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Proving a conjecture on chromatic polynomials by counting

the number of acyclic orientations∗
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Abstract

The chromatic polynomial P (G, x) of a graph G of order n can be expressed as
n∑

i=1

(−1)n−iaix
i, where ai is interpreted as the number of broken-cycle free spanning

subgraphs of G with exactly i components. The parameter ǫ(G) =
n∑

i=1

(n− i)ai/
n∑

i=1

ai

is the mean size of a broken-cycle-free spanning subgraph of G. In this article, we

confirm and strengthen a conjecture proposed by Lundow and Markström in 2006

that ǫ(Tn) < ǫ(G) < ǫ(Kn) holds for any connected graph G of order n which is

neither the complete graph Kn nor a tree Tn of order n. The most crucial step of our

proof is to obtain the interpretation of all ai’s by the number of acyclic orientations

of G.

Keywords: chromatic polynomial; graph; acyclic orientation; combinatorial interpreta-

tion

Mathematics Subject Classification (2010): 05C31, 05C20

1 Introduction

All graphs considered in this paper are simple graphs. For any graph G = (V,E) and

any positive integer k, a proper k-coloring f of G is a mapping f : V → {1, 2, . . . , k}

such that f(u) 6= f(v) holds whenever uv ∈ E. The chromatic polynomial of G is the

function P (G,x) such that P (G, k) counts the number of proper k-colorings of G for any

positive integer k. In this article, the variable x in P (G,x) is a real number. The study of

chromatic polynomials is one of the most active areas in graph theory. For basic concepts

∗This article is partially supported by NTU AcRf Project (RP 3/16 DFM) of Singapore and NSFC

grants (No. 11701401, 11961070 and 11971346).
†Corresponding author. Email: fengming.dong@nie.edu.sg and donggraph@163.com.
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and properties on chromatic polynomials, we refer the reader to the monograph [5]. For

the most celebrated results on this topic, we recommend surveys [4, 10,14,15].

The first interpretation of the coefficients of P (G,x) was provided by Whitney [23]:

for any simple graph G of order n and size m,

P (G,x) =
n∑

i=1

(
m∑

r=0

(−1)rN(i, r)

)
xi, (1)

where N(i, r) is the number of spanning subgraphs of G with exactly i components and

r edges. Whitney further simplified (1) by introducing the notion of broken cycles. Let

η : E → {1, 2, . . . , |E|} be a bijection. For any cycle C in G, the path C − e is called a

broken cycle of G with respect to η, where e is the edge on C with η(e) ≤ η(e′) for every

edge e′ on C. When there is no confusion, a broken cycle of G is always assumed to be

with respect to a bijection η : E → {1, 2, . . . , |E|}.

Theorem 1 ( [23]). Let G = (V,E) be a graph of order n and η : E → {1, 2, . . . , |E|} be

a bijection. Then,

P (G,x) =

n∑

i=1

(−1)n−iai(G)xi, (2)

where ai(G) is the number of spanning subgraphs of G with n− i edges and i components

which do not contain broken cycles.

Let G be a simple graph of order n. When there is no confusion, ai(G) is written

as ai for short. Clearly, by Theorem 1, P (G,x) is indeed a polynomial in x in which the

constant term is 0, the leading coefficient an is 1 and all coefficients are integers alternating

in signs. Thus, (−1)nP (G,x) > 0 holds for all x < 0.

The concept of broken cycles has the following connection with Tutte’s work of ex-

pressing the Tutte polynomial TG(x, y) of a connected graph G in terms of spanning

trees [2, 22]:

TG(x, y) =
∑

T

xiaω(T )yeaω(T ), (3)

where the sum runs over all spanning trees of G and iaω(T ) and eaω(T ) are respectively

the internal and external activities of T with respect to a bijection ω : E → {1, 2, . . . , |E|}.

If we take ω to be η, then eaη(T ) is exactly the number of edges e ∈ E(G) \ E(T ) such

that η(e) ≤ η(e′) holds for all edges e′ on the unique cycle C of T ∪ e. As G is a simple

graph, eaη(T ) equals the number of broken cycles contained in T with respect to η. In
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particular, eaη(T ) = 0 if and only if T does not contain broken cycles with respect to η.

By Theorem 1, a1(G) is the number of spanning trees T of G with eaη(T ) = 0. If

TG(x, y) =
∑

i≥0,j≥0

ci,jx
iyj, (4)

then a1(G) =
∑

i≥0 ci,0 = TG(1, 0).

As in [11], for i = 0, 1, 2, . . . , n − 1, we define bi(G) (or simply bi) as the probability

that a randomly chosen broken-cycle-free spanning subgraph of G has size i. Then

bi =
an−i

a1 + a2 + · · ·+ an
, ∀i = 0, 1, . . . , n− 1. (5)

Let ǫ(G) denote the mean size of a broken-cycle-free spanning subgraph of G. Then

ǫ(G) =
n−1∑

i=0

ibi =
(n− 1)a1 + (n− 2)a2 + · · ·+ an−1

a1 + a2 + · · ·+ an
. (6)

An elementary property of ǫ(G) is given below.

Proposition 1 ( [11]). For any graph G of order n, ǫ(G) = n+ P ′(G,−1)
P (G,−1) .

Let Tn denote a tree of order n and Kn denote the complete graph of order n. By

Proposition 1, ǫ(Tn) =
n−1
2 , , while

ǫ(Kn) = n−

(
1 +

1

2
+ · · · +

1

n

)
∼ n− log n− γ (7)

as n → ∞, where γ ≈ 0.577216 is the Euler-Mascheroni constant.

Lundow and Markström [11] proposed the following conjecture on ǫ(G).

Conjecture 1 ( [11]). For any connected graph G of order n, where n ≥ 4, if G is neither

Kn nor a Tn, then ǫ(Tn) < ǫ(G) < ǫ(Kn).

In this paper, we aim to prove and strengthen Conjecture 1. For any graph G, define

the function ǫ(G,x) as follows:

ǫ(G,x) =
P ′(G,x)

P (G,x)
. (8)

By Proposition 1, ǫ(G) = n + ǫ(G,−1) holds for every graph G of order n. Thus, for

any graphs G and H of the same order, ǫ(G) < ǫ(H) if and only if ǫ(G,−1) < ǫ(H,−1).

Conjecture 1 is equivalent to the statement that ǫ(Tn,−1) < ǫ(G,−1) < ǫ(Kn,−1) holds

for any connected graph G of order n which is neither Kn nor a Tn.

A graph Q is said to be chordal if Q[V (C)] 6∼= C for every cycle C of Q with |V (C)| ≥ 4,

where Q[V ′] is the subgraph of Q induced by V ′ for V ′ ⊆ V (G). In Section 2, we will

establish the following result.
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Theorem 2. For any graph G, if Q is a chordal and proper spanning subgraph of G, then

ǫ(G,x) > ǫ(Q,x) holds for all x < 0.

Note that any tree is a chordal graph and any connected graph contains a spanning

tree. Thus, we have the following corollary which obviously implies the first part of

Conjecture 1.

Corollary 1. For any connected graph G of order n which is not a tree, ǫ(G,x) > ǫ(Tn, x)

holds for all x < 0.

The second part of Conjecture 1 is extended to the inequality ǫ(Kn, x) > ǫ(G,x) for

any non-complete graph G of order n and all x < 0. In order to prove this inequality, we

will show in Section 3 that it suffices to establish the following result.

Theorem 3. For any non-complete graph G = (V,E) of order n,

(−1)n(x− n+ 1)
∑

u∈V

P (G− u, x) + (−1)n+1nP (G,x) > 0 (9)

holds for all x < 0.

Note that the left-hand side of (9) vanishes when G ∼= Kn. Theorem 3 will be proved

in Section 5, based on Greene & Zaslavsky’s interpretation in [8] for coefficients ai(G)’s of

P (G,x) by acyclic orientations introduced in Section 4. By applying Theorem 3 and two

lemmas in Section 3, we will finally prove the second main result in this article.

Theorem 4. For any non-complete graph G of order n, ǫ(G,x) < ǫ(Kn, x) holds for all

x < 0.

2 Proof of Theorem 2

A vertex u in a graph G is called a simplicial vertex if {u}∪NG(u) is a clique of G, where

NG(u) is the set of vertices in G which are adjacent to u. For a simplicial vertex u of G,

P (G,x) has the following property (see [5, 13,14]):

P (G,x) = (x− d(u))P (G − u, x), (10)

where G − u is the subgraph of G induced by V − {u} and d(u) is the degree of u in G.

By (10), it is not difficult to show the following.

Proposition 2. If u is a simplicial vertex of a graph G, then

ǫ(G,x) =
1

x− d(u)
+ ǫ(G− u, x). (11)
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It has been shown that a graph Q of order n is chordal if and only if Q has an ordering

u1, u2, . . . , un of its vertices such that ui is a simplicial vertex in Q[{u1, u2, . . . , ui}] for all

i = 1, 2, . . . , n (see [3, 6]). Such an ordering of vertices in Q is called a perfect elimination

ordering of Q. For any perfect elimination ordering u1, u2, . . . , un of a chordal graph Q,

by Proposition 2,

ǫ(Q,x) =
n∑

i=1

1

x− dQi
(ui)

, (12)

where Qi is the subgraph Q[{u1, u2, . . . , ui}].

Now we are ready to prove Theorem 2.

Proof of Theorem 2: Let G be any graph of order n and Q be any chordal and proper

spanning subgraph of G. When n ≤ 3, it is not difficult to verify that ǫ(G,x) > ǫ(Q,x)

holds for all x < 0.

Suppose that Theorem 2 fails and G = (V,E) is a counter-example to this result

such that |V |+ |E| has the minimum value among all counter-examples. Thus the result

holds for any graph H with |V (H)| + |E(H)| < |V | + |E| and any chordal and proper

spanning subgraph Q′ of H, but G has a chordal and proper spanning subgraph Q such

that ǫ(G,x) ≤ ǫ(Q,x) holds for some x < 0.

We will establish the following claims. Let u1, u2, . . . , un be a perfect elimination

ordering of Q and Qi = Q[{u1, . . . , ui}] for all i = 1, 2, . . . , n. So ui is a simplicial vertex

of Qi for all i = 1, 2, . . . , n.

Claim 1: un is not a simplicial vertex of G.

Note that Q − un is chordal and a spanning subgraph of G − un. By the assumption

on the minimality of |V |+ |E|, ǫ(G− un, x) ≥ ǫ(Q− un, x) holds for all x < 0, where the

inequality is strict whenever Q− un 6∼= G− un.

Clearly dG(un) ≥ dQ(un). As Q is a proper subgraph of G, dG(un) > dQ(un) in the

case that G− un ∼= Q− un. If un is also a simplicial vertex of G, then by Proposition 2,

ǫ(G,x) =
1

x− dG(un)
+ ǫ(G− un, x), ǫ(Q,x) =

1

x− dQ(un)
+ ǫ(Q− un, x), (13)

implying that ǫ(G,x) > ǫ(Q,x) holds for all x < 0, a contradiction. Hence Claim 1 holds.

Claim 2: dG(un) > dQ(un).

Clearly dG(un) ≥ dQ(un). Since un is a simplicial vertex of Q and Q is a subgraph

of G, dG(un) = dQ(un) implies that un is a simplicial vertex of G, contradicting Claim 1.

Thus Claim 2 holds.
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For any edge e in G, let G − e be the graph obtained from G by deleting e. Let G/e

be the graph obtained from G by contracting e and replacing multiple edges, if any arise,

by single edges.

Claim 3: For any e = unv ∈ E − E(Q), both ǫ(G − e, x) ≥ ǫ(Q,x) and ǫ(G/e, x) ≥

ǫ(Q− un, x) hold for all x < 0.

As e = unv ∈ E −E(Q), Q is a spanning subgraph of G− e and Q− un is a spanning

subgraph of G/e. As both Q and Q−un are chordal, by the assumption on the minimality

of |V |+ |E|, the theorem holds for both G− e and G/e. Thus this claim holds.

Claim 4: ǫ(G,x) > ǫ(Q,x) holds for all x < 0.

By Claim 2, there exists e = unv ∈ E − E(Q). By Claim 3, ǫ(G − e, x) ≥ ǫ(Q,x) and

ǫ(G/e, x) ≥ ǫ(Q− un, x) hold for all x < 0. By (8) and (12),

(ǫ(G − e, x)− ǫ(Q,x))× (−1)nP (G− e, x)

= (−1)nP ′(G − e, x) + (−1)n+1P (G− e, x)

n∑

i=1

1

x− dQi
(ui)

. (14)

As (−1)nP (G− e, x) > 0 and ǫ(G− e, x) ≥ ǫ(Q,x) for all x < 0, the left-hand side of (14)

is non-negative for x < 0, implying that the right-hand side of (14) is also non-negative

for x < 0, i.e.,

(−1)nP ′(G− e, x) + (−1)n+1P (G− e, x)

n∑

i=1

1

x− dQi
(ui)

≥ 0, ∀x < 0. (15)

As u1, . . . , un−1 is a perfect elimination ordering of Q− un and ǫ(G/e, x) ≥ ǫ(Q− un, x)

holds for all x < 0, similarly we have:

(−1)n−1P ′(G/e, x) + (−1)nP (G/e, x)

n−1∑

i=1

1

x− dQi
(ui)

≥ 0, ∀x < 0. (16)

As (−1)n−1P (G/e, x) > 0 holds for all x < 0, (16) implies that

(−1)n−1P ′(G/e, x) + (−1)nP (G/e, x)

n∑

i=1

1

x− dQi
(ui)

≥
(−1)nP (G/e, x)

x− dQn(un)
> 0, ∀x < 0. (17)

By the deletion-contraction formula for chromatic polynomials,

P (G,x) = P (G− e, x)− P (G/e, x), P ′(G,x) = P ′(G− e, x)− P ′(G/e, x). (18)

Then (15), (17) and (18) imply that

(−1)nP ′(G,x) + (−1)n+1P (G,x)
n∑

i=1

1

x− dQi
(ui)

> 0, ∀x < 0. (19)
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By (8) and (12), inequality (19) implies that

(ǫ(G,x) − ǫ(Q,x)) (−1)nP (G,x) > 0, ∀x < 0. (20)

Since (−1)nP (G,x) > 0 holds for all x < 0, inequality (20) implies Claim 4.

As Claim 4 contradicts the assumption of G, there are no counter-examples to this

result and the theorem is proved.

3 An approach for proving Theorem 4

In this section, we will mainly show that, in order to prove Theorem 4, it suffices to prove

Theorem 3. By (12), we have

ǫ(Kn, x) =
n−1∑

i=0

1

x− i
. (21)

Thus,

ǫ(Kn, x)− ǫ(G,x) =
(−1)n

P (G,x)

(
(−1)nP (G,x)

n−1∑

i=0

1

x− i
+ (−1)n+1P ′(G,x)

)
. (22)

For any graph G of order n, define

ξ(G,x) = (−1)nP (G,x)

n−1∑

i=0

1

x− i
+ (−1)n+1P ′(G,x). (23)

Note that ξ(G,x) ≡ 0 if G is a complete graph. For any non-complete graph G and any

x < 0, we have (−1)nP (G,x) > 0 and so (22) implies that ǫ(Kn, x) − ǫ(G,x) > 0 if and

only if ξ(G,x) > 0.

Proposition 3. Theorem 4 holds if and only if ξ(G,x) > 0 holds for every non-complete

graph G and all x < 0.

It can be easily verified that ξ(G,x) > 0 holds for all non-complete graphs G of order

at most 3 and all x < 0. For the general case, we will prove it by induction. In the rest

of this section, we will find a relation between ξ(G,x) and ξ(G− u, x) for a vertex u in G

in two cases. Lemma 1 is for the case when u is a simplicial vertex and Lemma 3 when

d(u) ≥ 1. We then explain why Theorem 3 implies ξ(G,x) > 0 for all non-complete graphs

G and all x < 0.

Lemma 1. Let G be a graph of order n. If u is a simplicial vertex of G with d(u) = d,

then

ξ(G,x) = (d− x)ξ(G− u, x) +
(−1)n−1(n− 1− d)P (G − u, x)

n− 1− x
. (24)
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Proof. As u is a simplicial vertex of G with d(u) = d, P (G,x) = (x − d)P (G − u, x) by

(10). Thus P ′(G,x) = P (G− u, x) + (x− d)P ′(G− u, x). By (23),

ξ(G,x) = (−1)n(x− d)P (G − u, x)
n−1∑

i=0

1

x− i
+ (−1)n+1(P (G− u, x) + (x− d)P ′(G − u, x))

= (d− x)ξ(G − u, x) +
(−1)n(x− d)P (G− u, x)

x− n+ 1
+ (−1)n+1P (G− u, x)

= (d− x)ξ(G − u, x) +
(−1)n−1(n − 1− d)P (G − u, x)

n− 1− x
. (25)

Note that d ≤ n − 1 and (−1)n−1P (G − u, x) > 0 holds for all x < 0, implying that

the second term in the right-hand side of (24) is non-negative. Thus, if u is a simplicial

vertex of G and x < 0, by Lemma 1, ξ(G− u, x) > 0 implies that ξ(G,x) > 0.

Now consider the case that u is a vertex in G with d(u) = d ≥ 1. Assume that

N(u) = {u1, u2, . . . , ud}. For any i = 1, 2, . . . , d−1, let Gi denote the graph obtained from

G− u by adding edges joining ui to uj whenever uiuj /∈ E(G) for all j with i+1 ≤ j ≤ d.

Thus, ui is adjacent to uj in Gi for all j with i + 1 ≤ j ≤ d. In the case that u is a

simplicial vertex of G, Gi
∼= G − u for all i = 1, 2, · · · , d − 1. By applying the deletion-

contraction formula for chromatic polynomials (see [5, 13]), P (G,x) can be expressed in

terms of P (G− u, x) and P (Gi, x) for i = 1, 2, · · · , d− 1.

Lemma 2. Let u be a vertex in G with d(x) = d ≥ 1 and for i = 1, 2, · · · , d− 1, let Gi be

the graph defined above. Then,

P (G,x) = (x− 1)P (G− u, x)−
d−1∑

i=1

P (Gi, x). (26)

Proof. For 1 ≤ i ≤ d, let Ei denote the set of edges uuj in G for j = 1, 2, · · · , i − 1. So

|Ei| = i − 1 and E1 = ∅. For any i with 1 ≤ i ≤ d − 1, applying the deletion-contraction

formula for chromatic polynomials to edge uui in G− Ei, the graph obtained from G by

removing all edges in Ei, we have

P (G− Ei, x) = P (G− Ei+1, x)− P ((G − Ei)/uui, x) = P (G− Ei+1, x)− P (Gi, x),

(27)

where the last equality follows from the fact that (G − Ei)/uui ∼= Gi by the assumption

of Gi. Thus, by (27),

P (G,x) = P (G− E1, x) = P (G− Ed, x)−
d−1∑

i=1

P (Gi, x). (28)

As u is of degree 1 in G−Ed, P (G−Ed, x) = (x− 1)P (G− u, x). Hence (26) follows.
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Lemma 3. Let G be a graph of order n and let u be a vertex of G with d(u) = d ≥ 1.

Then

ξ(G,x) = (1− x)ξ(G − u, x) +
d−1∑

i=1

ξ(Gi, x) +
(−1)n [(x− n+ 1)P (G − u, x)− P (G,x)]

n− x− 1
,

(29)

where G1, . . . , Gd−1 are graphs defined above.

Proof. By (26), we have

P ′(G,x) = P (G− u, x) + (x− 1)P ′(G− u, x)−
d−1∑

i=1

P ′(Gi, x). (30)

Thus

ξ(G,x) = (−1)nP (G,x)

n−1∑

j=0

1

x− j
+ (−1)n+1P ′(G,x)

= (−1)n

[
(x− 1)P (G − u, x)−

d−1∑

i=1

P (Gi, x)

]
n−1∑

j=0

1

x− j

+(−1)n+1

[
P (G− u, x) + (x− 1)P ′(G− u, x)−

d−1∑

i=1

P ′(Gi, x)

]

= (1− x)


(−1)n−1P (G− u, x)

n−2∑

j=0

1

x− j
+ (−1)nP ′(G− u, x)




+
d−1∑

i=1


(−1)n−1P (Gi, x)

n−2∑

j=0

1

x− j
+ (−1)nP ′(Gi, x)


+ (−1)n+1P (G− u, x)

+(−1)n

[
(x− 1)P (G − u, x)

x− (n− 1)
−

1

x− (n− 1)

d−1∑

i=1

P (Gi, x)

]

= (1− x)ξ(G − u, x) +

d−1∑

i=1

ξ(Gi, x)

+
(−1)n [(x− n+ 1)P (G− u, x)− P (G,x)]

n− x− 1
, (31)

where the last expression follows from (26) and the definitions of ξ(G−u, x) and ξ(Gi, x).

The result then follows.

It is known that ξ(G,x) > 0 holds for all non-complete graphs G of order at most 3

and all x < 0. For any non-complete graph G of order n ≥ 4, by Lemma 1, ξ(G−u, x) > 0

implies ξ(G,x) > 0 for each simplicial vertex u in G and all x < 0; by Lemma 3, for any
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x < 0, ξ(G − u, x) > 0 implies ξ(G,x) > 0 whenever u is an non-isolated vertex in G

satisfying the following inequality:

(−1)n((x− n+ 1)P (G − u, x)− P (G,x)) > 0. (32)

Note that the left-hand side of (32) vanishes when G is Kn. Also notice that there exist

non-complete graph G and some vertex u in G such that inequality (32) does not hold for

some x < 0. For example, if G is the complete bipartite graph K2,3 and u is a vertex of

degree 3 in G, then (32) fails for all real x with −2.3 < x < 0. However, to prove that for

any x < 0, there exists some vertex u in G such that inequality (32) holds, it suffices to

prove the following inequality (i.e., Theorem 3):

(−1)n(x− n+ 1)
∑

u∈V

P (G− u, x) + (−1)n+1nP (G,x) > 0 (33)

for any non-complete graph G = (V,E) of order n and all x < 0.

By Proposition 3 and inequality (32), to prove Theorem 4, we can now just focus on

proving inequality (33) (i.e., Theorem 3). The proof of Theorem 3 will be given in Section 5

based on the interpretations for the coefficients of chromatic polynomials introduced in

Section 4.

4 Combinatorial interpretations for coefficients of P (G, x)

Let G = (V,E) be any graph. In this section, we will introduce Greene & Zaslavsky’s

combinatorial interpretation in [8] for the coefficients of P (G,x) in terms of acyclic orien-

tations. The result will be applied in the next section to prove Theorem 3.

An orientation D of G is called acyclic if D does not contain any directed cycle.

Let α(G) be the number of acyclic orientations of a graph G. In [18], Stanley gave a

nice combinatorial interpretation of (−1)nP (G,−k) for any positive integer k in terms of

acyclic orientations of G. In particular, he proved:

Theorem 5 ( [18]). For any graph G of order n, (−1)nP (G,−1) = α(G), i.e.,

n∑

i=1

ai(G) = α(G). (34)

In a digraph D, any vertex of D with in-degree (resp. out-degree) zero is called a

source (resp. sink) of D. It is well known that any acyclic digraph has at least one source

and at least one sink. If v is an isolated vertex of G, then v is a source and also a sink in

any orientation of G.
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For any v ∈ V , let α(G, v) be the number of acyclic orientations of G with v as its

unique source. Clearly α(G, v) = 0 if and only if G is not connected. In 1983, Greene and

Zaslavsky [8] showed that a1(G) = α(G, v).

Theorem 6 ( [8]). For any graph G = (V,E), a1(G) = α(G, v) holds for every v ∈ V .

This theorem was proved originally by using the theory of hyperplane arrangements.

See [7] for three other nice proofs.

By Whitney’s Broken-cycle Theorem (i.e., Theorem 1), ai(G) equals the number of

spanning subgraphs of G with i components and n− i edges, containing no broken cycles

of G. In particular, a1(G) is the number of spanning trees of G containing no broken

cycles of G. Now we have two different combinatorial interpretations for a1. For any

ai(G), 2 ≤ i ≤ n, its combinatorial interpretation can be obtained by applying these two

different combinatorial interpretations for a1.

Let Pi(V ) be the set of partitions {V1, V2, . . . , Vi} of V such that G[Vj ] is connected

for all j = 1, 2, . . . , i and let βi(G) be the number of ordered pairs (Pi, F ), where

(a) Pi = {V1, V2, . . . , Vi} ∈ Pi(V );

(b) F is a spanning forest of G with exactly i components T1, T2, . . . , Ti, where each Tj

is a spanning tree of G[Vj ] containing no broken cycles of G.

For any subgraph H of G, let τ̃(H) be the number of spanning trees of H containing

no broken cycles of G. By Theorem 1, τ̃(H) = a1(H) holds and the next result follows.

Theorem 7. For any graph G and any 1 ≤ i ≤ n,

ai(G) = βi(G) =
∑

{V1,...,Vi}∈Pi(V )

i∏

j=1

τ̃(G[Vj ]). (35)

Now let V = {1, 2, . . . , n}. For any i : 1 ≤ i ≤ n and any vertex v ∈ V , let OPi,v(V )

be the family of ordered partitions (V1, V2, . . . , Vi) of V such that

(a) {V1, V2, . . . , Vi} ∈ Pi(V ), where v ∈ V1;

(b) for j = 2, . . . , i, the minimum number in the set
⋃

j≤s≤i Vs is within Vj.

Clearly, for any v ∈ V and any {V1, V2, . . . , Vi} ∈ Pi(V ), there is exactly one permutation

(π1, π2, . . . , πi) of 1, 2, . . . , i such that (Vπ1
, Vπ2

, . . . , Vπi
) ∈ OPi,v(V ).

By Theorem 6, τ̃(G[Vj ]) = α(G[Vj ], u) holds for any vertex u in G[Vj ] and Theorem 7

is equivalent to a result in [8] which we illustrate differently below.
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Theorem 8 ( [8], Theorem 7.4). For any v ∈ V and any 1 ≤ i ≤ n,

ai(G) =
∑

(V1,...,Vi)∈OPi,v(V )

α(G[V1], v)

i∏

j=2

α(G[Vj ],mj), (36)

where mj is the minimum number in Vj for j = 2, . . . , i.

Note that the theorem above indicates that the right hand side of (36) is independent

of the choice of v. Thus, for any 1 ≤ i ≤ n,

nai(G) =
∑

v∈V

∑

(V1,...,Vi)∈OPi,v(V )

α(G[V1], v)

i∏

j=2

α(G[Vj ],mj). (37)

Let P (i)(G,x) be the i-th derivative of P (G,x). Very recently, Bernardi and Nadeau [1]

gave an interpretation of P (i)(G,−j) for any nonnegative integers i and j in terms of acyclic

orientations. When i = 0, their result is exactly Theorem 5 due to Stanley [18]; and when

j = 0, it is Theorem 8 due to Greene & Zaslavsky [8].

5 Proofs of Theorems 3 and 4

By the explanation in Section 3, to prove Theorem 4, it suffices to prove Theorem 3.

In this section, we will prove Theorem 3 by showing that the coefficient of xi in the

expansion of the left-hand side of (9) in Theorem 3 is of the form (−1)idi with di ≥ 0 for

all i = 1, 2, . . . , n. Furthermore, di > 0 holds for some i when G is not complete.

We first establish the following result.

Lemma 4. Let G = (V,E) be a non-complete graph of order n ≥ 3 and component number

c.

(a). If c = 1 and G is not the n-cycle Cn, then there exist non-adjacent vertices u1, u2 of

G such that G− {u1, u2} is connected.

(b). If 2 ≤ c ≤ n − 1, then for any integer i with c ≤ i ≤ n − 1, there exists a partition

V1, V2, . . . , Vi of V such that G[Vj ] is connected for all j = 2, . . . , i and G[V1] has

exactly two components one of which is an isolated vertex.

Proof. (a). As c = 1, G is connected. As G is non-complete, the result is trivial when G

is 3-connected.

If G is not 2-connected, choose vertices u1 and u2 from distinct blocks B1 and B2 of G

such that both u1 and u2 are not cut-vertices of G. Then u1u2 /∈ E(G) and G− {u1, u2}

is connected.

12



Now consider the case that G is 2-connected but not 3-connected. Since G is not Cn,

there exists a vertex w such that d(w) ≥ 3. If d(w) = n−1, then G−{u1, u2} is connected

for any two non-adjacent vertices u1 and u2 in G. If G−w is 2-connected and d(w) ≤ n−2,

then G − {w, u} is connected for any u ∈ V −NG(w). If G − w is not 2-connected, then

G − w contains two non-adjacent vertices u1, u2 such that G − {w, u1, u2} is connected,

implying that G− {u1, u2} is connected as d(w) ≥ 3.

(b). Let G1, G2, . . . , Gc be the components of G with |V (G1)| ≥ |V (Gj)| for all

j = 1, 2, . . . , c. As c ≤ n − 1, |V (G1)| ≥ 2. Choose u ∈ V (G1) such that G1 − u is

connected. Then V (G2) ∪ {u}, V (G1)−{u}, V (G3), . . . , V (Gc) is a partition of V satisfy-

ing the condition in (b) for i = c.

Assume that (b) holds for i = k, where c ≤ k < n− 1, and V1, V2, . . . , Vk is a partition

of V satisfying the condition in (a). Then G[V1] has an isolated vertex u and G[V ′
1 ] is

connected, where V ′
1 = V1 − {u}. Since k ≤ n − 2, either |V ′

1 | ≥ 2 or |Vj | ≥ 2 for some

j ≥ 2.

If |V ′
1 | ≥ 2, then V ′

1 has a partition V ′
1,1, V

′
1,2 such that both G[V ′

1,1] and G[V ′
1,2] are

connected, implying that V ′
1,1 ∪ {u}, V ′

1,2, V2, V3, . . . , Vk is a partition of V satisfying the

condition in (b) for i = k + 1.

Similarly, if |Vj | ≥ 2 for some j ≥ 2 (say j = 2), then V2 has a partition V2,1, V2,2

such that both G[V2,1] and G[V2,2] are connected, implying that V1, V2,1, V2,2, V3, . . . , Vk is

a partition of V satisfying the condition in (b) for i = k + 1.

For any graph G = (V,E) of order n, write

(−1)n


(x− n+ 1)

∑

u∈V (G)

P (G− u, x)− nP (G,x)


 =

n∑

i=1

(−1)idix
i. (38)

By comparing coefficients, it can be shown that

di =
∑

u∈V (G)

[ai−1(G− u) + (n− 1)ai(G− u)]− nai(G), ∀i = 1, 2, . . . , n. (39)

It is obvious that when G is the complete graph Kn, the left-hand side of (38) vanishes

and thus di = 0 for all i = 1, 2, . . . , n. Now we consider the case that G is not complete.

Proposition 4. Let G = (V,E) be a non-complete graph of order n and component

number c. Then, for any i = 1, 2, . . . , n, di ≥ 0 and equality holds if and only if one of the

following cases happens:

(a). i = n;
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(b). 1 ≤ i ≤ c− 2;

(c). i = c− 1 and G does not have isolated vertices;

(d). i = c = 1 and G is Cn.

Proof. We first show that di = 0 in any one of the four cases above.

By (39), dn =
∑

u∈V [1 + (n− 1) · 0]− n · 1 = 0.

It is known that for 1 ≤ i ≤ n, ai(G) = 0 if and only if i < c (see [5,13,14]). Similarly,

ai(G − u) = 0 for all i with 1 ≤ i < c− 1 and all u ∈ V , and ac−1(G − u) = 0 if u is not

an isolated vertex of G. By (39), di = 0 for all i with 1 ≤ i ≤ c− 2, and dc−1 = 0 when G

does not have isolated vertices.

If G is Cn, then a1(G) = n − 1, a0(G − u) = 0 and a1(G − u) = 1 for each u ∈ V ,

implying that d1 = 0 by (39).

In the following, we will show that di > 0 when i does not belong to any one of the

four cases.

If G has isolated vertices, then ac−1(G− u) > 0 for any isolated vertex u of G and

∑

u∈V

ac−1(G− u) =
∑

u∈V

u isolated

ac−1(G− u) > 0. (40)

As ac−1(G) = 0, by (39), we have dc−1 > 0 in this case. Now it remains to show that

di > 0 holds for all i with c ≤ i ≤ n− 1, except when i = c = 1 and G is Cn.

For any v ∈ V , let OP ′
i,v(V ) be the set of ordered partitions (V1, . . . , Vi) ∈ OPi,v(V )

with V1 = {v}. As α(G[V1], v) = 1, for any i with c ≤ i ≤ n, by Theorem 8,

ai−1(G− v) =
∑

(V1,...,Vi)∈OP ′
i,v(V )

α(G[V1], v)

i∏

j=2

α(G[Vj ],mj), (41)

where mj is the minimum number in Vj for all j = 2, . . . , i.

Let s and v be distinct members in V . For any V1 ⊆ V − {s} with v ∈ V1, let

α(G[V1∪{s}], v, s) be the number of those acyclic orientations of G[V1∪{s}] with v as the

unique source and s as one sink. Then α(G[V1 ∪ {s}], v, s) ≤ α(G[V1], v) holds, where the

inequality is strict if and only if G[V1] is connected but G[V1 ∪ {s}] is not. Observe that

ai(G − s) =
∑

(V1,...,Vi)∈OPi,v(V−{s})

α(G[V1], v)

i∏

j=2

α(G[Vj ],mj)

≥
∑

(V1,...,Vi)∈OPi,v(V−{s})

α(G[V1 ∪ {s}], v, s)
i∏

j=2

α(G[Vj ],mj) (42)

=
∑

(V ′
1
,...,V ′

i )∈OP i,v,s(V )

α(G[V ′
1 ], v, s)

i∏

j=2

α(G[V ′
j ],mj), (43)
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where OP i,v,s(V ) is the set of ordered partitions (V ′
1 , . . . , V

′
i ) ∈ OPi,v(V ) with s, v ∈ V ′

1 .

By the explanation above, inequality (42) is strict whenever V − {s} has a partition

V1, V2, . . . , Vi with v ∈ V1 such that each G[Vj ] is connected for all j = 1, 2, . . . , i but

G[V1 ∪ {s}] is not connected.

By (37), we have

nai(G) =
∑

v∈V

∑

(V1,...,Vi)∈OPi,v(V )

α(G[V1], v)
i∏

j=2

α(G[Vj ],mj)

=
∑

v∈V

∑

(V1,...,Vi)∈OP ′
i,v(V )

α(G[V1], v)

i∏

j=2

α(G[Vj ],mj)

+
∑

v∈V

∑

(V1,...,Vi)∈OPi,v(V )−OP ′
i,v(V )

α(G[V1], v)
i∏

j=2

α(G[Vj ],mj). (44)

By (41),

∑

v∈V

∑

(V1,...,Vi)∈OP ′
i,v(V )

α(G[V1], v)

i∏

j=2

α(G[Vj ],mj) =
∑

v∈V

ai−1(G− v), (45)

and by (43),

∑

v∈V

∑

(V1,...,Vi)∈OPi,v(V )−OP ′
i,v(V )

α(G[V1], v)
i∏

j=2

α(G[Vj ],mj)

≤
∑

v∈V

∑

s∈V−{v}

∑

(V1,...,Vi)∈OPi,v,s(V )

α(G[V1], v, s)

i∏

j=2

α(G[Vj ],mj) (46)

≤
∑

v∈V

∑

s∈V−{v}

ai(G− s) (47)

= (n− 1)
∑

v∈V

ai(G− v), (48)

where inequality (46) is strict if there exists (V1, . . . , Vi) ∈ OPi,v(V ) for some v ∈ V such

that G[Vj ] is connected for all j = 1, . . . , i and G[V1] has acyclic orientations with v as the

unique source but with at least two sinks, and by (42) and (43), inequality (47) is strict if

V can be partitioned into V1, . . . , Vi such that G[Vj ] is connected for all j = 2, . . . , i but

G[V1] has exactly two components, one of which is an isolated vertex in G[V1].

As G is not complete, by Lemma 4 and the above explanation, the inequality of (48)

is strict for all i with c ≤ i ≤ n − 1, except when i = c = 1 and G is Cn. Then, by (44),

(45) and (48), we conclude that

di =
∑

v∈V

[ai−1(G− u) + (n− 1)ai(G− u)]− nai(G) > 0, ∀c ≤ i ≤ n− 1, (49)

except that i = c = 1 and G is Cn. Hence the proof is complete.
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Now everything is ready for proving Theorems 3 and 4.

Proof of Theorem 3: Let G be a non-complete graph of order n. Recall (38) that

(−1)n


(x− n+ 1)

∑

u∈V (G)

P (G− u, x)− nP (G,x)


 =

n∑

i=1

(−1)idix
i. (50)

By Proposition 4, we know that di ≥ 0 for all i with 1 ≤ i ≤ n and dn−1 > 0. Thus
∑n

i=1(−1)idix
i > 0 holds for all x < 0, which completes the proof of Theorem 3.

Proposition 5. For any non-complete graph G, ξ(G,x) > 0 holds for all x < 0.

Proof. We will prove this result by induction on the order n of G. When n = 2, the empty

graph N2 of order 2 is the only non-complete graph of order 2. As P (N2, x) = x2, by (23),

we have

ξ(N2, x) = (−1)2x2
(
1

x
+

1

x− 1

)
+ (−1)32x =

x

x− 1
> 0 (51)

for all x < 0.

Assume that this result holds for any non-complete graph G of order less than n, where

n ≥ 3. Now let G be any non-complete graph of order n.

Case 1: G contains an isolated vertex u.

By the inductive assumption, ξ(G− u, x) ≥ 0 holds for all x < 0, where equality holds

when G− u is a complete graph. By Lemma 1, ξ(G,x) > 0 holds for all x < 0.

Case 2: G has no isolated vertex.

By Theorem 3, (9) holds for all x < 0. Thus, for any x < 0, there exists some u ∈ V (G)

such that (−1)n(x− n + 1)P (G − u, x) + (−1)n+1P (G,x) > 0 holds. Then, by Lemma 3

and by the inductive assumption, ξ(G,x) > 0 holds for any x < 0.

Hence the result holds.

Proof of Theorem 4: It follows directly from Propositions 3 and 5.

6 Remarks and problems

First we give some remarks here.

(a). Theorem 4 implies that for any non-complete graph G of order n, P (G,x)
P (Kn,x)

is strictly

decreasing when x < 0.

16



(b). Let G be a non-complete graph of order n and P (G,x) =
n∑

i=1
(−1)n−iaix

i. Then

ǫ(G) < ǫ(Kn) implies that

a1 + 2a2 + · · ·+ nan
a1 + a2 + · · ·+ an

> 1 +
1

2
+ · · ·+

1

n
. (52)

(c). When x = −1, Theorem 3 implies that for any graph G of order n,

(−1)n−1
∑

u∈V

P (G− u,−1) ≥ (−1)nP (G,−1), (53)

where the inequality holds if and only if G is complete. By Stanley’s interpretation

for (−1)nP (G,−1) in [18], the inequality above implies that for any graph G =

(V,E), the number of acyclic orientations of G is at most the total number of acyclic

orientations of G − u for all u ∈ V , where the equality holds if and only if G is

complete.

Now we raise some problems for further study.

It is clear that for any graph G of order n,

d

dx
(ln[(−1)nP (G,x)]) =

P ′(G,x)

P (G,x)
< 0 (54)

holds for all x < 0. We surmise that this property holds for higher derivatives of the

function ln[(−1)nP (G,x)] in the interval (−∞, 0).

Conjecture 2. Let G be a graph of order n. Then dk

dxk (ln[(−1)nP (G,x)]) < 0 holds for

all k ≥ 2 and x ∈ (−∞, 0).

Observe that ǫ(G,x) = d
dx

(ln[(−1)nP (G,x)]). We believe that Theorems 2 and 4 can

be extended to higher derivatives of the function ln[(−1)nP (G,x)].

Conjecture 3. Let G be any non-complete graph of order n and Q be any chordal and

proper spanning subgraph Q of G. Then

dk

dxk
(ln[(−1)nP (Q,x)]) <

dk

dxk
(ln[(−1)nP (G,x)]) <

dk

dxk
(ln[(−1)nP (Kn, x)]) (55)

holds for any integer k ≥ 2 and all x < 0.

It is not difficult to show that Conjecture 2 holds for G ∼= Kn. Thus the second

inequality of Conjecture 3 implies Conjecture 2.

It is natural to extend the second part of Conjecture 1 (i.e., ǫ(G) < ǫ(Kn) for any

non-complete graph G of order n) to the inequality ǫ(G) ≤ ǫ(G′) for any graph G′ which

contains G as a subgraph. However, this inequality is not always true. Let Gn denote
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the graph obtained from the complete bipartite graph K2,n by adding a new edge joining

the two vertices in the partite set of size 2. Lundow and Markström [11] stated that

ǫ(K2,n) > ǫ(Gn) holds for all n ≥ 3. In spite of this, we believe that for any non-complete

graph G, we can add a new edge to G to obtain a graph G′ with the property that

ǫ(G) < ǫ(G′), as stated below.

Conjecture 4. For any non-complete graph G, there exist non-adjacent vertices u and v

in G such that ǫ(G) < ǫ(G+ uv).

Obviously, Conjecture 4 implies ǫ(G) < ǫ(Kn) for any non-complete graph G of order

n (i.e., Theorem 4). Conjecture 4 is similar to but may be not equivalent to the following

conjecture due to Lundow and Markström [11].

Conjecture 5 ( [11]). For any 2-connected graph G, there exists an edge e in G such

that ǫ(G− e) < ǫ(G).
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