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Abstract

The clique graph K(G) of G is the intersection graph of

the family of maximal cliques of G. For a family  of

graphs, the family of clique‐inverse graphs of  , denoted

by K ( )−1  , is defined as ∈K H K H( ) = { | ( ) }−1   . Let

p be the family of Kp‐free graphs, that is, graphs with

clique number at most p− 1, for an integer constant

p≥ 2. Deciding whether a graph H is a clique‐inverse
graph of p can be done in polynomial time; in addition,

for ∈p K{2, 3, 4}, ( )p−1  can be characterized by a finite

family of forbidden induced subgraphs. In Protti and

Szwarcfiter, the authors propose to extend such char-

acterizations to higher values of p. Then a natural

question arises: Is there a characterization of K ( )p−1  by

means of a finite family of forbidden induced subgraphs,

for any p≥ 2? In this note we give a positive answer to

this question. We present upper bounds for the order,

the clique number, and the stability number of every

forbidden induced subgraph for K ( )p−1  in terms of p.
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1 | INTRODUCTION

The clique graph K(G) of G is the intersection graph of the family of maximal cliques of G, that
is, vertices of K(G) correspond to maximal cliques of G, and an edge exists between two vertices
in K(G) if and only if the corresponding maximal cliques of G intersect [4]. In the literature, K is
often viewed as a unary operator that maps a graph G into its clique graph K(G) [10]. Clique
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graphs have been studied in several aspects, such as: structural characterizations [4,15],
complexity of algorithmic recognition [3], images of graph families under the iterated clique
operator [2,5,16], convergence/divergence of the clique operator [5,6,9], and theoretical aspects
of clique‐inverse graphs [8,12,13,14], to name just a few. Several results on clique graphs can be
found in the survey [17].

A graph G is a clique‐inverse graph of a graph H if K(G) =H. Not every graph H admits a
clique‐inverse graph; this occurs precisely when H is not a clique graph. However, if H admits a
clique‐inverse graph G, then H admits other clique‐inverse graphs (for instance, any graph
obtained by the addition of a simplicial vertex to any maximal clique of G is also a clique‐inverse
graph of H). Thus, the family K−1(H) = {G∣K(G) =H} of the clique‐inverse graphs of H either is
empty or contains infinitely many graphs.

For a family  of graphs, the family of clique‐inverse graphs of  , denoted by K ( )−1  , is
defined as ∈K G K G( ) = { | ( ) }−1   . For an integer p≥ 2, let p be the family of Kp‐free graphs,
that is, graphs with clique number at most p−1. The problem of deciding whether a graph G is
a clique‐inverse graph of p , when p is a constant, can be solved in polynomial time [13]. This
can be easily seen by observing that if ∈G K ( )p−1  then each vertex of G is in at most p− 1
maximal cliques, that is, G contains at most (p− 1) n maximal cliques; then, K(G) can be
determined in polynomial time by using any polynomial‐delay algorithm for the generation of
the maximal cliques of a graph, for example [11]. In addition, checking whether the clique
number of K(G) is at most p− 1 amounts to analyzing all the ( )

n

p

′ subsets of K(G) with p vertices,
where n= ∣V(K(G))∣.

For p∈ {2, 3, 4}, the family K ( )p−1  can be characterized by a finite family of forbidden
induced subgraphs. Note that a graph in K ( )−1

2 is complete or a disjoint union of cliques, and
thus ∈G K ( )−1

2 if and only if G contains no P3 (a chordless path on three vertices) as an
induced subgraph. The cases p= 3 and p= 4 are dealt with below.

Theorem 1 (Protti and Szwarcfiter [12]). A graph G is in K ( )−1
3 if and only if G does not

contain as an induced subgraph any of the following graphs depicted in Figure 1: K1,3,
4‐wheel, 4‐fan.

Theorem 2 (Protti and Szwarcfiter [12]). A graph G is in K ( )−1
4 if and only if G does not

contain as an induced subgraph any of the following graphs depicted in Figure 1: K1,4,
4‐wheel, 5‐wheel, 5‐fan, 4‐broom, H0, H Q,*0 2.

Let ∈G K ( )p−1  , for some p ≥ 2, and let H be an induced subgraph of G. Clearly, every
maximal clique of H is contained in some maximal clique of G. Suppose that there are p
distinct, pairwise intersecting maximal cliques C1,…, Cp in H, and let C′i be a maximal clique
of G such that Ci ⊆C′i , 1 ≤ i≤ p. If C C=′ ′i j for distinct indices i and j, then, since H is an
induced subgraph of G, we have that every vertex of Ci is adjacent to every vertex of Cj in H,
in contradiction with the fact that Ci and Cj are maximal cliques of H. Thus, C C, …,′ ′p1 are
distinct and pairwise intersecting maximal cliques in G, that is, ω(K(G)) ≥ p, contradicting
the assumption ∈G K ( )p−1  . Therefore, no family of p distinct and pairwise intersecting
maximal cliques can exist in H, and thus ω(K(H)) ≤ p −1, that is, ∈H K ( )p−1  . This shows
that being a member of K ( )p−1  is an induced‐hereditary property, and therefore (see [7]),
K ( )p−1  can be characterized by a family of vertex‐minimal graphs G such that ω(K(G)) ≥ p.
Such vertex‐minimal graphs are also called forbidden induced subgraphs or minimal
obstructions.
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In [12] the authors propose to extend the characterizations in Theorems 1 and 2 to higher
values of p. A natural question that then arises is: Is there a characterization of K ( )p−1  by
means of a finite family of minimal obstructions, for any p ≥ 2? More formally, for any p ≥ 2,
let orb K( ( ))p

−1  denote the family of minimal obstructions for a graph G to have
ω(K(G)) ≤ p − 1.

Question Is orb K( ( ))p
−1  a finite family of graphs?

In this note we give a positive answer to this question by means of counting arguments
showing that the order of any graph ∈G orb K( ( ))p

−1  is bounded above by a quadratic
function of p. In addition, we give an upper bound for the clique number and the stability
number of G. The remainder of this paper is organized as follows. In Section 2 we present the
main results, and in Section 3 our conclusions.

2 | THE MAIN RESULT

We say that a graph G is a clique‐critical if K(G)≠ K(G− v) for all v∈ V(G).

Remark 3. If ∈G orb K( ( ))p
−1  then G is clique‐critical.

By [1], G is clique‐critical if and only if for every vertex v∈ V(G), there exists a pair of
maximal cliques C and C′ of G such that either {v} = C\C′ or {v} =C ∩ C′. For short, we say that v
is the exact intersection or the exact difference between two maximal cliques. In what follows, we
will show that for a graph ∈G orb K( ( ))p

−1  , the maximal cliques that realize the vertices as
an exact intersection or as an exact difference can be chosen between the maximal cliques of
any given pairwise intersecting family with p members.

Given C1, C2,…, Ct distinct maximal cliques of a graph G, t≥ 2, we define the following
subsets of C1:

∈ ∃ ∈ ∩

∈ ∃ ∈

∈ ⧹ ∃ ∈ ∩

∈ ∃ ∈

I x C i j t C C x

D x C I i j t C C x

I x C I D j t C C x

D x C I D I j t C C x

= { : , {2, …, } s.t. = { }};

= { \ : , {2, …, } s.t. \ = { }};

′= { ( \ ) : {2, …, } s.t. = { }};

′= { (( \ )\ ) \ ′ : {2, …, } s.t. \ = { }}.

i j

i j

j

j

1

1

1 1

1 1

Lemma 4. If C C C= { , , …, }p1 2 is a family of pairwise intersecting maximal cliques of a
graph ∈G orb K( ( ))p

−1  , then C1 = I ∪D ∪ I′ ∪D′.

Proof. Suppose to obtain a contradiction that there exists a vertex x such that
x∈ C1\(I ∪D ∪ I′ ∪D′).

For every i∈ {1, 2,…, p}, either Ci\{x} is a maximal clique of G− x or Ci\{x} is contained
in some other maximal clique of G. In the former case, we let C′i be Ci\{x} (notice in this
case thatC′i is a maximal clique of G− x, and it is also a maximal clique of G if and only if
x∉ Ci); and, in the latter, we let C′i be a maximal clique of G− x containing Ci\{x} (in this
case, C′i is both a maximal clique of G− x and a maximal clique of G, but it does not
belong to {C1, C2,…,Cp} because Ci\C′i = {x}).
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We claim that if i≠ j then ≠C C′ ′i j. Indeed, assume they are equal and say C=C′i = C′j .
If C is not a maximal clique of G then x∈ Ci ∩ Cj, C′i =Ci\{x}, and C′j =Cj\{x}; hence,
Ci= Cj, a contradiction. If C is a maximal clique of G, we analyze three cases:

(a) if x∉ Ci and x∉ Cj then C′i = Ci and C′j =Cj, implying that Ci=Cj, a contradiction;
(b) if x belongs to only one of Ci and Cj, say Ci, then Ci\{x}⊆C′i =C=C′j =Cj,

contradicting the fact that x∉ I ∪D ∪ I′ ∪D′;
(c) if x∈ Ci and x∈ Cj then Ci\{x}⊆ C and Cj\{x}⊆ C, and this implies that Ci ∪ Cj is a

clique of G, another contradiction.

It follows that C C C, , …,′ ′ ′p1 2 are p maximal cliques of G− x. Thus, by hypothesis, they
are not pairwise intersecting. Let C′i andC′j have empty intersection. Since Ci ∩ Cj≠∅, we
have that Ci ∩Cj= x}, contradicting the fact that x∉ I ∪ I′. □

Theorem 5. If C C C= { , , …, }p1 2 is any family of p pairwise intersecting maximal
cliques of ∈G orb K( ( ))p

−1  then every vertex of G is the exact intersection or the exact
difference between two maximal cliques in  .

Proof. Since G is minimal (ie, no induced subgraph of G has p pairwise intersecting
maximal cliques), we have that every vertex of Gmust belong to some of the cliques in  ,
that is, V(G) ∪1≤i≤pCi. In contrast, given any vertex x of G, renumbering the maximal
cliques of  if necessary, we can assume, without loss of generality, that x∈ C1; thus, by
Lemma 4, there exist Ci and Cj in  such that {x} = Ci ∩Cj or {x} =Ci\Cj. □

Corollary 6. If ∈G orb K( ( ))p
−1  then ≤V G| ( ) | 3( )

p

2
and every stable set of G

contains at most p vertices.

Proof. By Theorem 5, every vertex is the exact intersection or the exact difference
between two of p given maximal cliques; thus, ≤V G| ( ) | 3( )

p

2
. In addition, since no two

vertices of a stable set belong to a same clique, we have that the stability number of G is at
most p. □

Corollary 7. For every ≥p orb K2, ( ( ))p
−1  is finite.

Next lemma holds for any graph. It will be used together with Lemma 9 to bound the size of
the cliques of any ∈G orb K( ( ))p

−1  .

Lemma 8. Let C1, C2,…, Ct distinct maximal cliques of a graph G. If t ≥ 4 and
C1= I ∪D ∪ I′ ∪D′ then

⎜ ⎟
⎛
⎝

⎞
⎠≤C

t
| |

− 1

2
+ 1.1

Proof. Let C1 = I ∪D ∪ I′ ∪D′ and assume ∣C1∣≥ 4, otherwise the proof is trivial. For
every vertex x∈ I (resp., x∈D) choose a pair of elements i, j∈ {2,…, t} such that
Ci ∩ Cj= {x} (resp., Ci\Cj= {x}), and let Ix= {i, j} (resp., Dx= {i, j}).
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For every vertex x∈ I′ (resp., x∈D′), choose an element j∈ {2,…, t} such that
C1 ∩Cj= {x} (resp., C1\Cj= {x}), and let I′x = {j} (resp., D′x = {j}).

Then the following statements easily hold.

(1) If x and y belong to I then Ix≠ Iy.
(2) If x and y belong to D then Dx≠Dy. Indeed, assume Dx=Dy= {i, j}. Then, without loss

of generality, {x} =Ci\Cj and {y} = Cj\Ci. Therefore, Ci\{x}⊆ Cj, and thus y is adjacent
to all the vertices of Ci\{x}. Since, in addition, y is adjacent to x because both vertices
belong to C1, we have that Ci ∪ {y} is a clique of G, contradicting the fact that Ci is a
maximal clique.

(3) If x∈ I and y∈D then Ix≠Dy. Indeed, assume Ix=Dy= {i, j}, with i and j different
from 1. Then {x} =Ci ∩ Cj and, without loss of generality, {y} =Ci\Cj; thus, Ci= {x, y},
which implies the contradiction Ci⊆ C1.

(4) If x and y belong to I′ then ≠I I′ ′x y. Let I′x = {i} and I′y = {j}. Then there is no vertex z∈ I
such that Iz= {i, j}, and there is no vertex w∈D such that Dw= {i, j}, because
Ci ∩ Cj ∩ C1 =∅, x∈ Ci\Cj, and y∈ Cj\Ci.

(5) If x and y belong to D′ then D′x ≠ D′y. Let D′x = {i} and D′y = {j}. Then there is no vertex
z∈ I such that Iz= {i, j}, and there is no vertex w∈D such that Dw= {i, j}, because
∣Ci ∩ Cj∣> 1 (otherwise, ∣C1∣= 3), x∈ Cj\Ci, and y∈ Ci\Cj.

(6) If x ∈ I′ and y ∈ D′ then ≠I D′ ′x y. Indeed, if I D=′ ′x y = {i} then {x} = C1 ∩ Ci and
{y} = C1\Ci, that is, C1 = {x, y}, implying the contradiction ∣C1∣ = 2 < 4. Let I′x = {i}
and D′y = {j}. Then there is no vertex z ∈ I such that Iz = {i, j}, and there is no
vertex w ∈ D such that Dw = {i, j}, because x ∈ Ci ∩ Cj, C1 ∩ (Ci\Cj) =∅, and
∣Cj\Ci∣ ≥ 2.

Therefore, if the cardinality of the sets I, D, I′ and D′ are denoted by nI, nD, nI′, and nD′,
respectively, we have the following.

By (1), (2), and (3),

⎜ ⎟
⎛
⎝

⎞
⎠≤n n

t
+

− 1

2
.I D (1)

And adding (4), (5), and (6):

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠≤n n

t n n
n n+

− 1

2
−

2
−

2
− .I D

D I
I D

′ ′
′ ′ (2)

Let ( ) = 0
a

b
whenever a< b.

Since C1 = I ∪D ∪ I′ ∪D′, by inequality (2), we have:

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

≤C n n n n
t n n

n n n n
t

n n n n

| | = + + +
− 1

2
−

2
−

2

− + + =
− 1

2

+
1

2
(3( + ) − ( + ) ).

I D I D
D I

I D I D

I D I D

1 ′ ′
′ ′

′ ′ ′ ′

′ ′ ′ ′
2
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Since nI′+ nD′ is a nonnegative integer, it is easy to check that
≤n n n n3( + ) − ( + ) 2I D I D′ ′ ′ ′

2 . Thus the proof is complete. □

We remark that Lemma 8 fails for the case t= 3. Consider the graph 4‐fan in Figure 1, and let
C1 be a triangle of it containing a simplicial vertex. Then C1 = I ∪D ∪ I′ ∪D′, but
C| | = 3 > ( ) + 11

3 − 1

2
.

Lemma 9. Let C be any maximal clique of a graph ∈G orb K( ( ))p
−1  . There exists a

family C C C= { , , …, }p1 2 of maximal cliques of G such that C = C1 = I ∪D ∪ I′ ∪D′.

Proof. If C belongs to any family of p pairwise intersecting maximal cliques of G, then
the proof follows from Lemma 4. Thus, assume there is no such a family. Let

C C C= { , , …, }p1 2 be a family of pairwise intersecting maximal cliques of G. Clearly,
∉C  , and without loss of generality, we can assume C ∩ C1 =∅ and C ∩ C2 =∅. In

addition, by Theorem 5, each vertex of C is the exact intersection or the exact difference
between two members of  . We claim that every vertex of C is the exact intersection or
the exact difference between two members of the family C C C′ = { , , …, }p2 . Indeed, let Ci

and Cj in  be such that {x} =Ci ∩Cj or {x} =Ci\Cj. Notice that Ci≠ C1. In the first case,
clearly Cj≠ C1; thus Ci and Cj belong to ′ . In the second case, if Cj=C1, then
{x} = Ci\C1 =C ∩ Ci because C1 ∩ C=∅; hence {x} is the exact intersection between two
members of ′ . □

Theorem 10. Let ∈G orb K( ( ))p
−1  . If p ≥ 4 then every maximal clique of G contains at

most ( ) + 1
p − 1

2
vertices.

Proof. Follows from Lemmas 8 and 9. □

FIGURE 1 Graphs in the statements of Theorems 1 and 2

536 | ALCÓN ET AL.



3 | CONCLUDING REMARKS

Ramsey numbers provide another way to conclude that orb K( ( ))p
−1  is finite. Let

∈G orb K( ( ))p
−1  , for p≥ 4. Corollary 6 tells us that the stability number of G is at most p,

whereas Theorem 10 tells us that the clique number of G is at most ( ) + 1
p − 1

2
. Consider the

Ramsey number r p k(( ) + 2, + 1) =
p − 1

2
. This means that every graph with at least k vertices

has a clique of size ( ) + 2
p − 1

2
or a stable set of size p+ 1. Thus, G must contain at most k− 1

vertices, that is, orb K( ( ))p
−1  is finite.

Ramsey numbers provide loose upper bounds for the number of vertices of a graph in
orb K( ( ))p

−1  . For instance, a graph ∈G orb K( ( ))−1
4  must contain four pairwise

intersecting maximal cliques and its number of vertices is bounded according to the inequalities
≤ ≤V G r r| ( )| (( ) + 2, 4 + 1) − 1 = (5, 5) − 1 48

4 − 1

2
. However, by Corollary 6, we have

≤V G| ( )| 3( ) = 18
4

2
; and, by Theorem 2, each graph in orb K( ( ))−1

4  has at most seven
vertices. Hence, an interesting question is how to obtain better upper bounds for the number of
vertices of a graph in orb K( ( ))p

−1  .
Although orb K| ( ( ))|p

−1  seems to be exponential in p, another interesting question is to
know whether it is possible to devise a systematic method for constructing orb K( ( ))p

−1
+1 

from orb K( ( ))p
−1  by the addition of new structures to each graph G in orb K( ( ))p

−1  in all
possible ways, to obtain vertex‐minimal graphs G′ such that ω(K(G′))≥ p+ 1.
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