Proving a conjecture on chromatic polynomials by counting the number of acyclic orientations^{*}

Fengming Dong[†], Jun Ge, Helin Gong Bo Ning, Zhangdong Ouyang and Eng Guan Tay

Abstract

The chromatic polynomial P(G, x) of a graph G of order n can be expressed as $\sum_{i=1}^{n} (-1)^{n-i} a_i x^i$, where a_i is interpreted as the number of broken-cycle free spanning subgraphs of G with exactly i components. The parameter $\epsilon(G) = \sum_{i=1}^{n} (n-i)a_i / \sum_{i=1}^{n} a_i$ is the mean size of a broken-cycle-free spanning subgraph of G. In this article, we confirm and strengthen a conjecture proposed by Lundow and Markström in 2006 that $\epsilon(T_n) < \epsilon(G) < \epsilon(K_n)$ holds for any connected graph G of order n which is neither the complete graph K_n nor a tree T_n of order n. The most crucial step of our proof is to obtain the interpretation of all a_i 's by the number of acyclic orientations of G.

Keywords: chromatic polynomial; graph; acyclic orientation; combinatorial interpretation

Mathematics Subject Classification (2010): 05C31, 05C20

1 Introduction

All graphs considered in this paper are simple graphs. For any graph G = (V, E) and any positive integer k, a proper k-coloring f of G is a mapping $f : V \to \{1, 2, ..., k\}$ such that $f(u) \neq f(v)$ holds whenever $uv \in E$. The chromatic polynomial of G is the function P(G, x) such that P(G, k) counts the number of proper k-colorings of G for any positive integer k. In this article, the variable x in P(G, x) is a real number. The study of chromatic polynomials is one of the most active areas in graph theory. For basic concepts

^{*}This article is partially supported by NTU AcRf Project (RP 3/16 DFM) of Singapore and NSFC grants (No. 11701401, 11961070 and 11971346).

[†]Corresponding author. Email: fengming.dong@nie.edu.sg and donggraph@163.com.

and properties on chromatic polynomials, we refer the reader to the monograph [5]. For the most celebrated results on this topic, we recommend surveys [4, 10, 14, 15].

The first interpretation of the coefficients of P(G, x) was provided by Whitney [23]: for any simple graph G of order n and size m,

$$P(G,x) = \sum_{i=1}^{n} \left(\sum_{r=0}^{m} (-1)^r N(i,r) \right) x^i,$$
(1)

where N(i, r) is the number of spanning subgraphs of G with exactly i components and r edges. Whitney further simplified (1) by introducing the notion of broken cycles. Let $\eta: E \to \{1, 2, \ldots, |E|\}$ be a bijection. For any cycle C in G, the path C - e is called a broken cycle of G with respect to η , where e is the edge on C with $\eta(e) \leq \eta(e')$ for every edge e' on C. When there is no confusion, a broken cycle of G is always assumed to be with respect to a bijection $\eta: E \to \{1, 2, \ldots, |E|\}$.

Theorem 1 ([23]). Let G = (V, E) be a graph of order n and $\eta : E \to \{1, 2, \dots, |E|\}$ be a bijection. Then,

$$P(G,x) = \sum_{i=1}^{n} (-1)^{n-i} a_i(G) x^i,$$
(2)

where $a_i(G)$ is the number of spanning subgraphs of G with n-i edges and i components which do not contain broken cycles.

Let G be a simple graph of order n. When there is no confusion, $a_i(G)$ is written as a_i for short. Clearly, by Theorem 1, P(G, x) is indeed a polynomial in x in which the constant term is 0, the leading coefficient a_n is 1 and all coefficients are integers alternating in signs. Thus, $(-1)^n P(G, x) > 0$ holds for all x < 0.

The concept of broken cycles has the following connection with Tutte's work of expressing the Tutte polynomial $\mathbf{T}_G(x, y)$ of a connected graph G in terms of spanning trees [2,22]:

$$\mathbf{T}_G(x,y) = \sum_T x^{ia_\omega(T)} y^{ea_\omega(T)},\tag{3}$$

where the sum runs over all spanning trees of G and $ia_{\omega}(T)$ and $ea_{\omega}(T)$ are respectively the internal and external activities of T with respect to a bijection $\omega : E \to \{1, 2, \dots, |E|\}$. If we take ω to be η , then $ea_{\eta}(T)$ is exactly the number of edges $e \in E(G) \setminus E(T)$ such that $\eta(e) \leq \eta(e')$ holds for all edges e' on the unique cycle C of $T \cup e$. As G is a simple graph, $ea_{\eta}(T)$ equals the number of broken cycles contained in T with respect to η . In particular, $ea_{\eta}(T) = 0$ if and only if T does not contain broken cycles with respect to η . By Theorem 1, $a_1(G)$ is the number of spanning trees T of G with $ea_{\eta}(T) = 0$. If

$$\mathbf{T}_G(x,y) = \sum_{i \ge 0, j \ge 0} c_{i,j} x^i y^j, \tag{4}$$

then $a_1(G) = \sum_{i \ge 0} c_{i,0} = \mathbf{T}_G(1,0).$

As in [11], for i = 0, 1, 2, ..., n - 1, we define $b_i(G)$ (or simply b_i) as the probability that a randomly chosen broken-cycle-free spanning subgraph of G has size *i*. Then

$$b_i = \frac{a_{n-i}}{a_1 + a_2 + \dots + a_n}, \quad \forall i = 0, 1, \dots, n-1.$$
(5)

Let $\epsilon(G)$ denote the mean size of a broken-cycle-free spanning subgraph of G. Then

$$\epsilon(G) = \sum_{i=0}^{n-1} ib_i = \frac{(n-1)a_1 + (n-2)a_2 + \dots + a_{n-1}}{a_1 + a_2 + \dots + a_n}.$$
(6)

An elementary property of $\epsilon(G)$ is given below.

Proposition 1 ([11]). For any graph G of order n, $\epsilon(G) = n + \frac{P'(G,-1)}{P(G,-1)}$.

Let T_n denote a tree of order n and K_n denote the complete graph of order n. By Proposition 1, $\epsilon(T_n) = \frac{n-1}{2}$, while

$$\epsilon(K_n) = n - \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) \sim n - \log n - \gamma \tag{7}$$

as $n \to \infty$, where $\gamma \approx 0.577216$ is the Euler-Mascheroni constant.

Lundow and Markström [11] proposed the following conjecture on $\epsilon(G)$.

Conjecture 1 ([11]). For any connected graph G of order n, where $n \ge 4$, if G is neither K_n nor a T_n , then $\epsilon(T_n) < \epsilon(G) < \epsilon(K_n)$.

In this paper, we aim to prove and strengthen Conjecture 1. For any graph G, define the function $\epsilon(G, x)$ as follows:

$$\epsilon(G, x) = \frac{P'(G, x)}{P(G, x)}.$$
(8)

By Proposition 1, $\epsilon(G) = n + \epsilon(G, -1)$ holds for every graph G of order n. Thus, for any graphs G and H of the same order, $\epsilon(G) < \epsilon(H)$ if and only if $\epsilon(G, -1) < \epsilon(H, -1)$. Conjecture 1 is equivalent to the statement that $\epsilon(T_n, -1) < \epsilon(G, -1) < \epsilon(K_n, -1)$ holds for any connected graph G of order n which is neither K_n nor a T_n .

A graph Q is said to be *chordal* if $Q[V(C)] \not\cong C$ for every cycle C of Q with $|V(C)| \ge 4$, where Q[V'] is the subgraph of Q induced by V' for $V' \subseteq V(G)$. In Section 2, we will establish the following result. **Theorem 2.** For any graph G, if Q is a chordal and proper spanning subgraph of G, then $\epsilon(G, x) > \epsilon(Q, x)$ holds for all x < 0.

Note that any tree is a chordal graph and any connected graph contains a spanning tree. Thus, we have the following corollary which obviously implies the first part of Conjecture 1.

Corollary 1. For any connected graph G of order n which is not a tree, $\epsilon(G, x) > \epsilon(T_n, x)$ holds for all x < 0.

The second part of Conjecture 1 is extended to the inequality $\epsilon(K_n, x) > \epsilon(G, x)$ for any non-complete graph G of order n and all x < 0. In order to prove this inequality, we will show in Section 3 that it suffices to establish the following result.

Theorem 3. For any non-complete graph G = (V, E) of order n,

$$(-1)^{n}(x-n+1)\sum_{u\in V}P(G-u,x) + (-1)^{n+1}nP(G,x) > 0$$
(9)

holds for all x < 0.

Note that the left-hand side of (9) vanishes when $G \cong K_n$. Theorem 3 will be proved in Section 5, based on Greene & Zaslavsky's interpretation in [8] for coefficients $a_i(G)$'s of P(G, x) by acyclic orientations introduced in Section 4. By applying Theorem 3 and two lemmas in Section 3, we will finally prove the second main result in this article.

Theorem 4. For any non-complete graph G of order n, $\epsilon(G, x) < \epsilon(K_n, x)$ holds for all x < 0.

2 Proof of Theorem 2

A vertex u in a graph G is called a *simplicial vertex* if $\{u\} \cup N_G(u)$ is a clique of G, where $N_G(u)$ is the set of vertices in G which are adjacent to u. For a simplicial vertex u of G, P(G, x) has the following property (see [5, 13, 14]):

$$P(G, x) = (x - d(u))P(G - u, x),$$
(10)

where G - u is the subgraph of G induced by $V - \{u\}$ and d(u) is the degree of u in G. By (10), it is not difficult to show the following.

Proposition 2. If u is a simplicial vertex of a graph G, then

$$\epsilon(G, x) = \frac{1}{x - d(u)} + \epsilon(G - u, x). \tag{11}$$

It has been shown that a graph Q of order n is chordal if and only if Q has an ordering u_1, u_2, \ldots, u_n of its vertices such that u_i is a simplicial vertex in $Q[\{u_1, u_2, \ldots, u_i\}]$ for all $i = 1, 2, \ldots, n$ (see [3,6]). Such an ordering of vertices in Q is called a *perfect elimination* ordering of Q. For any perfect elimination ordering u_1, u_2, \ldots, u_n of a chordal graph Q, by Proposition 2,

$$\epsilon(Q, x) = \sum_{i=1}^{n} \frac{1}{x - d_{Q_i}(u_i)},$$
(12)

where Q_i is the subgraph $Q[\{u_1, u_2, \ldots, u_i\}]$.

Now we are ready to prove Theorem 2.

Proof of Theorem 2: Let G be any graph of order n and Q be any chordal and proper spanning subgraph of G. When $n \leq 3$, it is not difficult to verify that $\epsilon(G, x) > \epsilon(Q, x)$ holds for all x < 0.

Suppose that Theorem 2 fails and G = (V, E) is a counter-example to this result such that |V| + |E| has the minimum value among all counter-examples. Thus the result holds for any graph H with |V(H)| + |E(H)| < |V| + |E| and any chordal and proper spanning subgraph Q' of H, but G has a chordal and proper spanning subgraph Q such that $\epsilon(G, x) \leq \epsilon(Q, x)$ holds for some x < 0.

We will establish the following claims. Let u_1, u_2, \ldots, u_n be a perfect elimination ordering of Q and $Q_i = Q[\{u_1, \ldots, u_i\}]$ for all $i = 1, 2, \ldots, n$. So u_i is a simplicial vertex of Q_i for all $i = 1, 2, \ldots, n$.

Claim 1: u_n is not a simplicial vertex of G.

Note that $Q - u_n$ is chordal and a spanning subgraph of $G - u_n$. By the assumption on the minimality of |V| + |E|, $\epsilon(G - u_n, x) \ge \epsilon(Q - u_n, x)$ holds for all x < 0, where the inequality is strict whenever $Q - u_n \not\cong G - u_n$.

Clearly $d_G(u_n) \ge d_Q(u_n)$. As Q is a proper subgraph of G, $d_G(u_n) > d_Q(u_n)$ in the case that $G - u_n \cong Q - u_n$. If u_n is also a simplicial vertex of G, then by Proposition 2,

$$\epsilon(G, x) = \frac{1}{x - d_G(u_n)} + \epsilon(G - u_n, x), \quad \epsilon(Q, x) = \frac{1}{x - d_Q(u_n)} + \epsilon(Q - u_n, x), \quad (13)$$

implying that $\epsilon(G, x) > \epsilon(Q, x)$ holds for all x < 0, a contradiction. Hence Claim 1 holds. Claim 2: $d_G(u_n) > d_Q(u_n)$.

Clearly $d_G(u_n) \ge d_Q(u_n)$. Since u_n is a simplicial vertex of Q and Q is a subgraph of G, $d_G(u_n) = d_Q(u_n)$ implies that u_n is a simplicial vertex of G, contradicting Claim 1. Thus Claim 2 holds.

For any edge e in G, let G - e be the graph obtained from G by deleting e. Let G/e be the graph obtained from G by contracting e and replacing multiple edges, if any arise, by single edges.

Claim 3: For any $e = u_n v \in E - E(Q)$, both $\epsilon(G - e, x) \ge \epsilon(Q, x)$ and $\epsilon(G/e, x) \ge \epsilon(Q - u_n, x)$ hold for all x < 0.

As $e = u_n v \in E - E(Q)$, Q is a spanning subgraph of G - e and $Q - u_n$ is a spanning subgraph of G/e. As both Q and $Q - u_n$ are chordal, by the assumption on the minimality of |V| + |E|, the theorem holds for both G - e and G/e. Thus this claim holds. **Claim 4**: $\epsilon(G, x) > \epsilon(Q, x)$ holds for all x < 0.

By Claim 2, there exists $e = u_n v \in E - E(Q)$. By Claim 3, $\epsilon(G - e, x) \ge \epsilon(Q, x)$ and $\epsilon(G/e, x) \ge \epsilon(Q - u_n, x)$ hold for all x < 0. By (8) and (12),

$$(\epsilon(G-e,x) - \epsilon(Q,x)) \times (-1)^n P(G-e,x)$$

= $(-1)^n P'(G-e,x) + (-1)^{n+1} P(G-e,x) \sum_{i=1}^n \frac{1}{x - d_{Q_i}(u_i)}.$ (14)

As $(-1)^n P(G-e,x) > 0$ and $\epsilon(G-e,x) \ge \epsilon(Q,x)$ for all x < 0, the left-hand side of (14) is non-negative for x < 0, implying that the right-hand side of (14) is also non-negative for x < 0, i.e.,

$$(-1)^{n} P'(G-e,x) + (-1)^{n+1} P(G-e,x) \sum_{i=1}^{n} \frac{1}{x - d_{Q_i}(u_i)} \ge 0, \quad \forall x < 0.$$
(15)

As u_1, \ldots, u_{n-1} is a perfect elimination ordering of $Q - u_n$ and $\epsilon(G/e, x) \ge \epsilon(Q - u_n, x)$ holds for all x < 0, similarly we have:

$$(-1)^{n-1}P'(G/e,x) + (-1)^n P(G/e,x) \sum_{i=1}^{n-1} \frac{1}{x - d_{Q_i}(u_i)} \ge 0, \quad \forall x < 0.$$
(16)

As $(-1)^{n-1}P(G/e, x) > 0$ holds for all x < 0, (16) implies that

$$(-1)^{n-1}P'(G/e, x) + (-1)^n P(G/e, x) \sum_{i=1}^n \frac{1}{x - d_{Q_i}(u_i)}$$

$$\geq \frac{(-1)^n P(G/e, x)}{x - d_{Q_n}(u_n)} > 0, \quad \forall x < 0.$$
(17)

By the deletion-contraction formula for chromatic polynomials,

$$P(G,x) = P(G-e,x) - P(G/e,x), \quad P'(G,x) = P'(G-e,x) - P'(G/e,x).$$
(18)

Then (15), (17) and (18) imply that

$$(-1)^{n} P'(G, x) + (-1)^{n+1} P(G, x) \sum_{i=1}^{n} \frac{1}{x - d_{Q_i}(u_i)} > 0, \quad \forall x < 0.$$
⁽¹⁹⁾

By (8) and (12), inequality (19) implies that

$$(\epsilon(G, x) - \epsilon(Q, x)) (-1)^n P(G, x) > 0, \quad \forall x < 0.$$
 (20)

Since $(-1)^n P(G, x) > 0$ holds for all x < 0, inequality (20) implies Claim 4.

As Claim 4 contradicts the assumption of G, there are no counter-examples to this result and the theorem is proved.

3 An approach for proving Theorem 4

In this section, we will mainly show that, in order to prove Theorem 4, it suffices to prove Theorem 3. By (12), we have

$$\epsilon(K_n, x) = \sum_{i=0}^{n-1} \frac{1}{x-i}.$$
(21)

Thus,

$$\epsilon(K_n, x) - \epsilon(G, x) = \frac{(-1)^n}{P(G, x)} \left((-1)^n P(G, x) \sum_{i=0}^{n-1} \frac{1}{x-i} + (-1)^{n+1} P'(G, x) \right).$$
(22)

For any graph G of order n, define

$$\xi(G, x) = (-1)^n P(G, x) \sum_{i=0}^{n-1} \frac{1}{x-i} + (-1)^{n+1} P'(G, x).$$
(23)

Note that $\xi(G, x) \equiv 0$ if G is a complete graph. For any non-complete graph G and any x < 0, we have $(-1)^n P(G, x) > 0$ and so (22) implies that $\epsilon(K_n, x) - \epsilon(G, x) > 0$ if and only if $\xi(G, x) > 0$.

Proposition 3. Theorem 4 holds if and only if $\xi(G, x) > 0$ holds for every non-complete graph G and all x < 0.

It can be easily verified that $\xi(G, x) > 0$ holds for all non-complete graphs G of order at most 3 and all x < 0. For the general case, we will prove it by induction. In the rest of this section, we will find a relation between $\xi(G, x)$ and $\xi(G - u, x)$ for a vertex u in Gin two cases. Lemma 1 is for the case when u is a simplicial vertex and Lemma 3 when $d(u) \ge 1$. We then explain why Theorem 3 implies $\xi(G, x) > 0$ for all non-complete graphs G and all x < 0.

Lemma 1. Let G be a graph of order n. If u is a simplicial vertex of G with d(u) = d, then

$$\xi(G,x) = (d-x)\xi(G-u,x) + \frac{(-1)^{n-1}(n-1-d)P(G-u,x)}{n-1-x}.$$
(24)

Proof. As u is a simplicial vertex of G with d(u) = d, P(G, x) = (x - d)P(G - u, x) by (10). Thus P'(G, x) = P(G - u, x) + (x - d)P'(G - u, x). By (23),

$$\xi(G,x) = (-1)^{n}(x-d)P(G-u,x)\sum_{i=0}^{n-1} \frac{1}{x-i} + (-1)^{n+1}(P(G-u,x) + (x-d)P'(G-u,x))$$

$$= (d-x)\xi(G-u,x) + \frac{(-1)^{n}(x-d)P(G-u,x)}{x-n+1} + (-1)^{n+1}P(G-u,x)$$

$$= (d-x)\xi(G-u,x) + \frac{(-1)^{n-1}(n-1-d)P(G-u,x)}{n-1-x}.$$
 (25)

Note that $d \le n - 1$ and $(-1)^{n-1}P(G - u, x) > 0$ holds for all x < 0, implying that the second term in the right-hand side of (24) is non-negative. Thus, if u is a simplicial vertex of G and x < 0, by Lemma 1, $\xi(G - u, x) > 0$ implies that $\xi(G, x) > 0$.

Now consider the case that u is a vertex in G with $d(u) = d \ge 1$. Assume that $N(u) = \{u_1, u_2, \ldots, u_d\}$. For any $i = 1, 2, \ldots, d-1$, let G_i denote the graph obtained from G - u by adding edges joining u_i to u_j whenever $u_i u_j \notin E(G)$ for all j with $i + 1 \le j \le d$. Thus, u_i is adjacent to u_j in G_i for all j with $i + 1 \le j \le d$. In the case that u is a simplicial vertex of G, $G_i \cong G - u$ for all $i = 1, 2, \cdots, d - 1$. By applying the deletion-contraction formula for chromatic polynomials (see [5, 13]), P(G, x) can be expressed in terms of P(G - u, x) and $P(G_i, x)$ for $i = 1, 2, \cdots, d - 1$.

Lemma 2. Let u be a vertex in G with $d(x) = d \ge 1$ and for $i = 1, 2, \dots, d-1$, let G_i be the graph defined above. Then,

$$P(G, x) = (x - 1)P(G - u, x) - \sum_{i=1}^{d-1} P(G_i, x).$$
(26)

Proof. For $1 \leq i \leq d$, let E_i denote the set of edges uu_j in G for $j = 1, 2, \dots, i - 1$. So $|E_i| = i - 1$ and $E_1 = \emptyset$. For any i with $1 \leq i \leq d - 1$, applying the deletion-contraction formula for chromatic polynomials to edge uu_i in $G - E_i$, the graph obtained from G by removing all edges in E_i , we have

$$P(G - E_i, x) = P(G - E_{i+1}, x) - P((G - E_i)/uu_i, x) = P(G - E_{i+1}, x) - P(G_i, x),$$
(27)

where the last equality follows from the fact that $(G - E_i)/uu_i \cong G_i$ by the assumption of G_i . Thus, by (27),

$$P(G, x) = P(G - E_1, x) = P(G - E_d, x) - \sum_{i=1}^{d-1} P(G_i, x).$$
(28)

As u is of degree 1 in $G - E_d$, $P(G - E_d, x) = (x - 1)P(G - u, x)$. Hence (26) follows. \Box

Lemma 3. Let G be a graph of order n and let u be a vertex of G with $d(u) = d \ge 1$. Then

$$\xi(G,x) = (1-x)\xi(G-u,x) + \sum_{i=1}^{d-1} \xi(G_i,x) + \frac{(-1)^n \left[(x-n+1)P(G-u,x) - P(G,x) \right]}{n-x-1},$$
(29)

where G_1, \ldots, G_{d-1} are graphs defined above.

Proof. By (26), we have

$$P'(G,x) = P(G-u,x) + (x-1)P'(G-u,x) - \sum_{i=1}^{d-1} P'(G_i,x).$$
(30)

Thus

$$\begin{split} \xi(G,x) &= (-1)^n P(G,x) \sum_{j=0}^{n-1} \frac{1}{x-j} + (-1)^{n+1} P'(G,x) \\ &= (-1)^n \left[(x-1) P(G-u,x) - \sum_{i=1}^{d-1} P(G_i,x) \right] \sum_{j=0}^{n-1} \frac{1}{x-j} \\ &+ (-1)^{n+1} \left[P(G-u,x) + (x-1) P'(G-u,x) - \sum_{i=1}^{d-1} P'(G_i,x) \right] \\ &= (1-x) \left[(-1)^{n-1} P(G-u,x) \sum_{j=0}^{n-2} \frac{1}{x-j} + (-1)^n P'(G-u,x) \right] \\ &+ \sum_{i=1}^{d-1} \left[(-1)^{n-1} P(G_i,x) \sum_{j=0}^{n-2} \frac{1}{x-j} + (-1)^n P'(G_i,x) \right] + (-1)^{n+1} P(G-u,x) \\ &+ (-1)^n \left[\frac{(x-1) P(G-u,x)}{x-(n-1)} - \frac{1}{x-(n-1)} \sum_{i=1}^{d-1} P(G_i,x) \right] \\ &= (1-x) \xi(G-u,x) + \sum_{i=1}^{d-1} \xi(G_i,x) \end{split}$$

$$+\frac{(-1)^{n}\left[(x-n+1)P(G-u,x)-P(G,x)\right]}{n-x-1},$$
(31)

where the last expression follows from (26) and the definitions of $\xi(G-u, x)$ and $\xi(G_i, x)$. The result then follows.

It is known that $\xi(G, x) > 0$ holds for all non-complete graphs G of order at most 3 and all x < 0. For any non-complete graph G of order $n \ge 4$, by Lemma 1, $\xi(G-u, x) > 0$ implies $\xi(G, x) > 0$ for each simplicial vertex u in G and all x < 0; by Lemma 3, for any $x < 0, \ \xi(G - u, x) > 0$ implies $\xi(G, x) > 0$ whenever u is an non-isolated vertex in G satisfying the following inequality:

$$(-1)^{n}((x-n+1)P(G-u,x) - P(G,x)) > 0.$$
(32)

Note that the left-hand side of (32) vanishes when G is K_n . Also notice that there exist non-complete graph G and some vertex u in G such that inequality (32) does not hold for some x < 0. For example, if G is the complete bipartite graph $K_{2,3}$ and u is a vertex of degree 3 in G, then (32) fails for all real x with -2.3 < x < 0. However, to prove that for any x < 0, there exists some vertex u in G such that inequality (32) holds, it suffices to prove the following inequality (i.e., Theorem 3):

$$(-1)^{n}(x-n+1)\sum_{u\in V}P(G-u,x) + (-1)^{n+1}nP(G,x) > 0$$
(33)

for any non-complete graph G = (V, E) of order n and all x < 0.

By Proposition 3 and inequality (32), to prove Theorem 4, we can now just focus on proving inequality (33) (i.e., Theorem 3). The proof of Theorem 3 will be given in Section 5 based on the interpretations for the coefficients of chromatic polynomials introduced in Section 4.

4 Combinatorial interpretations for coefficients of P(G, x)

Let G = (V, E) be any graph. In this section, we will introduce Greene & Zaslavsky's combinatorial interpretation in [8] for the coefficients of P(G, x) in terms of acyclic orientations. The result will be applied in the next section to prove Theorem 3.

An orientation D of G is called *acyclic* if D does not contain any directed cycle. Let $\alpha(G)$ be the number of acyclic orientations of a graph G. In [18], Stanley gave a nice combinatorial interpretation of $(-1)^n P(G, -k)$ for any positive integer k in terms of acyclic orientations of G. In particular, he proved:

Theorem 5 ([18]). For any graph G of order n, $(-1)^n P(G, -1) = \alpha(G)$, *i.e.*,

$$\sum_{i=1}^{n} a_i(G) = \alpha(G). \tag{34}$$

In a digraph D, any vertex of D with in-degree (resp. out-degree) zero is called a *source* (resp. *sink*) of D. It is well known that any acyclic digraph has at least one source and at least one sink. If v is an isolated vertex of G, then v is a source and also a sink in any orientation of G.

For any $v \in V$, let $\alpha(G, v)$ be the number of acyclic orientations of G with v as its unique source. Clearly $\alpha(G, v) = 0$ if and only if G is not connected. In 1983, Greene and Zaslavsky [8] showed that $a_1(G) = \alpha(G, v)$.

Theorem 6 ([8]). For any graph G = (V, E), $a_1(G) = \alpha(G, v)$ holds for every $v \in V$.

This theorem was proved originally by using the theory of hyperplane arrangements. See [7] for three other nice proofs.

By Whitney's Broken-cycle Theorem (i.e., Theorem 1), $a_i(G)$ equals the number of spanning subgraphs of G with i components and n - i edges, containing no broken cycles of G. In particular, $a_1(G)$ is the number of spanning trees of G containing no broken cycles of G. Now we have two different combinatorial interpretations for a_1 . For any $a_i(G)$, $2 \le i \le n$, its combinatorial interpretation can be obtained by applying these two different combinatorial interpretations for a_1 .

Let $\mathcal{P}_i(V)$ be the set of partitions $\{V_1, V_2, \ldots, V_i\}$ of V such that $G[V_j]$ is connected for all $j = 1, 2, \ldots, i$ and let $\beta_i(G)$ be the number of ordered pairs (P_i, F) , where

- (a) $P_i = \{V_1, V_2, \dots, V_i\} \in \mathcal{P}_i(V);$
- (b) F is a spanning forest of G with exactly i components T_1, T_2, \ldots, T_i , where each T_j is a spanning tree of $G[V_j]$ containing no broken cycles of G.

For any subgraph H of G, let $\tilde{\tau}(H)$ be the number of spanning trees of H containing no broken cycles of G. By Theorem 1, $\tilde{\tau}(H) = a_1(H)$ holds and the next result follows.

Theorem 7. For any graph G and any $1 \le i \le n$,

$$a_i(G) = \beta_i(G) = \sum_{\{V_1, \dots, V_i\} \in \mathcal{P}_i(V)} \prod_{j=1}^i \tilde{\tau}(G[V_j]).$$
(35)

Now let $V = \{1, 2, ..., n\}$. For any $i : 1 \le i \le n$ and any vertex $v \in V$, let $\mathcal{OP}_{i,v}(V)$ be the family of ordered partitions $(V_1, V_2, ..., V_i)$ of V such that

(a) $\{V_1, V_2, \dots, V_i\} \in \mathcal{P}_i(V)$, where $v \in V_1$;

(b) for j = 2, ..., i, the minimum number in the set $\bigcup_{j \le s \le i} V_s$ is within V_j .

Clearly, for any $v \in V$ and any $\{V_1, V_2, \ldots, V_i\} \in \mathcal{P}_i(V)$, there is exactly one permutation $(\pi_1, \pi_2, \ldots, \pi_i)$ of $1, 2, \ldots, i$ such that $(V_{\pi_1}, V_{\pi_2}, \ldots, V_{\pi_i}) \in \mathcal{OP}_{i,v}(V)$.

By Theorem 6, $\tilde{\tau}(G[V_j]) = \alpha(G[V_j], u)$ holds for any vertex u in $G[V_j]$ and Theorem 7 is equivalent to a result in [8] which we illustrate differently below. **Theorem 8** ([8], Theorem 7.4). For any $v \in V$ and any $1 \le i \le n$,

$$a_i(G) = \sum_{(V_1,...,V_i) \in \mathcal{OP}_{i,v}(V)} \alpha(G[V_1], v) \prod_{j=2}^i \alpha(G[V_j], m_j),$$
(36)

where m_j is the minimum number in V_j for j = 2, ..., i.

Note that the theorem above indicates that the right hand side of (36) is independent of the choice of v. Thus, for any $1 \le i \le n$,

$$na_{i}(G) = \sum_{v \in V} \sum_{(V_{1},...,V_{i}) \in \mathcal{OP}_{i,v}(V)} \alpha(G[V_{1}],v) \prod_{j=2}^{i} \alpha(G[V_{j}],m_{j}).$$
(37)

Let $P^{(i)}(G, x)$ be the *i*-th derivative of P(G, x). Very recently, Bernardi and Nadeau [1] gave an interpretation of $P^{(i)}(G, -j)$ for any nonnegative integers *i* and *j* in terms of acyclic orientations. When i = 0, their result is exactly Theorem 5 due to Stanley [18]; and when j = 0, it is Theorem 8 due to Greene & Zaslavsky [8].

5 Proofs of Theorems 3 and 4

By the explanation in Section 3, to prove Theorem 4, it suffices to prove Theorem 3. In this section, we will prove Theorem 3 by showing that the coefficient of x^i in the expansion of the left-hand side of (9) in Theorem 3 is of the form $(-1)^i d_i$ with $d_i \ge 0$ for all i = 1, 2, ..., n. Furthermore, $d_i > 0$ holds for some i when G is not complete.

We first establish the following result.

Lemma 4. Let G = (V, E) be a non-complete graph of order $n \ge 3$ and component number c.

- (a). If c = 1 and G is not the n-cycle C_n , then there exist non-adjacent vertices u_1, u_2 of G such that $G \{u_1, u_2\}$ is connected.
- (b). If $2 \le c \le n-1$, then for any integer *i* with $c \le i \le n-1$, there exists a partition V_1, V_2, \ldots, V_i of *V* such that $G[V_j]$ is connected for all $j = 2, \ldots, i$ and $G[V_1]$ has exactly two components one of which is an isolated vertex.

Proof. (a). As c = 1, G is connected. As G is non-complete, the result is trivial when G is 3-connected.

If G is not 2-connected, choose vertices u_1 and u_2 from distinct blocks B_1 and B_2 of G such that both u_1 and u_2 are not cut-vertices of G. Then $u_1u_2 \notin E(G)$ and $G - \{u_1, u_2\}$ is connected. Now consider the case that G is 2-connected but not 3-connected. Since G is not C_n , there exists a vertex w such that $d(w) \ge 3$. If d(w) = n - 1, then $G - \{u_1, u_2\}$ is connected for any two non-adjacent vertices u_1 and u_2 in G. If G - w is 2-connected and $d(w) \le n - 2$, then $G - \{w, u\}$ is connected for any $u \in V - N_G(w)$. If G - w is not 2-connected, then G - w contains two non-adjacent vertices u_1, u_2 such that $G - \{w, u_1, u_2\}$ is connected, implying that $G - \{u_1, u_2\}$ is connected as $d(w) \ge 3$.

(b). Let G_1, G_2, \ldots, G_c be the components of G with $|V(G_1)| \ge |V(G_j)|$ for all $j = 1, 2, \ldots, c$. As $c \le n - 1$, $|V(G_1)| \ge 2$. Choose $u \in V(G_1)$ such that $G_1 - u$ is connected. Then $V(G_2) \cup \{u\}, V(G_1) - \{u\}, V(G_3), \ldots, V(G_c)$ is a partition of V satisfying the condition in (b) for i = c.

Assume that (b) holds for i = k, where $c \le k < n - 1$, and V_1, V_2, \ldots, V_k is a partition of V satisfying the condition in (a). Then $G[V_1]$ has an isolated vertex u and $G[V'_1]$ is connected, where $V'_1 = V_1 - \{u\}$. Since $k \le n - 2$, either $|V'_1| \ge 2$ or $|V_j| \ge 2$ for some $j \ge 2$.

If $|V'_1| \ge 2$, then V'_1 has a partition $V'_{1,1}, V'_{1,2}$ such that both $G[V'_{1,1}]$ and $G[V'_{1,2}]$ are connected, implying that $V'_{1,1} \cup \{u\}, V'_{1,2}, V_2, V_3, \ldots, V_k$ is a partition of V satisfying the condition in (b) for i = k + 1.

Similarly, if $|V_j| \ge 2$ for some $j \ge 2$ (say j = 2), then V_2 has a partition $V_{2,1}, V_{2,2}$ such that both $G[V_{2,1}]$ and $G[V_{2,2}]$ are connected, implying that $V_1, V_{2,1}, V_{2,2}, V_3, \ldots, V_k$ is a partition of V satisfying the condition in (b) for i = k + 1.

For any graph G = (V, E) of order n, write

$$(-1)^{n} \left[(x - n + 1) \sum_{u \in V(G)} P(G - u, x) - nP(G, x) \right] = \sum_{i=1}^{n} (-1)^{i} d_{i} x^{i}.$$
 (38)

By comparing coefficients, it can be shown that

$$d_i = \sum_{u \in V(G)} \left[a_{i-1}(G-u) + (n-1)a_i(G-u) \right] - na_i(G), \quad \forall i = 1, 2, \dots, n.$$
(39)

It is obvious that when G is the complete graph K_n , the left-hand side of (38) vanishes and thus $d_i = 0$ for all i = 1, 2, ..., n. Now we consider the case that G is not complete.

Proposition 4. Let G = (V, E) be a non-complete graph of order n and component number c. Then, for any i = 1, 2, ..., n, $d_i \ge 0$ and equality holds if and only if one of the following cases happens:

(a). i = n;

- (b). $1 \le i \le c 2;$
- (c). i = c 1 and G does not have isolated vertices;
- (d). i = c = 1 and G is C_n .

Proof. We first show that $d_i = 0$ in any one of the four cases above.

By (39), $d_n = \sum_{u \in V} [1 + (n-1) \cdot 0] - n \cdot 1 = 0.$

It is known that for $1 \le i \le n$, $a_i(G) = 0$ if and only if i < c (see [5, 13, 14]). Similarly, $a_i(G-u) = 0$ for all i with $1 \le i < c-1$ and all $u \in V$, and $a_{c-1}(G-u) = 0$ if u is not an isolated vertex of G. By (39), $d_i = 0$ for all i with $1 \le i \le c-2$, and $d_{c-1} = 0$ when Gdoes not have isolated vertices.

If G is C_n , then $a_1(G) = n - 1$, $a_0(G - u) = 0$ and $a_1(G - u) = 1$ for each $u \in V$, implying that $d_1 = 0$ by (39).

In the following, we will show that $d_i > 0$ when *i* does not belong to any one of the four cases.

If G has isolated vertices, then $a_{c-1}(G-u) > 0$ for any isolated vertex u of G and

$$\sum_{u \in V} a_{c-1}(G-u) = \sum_{\substack{u \in V \\ u \text{ isolated}}} a_{c-1}(G-u) > 0.$$
(40)

As $a_{c-1}(G) = 0$, by (39), we have $d_{c-1} > 0$ in this case. Now it remains to show that $d_i > 0$ holds for all i with $c \le i \le n-1$, except when i = c = 1 and G is C_n .

For any $v \in V$, let $\mathcal{OP}'_{i,v}(V)$ be the set of ordered partitions $(V_1, \ldots, V_i) \in \mathcal{OP}_{i,v}(V)$ with $V_1 = \{v\}$. As $\alpha(G[V_1], v) = 1$, for any *i* with $c \leq i \leq n$, by Theorem 8,

$$a_{i-1}(G-v) = \sum_{(V_1,\dots,V_i)\in\mathcal{OP}'_{i,v}(V)} \alpha(G[V_1],v) \prod_{j=2}^{i} \alpha(G[V_j],m_j),$$
(41)

where m_j is the minimum number in V_j for all $j = 2, \ldots, i$.

Let s and v be distinct members in V. For any $V_1 \subseteq V - \{s\}$ with $v \in V_1$, let $\alpha(G[V_1 \cup \{s\}], v, s)$ be the number of those acyclic orientations of $G[V_1 \cup \{s\}]$ with v as the unique source and s as one sink. Then $\alpha(G[V_1 \cup \{s\}], v, s) \leq \alpha(G[V_1], v)$ holds, where the inequality is strict if and only if $G[V_1]$ is connected but $G[V_1 \cup \{s\}]$ is not. Observe that

$$a_{i}(G-s) = \sum_{(V_{1},...,V_{i})\in\mathcal{OP}_{i,v}(V-\{s\})} \alpha(G[V_{1}],v) \prod_{j=2}^{i} \alpha(G[V_{j}],m_{j})$$

$$\geq \sum_{(V_{1},...,V_{i})\in\mathcal{OP}_{i,v}(V-\{s\})} \alpha(G[V_{1}\cup\{s\}],v,s) \prod_{j=2}^{i} \alpha(G[V_{j}],m_{j})$$
(42)

$$= \sum_{(V'_1, \dots, V'_i) \in \mathcal{OP}_{i,v,s}(V)} \alpha(G[V'_1], v, s) \prod_{j=2}^i \alpha(G[V'_j], m_j),$$
(43)

where $\mathcal{OP}_{i,v,s}(V)$ is the set of ordered partitions $(V'_1, \ldots, V'_i) \in \mathcal{OP}_{i,v}(V)$ with $s, v \in V'_1$. By the explanation above, inequality (42) is strict whenever $V - \{s\}$ has a partition V_1, V_2, \ldots, V_i with $v \in V_1$ such that each $G[V_j]$ is connected for all $j = 1, 2, \ldots, i$ but $G[V_1 \cup \{s\}]$ is not connected.

By (37), we have

$$na_{i}(G) = \sum_{v \in V} \sum_{(V_{1},...,V_{i}) \in \mathcal{OP}_{i,v}(V)} \alpha(G[V_{1}],v) \prod_{j=2}^{i} \alpha(G[V_{j}],m_{j})$$

$$= \sum_{v \in V} \sum_{(V_{1},...,V_{i}) \in \mathcal{OP}'_{i,v}(V)} \alpha(G[V_{1}],v) \prod_{j=2}^{i} \alpha(G[V_{j}],m_{j})$$

$$+ \sum_{v \in V} \sum_{(V_{1},...,V_{i}) \in \mathcal{OP}_{i,v}(V) - \mathcal{OP}'_{i,v}(V)} \alpha(G[V_{1}],v) \prod_{j=2}^{i} \alpha(G[V_{j}],m_{j}). \quad (44)$$

By (41),

$$\sum_{v \in V} \sum_{(V_1, \dots, V_i) \in \mathcal{OP}'_{i,v}(V)} \alpha(G[V_1], v) \prod_{j=2}^i \alpha(G[V_j], m_j) = \sum_{v \in V} a_{i-1}(G - v),$$
(45)

and by (43),

$$\sum_{v \in V} \sum_{(V_1, \dots, V_i) \in \mathcal{OP}_{i,v}(V) - \mathcal{OP}'_{i,v}(V)} \alpha(G[V_1], v) \prod_{j=2}^{i} \alpha(G[V_j], m_j)$$

$$\sum_{v \in V} \sum_{(V_1, \dots, V_i) \in \mathcal{OP}_{i,v}(V) - \mathcal{OP}'_{i,v}(V)} \alpha(G[V_i], v, s) \prod_{j=2}^{i} \alpha(G[V_j], m_j)$$
(46)

$$\leq \sum_{v \in V} \sum_{s \in V - \{v\}} \sum_{(V_1, \dots, V_i) \in \mathcal{OP}_{i,v,s}(V)} \alpha(G[V_1], v, s) \prod_{j=2} \alpha(G[V_j], m_j)$$
(46)

$$\leq \sum_{v \in V} \sum_{s \in V - \{v\}} a_i(G - s) \tag{47}$$

$$= (n-1)\sum_{v \in V} a_i(G-v),$$
(48)

where inequality (46) is strict if there exists $(V_1, \ldots, V_i) \in \mathcal{OP}_{i,v}(V)$ for some $v \in V$ such that $G[V_j]$ is connected for all $j = 1, \ldots, i$ and $G[V_1]$ has acyclic orientations with v as the unique source but with at least two sinks, and by (42) and (43), inequality (47) is strict if V can be partitioned into V_1, \ldots, V_i such that $G[V_j]$ is connected for all $j = 2, \ldots, i$ but $G[V_1]$ has exactly two components, one of which is an isolated vertex in $G[V_1]$.

As G is not complete, by Lemma 4 and the above explanation, the inequality of (48) is strict for all i with $c \leq i \leq n-1$, except when i = c = 1 and G is C_n . Then, by (44), (45) and (48), we conclude that

$$d_i = \sum_{v \in V} \left[a_{i-1}(G-u) + (n-1)a_i(G-u) \right] - na_i(G) > 0, \quad \forall c \le i \le n-1,$$
(49)

except that i = c = 1 and G is C_n . Hence the proof is complete.

Now everything is ready for proving Theorems 3 and 4.

Proof of Theorem 3: Let G be a non-complete graph of order n. Recall (38) that

$$(-1)^n \left[(x - n + 1) \sum_{u \in V(G)} P(G - u, x) - nP(G, x) \right] = \sum_{i=1}^n (-1)^i d_i x^i.$$
(50)

By Proposition 4, we know that $d_i \ge 0$ for all i with $1 \le i \le n$ and $d_{n-1} > 0$. Thus $\sum_{i=1}^{n} (-1)^i d_i x^i > 0$ holds for all x < 0, which completes the proof of Theorem 3.

Proposition 5. For any non-complete graph G, $\xi(G, x) > 0$ holds for all x < 0.

Proof. We will prove this result by induction on the order n of G. When n = 2, the empty graph N_2 of order 2 is the only non-complete graph of order 2. As $P(N_2, x) = x^2$, by (23), we have

$$\xi(N_2, x) = (-1)^2 x^2 \left(\frac{1}{x} + \frac{1}{x-1}\right) + (-1)^3 2x = \frac{x}{x-1} > 0$$
(51)

for all x < 0.

Assume that this result holds for any non-complete graph G of order less than n, where $n \ge 3$. Now let G be any non-complete graph of order n.

Case 1: G contains an isolated vertex u.

By the inductive assumption, $\xi(G-u, x) \ge 0$ holds for all x < 0, where equality holds when G-u is a complete graph. By Lemma 1, $\xi(G, x) > 0$ holds for all x < 0. **Case 2**: G has no isolated vertex.

By Theorem 3, (9) holds for all x < 0. Thus, for any x < 0, there exists some $u \in V(G)$ such that $(-1)^n(x-n+1)P(G-u,x) + (-1)^{n+1}P(G,x) > 0$ holds. Then, by Lemma 3 and by the inductive assumption, $\xi(G,x) > 0$ holds for any x < 0.

Hence the result holds.

Proof of Theorem 4: It follows directly from Propositions 3 and 5.

6 Remarks and problems

First we give some remarks here.

(a). Theorem 4 implies that for any non-complete graph G of order n, $\frac{P(G,x)}{P(K_n,x)}$ is strictly decreasing when x < 0.

(b). Let G be a non-complete graph of order n and $P(G, x) = \sum_{i=1}^{n} (-1)^{n-i} a_i x^i$. Then $\epsilon(G) < \epsilon(K_n)$ implies that

$$\frac{a_1 + 2a_2 + \dots + na_n}{a_1 + a_2 + \dots + a_n} > 1 + \frac{1}{2} + \dots + \frac{1}{n}.$$
(52)

(c). When x = -1, Theorem 3 implies that for any graph G of order n,

$$(-1)^{n-1} \sum_{u \in V} P(G-u, -1) \ge (-1)^n P(G, -1),$$
(53)

where the inequality holds if and only if G is complete. By Stanley's interpretation for $(-1)^n P(G, -1)$ in [18], the inequality above implies that for any graph G = (V, E), the number of acyclic orientations of G is at most the total number of acyclic orientations of G - u for all $u \in V$, where the equality holds if and only if G is complete.

Now we raise some problems for further study.

It is clear that for any graph G of order n,

$$\frac{d}{dx}\left(\ln[(-1)^n P(G, x)]\right) = \frac{P'(G, x)}{P(G, x)} < 0$$
(54)

holds for all x < 0. We surmise that this property holds for higher derivatives of the function $\ln[(-1)^n P(G, x)]$ in the interval $(-\infty, 0)$.

Conjecture 2. Let G be a graph of order n. Then $\frac{d^k}{dx^k} (\ln[(-1)^n P(G, x)]) < 0$ holds for all $k \ge 2$ and $x \in (-\infty, 0)$.

Observe that $\epsilon(G, x) = \frac{d}{dx} (\ln[(-1)^n P(G, x)])$. We believe that Theorems 2 and 4 can be extended to higher derivatives of the function $\ln[(-1)^n P(G, x)]$.

Conjecture 3. Let G be any non-complete graph of order n and Q be any chordal and proper spanning subgraph Q of G. Then

$$\frac{d^k}{dx^k} \left(\ln[(-1)^n P(Q, x)] \right) < \frac{d^k}{dx^k} \left(\ln[(-1)^n P(G, x)] \right) < \frac{d^k}{dx^k} \left(\ln[(-1)^n P(K_n, x)] \right)$$
(55)

holds for any integer $k \ge 2$ and all x < 0.

It is not difficult to show that Conjecture 2 holds for $G \cong K_n$. Thus the second inequality of Conjecture 3 implies Conjecture 2.

It is natural to extend the second part of Conjecture 1 (i.e., $\epsilon(G) < \epsilon(K_n)$ for any non-complete graph G of order n) to the inequality $\epsilon(G) \leq \epsilon(G')$ for any graph G' which contains G as a subgraph. However, this inequality is not always true. Let G_n denote the graph obtained from the complete bipartite graph $K_{2,n}$ by adding a new edge joining the two vertices in the partite set of size 2. Lundow and Markström [11] stated that $\epsilon(K_{2,n}) > \epsilon(G_n)$ holds for all $n \ge 3$. In spite of this, we believe that for any non-complete graph G, we can add a new edge to G to obtain a graph G' with the property that $\epsilon(G) < \epsilon(G')$, as stated below.

Conjecture 4. For any non-complete graph G, there exist non-adjacent vertices u and v in G such that $\epsilon(G) < \epsilon(G + uv)$.

Obviously, Conjecture 4 implies $\epsilon(G) < \epsilon(K_n)$ for any non-complete graph G of order n (i.e., Theorem 4). Conjecture 4 is similar to but may be not equivalent to the following conjecture due to Lundow and Markström [11].

Conjecture 5 ([11]). For any 2-connected graph G, there exists an edge e in G such that $\epsilon(G-e) < \epsilon(G)$.

Acknowledgements

The authors would like to thank the referees for their helpful suggestions and comments.

References

- [1] O. Bernardi and P. Nadeau, Combinatorial reciprocity for the chromatic polynomial and the chromatic symmetric function, *Discrete Math.* **343** (2020), 111989.
- [2] H. Crapo, The Tutte polynomial, Aequationes Mathematicae 3 (1969), 211–229.
- [3] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 38 (1961), 71–76.
- [4] Fengming Dong and K.M. Koh, Foundations of the Chromatic Polynomial, in: J. Ellis-Monaghan and I. Moffatt, eds., *Handbook on the Tutte Polynomial and Related Topics*, CRC Press, in press.
- [5] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs, World Scientific, Singapore, 2005.
- [6] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15 (1965), 835–855.

- [7] D.D. Gebhard and B.E. Sagan, Sinks in acyclic orientations of graphs, J. Combin. Theory Ser. B 80 (2000), 130–146.
- [8] C. Greene and T. Zaslavsky, On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs, *Trans. Amer. Math. Soc.* 280 (1983), 97–126.
- B. Jackson, A zero-free interval for chromatic polynomials of graphs, Combin. Probab. Comput. 2 (1993), 325–336.
- [10] B. Jackson, Chromatic polynomials, L.W. Beineke, R.J. Wilson (Eds.), Topics in Chromatic Graph Theory, vol. 156, Cambridge University Press, 2015, pp. 56–72.
- [11] P.H. Lundow and K. Markström, Broken-cycle-free subgraphs and the log-concavity conjecture for chromatic polynomials, *Experiment. Math.* 15 (2006), 243–253.
- [12] J. Oxley and D. Welsh, Chromatic, flow and reliability polynomials: the complexity of their coefficients, *Combin. Probab. Comput.* **11** (2002), 403–426.
- [13] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968), 52–71.
- [14] R.C. Read and W.T. Tutte, Chromatic polynomials, in Selected Topics in Graph Theory 3, Academic Press, 1988, 15–42.
- [15] G. Royle, Recent results on chromatic and flow roots of graphs and matroids, in: Surveys in combinatorics, London Math. Soc. Lecture Note Ser., vol. 365, Cambridge Univ. Press, Cambridge, 2009, pp. 289–327.
- [16] A.D. Sokal, Bounds on the complex zeros of (di)chromatic polynomials and Pottsmodel partition functions, *Combin. Probab. Comput.* 10 (2001), 41–77.
- [17] A.D. Sokal, Chromatic roots are dense in the whole complex plane, Combin. Probab. Comput. 13 (2004), 221–261.
- [18] R.P. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171–178.
- [19] C. Thomassen, The zero-free intervals for chromatic polynomials of graphs, Combin. Probab. Comput. 6 (1997), 497–506.
- [20] C. Thomassen, Chromatic roots and Hamiltonian paths, J. Combin. Theory Ser. B 80 (2000), 218–224.

- [21] I. Tomescu, Chromatic coefficients of linear uniform hypergraphs, J. Combin. Theory Ser. B 72 (1998), 229–235.
- [22] W. Tutte, A contribution to the theory of chromatic polynomials, Canadian journal of mathematics 6 (1954), 80-91.
- [23] H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc. 38 (1932), 572–579.

(F. Dong and E. Tay) Mathematics and Mathematics Education, National Institute of Education, Nanyang Technological University, Singapore. Email (Tay): engguan.tay@nie.edu.sg.

(J. Ge) School of Mathematical Sciences, Sichuan Normal University, Chengdu, P. R. China. Email: mathsgejun@163.com.

(H. Gong) Department of Mathematics, Shaoxing University, Shaoxing, P. R. China. Email: helingong@126.com.

(B. Ning) College of Computer Science, Nankai University, Tianjin 300071, P.R. China. Email: ningbo-maths@163.com.

(Z. Ouyang) Department of Mathematics, Hunan First Normal University, Changsha,P. R. China. Email: oymath@163.com.