❘ ❘ ❘

1 1 1 1

✲ ✲ ✲ ✲

✲ ✲ ✲ ✲⑦ ⑦ ⑦ ⑦

�
�✒

�
�✒

�
�✒

�
�✒

(a) D1 (b) D2 (c) D3 (d) D4

Figure 3: ΓD,α = (D0,D1, · · · ,D4) for D in Figure 2 and α = (3, 2, 4, 5, 1)

Theorem 3.4 Assume that ΓD,α = (D0,D1, · · · ,Dn−1). Then Re(Dn−1) = ∅ and Di �

Di+1 for all i = 0, 1, · · · , n− 2.

Proof. LetM = n+1+maxV . By definition, Di is obtained from D by relabeling vertex

uj as M−j for all j = 1, 2, · · · , i, where α = (u1, u2, · · · , un) is a sink-elimination ordering

of D. Then V (Di) is the disjoint union of Si and Vi+1, where Si = {M − j : 1 ≤ j ≤ i}

and Vi+1 = {uj : i+ 1 ≤ j ≤ n}.

We first prove two claims below.

Claim 1: FDi(ui+1) ⊆ Si for all i = 0, 1, · · · , n− 1.

As α is a sink-elimination ordering of D, ui+1 is a sink of D[Vi+1] and so FD(ui+1) ⊆

{u1, · · · , ui}. By definition of Di, we have FDi(ui+1) ⊆ {M − j : 1 ≤ j ≤ i} = Si. Hence

Claim 1 holds.

Claim 2: Si is ideal in Di for all i = 0, 1, · · · , n− 1.

As S0 = ∅, S0 is ideal in D0. It is also trivial that S1 = {M − 1} is ideal in D1, as

M − 1 = n+max V ≥ 3 + maxV ≥ max(V2) + 3 and M − 1 is a sink in D1.

Now assume that Si−1 is ideal in Di−1, where 2 ≤ i ≤ n−2. We will apply Proposition 3.5

to show that Si is ideal in Di.

Note that ui ∈ V (Di−1) \ Si−1 = Vi and Di is obtained from Di−1 by relabeling ui as

M − i. Observe that M − i < M − i+ 1 = minSi−1 and

M − i = n+ 1 +maxV − i ≥ 3 + max V ≥ 3 + maxVi.

By Claim 1, FDi−1(ui) ⊆ Si−1. By Proposition 3.5 (ii) and (iii), Si = Si−1 ∪ {M − i} is

ideal in Di = (Di−1)ui→M−i.

Hence Claim 2 holds.
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By Claim 2 and Proposition 3.4,Re(Di) = Re(Di − Si) for all i = 0, 1, · · · , n − 1. Hence

Re(Dn−1) = Re(D[{un}]) = ∅.

Note that uj < M − (i + 1) < M − i = minSi for all j : i + 1 ≤ j ≤ n. Thus, by Claims

1, 2 and Proposition 3.6, Di � Di+1, as Di+1 = (Di)ui+1→M−(i+1). ✷

Corollary 3.2 Re(Dn−1) = ∅ and

Ψ(D,x)−Ψ(Dn−1, x) =
n−3
∑

i=0

di

(

x+ i

n− 2

)

, (3.49)

where di ≥ 0 for all i = 0, 1, · · · , n − 3. Furthermore, W(D) = ∅ if and only if di = 0 for

all i = 0, 1, · · · , n− 3.

Proof. By Theorem 3.4, Re(Dn−1) = ∅. By Theorem 3.4 again, Di � Di+1 for all

i = 0, 1, · · · , n − 2. By Proposition 3.2, D0 � Dn−1. Thus, the result follows from

Proposition 3.3. ✷

Proof of Theorem 1.4: As Re(Dn−1) = ∅, Ψ(Dn−1, x) = Ω(D̄n−1, x) by Proposition 1.1.

As Ω(D̄n−1, x) = Ω(D̄, x), Theorem 1.4 follows from Corollary 3.2. ✷

We end this section with a special sink-elimination ordering of D determined by the injec-

tive mapping L : V → {1, 2, · · · , n} defined in Section 2. Assume that V = {v1, v2, · · · , vn}

and L(vi) = n + 1 − i for i = 1, 2, · · · , n. Then α = (v1, v2, · · · , vn) is a sink-elimination

ordering of D. Assume that ΓD,α = (D0,D1, · · · ,Dn−1). So Dn−1 is obtained from D by

relabeling each vi by n+1−i+maxV for all i = 1, 2, · · · , n−1. Recall that DL denotes the

digraph obtained from D by relabeling each vertex vi by L(vi) = n+1− i. By definition,

D∗
n−1 is exactly the digraph DL, implying that Ψ(DL, x) = Ψ(D∗

n−1, x) = Ψ(Dn−1, x). By

Corollary 3.2, we have the following conclusion.

Corollary 3.3 Ψ(D,x) = Ψ(DL, x) if and only if W(D) = ∅.

4 Proof of Theorem 1.1

Let G = (V,E) be a simple graph, where V = [n]. Recall that P(V ) is the set of orderings

of members of V . So |P(V )| = n!. Recall that AO(G) is the set of acyclic orientations

of G. Then P(V ) can be partitioned according to members D of AO(G) as stated in the

following lemma.

Lemma 4.1 (i) P(V ) =
⋃

D∈AO(G)OP(D);
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(ii) OP(D1) ∩ OP(D2) = ∅ for any pair of distinct orientations D1,D2 ∈ AO(G).

Proof. (i). Clearly, OP(D) ⊆ P(V ). For an ordering π = (a1, a2, · · · , an) of the elements

of V = [n], if D is the orientation of G such that (ai, aj) ∈ A(D) whenever i < j and

aiaj ∈ E, then π ∈ OP(D). Thus (i) holds.

(ii). Suppose that D1,D2 ∈ AO(G) and π = (a1, a2, · · · , an) ∈ OP(D1) ∩ OP(D2). For

any edge aiaj in G, i < j implies that (ai, aj) ∈ A(D1)∩A(D2). Thus D1 and D2 are the

same. Hence (ii) holds. ✷

Lemma 4.2 For any simple graph G,

Ψ(G,x) =
∑

D∈AO(G)

Ψ(D,x). (4.50)

Proof. Let D ∈ AO(G). For any π = (a1, a2, · · · , an) ∈ OP(D) and any i = 1, 2, · · · , n−

1, ai and ai+1 are adjacent in G if and only if ai → ai+1 in D, implying that δG(ai, ai+1) =

δD(ai, ai+1). Thus δG(π) = δD(π) holds for any π ∈ OP(D), implying that

Ψ(D,x) =
∑

π∈OP(D)

(

x+ δD(π)

n

)

=
∑

π∈OP(D)

(

x+ δG(π)

n

)

. (4.51)

Then, by Lemma 4.1,

Ψ(G,x) =
∑

π∈P(V )

(

x+ δG(π)

n

)

=
∑

D∈AO(G)

∑

π∈OP(D)

(

x+ δG(π)

n

)

. (4.52)

Thus (4.50) follows from (4.52) and (4.51). ✷

Proposition 4.1 For any simple graph G = (V,E) with V = [n], where n ≥ 3,

Ψ(G,x) = (−1)nχ(G,−x) +

n−3
∑

i=0

di

(

x+ i

n

)

, (4.53)

where di ≥ 0 for all i = 0, 1, · · · , n − 3. Furthermore, di = 0 for all i = 0, 1, · · · , n − 3 if

and only if W(G) = ∅.

Proof. By Theorem 1.5,

(−1)nχ(G,−x) =
∑

D∈AO(G)

Ω(D̄, x). (4.54)

26



Then, Lemma 4.2, (4.54) and Theorem 1.4 imply that

Ψ(G,x) − (−1)nχ(G,−x) =
∑

D∈AO(G)

(

Ψ(D,x)−Ω(D̄, x)
)

=
∑

D∈AO(G)

n−3
∑

i=0

dD,i

(

x+ i

n− 2

)

, (4.55)

where dD,i ≥ 0 for all i = 0, 1, · · · , n − 3, and dD,i = 0 for all i = 0, 1, · · · , n − 3 if and

only if W(D) = ∅. Thus di =
∑

D∈AO(G)

dD,i ≥ 0 for all i = 0, 1, · · · , n − 3. If W(G) = ∅,

then W(D) = ∅ for all D ∈ AO(G), implying that di = 0 for all i = 0, 1, · · · , n− 3. Thus,

it remains to show that if W(G) 6= ∅, then di > 0 for some i.

Now assume that W(G) 6= ∅. Then W(D) 6= ∅ for some D ∈ AO(G). By Theorem 1.4,

dD,i > 0 for some i, implying that di > 0.

Hence Proposition 4.1 holds. ✷

Theorem 1.1 follows directly from Proposition 4.1.

5 Further study

We end this article with some problems that may merit further study. We assume that

G = (V,E) is a simple graph with V = [n], unless otherwise stated.

5.1 Possible extensions of Theorems 1.1 and 1.4

Theorem 1.1 gives an expression for χ(G,x) in terms of a summation over all n! orderings of

elements of V wheneverW(G) = ∅. This result is established by applying Theorem 1.4 and

Stanley’s result, Theorem 1.5. Is it possible to find new results analogous to Theorems 1.1

and 1.4 by revising δD(π) and δG(π) for orderings π of elements of V such that the new

results hold for a larger family of acyclic digraphs D and a larger family of simple graphs

G respectively?

5.2 Graphs G with W(G) = ∅

Recall that W(G) = {{a, b, c} : 1 ≤ a < b < c ≤ n, ac ∈ E, ab, bc /∈ E}. By definition of

W(G), the following observation follows directly. Let NG(a) denote the set of vertices in

G which are adjacent to a.
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Proposition 5.1 W(G) = ∅ if and only if for every edge ac ∈ E with a < c, {b : a < b <

c} ⊆ NG(a) ∪NG(c) holds.

For a bijection ω : V → [n], let Gω be the graph obtained from G by relabeling each vertex

v ∈ V by ω(v). Let W denote the set of simple graphs G = (V,E) such that W(Gω) = ∅

for some bijection ω : V → [n].

If G is a complete multi-partite graph and ac is an edge in G, then u ∈ NG(a)∪NG(c) holds

for every u ∈ [n] − {a, c}. Thus, by Proposition 5.1, W(Gω) = ∅ holds for an arbitrary

bijection ω : V → [n]. If G is not a complete multi-partite graph, this property does not

hold.

The observations in the following proposition can be verified easily.

Proposition 5.2 (i) If G = (V,E) is a complete multi-partite graph and ω : [n] → [n]

is a bijection, then W(Gω) = ∅ holds and thus G ∈ W;

(ii) if G is disconnected, then G ∈ W if and only if each component of G belongs to W;

(iii) if G ∈ W, then the subgraph of G induced by any subset S ⊆ V (G) belongs to W.

By Proposition 5.1, we have the following relation between W(G) and W(G − u), where

u ∈ V .

Proposition 5.3 Let u ∈ {1, n}. If {w : min{u, v} < w < max{u, v}} ⊆ NG(u) ∪NG(v)

holds for every v ∈ NG(u), then W(G) = ∅ if and only if W(G− u) = ∅.

By Proposition 5.3, the following corollary follows.

Corollary 5.1 Let u ∈ {1, n}. If either u = 1 and NG(u) = {2, 3, · · · , k}, or u = n

and NG(u) = {k, k + 1, · · · , n − 1}, where 1 ≤ k ≤ n, then W(G) = ∅ if and only if

W(G− u) = ∅.

Applying Proposition 5.3 or Corollary 5.1, we find a family of graphs in W which are not

complete multi-partite graphs.

Proposition 5.4 Let G = (V,E) be a simple graph on n vertices.

(i) If u is a vertex in G such that G− u is a complete multi-partite graph, then G ∈ W;
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(ii) Assume that {u, v} is an independent set of G such that G − {u, v} is a complete

multi-partite graph. If either {u, v} is a dominating set of G or NG(u)∩NG(v) = ∅,

then G ∈ W.

Proof. (i). Assume that k = |NG(u)|. Let ω be a bijection from V to [n] such that

ω(u) = 1 and 2 ≤ ω(w) ≤ k + 1 for all w ∈ NG(u). As G− u is a complete multi-partite

graph, by Proposition 5.2 (i), W((G − u)ω′) = ∅, where ω′ is the mapping of ω restricted

to V − {u}. By Corollary 5.1, W(Gω) = ∅ and so G ∈ W. Thus (i) holds.

(ii). We first the case that {u, v} is a dominating set of G. Assume that dG(u) = n1 and

dG(v) = n2. Then |NG(u) ∩NG(v)| = n1 + n2 − n+ 2, |NG(u) \NG(v)| = n− 2− n2 and

|NG(v) \NG(u)| = n− 2− n1. Let ω be a bijection from V to [n] such that

(a) ω(u) = 1, ω(v) = n;

(b) 2 ≤ ω(w) ≤ n− 1− n2 for all w ∈ NG(u) \NG(v);

(c) n− n2 ≤ ω(w) ≤ n1 + 1 for all w ∈ NG(u) ∩NG(v); and

(d) n1 + 2 ≤ ω(w) ≤ n− 1 for all w ∈ NG(v) \NG(u).

As G−{u, v} is a complete multi-partite graph, by Proposition 5.2 (i), W((G−{u, v})ω′′ ) =

∅, where ω′′ is the mapping of ω restricted to V −{u, v}. As ω satisfies the above conditions

(a), (b), (c) and (d), by Corollary 5.1, W((G − u)ω′) = ∅ and W(Gω) = ∅. Thus G ∈ W.

Now consider the case that NG(u)∩NG(v) = ∅. Assume that dG(u) = n1 and dG(v) = n2.

Then n1 + n2 ≤ n− 2. Let ω be a bijection from V to [n] such that

(a’) ω(u) = 1, ω(v) = n;

(b’) 2 ≤ ω(w) ≤ n1 + 1 for all w ∈ NG(u); and

(c’) n− n2 ≤ ω(w) ≤ n− 1 for all w ∈ NG(v).

As G−{u, v} is a complete multi-partite graph, by Proposition 5.2 (i), W((G−{u, v})ω′′ ) =

∅, where ω′′ is the mapping of ω restricted to V −{u, v}. As ω satisfies the above conditions

(a’), (b’) and (c’), by Corollary 5.1, W((G − u)ω′) = ∅ and W(Gω) = ∅. Thus G ∈ W. ✷

In general, it seems not easy to determine all graphs in W. We now propose the following

problem.

Problem 5.1 Characterize the family W.

As an example of studying Problem 5.1, we now consider trees. For any tree T on n

vertices, if T is a star or a path, then it can be verified easily that T ∈ W.
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Now assume that n ≥ 5. Let T ′ denote the tree obtained from T by removing all vertices

of degree 1. If T ′ is a path, we can prove that T ∈ W. Assume that T ′ is a path of order

k: u1u2 · · · uk. Then T is a tree obtained from T ′ by adding ci new vertices and adding a

new edge joining ui to each of them for all i = 1, 2, · · · , k, where c1, c2, · · · , ck are some

non-negative integers. We first label each ui by c1+ · · ·+ci+ i. Then we label the ci leaves

adjacent to ui by numbers in the set {j : c1 + · · · + ci−1 + i ≤ j ≤ c1 + · · · + ci + i − 1}.

An example is shown in Figure 4.

✉

✉ ✉✉ ✉✉ ✉✉ ✉✉ ✉ ✉ ✉✉ ✉✉ ✉ ✉

✉ ✉ ✉ ✉

1 2 3 4

5

6 7

8

9 10 1211

13

14 15 16 17

18

19 20 21

22

Figure 4: Labeling vertices in a tree T whose non-leaf vertices induce a path

If T ′ is not a path, we believe T /∈ W. For example, for the tree T in Figure 5, T ′ is not a

path. It is left to the readers to verify that T /∈ W.

①① ①

①

①

①

①

Figure 5: A tree which does not belong to W

Conjecture 5.1 For any tree T on n vertices, T ∈ W if and only if either n ≤ 2 or the

tree T ′ obtained from T by deleting all vertices of degree 1 is a path.

5.3 Interpretations of di’s in Theorem 1.4

Let D = (V,A) be an acyclic digraph with V = [n], where n ≥ 3, and let d0, d1, · · · , dn−3

be the numbers in Theorem 1.4. In the following, we give an interpretation of dk’s for a

special case.

Let Sink(D) be the set of sinks of D. Recall that for u ∈ V , RD(u) is the set of v ∈ V −{u}

such that D has a directed path from u to v. Thus u ∈ Sink(D) if and only if RD(u) = ∅.

Proposition 5.5 Let u ∈ V with either u ∈ Sink(D) or max(V \ RD(u)) < minRD(u)

and y < minRD(y) for each y ∈ RD(u) − Sink(D). If W(D) = W(D,u), then for j =

0, 1, 2, · · · , n−3, dj is the number of D-respecting orderings π = (a1, · · · , ai, u, ai+1, · · · , an−1)

such that
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(i) either δD(π) = j + 2 and {ai, u, ai+1} ∈ W(D) with ai > ai+1 > u; or

(ii) δD(π) = j and {ai, u, ai+1} ∈ W(D) with ai > u > ai+1.

Proof. Let S = RD(u). It is known that when u /∈ Sink(D), minS ≥ 1 + max(V \ S).

Assume that u /∈ Sink(D) and minS = 1 + max(V − S). Let D′ = (V ′, A′) be the

digraph obtained from D by relabeling each vertex v by 2v to get a new digraph D′. It

is easy to verify that W = {a, b, c} ∈ W(D) if and only if W ′ = {2a, 2b, 2c} ∈ W(D′),

δD(π) = δD′(π′), where π′ = (2a1, 2a2, · · · , 2an) for π = (a1, a2, · · · , an), and so Ψ(D′, x) =

Ψ(D,x). Observe that minS′ ≥ 2 +max(V ′ − S′). We can replace D by D′ for the proof

of this result.

Thus we may assume that either u ∈ Sink(D) or minS ≥ 2 + max(V \ S). We are now

going to complete the proof by showing the following claims.

Claim 1: Let r = max(V ) + 1 if u ∈ Sink(D), and let r = min(S) − 1 otherwise. Then

Ψ(Du→r, x) = Ω(D̄, x).

Clearly, r > maxPD(u) when u ∈ Sink(D), and maxPD(u) < r < minFD(u) otherwise.

It is also clear that r /∈ V . By Lemma 3.2, W(Du→r) = W(D−u). By the given condition,

W(D − u) = ∅, implying that W(Du→r) = ∅. Thus, by Theorem 1.3, Ψ(Du→r), x) =

Ω(D̄u→r, x) = Ω(D̄, x).

Claim 2: Let r be the number given in the previous Claim. Then Ψ(D,x)−Ψ(Du→r, x) =
n−3
∑

j=0
dj
(

x+j
n−2

)

, where dj is the number defined in Proposition 5.5.

By Theorem 3.3, Ψ(D,x)−Ψ(Du→r, x) =
n−3
∑

j=0
dj
(

x+j
n−2

)

holds with dj = cj+2(D,u)+c′j(D,u)

for j = 0, 1, · · · , n− 3. By definitions of cj(D,u) and c′j(D,u), Claim 2 holds.

By Claims 1 and 2, the result holds. ✷

Note that Proposition 5.5 gives an interpretation of di for a special case only. In general,

we would like to propose the following problem.

Problem 5.2 Interpret the numbers di in Theorem 1.4.

Acknowledgment: The author wishes to thank the referees for their very helpful com-

ments and suggestions.
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