
Strong cliques in vertex-transitive graphs

Ademir Hujdurović∗1,2
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Abstract

A clique (resp., independent set) in a graph is strong if it intersects every maximal indepen-
dent sets (resp., every maximal cliques). A graph is CIS if all of its maximal cliques are strong
and localizable if it admits a partition of its vertex set into strong cliques. In this paper we
prove that a clique C in a vertex-transitive graph Γ is strong if and only if |C||I| = |V (Γ)| for
every maximal independent set I of Γ. Based on this result we prove that a vertex-transitive
graph is CIS if and only if it admits a strong clique and a strong independent set. We classify all
vertex-transitive graphs of valency at most 4 admitting a strong clique, and give a partial char-
acterization of 5-valent vertex-transitive graphs admitting a strong clique. Our results imply
that every vertex-transitive graph of valency at most 5 that admits a strong clique is localizable.
We answer an open question by providing an example of a vertex-transitive CIS graph which is
not localizable.
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1 Introduction

A clique (resp., independent set) in a graph is a set of pairwise adjacent (resp., pairwise non-
adjacent) vertices. A clique (resp., independent set) in a graph is said to be maximal if it is not
contained in any larger clique (resp., independent set), and it is said to be maximum, if it is of the
maximal size. Clique number of a graph Γ, denoted by ω(Γ) is the size of a maximum clique, and
independence number, denoted by α(Γ) is the size of a maximum independent set. A clique (resp.,
independent set) is said to be strong if it intersects every maximal independent set (resp., every
maximal clique). It is co-NP-complete to test whether a given clique in a graph is strong [27] and
NP-hard to test whether a given graph contains a strong clique [16].

The notions of strong cliques and strong independent sets in graphs played an important role
in the study of several graph classes. For example, strongly perfect graphs [2, 3] are graphs in
which each of its induced subgraphs has a strong independent set, and very strongly perfect graphs
(also called Meyniel graphs) [7, 15, 22] are graphs such that in each of its induced subgraphs each
vertex belongs to a strong independent set. Another class of graphs defined using strong cliques are
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localizable graphs, defined as graphs whose vertex-set can be partitioned into strong cliques. They
were introduced by Yamashita and Kameda in 1999, in the concluding remarks of their paper [26],
and were studied further in [18]. Localizable graphs form a subclass of well-covered graphs [14,24],
which are defined as graphs in which all maximal independent sets have the same size. A graph is
said to be CIS if its every maximal clique is strong, or, equivalently, if its every maximal independent
set is strong, see [4–6,13,25].

The study of strong cliques in the context of vertex-transitive graphs was initiated in [9], where
it is proved that a vertex-transitive graph Γ is CIS if and only if it is well-covered, its complement
is well covered and α(Γ)ω(Γ) = |V (Γ)|, generalizing analogous result about CIS circulants proved
in [4]. In addition, classification of vertex-transitive CIS graphs with clique number at most 3
(see [9, Theorem 4.3]) and classification of vertex-transitive CIS graphs of valency at most 7 (see [9,
Corollary 5.6]) was given.

In this paper we continue with the study of strong cliques in vertex-transitive graphs initiated
in [9]. We prove that a clique C in a vertex-transitive graph Γ is strong if and only if |C||I| = |V (Γ)|
for every maximal independent set I of Γ (see Theorem 3.1), and based on this result we prove that
a vertex-transitive graph is CIS if and only if it admits a strong clique and a strong independent
set (see Proposition 3.6). We also observe that existence of a strong clique in a vertex-transitive
graph implies that the graph is well-covered, and that every strong clique in a vertex-transitive
graph must be maximum (see Corollary 3.2). Furthermore, in Section 4 we give a negative answer
to [9, Question 6.2] by constructing a vertex-transitive CIS graph which is not localizable.

In Section 5 we investigate the existence of strong cliques in vertex-transitive graphs of small
valency. We prove that there are only 3 cubic vertex-transitive graphs admitting a strong clique
(see Theorem 5.1), and classify all 4-valent vertex-transitive graphs admitting a strong clique (see
Theorem 5.3). For the 5-valent case, we give a partial characterization. Namely, we prove that
there is a unique 5-valent vertex-transitive graph admitting a strong clique with a given clique
number different from 4 (see Proposition 5.4). For the 5-valent vertex-transitive graphs with clique
number 4 admitting a strong clique, we classify them in Proposition 5.14, except in the case when
the subgraph induced by the neighbours of a given vertex consist of a disjoint union of K3 and two
isolated vertices, in which case we provide 4-infinite families of examples (see Example 5.13). Our
results imply that every vertex-transitive graph of valency at most 5 admitting a strong clique is
localizable. We conclude the paper by posing several open problems in Section 6.

2 Preliminaries

All graphs and groups considered in this paper are finite. Let Γ = (V,E) be a graph. We call V
the vertex set of Γ and write V = V (Γ). Similarly, we call E the edge set of Γ and write E = E(Γ).
The complement Γ of Γ is the graph with the same vertex set and the complementary edge set. For
a vertex v ∈ V (Γ), let Γ(v) denote the neighborhood of v, that is, the set of vertices of Γ that are
adjacent to v. If v is a non-isolated vertex of Γ then the local graph of Γ at v is the subgraph of Γ
induced by Γ(v). We sometimes denote the local graph of Γ at v with Γ(v). Whether with Γ(v)
we mean the set of neighbours of v in Γ or the local graph at v should always be clear from the
context. With Cn we denote the cycle of length n and with Kn we denote the complete graph of
order n. An automorphism of a graph Γ = (V,E) is a bijective mapping ϕ : V → V such that

(∀u, v ∈ V ) {u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ E.
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The set of all automorphisms of a graph Γ is denoted with Aut(Γ), and is called the automorphism
group of Γ. A graph Γ is said to be vertex-transitive if for any two vertices u and v of Γ there
exists an automorphism ϕ of Γ such that ϕ(u) = v. An important subclass of the family of vertex-
transitive graphs is formed by Cayley graphs, defined as follows. For a group G and an inverse
closed subset S ⊆ G \ {1G}, Cayley graph of G with respect to the connection set S, denoted by
Cay(G,S), is the graph with vertex set G, and two vertices x, y ∈ G being adjacent if and only if
x−1y ∈ S.

A graph is said to be reducible if it has two distinct vertices with the same neighbourhoods,
and irreducible otherwise. The lexicographic product of graphs Γ1 and Γ2 is the graph Γ1[Γ2] with
vertex set V (Γ1) × V (Γ2), where two vertices (u, x) and (v, y) are adjacent if and only if either
{u, v} ∈ E(Γ1) or u = v and {x, y} ∈ E(Γ2). A vertex-transitive graph Γ which is reducible is
isomorphic to the lexicographic product Γ′[nK1], where Γ′ is irreducible vertex-transitive graph
(see [9, Proposition 5.5]).

Since automorphisms preserve adjacency relations, it is easy to see that any automorphism of
a graph maps cliques, maximal cliques and strong cliques into cliques, maximal cliques and strong
cliques, respectively.

Let Γ be a graph and A,B ⊆ V (Γ). We say that A dominates B if every vertex of B has a
neighbour in A. The following lemma gives a simple characterization of strong cliques based on
domination.

Lemma 2.1. [17, Lemma 2.1] Let Γ be a graph and C a clique in Γ. Then C is a strong clique if
and only if no independent set disjoint with C dominates C.

Proposition 2.2. [17, Lemma 6.7] Let Γ be a connected m-regular graph. Then Γ has a strong
clique of size 2 if and only if Γ ∼= Km,m.

3 Characterization of strong cliques in vertex-transitive graphs

In this section we will give a characterization of strong cliques in vertex-transitive graphs. The
main result is stated in the following theorem.

Theorem 3.1. Let Γ be a vertex-transitive graph and let C be a clique of Γ. Then C is a strong
clique if and only if |C||I| = |V (Γ)| for every maximal independent set I of Γ.

Proof. Let C be a given clique of Γ and denote with G be the automorphism group of Γ. Let I be
an arbitrary maximal independent set of Γ. Denote by Ω(I) the set of triples (x, y, ϕ) such that
x ∈ C, y ∈ I, ϕ ∈ G and ϕ(x) = y. Given (x, y) ∈ C × I, the set of elements of G which map x to
y is a coset of Gx and hence has cardinality |Gx| (see [11][Lemma 2.2.1]). This shows that

|Ω(I)| = |C||I||Gx|. (1)

Let ϕ ∈ G be an arbitrary element of G. Then (x, y, ϕ) ∈ Ω(I) if and only if y ∈ ϕ(C) ∩ I and
x = ϕ−1(y). Therefore

|{(x, y, ϕ) | x ∈ C, y ∈ I, ϕ(x) = y}| = |ϕ(C) ∩ I| ≤ 1.

This shows, that for any ϕ ∈ G, the number of elements of Ω(I) with third coordinate equal to
ϕ is |ϕ(C) ∩ I|. Therefore, |Ω(I)| ≤ |G| with equality if and only if ϕ(C) ∩ I 6= ∅, for every ϕ ∈ G.
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Suppose first that C is a strong clique. Then ϕ(C) is a strong clique for every ϕ ∈ G and hence
|ϕ(C) ∩ I| = 1, for every maximal independent set I and every ϕ ∈ G. Therefore |Ω(I)| = |G|. By
the orbit-stabilizer theorem (see [11, Lemma 2.2.2]), we have |G| = |V (Γ)||Gx| and combining this
with (1) we obtain |V (Γ)| = |C||I|, for every maximal independent set I.

Conversely, suppose that |C||I| = |V (Γ)|, for every maximal independent set I. Then |Ω(I)| =
|C||I||Gx| = |V (Γ)||Gx| = |G|. As noted above, we have that |Ω(I)| = |G|, if and only if ϕ(C)∩I 6=
∅, for every ϕ ∈ G. Since |Ω(I)| = |G|, for every maximal independent set I, it follows that C is a
strong clique.

We now state several corollaries of Theorem 3.1.

Corollary 3.2. Let Γ be a vertex-transitive graph. If there exists a strong clique in Γ, then Γ is
well-covered. Moreover, every strong clique in Γ is maximum.

Proof. Suppose that C is a strong clique in a vertex-transitive graph Γ. Then |C||I| = |V (Γ)|, for
every maximal independent set I. Therefore, all maximal independent sets in Γ are of the same
size. Moreover, since α(Γ)ω(Γ) ≤ |V (Γ)| (see, e.g., [11, Chapter 7, Exercise 8]), we infer that C is
a maximum clique.

Chromatic number of a graph Γ, denoted by χ(Γ) is the minimum number of independent
sets that partition V (Γ). It is easy to see that for every graph Γ we have ω(Γ) ≤ χ(Γ). For
some results regarding chromatic number of vertex-transitive graphs (and some of the subclases of
vertex-transitive graphs) see [1, 8, 10,12,19–21,23].

Corollary 3.3. Let Γ be a vertex-transitive graph admitting a strong clique. Then Γ is localizable
if and only if χ(Γ) = ω(Γ).

Proof. Let Γ be a vertex-transitive graph admitting a strong clique. Then by Corollary 3.2 it
follows that Γ is well-covered. By [18, Theorem 2.1](d) it follows that Γ is localizable if and only if
α(Γ) = θ(Γ), where θ denotes the clique-cover number, that is, it is the minimal number of cliques
that cover the vertex-set. Since θ(Γ) = χ(Γ) and α(Γ) = ω(Γ) the result follows.

Corollary 3.4. If a vertex-transitive graph Γ has a maximal clique of size |V (Γ)|/2, then Γ is
localizable.

Proof. Let C be a maximal clique in Γ of size |V (Γ)|/2. Then, since α(Γ)ω(Γ) ≤ |V (Γ)|, it follows
that α(Γ) ≤ 2. Since Γ is not a complete graph, it follows that there is no maximal independent set
of Γ of size 1. Hence all maximal-independent sets of Γ are of size 2. Then by Theorem 3.1 it follows
that C is a strong clique. Let C1 = V (Γ) \ C. We claim that C1 is also a clique. Suppose that
C1 is not a clique, and let x, y ∈ C1 be non-adjacent vertices. Then {x, y} is an independent set
in Γ, and by the above observation, it must be maximal. However, this contradicts the previously
proved fact that C is strong clique, since C ∩ {x, y} = ∅. The obtained contradiction shows that
C1 is a clique, and since it is of size |V (Γ)|/2, it follows by Theorem 3.1 that it is strong. Hence,
{C,C1} is a partition of V (Γ) into strong cliques.

The following example shows that the previous result cannot be generalized further, namely,
for every n ≥ 3 there exists a vertex-transitive graph admitting a strong clique of size |V (Γ)|/n
which is not localizable.
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Example 3.5. For n ≥ 3, L(K2n) is vertex-transitive, has strong cliques and ω(L(K2n)) =
|V (L(K2n))|/n. Moreover, this graph is not localizable.

In the following proposition, we prove that for testing if a given vertex-transitive graph is CIS,
it suffices to check if a given maximal clique and a given maximal independent set are strong.

Proposition 3.6. A vertex-transitive graph is CIS if and only if it admits a strong clique and a
strong independent set.

Proof. If Γ is CIS, then every maximal clique and every maximal independent set is strong. Sup-
pose that Γ is a vertex-transitive graph and suppose that C is a strong clique and I is a strong
independent set in Γ. Then I is a strong clique in Γ. By Theorem 3.1 it follows that |C||I ′| = |V (Γ),
for every maximal independent set I ′ in Γ and |C ′||I| = |V (Γ)|, for every maximal clique C ′ in Γ.
This implies that all maximal cliques in Γ are of the same size, all maximal independent sets in Γ
are of the same size and α(Γ)ω(Γ) = |V (Γ)|. By [9, Theorem 3.1] it follows that Γ is CIS.

We conclude this section with the following lemma.

Lemma 3.7. Let Γ be an irreducible vertex-transitive graph and let C be a strong clique in Γ. Then
for any maximal clique C ′ 6= C of Γ we have |C ∩ C ′| < |C| − 1.

Proof. Let C be a strong clique in an irreducible vertex-transitive graph Γ. Then by Corollary 3.2
it follows that |C| is a maximum clique in Γ. Let C ′ be a maximal clique in Γ different from C.
Suppose that |C ∩ C ′| ≥ |C| − 1. It is clear that |C ∩ C ′| 6= |C| since C is maximal clique, and
C ′ 6= C. Therefore, |C ∩ C ′| = |C| − 1. Since C ′ is a maximal clique, and it is different from C it
follows that |C ′| = |C|. Let C \ C ′ = {v1} and C ′ \ C = {v2}. Let x be a neighbour of v1. If x
is not adjacent to v2, then {x, v2} is an independent set disjoint with C which dominates C. By
Lemma 2.1 this is contradiction with the assumption that C is strong clique in Γ. Therefore, x is
adjacent to v2. This shows that Γ(v1) = Γ(v2), contrary to the assumption that Γ is irreducible.

4 Vertex-transitive CIS non localizable graphs

In [9, Question 6.2] the following question was posed.

Question 4.1. [9] Does every vertex-transitive CIS graph Γ admit a decomposition of its vertex
set into ω(Γ) independent sets?

The main result of this section is to answer the above question. It is easy to see that Question 4.1
is equivalent to asking if every vertex-transitive CIS graph is localizable. Namely, if Γ is a vertex-
transitive CIS graph, then Γ is also vertex-transitive CIS graph and it is easy to see that Γ admits a
decomposition of its vertex set into ω(Γ) independent sets if and only if Γ admits a decomposition
of its vertex set into α(Γ) cliques.

Before answering Question 4.1 we need one more definition and a lemma. For a graph Γ we
denote with ΓQ the graph of maximal cliques of Γ, that is the graph with maximal cliques of Γ as
vertices, and two such vertices adjacent in ΓQ if and only if they have non-empty intersection.

Lemma 4.2. Let Γ be a vertex-transitive CIS graph. Then Γ is localizable if and only if α(ΓQ) =
α(Γ).
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Proof. Let Γ be a vertex-transitive CIS graph. Then Γ is well-covered, co-well-covered, and |V (Γ)| =
α(Γ) · ω(Γ). Suppose first that Γ is localizable. Then there exists a partition of V (Γ) into α(Γ)
maximal cliques. This corresponds to a maximal independent set in ΓQ of size α(Γ). Hence
α(ΓQ) ≥ α(Γ). Moreover, since Γ is co-well-covered, and |V (Γ)| = α(Γ) · ω(Γ) it follows that there
can’t exist more than α(Γ) pairwise disjoint maximal cliques of Γ. Therefore α(ΓQ) = α(Γ).

Suppose now that α(ΓQ) = α(Γ). Then there exists an independent set in ΓQ of size α(Γ), or
equivalently, there exists α(Γ) pairwise disjoint maximal cliques of Γ. Since Γ is co-well-covered,
and |V (Γ)| = α(Γ) ·ω(Γ) it follows that these α(Γ) maximal cliques form a partition of V (Γ). Hence
Γ is localizable.

Let n > k > i ≥ 0 be integers, and let In = {1, . . . , n}. Generalized Johnson graph J(n, k, i) has
as vertex set all k-elements subsets of In, with two vertices being adjacent if their intersection is of
size k. For simplicity, vertex {x, y, . . . , z} of generalized Johnson graph will be written as xy . . . z.

Theorem 4.3. Generalized Johnson graph J(7, 3, 1) is vertex-transitive CIS graph which is not
localizable.

Proof. It is clear that Γ = J(7, 3, 1) is vertex-transitive, since S7 acts transitively on its vertex-set.
Let I be a maximal independent set in Γ. Suppose first that there exist two elements of I which are
disjoint. Without loss of generality, we may assume that these two vertices are 123 and 456. Let
xyz be another element of I. It is clear that 7 ∈ {x, y, z}, since otherwise, xyz would be adjacent
to one of 123 and 456. Let z = 7. Since xyz is not adjacent to 123, it follows that {x, y} ⊂ {1, 2, 3}
or {x, y} ∩ {1, 2, 3} = ∅. It is now easy to see that I has to be one of {123, 456, 127, 137, 237} or
{123, 456, 457, 467, 567}.

Suppose now that no two elements of I are disjoint. Let 123 and 124 be two elements of I.
It is not difficult to verify that the only maximal independent set satisfying this assumption is
I = {123, 124, 125, 126, 127}. This shows that every maximal independent set in Γ is of size 5.

Let C be a maximal clique in Γ. Without loss of generality, we may assume that 123, 145 ∈ C.
We claim that 167 ∈ C. Let xyz ∈ C with 1 6∈ {x, y, z}. It follows that |{x, y, z} ∩ {2, 3}| = 1
and |{x, y, z} ∩ {4, 5}| = 1, which implies that also |{x, y, z} ∩ {6, 7}| = 1, which shows that xyz is
adjacent to 167. This shows that every vertex of C different from 167 is adjacent to 167, and since
C is maximal clique, we have 167 ∈ C.

Observe now that each of the 8 vertices xyz with x ∈ {2, 3}, y ∈ {4, 5}, z ∈ {6, 7} is adjacent
with each of 123, 145, and 167. It is now easy to see that there are two possibilities for C, namely
C1 = {123, 145, 167, 246, 257, 347, 356} and C2 = {123, 145, 167, 247, 256, 346, 357}. This shows that
every maximal clique of Γ is of size 7 and moreover, each edge belongs to exactly 2 maximal cliques.
By [9, Theorem 3.1] it follows that Γ is CIS graph.

Since each edge of Γ belongs to two maximal cliques, it follows that there are 30 maximal cliques
in Γ. Observe that permutation (6, 7) ∈ S7 interchanges the two cliques C1 and C2. Combining
this with the fact that S7 acts transitively on the edge set of Γ implies that S7 acts transitively on
the set of maximal cliques of Γ. Therefore, the clique graph ΓQ of Γ is vertex-transitive of order
30.

Let g = (1 2 3 4 5 6 7) ∈ S7 and let C = {C(gi)
1 : i = 0, . . . , 6}, that is C is an orbit of 〈g〉

containing C1. Since 〈g〉 is of order 7, its orbit can have size 1 or 7. Moreover, since Cg
1 6= C1,

it follows that C is of size 7. We claim that any two elements of C have non-empty intersection.
Observe that 347g = 145, 167g

2
= 123, 246g

3
= 572, 257g

4
= 246, 123g

5
= 167 and 145g

6
= 347.

This shows that C1 has non-empty intersection with each element of C, and since C is 〈g〉 orbit
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of C1, it follows that any two elements of C have non-empty intersection. This shows that C is
a clique of size 7 in ΓQ. Therefore, ω(ΓQ) ≥ 7. Since ΓQ is vertex-transitive, it follows that
α(ΓQ) · ω(ΓQ) ≤ 30, and consequently, α(ΓQ) ≤ 4. Since α(Γ) = 5, by Lemma 4.2 it follows that
Γ is not localizable.

The following corollary gives a negative answer to Question 4.1.

Corollary 4.4. The complement Γ of generalized Johnson graph J(7, 3, 1) is vertex-transitive CIS
graph that does not admit a decomposition of its vertex set into ω(Γ) independent sets.

5 Small valent vertex-transitive graphs admitting a strong clique

In this section we study existence of strong cliques in vertex-transitive graphs of small valency. The
only connected graphs of valency 2 are cycles, and by Proposition 2.2 it follows that the only cycles
that admit a strong clique are C3 and C4. The next step is to study existence of strong cliques
in cubic vertex-transitive graphs. In [17, Theorem 6.8] it is proved that the only cubic graphs in
which each vertex belongs to a strong clique are K4, K3,3, C6 and an infinite family of graphs
denoted by Fn in [17]. Classification of cubic vertex-transitive graphs admitting a strong clique is
now easily derived from [17, Theorem 6.8]. Namely, one just needs to check which of the graphs
given in [17, Theorem 6.8 (3.)] are vertex-transitive. It is easily seen that none of the graphs Fn

is vertex-transitive, since there are two types of vertices, those that belong to 4-cycles, and those
that don’t belong to 4-cycles. Hence the following theorem is a direct consequence of [17, Theorem
6.8].

Theorem 5.1. Let Γ be a connected cubic vertex-transitive graph. Then, the following statements
are equaivalent:

1. There exists a strong clique in Γ;

2. Γ is localizable;

3. Γ is isomorphic to one of the graphs K4, K3,3 or C6.

5.1 Valency 4

In this section we classify all connected 4-valent vertex-transitive graphs admitting a strong clique.
Before stating the result, we need one definition.

Definition 5.2. Let n ≥ 2 be a positive integer. With Hn we denote the graph of order 4n with
vertex set V (Hn) = {xi, yi, zi, wi | i ∈ {1, . . . , n}} and adjacencies are defined as follows: for every
i, vertices xi, yi, zi and wi are adjacent, and for i = 1, . . . n − 2 we have zi ∼ xi+1, wi ∼ yi+1 and
x1 ∼ zn and y1 ∼ wn (see Figure 1 for an example).

With Γ1�Γ2 we denote the Cartesian product of graphs Γ1 and Γ2, that is the graph with vertex
set V (Γ1)× V (Γ2), where two vertices (x1, y1) and (x2, y2) are adjacent if and only if x1 = x2 and
{y1, y2} ∈ E(Γ2), or y1 = y2 and {x1, x2} ∈ E(Γ1).

Theorem 5.3. A connected 4-valent vertex-transitive graph admits a strong clique if and only if it
is isomorphic to one of the graphs K4,4, K5, K3[2K1], L(K3,3), Hn, Cay(Z3k, {±1,±k}) or C3�Cn.
In particular, every 4-valent vertex-transitive graph admitting a strong clique is localizable.
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Proof. It is straightforward to verify that each of the graphs K4,4, K5, K3[2K1], L(K3,3), Hn,
Cay(Z3k, {±1,±k}) or C3�Cn admits a strong clique and is localizable, so we omit the details.

Let Γ be a connected 4-valent vertex-transitive graph and let C1 be a strong clique in Γ. If
|C1| = 2, then by Proposition 2.2 it follows that Γ ∼= K4,4. If |C1| = 5, then since Γ is connected
and 4-valent, it follows that Γ ∼= K5.

Suppose now that |C1| = 4 and let C1 = {x1, y1, z1, w1}. Since Γ is 4-valent, each vertex of C1

has another neighbour lying outside of C1. We claim that no two vertices of C1 share a common
neighbour outside of C1. Suppose contrary, that u 6∈ C1 is a common neighbour of x1 and y1.
Then x1 and y1 have the same closed neighbourhoods in Γ. It follows that Γ ∼= Γ′[Kt], where t ≥ 2.
Considering the valency of Γ′[Kt] it follows that t ·val(Γ′)+t−1 = 4. Therefore, t ·(val(Γ′)+1) = 5,
and since t ≥ 2, the only solution is t = 5 and val(Γ′) = 0, which is impossible, since Γ would
be disconnected in this case. This proves our claim that no two vertices of C1 share a common
neighbour outside of C1.

Let x, y, z and w be the remaining neighbours of x1, y1, z1 and w1, respectively. If {x, y, z, w}
is an independent set in Γ, then Lemma 2.1 implies that C1 is not a strong clique. We may
without loss of generality assume that x is adjacent with y. Observe that {x, x1} is a maximal
clique in Γ, and since it is not maximum, by Theorem 3.1 it is not strong clique in Γ. Therefore,
x1 lies in a unique strong clique, and exactly three edges incident with x1 lie in a strong clique.
Since Γ is vertex-transitive, the same must hold for every vertex. We claim that w and z are
adjacent. Consider the subgroup of Aut(Γ) that fixes C1 setwise in its induced action on C1. It is
transitive group of degree 4, hence it admits a regular subgroup H isomorphic to Z2 × Z2 or Z4.
Therefore, there exists an automorphism ϕ of Γ which fixes C1 setwise, maps x1 to w1 and acts
semiregularly on C1. Then it is easy to see that ϕ induces one of the following three permutations
of C1: (x1w1)(y1 z1), (x1w1 y1 z1) or (x1w1 z1 y1). Since {x, x1}, {y, y1}, {z, z1} and {w,w1} are
the unique maximal cliques of size 2 containing x1, y1, z1 and w1, respectively, then it follows that
ϕ fixes also the set {x, y, z, w}, and induces one of the following three permutations (xw)(y z),
(xw y z) or (xw z y). In each of the three cases we obtain that edge {x, y} is mapped to {z, w},
either by ϕ or ϕ2, which proves our claim that z and w are adjacent.

Let C2 be the unique strong clique containing z. Since the edge {z, z1} doesn’t lie in a strong
clique, it follows that w ∈ C2. Since edge {x, y} lies in a strong clique, it follows that vertices x
and y belong to the same strong clique. If C2 = {x, y, z, w}, then since Γ is connected, it follows
that Γ is isomorphic to graph H2, and if C2 6= {x, y, z, w} then C2 ∩ {x, y, z, w} = {z, w}.

To simplify the notation, we denote z with x2, w with y2, and the remaining two vertices of
C2 with z2 and w2. Let x3 and y3 be the remaining neighbours of z2 and w2, respectively. Since
each vertex lies in a unique strong clique, and by the arguments from the previous paragraphs, it
follows that x3 and y3 are adjacent and belong to the same strong clique. Let C3 be the strong
clique containing x3 and y3. If C3 contains one of x and y, then it must contain both of them, that
is C3 = {x3, y3, x, y} which implies that Γ ∼= H3 and we are done. Therefore, we may assume that
C3∩{x, y} = ∅. Let z3 and w3 be the remaining vertices of C3, and let x4 and y4 be their remaining
neighbours, respectively. Then using the same arguments as before, x4 and y4 are adjacent and
belong to strong clique C4. If C4 = {x4, y4, x, y} then Γ ∼= H4, otherwise we repeat this procedure.
Since Γ is finite, this process has to terminate after finitely many steps. Hence Γ ∼= Hn, for some
natural number n.

Case |C1| = 3
Finally suppose that |C1| = 3. Suppose first that Γ is not irreducible. Then Γ ∼= Γ′[tK1]. Since
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Figure 1: Graph H4

Γ is 4-valent, it is easy to see that t = 2 and Γ ∼= K3[2K1]. We will now assume that Γ is irreducible.
By Lemma 3.7 it follows that two strong cliques are either disjoint or intersect in a single vertex.
This implies that each vertex belongs to 1 or 2 strong cliques. Suppose first that some vertex u
belongs to 2 strong cliques. Then every edge incident with u belongs to a strong clique. Hence,
every maximal clique containing u is strong, and since Γ is vertex-transitive, it follows that all
maximal cliques in Γ are strong. Therefore, Γ is CIS graph and by [9, Corollary 5.6] it follows that
Γ ∼= L(K3,3).

Now we suppose that each vertex of Γ belongs to a unique strong clique. We colour an edge
of Γ blue if it belongs to a strong clique, and red otherwise. It is clear that each vertex is incident
with 2 red and 2 blue edges. It is also clear that automorphisms of Γ preserve such defined colours
of edges.

Let v0, . . . , vn−1, v0 be a cycle induced by the red edges of Γ. Suppose that there exists a blue
edge joining two vertices of this red cycle. Without loss of generality, assume that v0 is adjacent
to vk via blue edge. Suppose first that there exists automorphism of Γ acting as a 1-step rotation
of the cycle v0, . . . , vn−1, v0. Without loss of generality we may assume that this rotation maps
vi to vi+1. It follows that v0, vk, v2k has to induce a triangle. This implies that n = 3k, and
since Γ is connected and 4-valent, there are no other vertices of Γ. Therefore, we conclude that
Γ ∼= Cay(Z3k, {±1,±k}).

Suppose now that there is no permutation acting as a 1-step rotation of this red cycle. Then
n must be even, and there exists dihedral subgroup acting regularly on {v0, . . . , vn−1}, consisting
of even-step rotations and reflections without fixed points. If k is even, then since there exists
automorphism of Γ that acts on {v0, . . . , vn−1} as k-step rotation, it follows that v0, vk, v2k is
triangle, and hence n = 3k. Then for every i, it follows that v2i, v2i+k, v2i+2k is triangle. Now
using reflections, it follows that for every j we have triangles of the form vj , vj+k, vj+2k. Since Γ is
4-valent and connected, it follows that Γ ∼= Cay(Z3k, {±1,±k}).

Suppose next that for every blue edge {vi, vj} we have that i− j is odd. This implies that each
of the vertices v0, . . . , vn−1 is adjacent to exactly one blue edge with another vertex from the same
red cycle, since otherwise we would obtain triangle {vi, vj , vt} and it is impossible that each of the
numbers i − j, j − t and t − i is odd. Hence there are exactly n/2 blue edges in the subgraph of
Γ induced by v0, . . . , vn−1 and they induce a perfect matching. The same must hold for any other
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cycle induced by the red edges. However, this is impossible, since distinct red cycles are vertex
disjoint and blue edges must form triangles.

Finally assume that there is no blue edge joining two vertices on the same red cycle. Suppose
that v1, u1 and z1 form a blue triangle. Let u1, . . . , un, u1 and z1, . . . , zn, z1 be the red cycles
containing u1 and z1 respectively. Since {v1, u1, z1} is strong clique in Γ it follows that none of
the sets {vj , uk, zl} is independent, where j, k, l ∈ {2, n}. Let H be the subgraph of Γ induced
by the vertices v2, u2, z2, vn, un, zn. We claim that no vertex is isolated in H. Suppose contrary,
that v2 is isolated in H. Then based on the above observation, it follows that u2 is adjacent with
both z2 and zn. However, since the blue edges induce triangles, it would imply that z2 and zn are
adjacent, contrary to the above assumption that no blue edge joins two vertices on the same red
cycle. This proves our claim that no vertex of H is isolated. Next we claim that no vertex of H
has degree 1. Suppose contrary, that v2 has degree 1 in H, and without loss of generality, that
u2 is its neighbour. Then un has to be adjacent with both z2 and zn, and consequently z2 and
zn are adjacent, contrary to the above assumption. This proves our claim that no vertex of H is
of degree 1. Since each vertex of Γ has exactly two blue edges incident with it, and since no red
edge of Γ lies in H, it follows that each vertex of H has degree 2. Since each blue edge lies in a
triangle, it follows that H is a disjoint union of 2 triangles. Without loss of generality, we may
assume that {v2, u2, z2} and {vn, un, zn} are the two triangles. Now applying the same arguments,
it follows that {vi, ui, zi} induces a triangle, for each i. By the connectedness of Γ it follows that
V (Γ) = {vi, ui, zi | i ∈ {1, n}}. It is now easy to see that Γ ∼= Cay(Zn × Z3, {(±1, 0), (0,±1)}).
Observe that this graph is isomorphic to C3�Cn.

5.2 Valency 5

The goal of this section is to give a characterization of 5-valent vertex-transitive graphs admitting a
strong clique. We first show that there is a unique example of a connected 5-valent vertex-transitive
graph with given clique number ω 6= 4.

Proposition 5.4. Let Γ be a connected 5-valent vertex-transitive graph with ω(Γ) 6= 4. Then Γ
admits a strong clique if and only if

(i) ω(Γ) = 2 and Γ ∼= K5,5;

(ii) ω(Γ) = 3 and Γ ∼= Cay(Z12, {±1,±4, 6});

(iii) ω(Γ) = 5 and Γ ∼= K5�K2;

(iv) ω(Γ) = 6 and Γ ∼= K6.

Proof. If ω(Γ) = 2, the result follows by Proposition 2.2. If ω(Γ) = 6, then the result follows
trivially. Suppose now that ω(Γ) = 5. Let a be a vertex of Γ and let C = {a, b, c, d, e} be a
strong clique containing a. Let a1 be the remaining neighbour of a. If a1 is not isolated vertex in
the subgraph induced by Γ(a), then there a would have the same closed neighbourhood as one of
b, c, d, f , which implies that Γ = Γ′[Kt], for some t ≥ w. However, since Γ is 5-valent and ω(Γ) = 5
it is easy to see that this is impossible. It follows that Γ(a) is isomorphic to disjoint union of
K4 and K1, hence every vertex belongs to unique clique of size 5. Since every vertex belongs to
unique strong clique, it follows that there exists a cyclic group of order 5, fixing C setwise, and
acting transitively on the vertices of C. Without loss of generality, we may assume that there exists
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α ∈ Aut(Γ) whose restriction to C is 5-cycle (a b c d e). Let b1 = α(a1), c1 = α(b2), d1 = α(c1) and
e1 = α(d1). Since α is automorphism of Γ it follows that b ∼ b1, c ∼ c1, d ∼ d1 and e ∼ e1. Since
C is strong clique, it follows that {a1, b1, c1, d1, e1} is not an independent set in Γ. Using the fact
that the local graph at every vertex is isomorphic to disjoint union of K1 and K4, it follows that
{a1, b1, c1, d1, e1} is a clique in Γ. Since Γ is connected 5-valent graph, it follows that the order of
Γ is 10, and it is now easy to see that Γ ∼= K5�K2.

Suppose now that ω(Γ) = 3 and let C be a strong clique in Γ. Since ω(Γ) = 3, by Corollary 3.2
it follows that C is maximum clique in Γ, hence |C| = 3. Let C = {x, y, z}. If Γ is not irreducible,
then since it is vertex-transitive of valency 5, Γ would have to be isomorphic to K5,5 which is
impossible, since ω(Γ) = 3. Therefore, Γ is irreducible. By Lemma 3.7 it follows that each vertex
belongs to one or two strong cliques.

Suppose first that each vertex belongs to two strong cliques. Let α(Γ) = n. By Theorem 3.1 it
follows that |V (Γ)| = 3n. Let T denote the set of all triangles of Γ. Since each vertex belongs to two
strong cliques, it follows |T | = 2n. Let G ≤ Aut(Γ) be a vertex-transitive group of automorphisms
and consider the induced action of G on T . Since each vertex of Γ belongs to two triangles, and G
acts transitively on V (Γ) it follows that either G acts transitively on T , or it has two orbits, each
of size n. If G acts transitively on T , then 2n = |T | | |G|. Since G also acts transitively on V (Γ),
it follows that 6n | |G|, and consequently 3 | |GC |, by the orbit-stablizer property. Similarly, if G
has two orbits in its action on T , then again 3 | |GC |. In any case, there exists an element g ∈ G
of order 3 such that g fixes C setwise. It follows that g either cyclically permutes vertices of C, or
fixes all three of them. Suppose that g fixes all three vertices of C. Since g is of order 3, it easily
follows that g fixes also all the neighbours of the vertices from C. The connectedness of Γ implies
that g = 1, contrary to the fact that g has order 3. Therefore, g cyclically permutes the vertices of
C.

Let {x, x1, x2}, {y, y1, y2} and {z, z1, z2} be the remaining strong cliques containing x, y and
z respectively, and let x3, y3, and z3, respectively, be the unique neighbours of x, y and z not
contained in a triangle. Without loss of generality, we may assume that g(x) = y, and g(y) = z.
This implies that g(x3) = y3 and g(y3) = z3. Without loss of generality, we may assume that
g(x1) = y1 and g(y1) = z1. It is now clear that also g(x2) = y2 and g(y2) = z2.

Since C is strong clique, it follows that {xi, yi, zi} is not an independent set for each i ∈
{1, 2, 3}. Existence of one edge with between two vertices in {xi, yi, zi}, using the fact that g is an
automorphism cyclically permuting those vertices, implies that {xi, yi, zi} induces a triangle, see
Fig. 2.

We claim that {x3, y1, z2} is an independent set. Suppose that x3 is adjacent with y1. Since
edge {x, x3} does not belong to a triangle, it follows that {x3, y1} belongs to a triangle. However,
y1 already belongs to triangles {y, y1, y2} and {x1, y1, z1}. Since each vertex belongs to exactly
2 triangles, it follows that {x3, y1} does not belong to a triangle, a contradiction. The obtained
contradiction shows that x3 is not adjacent with y1, and by analogy, x3 is not adjacent with z2,
as well. If y1 and z2 are adjacent, then again, we obtain third triangle containing y1, namely
{y1, z1, z2}. Therefore, {x3, y1, z2} is an independent set, and it dominates C, contrary to the
assumption that C is a strong clique. The obtained contradiction shows that there is no 5-valent
vertex-transitive graph admitting a strong clique, with a vertex belonging to two strong cliques.

Suppose now that each vertex of Γ belongs to a unique strong clique. Denote the remaining
neighbours of x, y, and z, with xi, yi, and zi, respectively, where i ∈ {1, 2, 3}. Since each vertex
belongs to a unique strong clique, it follows that each strong clique is a block of imprimitivity for the
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Figure 2: Local structure of Γ around C. Dashed edges are the edges not contained in a triangle.

action of G. Therefore, there exists an automorphism g ∈ Aut(Γ) cyclically permuting the vertices
of C. Without loss of generality, we may assume that g(x) = y and g(y) = z. Arguing similarly as
in the previous case, we may assume that for each i ∈ {1, 2, 3}, g(xi) = yi, g(yi) = zi, and {xi, yi, zi}
forms a triangle in Γ. Since C is strong clique, it follows that {x1, y2, z3} is not an independent set,
and without loss of generality, we may assume that x1 is adjacent with y2. By the action of g, it
follows that also y1 is adjacent to z2, and z1 is adjacent to x2. Observe that {x2, y1} 6∈ E(Γ), since
otherwise we obtain that x1 belongs to another triangle {x2, y1, z1}. Since C is a strong clique, it
follows that {x2, y1, z3} is not an independent set in Γ. Therefore, we have that {x2, z3} ∈ E(Γ)
or {y1, z3} ∈ E(Γ). Without loss of generality, we assume that {y1, z3} ∈ E(Γ). The action of g
implies that also {z1, x3}, {x1, y3} ∈ E(Γ). Observe that {x1, z} is an independent set in Γ which
dominates y2 and z2. Since {x2, y2, z2} is a strong clique it follows that Γ(x2) ⊂ Γ(x1) ∪ Γ(z).
Observe that Γ(x1) = {x, y1, z1, y2, y3} and Γ(z) = {x, y, z1, z2, z3}. It follows that x2 must be
adjacent with one of y3 or z3. If {x2, y3} ∈ E(Γ) it follows that {y2, z3}, {z2, x3} ∈ E(Γ), and since
Γ is connected, it follows that there are no other vertices in Γ. It is not difficult to verify that in
this case Γ ∼= Cay(Z12, {±1,±4, 6}). The same result follows if {x2, z3} ∈ E(Γ). This concludes
the proof.

Corollary 5.5. Let Γ be a 5-valent vertex-transitive graph with ω(Γ) 6= 4. Then Γ admits a strong
clique if and only if it is localizable.

5.2.1 Valency 5 with clique number 4

We now turn our attention to the study of strong cliques in 5-valent vertex-transitive graph with
clique number equal to 4.

Lemma 5.6. Let Γ be a connected 5-valent vertex-transitive graph with ω(Γ) = 4. Then Γ is
irreducible. Furthermore, if local graph of Γ has a universal vertex, then Γ admits a strong clique
if and only if it is isomorphic to C4[K2].
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Proof. Suppose that Γ is a reducible connected 5-valent vertex-transitive graph with ω(Γ) = 4.
Then Γ ∼= X[tK1], where X is a vertex-transitive graph, and t ≥ 2. Since Γ is 5-valent it follows
that t = 5, and therefore Γ ∼= K2[5K1] ∼= K5,5, which is impossible, since ω(Γ) = 4.

Suppose now that the local graph of Γ has a universal vertex. It follows that Γ ∼= X[Kt], for
some vertex-transitive graph X, and positive integer t ≥ 2. Since Γ is 5-valent and ω(Γ) = 4, it is
easy to see that t = 2. Hence Γ ∼= Cn[K2]. It is not difficult to see that Cn[K2] admits a strong
clique if and only if n = 4.

Let Γ be an irreducible 5-valent vertex-transitive graph with ω(Γ) = 4 admitting a strong clique,
and let L denote the local graph of Γ. Suppose that L doesn’t have a universal vertex. Since ω(Γ)
is 4, it follows that ω(L) = 3, and by Lemma 3.7 it follows that no two cliques of size 3 in L share
an edge. Since L has no universal vertex, it follows that L has a unique clique of size 3. Proof of
the following simple lemma is straightforward and is thus omitted.

Lemma 5.7. Let L be a graph of order 5 having exactly one clique of size 3 and no universal
vertex. Then L is isomorphic to one of the graphs shown in Figure 3.
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b c

x y
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b c

x y

a

b c

x y

a

b c

x y

L1 L2 L3

L4 L5 L6

Figure 3: Local graphs of 5-valent vertex-transitive with ω = 4 admitting a strong clique

Proposition 5.4 and Lemmas 3.7, 5.6 and 5.7 imply that the study of existence of strong cliques
in 5-valent vertex-transitive graphs is reduced to the study of vertex-transitive graphs with local
graph being isomorphic to one of the graphs Li shown on Figure 3. In the following lemma we give
an infinite family of graphs (including graphs L2 and L3) that can not be realised as local graphs
of a vertex-transitive graph.

Lemma 5.8. Let X be a graph with unique maximum clique C. If there exists an edge in X
not contained in C, and every edge in X has non-empty intersection with C, then there is no
vertex-transitive graph with local graph isomorphic to X.

Proof. Suppose that Γ is vertex-transitive graph and the local graph of Γ at v is isomorphic to
X. Let C be the unique maximum clique of X, and let {x, y} be an edge with x ∈ C and y 6∈ C.
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By the assumption on X it follows that each vertex in Γ belongs to unique maximum clique in Γ.
Observe that {v, x} is an edge in Γ(y). Let C ′ be the unique maximum clique of Γ(y). By the
hypothesis, it follows that v ∈ C ′ or x ∈ C ′. It follows that C ′ ∪ {x} or C ′ ∪ {v} is a maximum
clique in Γ, contrary to the assumption that C ∪{v} is the unique maximum clique in Γ containing
v and x.

Corollary 5.9. There is no vertex-transitive graph with local graph isomorphic to L2 or L3.

Lemma 5.10. There is no vertex-transitive graph with local graph isomorphic to L5.

Proof. Let Γ be a vertex-transitive graph with Γ(v) ∼= L5. Let z be the remaining neighbour of b.
Since Γ(b) ∼= L5 it follows that z is adjacent with x and non-adjacent with c and a. Let w be the
remaining neighbour of x. It is not difficult to see that Γ(x) 6∼= L5, a contradiction.

Lemma 5.11. The only connected vertex-transitive graph with local graph isomorphic to L6 is C8.

Proof. Let Γ be a vertex-transitive graph with Γ(v) ∼= L6. Let z and w be the remaining neighbours
of a. Since Γ(a) ∼= L6 it follows that w ∼ z and without loss of generality we may assume that
b ∼ w and c ∼ z. Considering Γ(b) it follows that x ∼ w and considering Γ(c) it follows that y ∼ z.
Since Γ is connected and 5-valent, it follows that there are no other vertices of Γ. It is easy to see
that Γ is 8-cycle vwcxaybzv, hence Γ ∼= C8.

In the following lemma we show that there is a unique connected vertex-transitive graph with
local graph isomorphic to L4 admitting a strong clique.

Lemma 5.12. Let Γ be a connected vertex-transitive graph with local graph isomorphic to L4. Then
Γ admits a strong clique if and only if Γ ∼= K3�K4.

Proof. Let Γ be a connected 5-valent vertex-transitive graph with local graph isomorphic to L4 and
suppose that Γ admits a strong clique. Let us call an edge of Γ blue if it belongs to clique of size
4 and red otherwise. It is clear that the automorphisms of Γ preserve such defined colors of edges.
Since the local graph of Γ is isomorphic to L4 it follows that every vertex is adjacent with two red
edges. Let C = {x, y, z, w} be a strong clique in Γ and let xi, yi, zi, wi (i = 1, 2) be the remaining
neighbours of x, y, z and w, respectively. Considering the local graphs at x, y, z and w, it follows
that x1 ∼ x2, y1 ∼ y2, z1 ∼ z2, and w1 ∼ w2, and all of these edges are red. Let K be the subgroup
of Aut(Γ) that fixes C setwise in the induced action on C. Since C is block for Aut(Γ), it follows
that K acts transitively on C. There exists a subgroup H of K transitive on C isomorphic either
to Z4 or Z2 × Z2. We will first suppose that H ∼= Z4.

Let ΓC = Γ[{x1, x2, y1, y2, z1, z2, w1, w2}]. It is clear that the only red edges in the graph ΓC are
x1x2, y1y2, z1z2 and w1w2. Suppose that x1 has degree 4 in ΓC . Without loss of generality, we may
assume that x1 is adjacent with x2, y1, z1, w1. Then considering the local graph at x1, it follows
that {x1, y1, z1, w1} is a clique in Γ. Since C is a strong clique, it follows that {x2, y2, z2, w2}
is not an independent set. If some of its vertices has degree 4 in ΓC , then it follows that also
{x2, y2, z2, w2} is a clique in Γ. Suppose that none of the vertices x2, y2, z2, w2 is of degree 4 in ΓC .
Since {x2, y2, z2, w2} is not independent set, we may assume that x2 ∼ y2. Recall that H cyclically
permutes vertices of C. Then it also cyclically permutes vertices x2, y2, z2 and w2. Using this it
follows that {x2, y2, z2, w2} is indeed a clique in Γ, which implies that Γ ∼= K3�K4.

Suppose now that the maximum degree in ΓC is 3, and let x1 be adjacent with x2, y1 and z1.
This implies that y1 ∼ z1 (by considering the local graph at x1). Using the cyclic group H, it
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follows that there are 4 triangles formed by blue edges in the graph ΓC . However, since there are
8 vertices in ΓC , these triangles cannot be vertex disjoint, hence at least one vertex would have
valency at least 4 in ΓC , a contradiction.

It is easy to see that the maximum degree in ΓC cannot be 2, since there would exist an
independent set of size 4 disjoint with C and dominating the clique C, contrary to the assumption
that C is strong. This shows that the only possibility when H ∼= C4 is that {x1, y1, z1, w1} and
{x2, y2, z2, w2} are cliques in Γ.

Suppose now that H ∼= Z2×Z2. If maximal degree in ΓC is 2, then there exists an independent
set of size 4 disjoint from C which dominates C. Using the argument similar to the case when H is
cyclic, it can be seen that the maximum degree in ΓC cannot equal to 3. Hence the maximal degree
in ΓC equals to 4. Let x1 be adjacent with x2, y1, z1 and w1. Then by considering the local graph
at x1 it follows that {x1, y1, z1, w1} is clique. If some of the vertices x2, y2, z2 or w2 has degree 4,
it follows that also {x2, y2, z2, w2} is clique in Γ. If x2 has degree 3 in ΓC , then using the action of
H it follows that each of the vertices y2, z2 and w2 has degree 3 in ΓC which is impossible.

x
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y1

z1

w1

x2

y2

z2

w2

C1
C2

Figure 4: Local structure of Γ around C. Dashed edges are the edges not contained in a strong
clique.

Finally, suppose that x2 has degree 2 in ΓC . Without loss of generality, we may assume that
x2 ∼ y2 and z2 ∼ w2. Let C1 be the strong clique in Γ containing the edge x2y2 and C2 be the
strong clique in Γ containing the edge z2w2. Observe that there are 3 strong cliques in Γ at distance
1 from C (they are C1, C2 and {x1, y1, z1, w1}). Since Γ is vertex-transitive, and each vertex belongs
to unique strong clique, it follows that Aut(Γ) acts transitively on strong cliques, hence all strong
cliques have the same properties. Observe that C is adjacent to C1 and C2 via two disjoint edges
xy and zw (see Figure 4). However, the clique C1 is joined with C and {x1, y1, z1, w1} via single
edge x2y2. This is contradiction, since Aut(Γ) acts transitively on strong cliques. The obtained
contradiction shows that for every clique of size 4 in Γ, its neighbourhood is disjoint union of two
cliques of size 4. Since Γ is connected 5-valent, it is now easy to see that Γ has 12 vertices and it
is isomorphic to K3�K4.

The situation when the local graph is L1 is more complicated. Just to demonstrate it, in the
following example we give 4 infinite families of vertex-transitive graphs admitting strong cliques
with local graph being isomorphic to L1, hence we leave the characterization of such graphs for
future research.

Example 5.13. Each of the graphs Cay(Z4n, {±1,±n,±2n}), Cay(Z2n×Z2, {(±1, 0), (n, 0), (0, 1), (n, 1)}),
Cay(Zn × Z4, {(±1, 0), (0, 1), (0, 2), (0, 3)}), Hn�K2 with n ≥ 4 has local graph isomorphic to L1

and admits a strong clique of size 4.
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To summarize our results on 5-valent vertex-transitive graphs admitting a strong clique, we
have the following proposition.

Proposition 5.14. Let Γ be a connected 5-valent vertex-transitive graph with local graph not iso-
morphic to L1. Then Γ admits a strong clique if and only if it isomorphic to one of the graphs K6,
C8, C4[K2], K5,5, K5�K2, K3�K4 or Cay(Z12, {±1,±4, 6}).

We conclude with this section with the following proposition.

Proposition 5.15. Let Γ be a vertex-transitive graph with valency at most 5. Then Γ admits a
strong clique if and only if Γ is localizable.

Proof. Without loss of generality, we may assume that Γ is connected. If Γ is of valency 1 or 2
the result trivially follows. If Γ is 3-valent, then the result follows by Theorem 5.1. When Γ is
4-valent, result follows by Theorem 5.3. If Γ is 5-valent and ω(Γ) 6= 4 then the result follows by
Proposition 5.4. Proposition 5.14 deals with the case when Γ is 5-valent, with clique number 4 and
local graph not isomorphic to L1. If Γ is vertex-transitive graph with local graph isomorphic to
L1, then since L1 has a unique triangle, it follows that the vertex-set of Γ can be partitioned into
disjoint union of cliques of size 4 (since each vertex belongs to a unique 4-clique). Therefore, Γ
admits a strong clique if and only if it is localizable.

6 Some open problems

In the study of existence of a strong clique in 5-valent vertex-transitive graphs, we reduced the
problem to the study of vertex-transitive graphs with the prescribed local graph. Then in some
cases, we were able to show that there exits no vertex-transitive graph with a given local graph. This
leads to a more general problem of characterizing graphs that can arise as local graphs of vertex-
transitive graphs. It is also interesting to investigate what can be said about global properties of
the graph by considering local graphs. As an example, it is easy to see that a connected vertex-
transitive graph with local graph being asymmetric (that is, with trivial automorphism group) is
a GRR (that is, it is a Cayley graph on a group G, and its full automorphism group is isomorphic
to G). Hence we propose the following problem for possible further research.

Problem 6.1. Which graphs can be realised as local graphs of vertex-transitive graphs? In which
cases there are only finitely many connected vertex-transitive graphs with a given local graph?

In Proposition 5.14 we classified all 5-valent vertex-transitive graphs admitting a strong clique,
whose local graph is not isomorphic to L1. We saw in Example 5.13 that there are infinitely many
examples of vertex-transitive graphs with local graph isomorphic to L1 admitting a strong clique.
Hence we propose the following problem.

Problem 6.2. Classify all 5-valent vertex-transitive graphs with local graph isomorphic to L1 ad-
mitting a strong clique.

Theorem 4.3 shows that there are vertex-transitive graphs with every maximal clique being
strong, which are not localizable. However, we saw in Proposition 5.15 that for vertex-transitive
graphs of valency at most 5, even the existence of a strong clique implies localizablity. Hence it is
natural to ask for which other small valencies this might be true.

Problem 6.3. Determine the minimal valency of a vertex-transitive graph admitting a strong clique
which is not localizable.
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