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Abstract

The chromatic polynomial P(G,x) of a graph G of order n can be expressed as
n . .
> (—=1)""ta;a*, where a; is interpreted as the number of broken-cycle free spanning

i=1
n

subgraphs of G with exactly ¢ components. The parameter €(G) = Y (n—4)a;/ > a;
=1

is the mean size of a broken-cycle-free spanning subgraph of G. In this articllej we
confirm and strengthen a conjecture proposed by Lundow and Markstrom in 2006
that €(T},) < €(G) < €(K,) holds for any connected graph G of order n which is
neither the complete graph K, nor a tree T}, of order n. The most crucial step of our
proof is to obtain the interpretation of all a;’s by the number of acyclic orientations

of GG.
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1 Introduction

All graphs considered in this paper are simple graphs. For any graph G = (V, E) and
any positive integer k, a proper k-coloring f of G is a mapping f : V — {1,2,...,k}
such that f(u) # f(v) holds whenever uv € E. The chromatic polynomial of G is the
function P(G, x) such that P(G, k) counts the number of proper k-colorings of G for any
positive integer k. In this article, the variable x in P(G, z) is a real number. The study of

chromatic polynomials is one of the most active areas in graph theory. For basic concepts
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and properties on chromatic polynomials, we refer the reader to the monograph [5]. For
the most celebrated results on this topic, we recommend surveys [4L[10L14][15].
The first interpretation of the coefficients of P(G,x) was provided by Whitney [23]:

for any simple graph G of order n and size m,

P(G,x) =) (Z(—nwa,m) a, (1)

i=1 \r=0
where N(i,7) is the number of spanning subgraphs of G with exactly ¢ components and
r edges. Whitney further simplified () by introducing the notion of broken cycles. Let
n:E — {1,2,...,|E|} be a bijection. For any cycle C' in G, the path C' — e is called a
broken cycle of G with respect to 1, where e is the edge on C with n(e) < n(e’) for every
edge ¢/ on C. When there is no confusion, a broken cycle of G is always assumed to be

with respect to a bijection n : E — {1,2,...,|E|}.

Theorem 1 ( [23]). Let G = (V, E) be a graph of order n and n: E — {1,2,...,|E|} be
a bijection. Then,

n

P(G,x) =) (—=1)" "a:(G)a’, (2)

i=1
where a;(G) is the number of spanning subgraphs of G with n — i edges and i components

which do not contain broken cycles.

Let G be a simple graph of order n. When there is no confusion, a;(G) is written
as a; for short. Clearly, by Theorem [ P(G,z) is indeed a polynomial in z in which the
constant term is 0, the leading coefficient a,, is 1 and all coefficients are integers alternating
in signs. Thus, (—1)"P(G,x) > 0 holds for all z < 0.

The concept of broken cycles has the following connection with Tutte’s work of ex-

pressing the Tutte polynomial Tg(z,y) of a connected graph G in terms of spanning

trees [2,22]:

To(z,y) = a'e Dy (3)
T

where the sum runs over all spanning trees of G and ia,(T") and ea,(T') are respectively
the internal and external activities of 7" with respect to a bijection w: E — {1,2,...,|E|}.
If we take w to be n, then ea,(T') is exactly the number of edges e € E(G) \ E(T) such
that n(e) < n(e’) holds for all edges €’ on the unique cycle C of T Ue. As G is a simple

graph, ea,(T) equals the number of broken cycles contained in 7" with respect to 7. In



particular, ea,(T) = 0 if and only if 7" does not contain broken cycles with respect to 7.
By Theorem [I] a;(G) is the number of spanning trees T" of G with ea,(T) = 0. If
To(r,y) = Y, cija'y, (4)
120,520
then a1(G) = 3,50 ¢i0 = Te(1,0).
As in [11], for i = 0,1,2,...,n — 1, we define b;(G) (or simply b;) as the probability
that a randomly chosen broken-cycle-free spanning subgraph of G has size i. Then

Ap—j

bi: )
ay +ag + -+ ap

Vi=0,1,...,n— 1. (5)

Let €(G) denote the mean size of a broken-cycle-free spanning subgraph of G. Then

n—1
(= Day+ (n—2)az + -+ any
G =S ib; = . 6
(@) ;Z a1 t+az+ -+ a, (©)

An elementary property of €(G) is given below.

P'(G,—1)
P(G,-1) *

Proposition 1 ( [11]). For any graph G of order n, e(G) =n +

Let T,, denote a tree of order n and K, denote the complete graph of order n. By
Proposition [ €(7},) = %521, , while

1 1
G(Kn)zn—<1+§+---+E>~n—logn—fy (7)

as n — 00, where v & 0.577216 is the Euler-Mascheroni constant.

Lundow and Markstrém [I1] proposed the following conjecture on €(G).

Conjecture 1 ( [II]). For any connected graph G of order n, where n > 4, if G is neither
K, nor a T,, then €(7,) < ¢(G) < e(Ky).

In this paper, we aim to prove and strengthen Conjecture [l For any graph G, define

the function €(G, z) as follows:

e(G,x) = % (8)

By Proposition [[ €(G) = n + ¢(G,—1) holds for every graph G of order n. Thus, for
any graphs G and H of the same order, €(G) < €(H) if and only if ¢(G, —1) < e(H,—1).
Conjecture [[ is equivalent to the statement that ¢(7,,—1) < (G, —1) < ¢(K,, —1) holds
for any connected graph G of order n which is neither K,, nor a 7Tj,.

A graph @ is said to be chordal if Q[V (C)] 2 C for every cycle C of Q with |V (C)| > 4,
where Q[V'] is the subgraph of @ induced by V’ for V' C V(G). In Section 2 we will
establish the following result.



Theorem 2. For any graph G, if Q is a chordal and proper spanning subgraph of G, then
e(G,z) > €(Q, ) holds for all x < 0.

Note that any tree is a chordal graph and any connected graph contains a spanning
tree. Thus, we have the following corollary which obviously implies the first part of

Conjecture [I

Corollary 1. For any connected graph G of order n which is not a tree, ¢(G,x) > (T}, x)
holds for all x < 0.

The second part of Conjecture [Ilis extended to the inequality e(K,,x) > €(G,x) for
any non-complete graph G of order n and all x < 0. In order to prove this inequality, we

will show in Section [3] that it suffices to establish the following result.

Theorem 3. For any non-complete graph G = (V, E) of order n,

(-D)™x—n+1)>_ P(G-uz)+ (-1)""'nP(G,z) >0 (9)
ueV

holds for all x < 0.

Note that the left-hand side of (@) vanishes when G = K,,. Theorem B will be proved
in Section [, based on Greene & Zaslavsky’s interpretation in [8] for coefficients a;(G)’s of
P(G,z) by acyclic orientations introduced in Section @l By applying Theorem B and two

lemmas in Section Bl we will finally prove the second main result in this article.

Theorem 4. For any non-complete graph G of order n, ¢(G,z) < e(K,,x) holds for all

x <0.

2 Proof of Theorem

A vertex w in a graph G is called a simplicial vertex if {u} U Ng(u) is a clique of G, where
N¢(u) is the set of vertices in G which are adjacent to u. For a simplicial vertex u of G,

P(G, x) has the following property (see [5,13L14]):
P(G,z) = (x —d(u))P(G — u,z), (10)

where G — u is the subgraph of G induced by V' — {u} and d(u) is the degree of u in G.
By (0, it is not difficult to show the following.

Proposition 2. If u is a simplicial vertex of a graph G, then

1

e(G,z) = m

+¢(G —u,x). (11)
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It has been shown that a graph @ of order n is chordal if and only if ) has an ordering

Uy, U2, ..., Uy, of its vertices such that u; is a simplicial vertex in Q[{u1,ua, ..., u;}] for all
i=1,2,...,n (see [3l[6]). Such an ordering of vertices in @ is called a perfect elimination
ordering of (). For any perfect elimination ordering wq,us,...,u, of a chordal graph @,

by Proposition 2]

n

(@)=Y ——— (12)

i=1 T = sz (ul) ’

where Q; is the subgraph Q[{uy,ua,...,u;}].

Now we are ready to prove Theorem [2

Proof of Theorem [Z Let G be any graph of order n and @ be any chordal and proper
spanning subgraph of G. When n < 3, it is not difficult to verify that ¢(G,z) > €(Q,x)
holds for all x < 0.

Suppose that Theorem [ fails and G = (V, E) is a counter-example to this result
such that |V| + |E| has the minimum value among all counter-examples. Thus the result
holds for any graph H with |V (H)| + |[E(H)| < |V| + |E| and any chordal and proper
spanning subgraph @’ of H, but G has a chordal and proper spanning subgraph @ such
that €(G,z) < ¢(Q,x) holds for some = < 0.

We will establish the following claims. Let wui,us,...,u, be a perfect elimination
ordering of @ and Q; = Q[{u1,...,u;}] for all i = 1,2,...,n. So w; is a simplicial vertex
of Q; foralli=1,2,...,n.

Claim 1: u, is not a simplicial vertex of G.

Note that ) — u, is chordal and a spanning subgraph of G — u,,. By the assumption
on the minimality of |V| + |E|, (G — up,x) > €(Q — uyp, x) holds for all x < 0, where the
inequality is strict whenever Q) — u, 2 G — u,.

Clearly dg(uyn) > dg(uy,). As @ is a proper subgraph of G, dg(u,) > dg(uy,) in the

case that G — u, = Q — u,. If u, is also a simplicial vertex of G, then by Proposition 2]

1 1

e(G,x) = m +e(G —up,z), €(Q,x)= m

+e(Q — up, x), (13)

implying that (G, z) > €(Q, z) holds for all x < 0, a contradiction. Hence Claim 1 holds.
Claim 2: dg(uy) > dg(up).

Clearly dg(u,) > dg(uy). Since w, is a simplicial vertex of @ and @ is a subgraph
of G, dg(uy) = dg(uy,) implies that u, is a simplicial vertex of G, contradicting Claim 1.

Thus Claim 2 holds.



For any edge e in G, let G — e be the graph obtained from G by deleting e. Let G/e
be the graph obtained from G by contracting e and replacing multiple edges, if any arise,
by single edges.

Claim 3: For any e = u,v € E — E(Q), both ¢(G — e,z) > €(Q,z) and €(G/e,x) >
€(Q — up, ) hold for all z < 0.

As e =u,v € E— E(Q), Q is a spanning subgraph of G — e and @ — u,, is a spanning
subgraph of G//e. As both @ and @ —u,, are chordal, by the assumption on the minimality
of |V| + |E|, the theorem holds for both G — e and G/e. Thus this claim holds.

Claim 4: €(G,x) > ¢(Q, x) holds for all z < 0.

By Claim 2, there exists e = u,v € E — F(Q). By Claim 3, ¢(G —e,z) > ¢(Q,x) and

e(G/e,x) > €(Q — up,x) hold for all x < 0. By () and (12,
(€(G —e,2) —e(Q,2)) x (=1)"P(G — e, )

n

= ()"P(G—e,x)+ (-1)""'P(G-e1))

i=1

As (=1)"P(G —e,x) >0 and €(G —e,z) > €(Q,x) for all x < 0, the left-hand side of (14

1

= in(ui). 1)

is non-negative for x < 0, implying that the right-hand side of (I4]) is also non-negative

for z <0, i.e.,

n

1

—1)"P'(G - —1)"P(G - ——— >0, Vz<O0. 15
(P =)+ (VPG o) 3 s 20, e < (15)
As uq,...,up—1 is a perfect elimination ordering of @ — u, and ¢(G/e,z) > €(Q — uy, x)
holds for all z < 0, similarly we have:
n—1
(1) P/(Gle,x) + (1) P(Gles) Y ————— >0, Yo<0.  (16)
7 ’ x —dq,(ui) ’

i=1
As (=1)""1P(G/e,x) > 0 holds for all z < 0, ([I6) implies that

n

(=)™ 'P(Gfe,x) + (~1)"P(Gle,x) > ﬁ
Pl Qi\Ui

(=1)"P(G/e,x)
z —dq, (un)

> 0, Vo < 0. (17)
By the deletion-contraction formula for chromatic polynomials,
P(G,z) = P(G —e,x) — P(G/e,x), P'(G,z)=P(G-e,x)— P (G/e,x). (18)

Then (I3)), (I7) and (I8)) imply that
(-=1)"P(G,z) + (-1)""P(G, z) Zn:

i=1

1

—— >0, V 0. 19
x_in(ui)> 7 v (19)



By [®) and ([I2), inequality (I9]) implies that
(e(G,x) —e(Q,x)) (-1)"P(G,x) >0, VYa<O. (20)

Since (—1)"P(G,z) > 0 holds for all z < 0, inequality (20) implies Claim 4.
As Claim 4 contradicts the assumption of G, there are no counter-examples to this

result and the theorem is proved. ]

3 An approach for proving Theorem {4

In this section, we will mainly show that, in order to prove Theorem [, it suffices to prove
Theorem Bl By (I2]), we have

n—1

(Knsa) = 3 L (21)

xr—1
=0

Thus,

n n—1
e(Kn,x) —e(G,x) = P((_G},)x) ((—1)"P(G,x) Z ! -+ (—1)"+1P'(G,x)> . (22)

For any graph G of order n, define

n—1 1

§(G,x) = (-1)"P(G,x) ) — (—)" PG, ). (23)
=0

Note that {(G,z) = 0 if G is a complete graph. For any non-complete graph G and any
x < 0, we have (—1)"P(G,x) > 0 and so ([22) implies that ¢(K,,z) — ¢(G,z) > 0 if and
only if £(G,z) > 0.

Proposition 3. Theorem [J] holds if and only if £(G,x) > 0 holds for every non-complete
graph G and all x < 0.

It can be easily verified that £(G, ) > 0 holds for all non-complete graphs G of order
at most 3 and all z < 0. For the general case, we will prove it by induction. In the rest
of this section, we will find a relation between (G, x) and (G — u, z) for a vertex u in G
in two cases. Lemma [Il is for the case when u is a simplicial vertex and Lemma [B] when
d(u) > 1. We then explain why Theorem Blimplies {(G, ) > 0 for all non-complete graphs
G and all z < 0.

Lemma 1. Let G be a graph of order n. If u is a simplicial vertex of G with d(u) = d,
then

(-1)" t(n—-1-d)P(G —u,z)
n—1-—x )

(G x) =(d—x){(G —u,x) +

(24)



Proof. As w is a simplicial vertex of G with d(u) = d, P(G,z) = (v — d)P(G — u,x) by
@@). Thus P'(G,z) = P(G —u,z) + (z — d)P'(G — u,z). By 23),

(25)

n—1
£Gx) = (-1D)"(x—d)P(G —u,x) Z . 1_ s (1) (P(G — u,z) + (x — d)P'(G — u, ))
=0
— (-G -+ CLEZDREZD) | it
- n-1- —u,x
= (d_x)g(G_u’$)+( 1) ( nilil)f(G ) )
U

Note that d < n — 1 and (=1)""'P(G — u,z) > 0 holds for all z < 0, implying that
the second term in the right-hand side of (24]) is non-negative. Thus, if u is a simplicial
vertex of G and z < 0, by Lemma([ll, £(G — u,z) > 0 implies that (G, z) > 0.

Now consider the case that u is a vertex in G with d(u) = d > 1. Assume that
N(u) = {uy,ug,...,uq}. Foranyi=1,2,...,d—1, let G; denote the graph obtained from
G — u by adding edges joining u; to u; whenever w;u; ¢ E(G) for all j withi+1 < j <d.
Thus, u; is adjacent to u; in G; for all j with ¢ +1 < j < d. In the case that u is a
simplicial vertex of G, G; 2 G — u for all i = 1,2,--- ;d — 1. By applying the deletion-
contraction formula for chromatic polynomials (see [5l[13]), P(G,x) can be expressed in

terms of P(G — u,z) and P(Gj,x) fori=1,2,--- ,d— 1.

Lemma 2. Let u be a vertex in G with d(x) =d > 1 and fori=1,2,--- ,d—1, let G; be
the graph defined above. Then,

U

-1
P(G,z) =(x—1)P(G —u,z) — Y P(G;,x). (26)
i=1

Proof. For 1 <1 < d, let E; denote the set of edges uu; in G for j = 1,2,--- ;4 —1. So

|Ei| =i—1and E; = (). For any i with 1 <4 <d — 1, applying the deletion-contraction
formula for chromatic polynomials to edge wu; in G — Fj;, the graph obtained from G by

removing all edges in E;, we have
P(G — Ei,x) = P(G — Ei+1,x) — P((G — El)/uul,m) = P(G — Ei+1,.%') — P(Gi,w),
(27)

where the last equality follows from the fact that (G — E;)/uu; = G; by the assumption
of G;. Thus, by (1),

U

-1
P(G,z) = P(G— E1,z) = P(G — Eg,z) — Y P(Gj,x). (28)
1

As u is of degree 1 in G — E4, P(G — E4,z) = (x — 1)P(G — u,x). Hence (20) follows. O

-
Il



Lemma 3. Let G be a graph of order n and let u be a vertex of G with d(u) = d > 1.

Then

where Gy, ..

Proof. By (26]), we have

Thus

§(Gx)

d—1 n
§(G 1) = (1 - 2)E(G —w,2) + 3 &(Gy,z) + S e = n # DPE = ww) = PG 7))
pt n—x—1
(29)
., Gq_1 are graphs defined above.
d—1
P'(G,z) = P(G—uz)+ (z—1)P(G—uz) =Y P(G;x). (30)
=1
n—1 1
(C1"P(Gy2) 3 o+ ()" P (G.a)
=0
d—1 n—1
(=)™ |(z = DP(G —u,z) = Y P(Gi, ) —
i=1 §=0 J

_|_(_1)n+1

d—1
P(G—u,z) + (x — )P (G —u,z) = > P'(Gy,x)
i=1

-+ (=1)"P(G - u,x)]

d—1
= (1-2)¢G-uz)+> &Gy x)
=1

(D)™ [(x —n+ 1)PEG —u,z) — P(G, )]

+ n—x—1

; (31)

where the last expression follows from (26]) and the definitions of {(G — u, z) and &(G;, x).

The result then follows. ]

It is known that £(G,x) > 0 holds for all non-complete graphs G of order at most 3

and all x < 0. For any non-complete graph G of order n > 4, by Lemmal[ll (G —u,z) > 0

implies (G, z) > 0 for each simplicial vertex v in G and all x < 0; by Lemma [3], for any



x < 0, &(G —u,z) > 0 implies {(G,x) > 0 whenever u is an non-isolated vertex in G

satisfying the following inequality:
(-D)"((x =n+1)P(G —u,z) — P(G,z)) > 0. (32)

Note that the left-hand side of ([B2) vanishes when G is K,,. Also notice that there exist
non-complete graph G and some vertex u in G such that inequality ([82) does not hold for
some = < 0. For example, if G is the complete bipartite graph K53 and u is a vertex of
degree 3 in G, then ([B2) fails for all real = with —2.3 < x < 0. However, to prove that for
any x < 0, there exists some vertex u in G such that inequality ([B2) holds, it suffices to

prove the following inequality (i.e., Theorem [3)):

(—D)™x—n+1)> P(G—uz)+(-1)""nP(G,z) >0 (33)
ueV

for any non-complete graph G = (V, E) of order n and all x < 0.

By Proposition [ and inequality (32]), to prove Theorem [l we can now just focus on
proving inequality (33]) (i.e., Theorem[3]). The proof of Theorem Blwill be given in Section [l
based on the interpretations for the coefficients of chromatic polynomials introduced in

Section Ml

4 Combinatorial interpretations for coefficients of P(G,z)

Let G = (V,E) be any graph. In this section, we will introduce Greene & Zaslavsky’s
combinatorial interpretation in [§] for the coefficients of P(G, ) in terms of acyclic orien-
tations. The result will be applied in the next section to prove Theorem [Bl

An orientation D of G is called acyclic if D does not contain any directed cycle.
Let a(G) be the number of acyclic orientations of a graph G. In [I8], Stanley gave a
nice combinatorial interpretation of (—1)" P(G, —k) for any positive integer k in terms of

acyclic orientations of GG. In particular, he proved:

Theorem 5 ( [18]). For any graph G of order n, (—1)"P(G,—1) = a(Q), i.e.,
> ai(G) = a(G). (34)
i=1

In a digraph D, any vertex of D with in-degree (resp. out-degree) zero is called a
source (resp. sink) of D. It is well known that any acyclic digraph has at least one source
and at least one sink. If v is an isolated vertex of GG, then v is a source and also a sink in

any orientation of G.
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For any v € V, let a(G,v) be the number of acyclic orientations of G with v as its
unique source. Clearly o(G,v) = 0 if and only if G is not connected. In 1983, Greene and

Zaslavsky [8] showed that a1(G) = a(G,v).
Theorem 6 ( [8]). For any graph G = (V, E), a1(G) = a(G,v) holds for every v € V.

This theorem was proved originally by using the theory of hyperplane arrangements.
See [7] for three other nice proofs.

By Whitney’s Broken-cycle Theorem (i.e., Theorem [II), a;(G) equals the number of
spanning subgraphs of G with ¢ components and n — i edges, containing no broken cycles
of G. In particular, a1(G) is the number of spanning trees of G containing no broken
cycles of G. Now we have two different combinatorial interpretations for a;. For any
a;(G@), 2 <i < n, its combinatorial interpretation can be obtained by applying these two
different combinatorial interpretations for a;.

Let P;(V') be the set of partitions {Vi,Va,...,Vi} of V such that G[Vj}] is connected
for all j =1,2,...,i and let $;(G) be the number of ordered pairs (P;, F'), where

(a) P = {VhVZV . 7V2} € PZ(V)7

(b) F'is a spanning forest of G with exactly ¢ components T1,T5, ..., T;, where each T}

is a spanning tree of G[Vj] containing no broken cycles of G.

For any subgraph H of G, let 7(H) be the number of spanning trees of H containing
no broken cycles of G. By Theorem [l 7(H) = a1(H) holds and the next result follows.

Theorem 7. For any graph G and any 1 <i <mn,
{Vi,..Vi}ePi(V) j=1
Now let V' = {1,2,...,n}. For any i : 1 <i < n and any vertex v € V, let OP; (V)

be the family of ordered partitions (Vi, Va,...,V;) of V such that

(a) {Vi,Va,...,Vi} € Pi(V), where v € Vi;

(b) for j =2,...,, the minimum number in the set Ujgsgi Vs is within V.

Clearly, for any v € V and any {V1,Va,...,V;} € P;(V), there is exactly one permutation
(m1,m2,...,m) of 1,2,... i such that (Vz,,Vay,..., V) € OP; (V).
By Theorem [ 7(G[V;]) = a(G[V}],u) holds for any vertex u in G[V}] and Theorem [7]

is equivalent to a result in [8] which we illustrate differently below.
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Theorem 8 ( [§], Theorem 7.4). For any v € V and any 1 <i <mn,

a;i(G) = > a(GWi],v) [T alGIV;] my), (36)
j=2

(V1,..,Vi)EOP; (V)

where my; is the minimum number in V; for j =2,... 1.

Note that the theorem above indicates that the right hand side of (36]) is independent
of the choice of v. Thus, for any 1 <i <n,

na;(G) = Z Z a(G[V1],0) H a(GV;],m;). (37)

VeV (V1. Vi) EOP; (V) =2

Let P9 (G, z) be the i-th derivative of P(G,x). Very recently, Bernardi and Nadeau []
gave an interpretation of P() (G, —j) for any nonnegative integers ¢ and j in terms of acyclic
orientations. When ¢ = 0, their result is exactly Theorem [l due to Stanley [I8]; and when
J =0, it is Theorem [§ due to Greene & Zaslavsky [8].

5 Proofs of Theorems [3 and (4

By the explanation in Section 3, to prove Theorem [ it suffices to prove Theorem [Bl
In this section, we will prove Theorem [ by showing that the coefficient of z? in the
expansion of the left-hand side of (@) in Theorem [B]is of the form (—1)'d; with d; > 0 for
all i =1,2,...,n. Furthermore, d; > 0 holds for some ¢ when G is not complete.

We first establish the following result.

Lemma 4. Let G = (V, E) be a non-complete graph of order n > 3 and component number

C.

(a). If c=1 and G is not the n-cycle Cy,, then there exist non-adjacent vertices uy,us of

G such that G — {uy,us} is connected.

(b). If 2 < ¢ < n —1, then for any integer i with ¢ < i < n — 1, there exists a partition
Vi, Va, ..., Vi of V' such that G[V}] is connected for all j = 2,...,i and G[Vi] has

exactly two components one of which is an isolated vertewz.

Proof. (a). As ¢ =1, G is connected. As G is non-complete, the result is trivial when G
is 3-connected.

If GG is not 2-connected, choose vertices u1 and wuo from distinct blocks By and By of G
such that both u; and ug are not cut-vertices of G. Then ujuy ¢ E(G) and G — {uy,us}

is connected.

12



Now consider the case that G is 2-connected but not 3-connected. Since G is not Cj,,
there exists a vertex w such that d(w) > 3. If d(w) = n—1, then G —{uy, us} is connected
for any two non-adjacent vertices uj and ug in G. If G—w is 2-connected and d(w) < n—2,
then G — {w,u} is connected for any v € V — Ng(w). If G — w is not 2-connected, then
G — w contains two non-adjacent vertices uy,uy such that G — {w,u1,us} is connected,
implying that G — {uy,us} is connected as d(w) > 3.

(b). Let G1,Ga,...,G. be the components of G with |V(G1)| > |V(G;)| for all
j=12...,cc. Asc<n-—1,|V(Gy)] > 2. Choose u € V(G;) such that G; — u is
connected. Then V(Gy)U{u},V(G1) —{u},V(Gs),...,V(G,.) is a partition of V satisfy-
ing the condition in (b) for i = c.

Assume that (b) holds for i = k, where ¢ < k <n—1, and Vi, Va,...,V} is a partition
of V satisfying the condition in (a). Then G[V;4] has an isolated vertex w and G[V/] is
connected, where V{ = Vi — {u}. Since k < n — 2, either |V/| > 2 or |V;| > 2 for some
J=2.

If [V{| > 2, then V] has a partition V{,,V{, such that both G[V{,] and G[V/,] are
connected, implying that V1/,1 U {u}, V1'72, Vo, Vs, ..., Vi is a partition of V satisfying the
condition in (b) for i = k + 1.

Similarly, if |V;| > 2 for some j > 2 (say j = 2), then V5 has a partition Va1, V2
such that both G[V3,1] and G[V5 5] are connected, implying that Vi, Va1, Va0, V5,..., V} is
a partition of V' satisfying the condition in (b) for i = k + 1. O

For any graph G = (V, E) of order n, write

n

(D" [(w=n+1) > P(G—uz)—nP(G )| =) (-1)da". (38)

ueV(G) =1
By comparing coefficients, it can be shown that
d; = Z [ai—1(G —u)+ (n—1)a;(G —u)] —na;(G), Yi=1,2,...,n. (39)
ueV(G)

It is obvious that when G is the complete graph K, the left-hand side of ([B8]) vanishes

and thus d; =0 for all ¢ = 1,2,...,n. Now we consider the case that G is not complete.

Proposition 4. Let G = (V,E) be a non-complete graph of order n and component
number c. Then, for anyi=1,2,...,n, d; > 0 and equality holds if and only if one of the

following cases happens:

(a). i =mn;

13



(b). 1<i<c—2;
(¢). i=c—1 and G does not have isolated vertices;
(d). i=c=1and G is Cy,.

Proof. We first show that d; = 0 in any one of the four cases above.

By B9, dy => ey 1+ (n—1)-0] =n-1=0.

It is known that for 1 <1i <n, a;(G) = 0 if and only if i < ¢ (see [BI3L14]). Similarly,
a;(G—u)=0foralliwithl<i<c—1landalueV,and a.—1(G —u) =0 if u is not
an isolated vertex of G. By [B9), d; =0 for all i with 1 <i <¢—2, and d._; =0 when G
does not have isolated vertices.

If G is C,, then a1(G) =n —1, ap(G —u) = 0 and a;(G —u) = 1 for each u € V,
implying that d; = 0 by (39).

In the following, we will show that d; > 0 when 7 does not belong to any one of the
four cases.

If G has isolated vertices, then a.—1(G — u) > 0 for any isolated vertex u of G and

Y aca(G-u)= > ac1(G-u)>0. (40)

eV u feclated
As a.—1(G) = 0, by (9), we have d.—1 > 0 in this case. Now it remains to show that
d; > 0 holds for all 7 with ¢ <7 <n — 1, except when i = c=1 and G is C,,.
For any v € V, let OP; (V) be the set of ordered partitions (V1,...,V;) € OP;,(V)

with V} = {v}. As a(G[V1],v) =1, for any i with ¢ < i < n, by Theorem [§]

a;i—1(G —v) = > (G, v) [T e(@Vy),my), (41)
=2

(Vi1 Vi)EOP) (V)
where m; is the minimum number in V; for all j =2,... 4.

Let s and v be distinct members in V. For any V3 C V — {s} with v € Vi, let
a(G[V1 U{s}],v, s) be the number of those acyclic orientations of G[V; U{s}] with v as the
unique source and s as one sink. Then a(G[V1 U {s}],v,s) < a(G[Vi],v) holds, where the
inequality is strict if and only if G[V}] is connected but G[V; U {s}] is not. Observe that

ai(G —s) = > a(G[V1],v) H a(G[Vj],m;)

(Vi,..,Vi)EOP; »(V—{s})

> ) o(GIVi U {shvos) [[o@ilomy)  (42)

(V1,2 Vi) EOP; o (V—{s}) =2

= Y a@Mles [[a@Vm)), (43)

(Vf,...,‘/;/)eopi,v,s(v)
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where OP; , s(V) is the set of ordered partitions (V{,...,V/) € OP; (V) with s,v € V].
By the explanation above, inequality (@2]) is strict whenever V — {s} has a partition
Vi, Va,...,V; with v € Vi such that each G[V;] is connected for all j = 1,2,...,i but
G[V1 U {s}] is not connected.

By (3), we have

na;(G) = Z Z Oé(G[Vl]W)Ha(G[Vj]amj)

veV (V1,..,V;)EOP; (V) Jj=2
= > > a(GVil,0) [T al(GIV5),my)
veV (Vi,..,V;)eOP; (V) J=2

+3 > a(GWi)) [T (GIVs)my). (44)

veV (V1,..,V;)€0P; ,(V)-OP; (V) Jj=2

By (@),
7

> > a(GVi),v) [ GIVs]my) = aia (G —v), (45)

veV (V1,..,V;)€OP; (V) Jj=2 veV

and by (43]),
3 3 GWi],0) [ (@Y1 my)

VEV (V1,..,Vi)EOP; »(V)—OP} (V) J=2
<> 2 > a@Wilws) [JaGvilmy) (46)
VeV seV—{v} (V1,...,V;)EOP; 4 s(V) J=2
< Z Z ai(G — s) (47)
veV seV—{v}
= (n—l)Zai(G—v), (48)
veV

where inequality (46) is strict if there exists (V1,...,V;) € OP; (V) for some v € V such
that G[V;] is connected for all j = 1,...,4% and G[V1] has acyclic orientations with v as the
unique source but with at least two sinks, and by ([@2]) and @3], inequality (@7 is strict if
V' can be partitioned into Vi,...,V; such that G[V}] is connected for all j = 2,...,4 but
G[V1] has exactly two components, one of which is an isolated vertex in G[V4].

As G is not complete, by Lemma [] and the above explanation, the inequality of (48]
is strict for all ¢ with ¢ < i < n —1, except when i = ¢ =1 and G is C,,. Then, by (@),
(@5) and (@8]]), we conclude that

d; = Z [a;—1(G —u)+ (n—1)a;(G —u)] —na;(G) >0, Ve<i<n-—1, (49)
veV
except that i = ¢ =1 and G is C,,. Hence the proof is complete. O
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Now everything is ready for proving Theorems [3l and [l

Proof of Theorem [ Let G be a non-complete graph of order n. Recall (B8] that

n

(=D)" [(z —n+1) Z P(G —u,x) —nP(G,z)| = Z(—l)idixi. (50)

ueV(G) i=1
By Proposition @, we know that d; > 0 for all 4 with 1 < i < n and d,_1 > 0. Thus
S (—=1)id;x > 0 holds for all x < 0, which completes the proof of Theorem O

Proposition 5. For any non-complete graph G, (G, xz) > 0 holds for all x < 0.

Proof. We will prove this result by induction on the order n of G. When n = 2, the empty
graph Ny of order 2 is the only non-complete graph of order 2. As P(No,z) = 22, by ([23),

we have

E(Np, ) = (1) (1 -

>0 51
r x-—1 ( )

for all x < 0.

Assume that this result holds for any non-complete graph G of order less than n, where
n > 3. Now let G be any non-complete graph of order n.
Case 1: G contains an isolated vertex wu.

By the inductive assumption, £(G — u,z) > 0 holds for all x < 0, where equality holds
when G — u is a complete graph. By Lemmal[Il £(G,x) > 0 holds for all z < 0.
Case 2: G has no isolated vertex.

By Theorem[3] (@) holds for all z < 0. Thus, for any x < 0, there exists some u € V(Q)
such that (—=1)"(z —n + 1)P(G — u,z) + (—1)""' P(G,z) > 0 holds. Then, by Lemma [
and by the inductive assumption, (G, z) > 0 holds for any x < 0.

Hence the result holds. 0
Proof of Theorem [7} It follows directly from Propositions B] and O

6 Remarks and problems

First we give some remarks here.

P(G,x)
’ P(Kn,z)

(a). Theorem Ml implies that for any non-complete graph G of order n is strictly

decreasing when x < 0.
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(b). Let G be a non-complete graph of order n and P(G,z) = > (—1)""‘a;xz". Then
i=1
¢(G) < €(K,) implies that

ai + 2as + - - + nay, 1 1
>1T4+ -4+ —. 52
ap+az+---+ay 2 n (52)

(¢). When x = —1, Theorem Bl implies that for any graph G of order n,

(=)™ 'Y PG —u,—1) > (-1)"P(G, -1), (53)

ueV
where the inequality holds if and only if G is complete. By Stanley’s interpretation
for (—1)"P(G,—1) in [I8], the inequality above implies that for any graph G =
(V, E), the number of acyclic orientations of G is at most the total number of acyclic
orientations of G — w for all w € V, where the equality holds if and only if G is

complete.

Now we raise some problems for further study.

It is clear that for any graph G of order n,

= (w[(-1)" PG, ) = % <0 (54)

holds for all x < 0. We surmise that this property holds for higher derivatives of the
function In[(—1)" P(G, x)] in the interval (—o0,0).

Conjecture 2. Let G be a graph of order n. Then Cfi—kk (In[(—=1)"P(G,x)]) < 0 holds for
all k> 2 and z € (—00,0).

Observe that €(G,z) = £ (In[(~=1)"P(G, z)]). We believe that Theorems 2 and M can
be extended to higher derivatives of the function In[(—1)"P(G, z)].

Conjecture 3. Let G be any non-complete graph of order n and @ be any chordal and
proper spanning subgraph @ of G. Then

d" dk d"

(1" P(Q,2)]) < 1 (1) P(C,)]) <+ (1) P(Ko,2)])  (59)
holds for any integer k > 2 and all x < 0.

It is not difficult to show that Conjecture 2 holds for G = K,. Thus the second
inequality of Conjecture [ implies Conjecture 2

It is natural to extend the second part of Conjecture [ (i.e., €(G) < e(K,,) for any
non-complete graph G of order n) to the inequality ¢(G) < €(G’) for any graph G’ which

contains G as a subgraph. However, this inequality is not always true. Let G, denote
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the graph obtained from the complete bipartite graph K, by adding a new edge joining
the two vertices in the partite set of size 2. Lundow and Markstrom [I1] stated that
€(Ka,) > €(Gy) holds for all n > 3. In spite of this, we believe that for any non-complete
graph G, we can add a new edge to G to obtain a graph G’ with the property that
e(G) < e(G"), as stated below.

Conjecture 4. For any non-complete graph G, there exist non-adjacent vertices v and v

in G such that ¢(G) < €(G + uv).

Obviously, Conjecture [ implies €(G) < €(K,) for any non-complete graph G of order
n (i.e., Theorem M]). Conjecture dis similar to but may be not equivalent to the following

conjecture due to Lundow and Markstrom [I1].

Conjecture 5 ( [I1]). For any 2-connected graph G, there exists an edge e in G such
that €(G — e) < €(G).
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