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Abstract

We characterize classes of graphs closed under taking vertex-minors
and having no P,, and no disjoint union of n copies of the 1-subdivision
of K ,, for some n. Our characterization is described in terms of a tree
of radius 2 whose leaves are labelled by the vertices of a graph G, and
the width is measured by the maximum possible cut-rank of a partition
of V(G) induced by splitting an internal node of the tree to make two
components. The minimum width possible is called the depth-2 rank-
brittleness of G. We prove that for all n, every graph with sufficiently
large depth-2 rank-brittleness contains P, or disjoint union of n copies
of the 1-subdivision of K , as a vertex-minor.

1 Introduction

Tree-depth is a graph parameter in the theory of sparse graph classes, which
measures how far a graph is from being a star, introduced by Negettil and
Ossona de Mendez [19]. An equivalent concept has been introduced a few
times under the names like the vertex ranking number and the minimum
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height elemination tree [3| 5 25]. It is known that a graph has large tree-
depth if and only if it has a long path, see [20], Section 6.2].

For some applications, it is desirable to say that complete graphs are
also very similar to stars. However, complete graphs have unbounded tree-
depth. To design a graph parameter similar to tree-depth but more suitable
for dense graph classes, DeVos, Kwon, and Oum [6] introduced the rank-
depth of a graph. Roughly speaking, the rank-depth of a graph G is defined
in terms of a decomposition, which is a tree whose leaves are labelled by the
vertices of G. A decomposition has two qualities, one of which is the radius
of the tree, and the other is the maximum width of internal nodes, measured
by some connectivity function of G. The rank-depth of a graph G is defined
as the minimum integer k such that G admits a decomposition of radius at
most k and width at most k. The detailed definition of rank-depth will be
reviewed in Section 2l In fact, there was an equivalent concept called the
shrub-depth of classes of graphs, introduced by Ganian, Hlinény, Nesetfil,
Obdrzélek, Ossona de Mendez, and Ramadurai [11} [12]. The definition of
shrub-depth uses logical terms similar to the definition of clique-width [4],
while the definition of rank-depth uses a tree-like decomposition similar to
that of rank-width [24]. DeVos, Kwon, and Oum [6] showed that a class of
graphs has bounded rank-depth if and only if it has bounded shrub-depth.

Hlinény, Kwon, Obdrzilek, and Ordyniak [14] proposed the following
conjecture, which we state in terms of rank-depth. To state their conjecture,
we first introduce vertex-minors. The local complementation at a vertex v of
a graph G is an operation to obtain a new graph G v from G by removing all
edges xy between two adjacent pairs x, y of neighbors of v and adding edges
xy for all non-adjacent pairs x, y of neighbors of v. A graph H is a vertez-
manor of a graph G if H can be obtained from G by a sequence of local
complementations and vertex deletions. It is known that the rank-depth
of a vertex-minor of G is at most the rank-depth of G and so it is natural
to think of an obstruction for graphs of bounded rank-depth in terms of
vertex-minors. The following conjecture states that paths are obstructions
for having bounded rank-depth. This conjecture was verified for graphs of
rank-width 1 by Novotny [21I Theorem 6.3.2].

Conjecture 1.1 (Hlinény, Kwon, Obdrzélek, and Ordyniak [14]). A class C
of graphs has bounded rank-depth if and only if there exists an integer t such
that no graph G € C contains a path of length t as a vertex-minor.

As a step towards Conjecture [ILI, we define a new parameter called
depth-d rank-brittleness for an integer d by restricting the radius of the tree
in the decomposition to be at most d in the definition of rank-depth. The



Figure 1: Graphs P5 and Ty 5.

depth-d rank-brittleness of a graph G is the minimum integer k such that G
admits a decomposition of radius at most d and width at most k. We denote
this parameter by rbrity(G). By definition, the rank-depth of a graph G is
at most max{d, rbrity(G)} for all d > 1 and

rbrity (G) = rbrity(G) = rbritz(G) = - - .

In Section[6l we will show that a graph of rank-depth k has linear rank-width
at most k2.

A class C of graphs is a vertez-minor ideal if for every graph G € C, C
contains all graphs isomorphic to vertex-minors of G. For a graph H, we
write nH for the disjoint union of n copies of H. It is straightforward to
deduce the following proposition by using Ramsey-type results. To see this,
one can use Theorem 23] Ramsey’s theorem, and Lemma It can be
also seen as a special case of a theorem due to Kwon and Oum [I8, Theorem
1.4], which is stated in Theorem

Proposition 1.2. A vertex-minor ideal C has bounded depth-1 rank-brittleness
if and only if {K2,2K5,3Ks,...} £C.

In this paper, we characterize classes of graphs of bounded depth-2 rank-
brittleness in terms of forbidden vertex-minors. Let 75, be the 1-subdivision
of K5, see Figure[ll Here is our main theorem.

Theorem 1.3. A vertex-minor ideal C has bounded depth-2 rank-brittleness
if and only if

{Pl,Pg,Pg,P4, .. } $ C and {T2’1,2T272,3T2,3,4T2,4, .. } $ C

Since T, contains P5 if n > 2, we obtain the following corollary, con-
firming a weaker statement of Conjecture [LLT1

Corollary 1.4. For every positive integer n, graphs with no vertex-minors
isomorphic to nPs have bounded depth-2 rank-brittleness, bounded rank-
depth, and bounded linear rank-width.



We sketch the proof of Theorem [L.3] It is straightforward to show that
P, and nT5, have large depth-2 rank-brittleness. We mainly show that for
every fixed n, if a graph G has sufficiently large depth-2 rank-brittleness,
then it has a vertex-minor isomorphic to P, or n75,. A theorem of Kwon
and Oum [I8, Theorem 1.4] will imply that every graph of large depth-2
rank-brittleness has a vertex-minor isomorphic to aKp for large a and b.
By taking a graph locally equivalent to G, we may assume that G has an
induced subgraph isomorphic to aKjp.

In Section [3, we prove that if a graph H contains 3 pairwise twins,
then one of them can be removed without decreasing the depth-2 rank-
brittleness. Using that, each component C of aK} can be partitioned into
at least b/2 sets such that vertices in distinct sets are not twins. By the
Ramsey-type result on bipartite graphs, we will extract a large (induced)
matching or an anti-matching or a half graph between C' and the rest. We
find this for each component of aKj. Then using the sunflower lemma and
Ramsey’s theorem, we will clean up all the structures and find a vertex-
minor isomorphic to nTs,, or P,. Section @l is devoted to describe all the
intermediate structures. The proof of Theorem [I.3]is given in Section
Section [@ shows an inequality between linear rank-width and rank-depth
and presents a corollary of Theorem [[3] for graphs with no vertex-minors
isomorphic to nPs.

2 Preliminaries

All graphs in this paper are simple and undirected. For a graph G, we
denote by V(G) and E(G) the vertex set and the edge set of G, respectively.
Let G be a graph. For S < V(G), we denote by G[S] the subgraph of G
induced by S, and for two disjoint vertex subsets S and T of G, we denote by
G[S,T] the bipartite graph with bipartition (S,7") such that for a € S and
beT, a,bare adjacent in G[S,T] if and only if they are adjacent in G. For
v € V(QG), we denote by G —v the graph obtained from G by removing v and
all edges incident with v. For a set X of vertices, we denote by G — X the
graph obtained from G by deleting all vertices in X and all edges incident
with those vertices. For v € V(G), the set of neighbors of v in G is denoted
by Ng(v), and the degree of v is the size of Ng(v). We denote by A(G) the
adjacency matrixz of G.

For two disjoint vertex subsets A and B of GG, we say that A is complete
to B if every vertex in A is adjacent to all vertices in B. Similarly, A is
anti-complete to B, if every vertex in A is non-adjacent to all vertices in B.



A clique is a set of pairwise adjacent vertices and an independent set is a
set of pairwise non-adjacent vertices.

Two vertices v and w in a graph G are called twins if Ng(v)\{v,w} =
Ng(w)\{v,w}. Note that a set of pairwise twins is either a clique or an
independent set.

Let K, denote the complete graph on n vertices, and let K, denote
the star with n leaves. Let P,, denote the path on n vertices. For a graph
G, we denote by G the complement of G, that is, two vertices v and w in G
are adjacent if and only if they are not adjacent in G.

We write R(n;k) to denote the minimum number N such that every
coloring of the edges of K into k colors induces a monochromatic com-
plete subgraph on n vertices. The classical theorem of Ramsey implies that
R(n; k) exists.

We also use the sunflower lemma. Let F be a family of sets. A subset
{My,Ms, ..., My} of Fis a sunflower with core A (possibly an empty set)
and p petals if for all distinct 7,5 € {1,2,...,p}, M; n M; = A.

Theorem 2.1 (Sunflower Lemma [9, Erdés and Rado]). Let k and p be
positive integers, and F be a family of sets each of cardinality k. If |F| >
kl(p — 1)*, then F contains a sunflower with p petals.

2.1 Vertex-minors

For a vertex v in a graph G, to perform local complementation at v, replace
the subgraph of G induced on N¢g(v) by its complement graph. We write
G=v to denote the graph obtained from G by applying local complementation
at v. Two graphs G and H are locally equivalent if G can be obtained from
H by a sequence of local complementations. A graph H is a vertex-minor of
a graph G if H is an induced subgraph of a graph which is locally equivalent
to G.

2.2 Rank-depth and rank-brittleness

The cut-rank function of a graph G, denoted by pg(S) for a subset S of
V (@), is defined as the rank of an S x (V(G)\S) 0-1 matrix over the binary
field whose (a,b)-entry for a € S, b¢ S is 1 if a, b are adjacent and 0 other-
wise. The cut-rank function is invariant under the local complementation,
see Oum [22]. The cut-rank function satisfies the submodular inequality,
that is, for all X,Y < V(G), pa(X) + pc(Y) = pc(X nY) + pg(X 0Y).



The pg-width of a partition P = (X1, Xa,..., X,) of V(G), for some m, is

max{pg(UXi) I c {1,2,...,m}}.

el

A decomposition of a graph G is a pair (T,0) of a tree T with at least
one internal node and a bijection o from V(G) to the set of leaves of T'. The
radius of a decomposition (7', o) is defined to be the radius of the tree 7'
For an internal node v € V(T'), the components of the graph T — v give
rise to a partition P, of V(G) by ¢ and the width of v is defined to be the
pe-width of P,. The width of the decomposition (7',0) is the maximum
width of an internal node of 7. We say that a decomposition (T',0) is a
(k,r)-decomposition of G if the width is at most k& and the radius is at most
r. The rank-depth of a graph G, denoted by rd(G), is the minimum integer k
such that G admits a (k, k)-decomposition. If |V(G)| < 2, then there exists
no decomposition and rank-depth is defined to be 0. Note that every tree
in a decomposition has radius at least 1 and therefore the rank-depth of a
graph is at least 1 if |V(G)| = 2.

The depth-d rank-brittleness of a graph G, denoted by rbrity(G), is the
minimum integer k such that G admits a (k, d)-decomposition. If |V (G)| <
2, then we define rbrity(G) = 0. Note that the depth-1 rank-brittleness of a
graph G is equal to maxcy () pa(A).

2.3 Constructions of common graphs

For two graphs G and H on the disjoint vertex sets, each having n vertices,
we would like to introduce operations to construct graphs on 2n vertices
by making the disjoint union of them and adding some edges between two
graphs. Roughly speaking, G H H will add a perfect matching, G x| H will
add the complement of a perfect matching, and GI1H will add a half graph.
Formally, for two n-vertex graphs G and H with fixed ordering on the vertex
sets {v1,v9,...,v,} and {wq,ws,...,w,} respectively, let GEH H, G X H,
G H be graphs on the vertex set V(G) u V(H) whose subgraph induced
by V(G) or V(H) is G or H, respectively such that for all 4, j € {1,2,...,n},

(i) viw; € E(GEHH) if and only if i = j,
(ii) vsw; € E(GX H) if and only if i # j,

(ili) vyw; € E(GIAH) if and only if ¢ > j.
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Figure 2: K5 H K5, K5X K5, and K5 [] K.

See Figure [ for illustrations of K5 E K5, K5 X K5, and K5 [] K.
We will use the following lemma. Similar lemmas appeared in [I7]
Lemma 2.8], [14, Proposition 6.2], and [16, Lemma 5.6].

Lemma 2.2 (Kwon and Oum [I8, Lemma 6.5]). Let n be a positive integer.
(1) K, MK, is locally equivalent to Py,.
(2) K, INK, is locally equivalent to Py,.
(3) If n = 2, then K,, [N K, has a vertex-minor isomorphic to Pa,_3.
We also use the Ramsey-type result on bipartite graphs without twins.

Theorem 2.3 (Ding, Oporowski, Oxley, and Vertigan [§]). For every pos-
itive integer n, there exists an integer B(n) such that for every bipartite
graph G with a bipartition (S,T), if no two vertices in S have the same set
of neighbors and |S| = B(n), then S and T have n-element subsets S’ and
T', respectively, such that G[S’,T"] is isomorphic to K, A K, K,A1K,, or
K& K.

For a positive integer ¢, a 2 X 2 matrix A = (‘; 2), and a binary operator

® € {H,X,1} on two graphs of the same number of vertices, we define
(G® H)Y; as the graph on the disjoint union of ¢ copies of G® H such that
forall 1 <i<j<t,

(i) the i-th copy of G is complete to the j-th copy of G if a = 1 and
anti-complete if a = 0,

(ii) the i-th copy of G is complete to the j-th copy of H if b = 1, and
anti-complete if b = 0,
(iii) the i-th copy of H is complete to the j-th copy of G if ¢ = 1, and

anti-complete if ¢ = 0,



n, (1
Wy "Wy " W3 "Wy Wy Wy " W3 "Wy Wy "Wy "Wz "Wy

), (D, (1) 2, (2, (2), (2) 3), 3, (3), (3)
Figure 3: The graph (K4 H Ky4)3 for A = (8 })

(iv) the i-th copy of H is complete to the j-th copy of H if d = 1, and
anti-complete if d = 0.

See Figure Bl for an illustration.

3 Lemma on three twins

In this section, we prove that if a graph has three pairwise twins, then one
of them can be removed without decreasing its depth-d rank-brittleness for
d = 2. It holds for all d > 2 but we will only use it for d = 2 later.

Lemma 3.1. Let d = 2 be an integer. Let v, w, z be vertices of a graph G
that are pairwise twins. Then rbrity(G) = rbrity(G — v).

Proof. The inequality rbrity(G) = rbrity(G — v) is trivial by definition. We
will show that if G — v has a (k, d)-decomposition (T, 0), then G also has a
(k, d)-decomposition.

Let r be a node of T', called a root of T', which has distance at most d
to every node of T'. We may assume that r is not a leaf node. Let a be the
leaf of T" with a = o(w) and b be the parent of a in T, which is the unique
neighbor of a in T. We obtain a decomposition (77, 01) of G as follows: T} is
the tree obtained from T' by adding a new node a’ adjacent to b, and assign
o1(v) :=d' and o1(x) := o(z) for all z € V(G)\{v}. We claim that (T7,07)
is a (k,d)-decomposition of G. Clearly, T} has radius at most d. So, it is
sufficient to show that every internal node of T} has width at most k. For



each internal node ¢ of 11, let P; be the partition of V(G) derived from the
components of 77 — t by Jfl.

For an internal node ¢ # b in 17, the width of ¢ in (77, 01) is the same as
its width in the decomposition (T, o) because v and w are twins of G and v
and w lie on the same part of P;.

We claim that the width of b in (T7,01) is at most k. Let P’ < P}, and
A= Jxep X. In the bipartition (A, V(G)\A), if v is contained in a part to-
gether with w or z, then the bipartition obtained by removing v arises in the
decomposition (7', 0) as well. So, without loss of generality, we may assume
that w, z € A and v € V(G)\A. But in this case, as v, w, z are pairwise twins,
the bipartition obtained by exchanging v and w has the same cut-rank. As
w is a single-vertex part of Py, the bipartition (A\{w}, V(G)\(A\{w})) arises
in the decomposition (7, 0). So,

pa(A) = pa(A{w}) U {v}) = pe—v(A\{w}) < k.

We conclude that the width of every internal node of T} is at most k. [

4 Reducing to two cases

We recall the definition of rank k-brittleness [I8]. The rank k-brittleness of
a graph G, denoted by ﬁ,’; (@), is the minimum pg-width of all partitions of
V(@) into parts of size at most k.

Lemma 4.1. rbrita(G) < max(2,k, B4 (Q)) for every positive integer k.

Proof. Suppose that (X1, Xo,...,X,,) is a partition of V(G) whose pg-
width is 7 (G). We create a decomposition (T',0) of G as follows. Let r be
the root of T', and let r1,79,...,7,, be the children of T', and each r; has
exactly |X;| leaves adjacent to r;, and we assign X; to these leaves by o. It
is easy to see that each r; has width at most k£, and the root r has width at

most A} (G). Thus, rbrity(G) < max(2, k, 85 (G)). O
Kwon and Oum [18] proved the following.

Theorem 4.2 (Kwon and Oum [I8, Theorem 1.4]). For every positive in-
teger n, there exists N such that every graph G with ﬁz (G) = N contains
a vertex-minor isomorphic to nH for some connected graph H on k + 1
vertices.

Every large connected graph has a long induced path or a vertex of large
degree.



Proposition 4.3 (See Diestel [7, Proposition 1.3.3]). For integers k > 3 and
¢ > 0, every connected graph on at least (k — 1)(k — 2)*=2/(k — 3) wertices
contains a vertex of degree at least k or an induced path on ¢ vertices.

As a corollary we deduce the following. Essentially its proof is almost
identical to the proof of [18, Theorem 1.6].

Corollary 4.4. For all positive integers k and n, there exists N = h(n, k)
such that every graph G with depth-2 rank-brittleness at least N has a vertez-
minor isomorphic to nKj.

Proof. We may assume that k > 3 by increasing k if necessary. Let
M :=[(R(k — 1;2) — 1)(R(k — 1;2) — 2)>*~D=2/(R(k — 1;2) — 3)].

By Proposition 3], every connected graph with at least M vertices has a
vertex of degree at least R(k — 1;2) or an induced subgraph isomorphic
to Pyx—1)- By Theorem [4.2] there exists N such that N > M and every
graph G with 3%, (G) = N contains nH for some connected graph H on
M vertices. By Lemma [2.2(2), if H contains P as an induced subgraph,
then H contains K} as a vertex-minor. If H contains a vertex of degree at
least R(k — 1;2), then it contains K ,_; or K}, as an induced subgraph. In
all cases, H contains K} as a vertex-minor and so nH contains nK; as a
vertex-minor.
If G has depth-2 rank-brittleness at least N, then by Lemma [4.1]

Bu-1(G) = N

and therefore G has a vertex-minor isomorphic to nKp. O

\%

Proposition 4.5. For every integer n > 2, there exists an integer o(n)
such that every graph G of depth-2 rank-brittleness at least o(n) contains a
vertez-minor G’ satisfying one of the following.

(1)) V(G') = XFuX5u---uXFuQ* for disjoint sets X5, X5,..., X} Q*
of n vertices such that each X} is a clique in G, G'[ X{uX5u---UX}]
is isomorphic to nkK,, and either K, D K,, or K, X K,, is isomorphic
to all G'[ X} L Q*].

() V(G = X{u X500 XFOYFUYS U UYF for disjoint sets
Xy, X5, XYY Y of movertices such that each X is a
clique in G', G'[ X5 v X5 U --- U X[¥] is isomorphic to nK,, and one
of K,B K,, K,BK,, K,XK,, and K, X K,, is isomorphic to all
G'[X}FuY™ .

10



(111) G' is isomorphic to P,.

Proof. If G contains a component with at least 3 vertices, then it contains
a vertex-minor isomorphic to P3. Thus, we may assume that n > 4.

Let B be the function defined in Theorem 2.3] and h be the function
defined in Corollary (4.4l Let

fa(n) :== R(2n;2),
fi(n) :== (2n)!n" + 1,
= h(4]1(n), 2B(f2(n))).

a(n)

We may assume that no proper vertex-minor of G has depth-2 rank-
brittleness at least o(n). By Lemma Bl every graph locally equivalent to
G has no three vertices that are pairwise twins.

By Corollary 4.4 G has a vertex-minor isomorphic to

H:= (4f (n))K2B(f2 (n))-

We may assume that (4f1(n))Kop(s,(n)) is an induced subgraph of G' by
applying local complementations. Let C1,Cs, ..., Cyp () be the set of con-
nected components of H, and let U := V(G)\V (H).

Observe that G has no three vertices that are pairwise twins. It means
that in each Cj, there are no three vertices that have the same neighborhood
on U in GG, and thus each C; contains a subset S; with

5 = [ICil/2] = B(fa(n))

that have pairwise distinct sets of neighbors on U.

Now, we consider the bipartite graph G[.S;, U] for each i. In this bipartite
graph, since vertices in S; have distinct neighborhoods on U and |S;| =
B(f2(n)), by Theorem [23] there exist X] < S; and Y/ < U such that
G[Xj, Y]] is isomorphic to K p, () B pyn)s Ko () BE fy () OF K gy (n) K py ()
for each i € {1,2,...,4f1(n)}.

As fa(n) = R(2n;2), by Ramsey’s theorem, there exist X; < X/ and
Y; € Y/ with |X;| = |Y;| = 2n where

e Y; is a clique or an independent set in G,

e G[X;,Y;] is isomorphic to Ko, H Koy, Ko A Koy, or Koy, X Kop,.

This can be done by selecting Y; from Y/ by using Ramsey’s theorem and
then selecting X; by using the relation between X] and Y/. If G[X;,Y]]

11



is isomorphic to Ko, [1 K, for some i, then G contains a vertex-minor
isomorphic to a path on 4n — 2 > n vertices by Lemma Thus, we
may assume that G[X;,Y;] is isomorphic to Ko, E K2, or Ko, X Ky, for all
i€ {1,2,...,4f1(n)}. So G[X; U Y;] for each i is isomorphic to Ko, B K2y,
Ko, X1 Koy, KopEH Koy, or Ko, X1 K9,. By the pigeonhole principle, we may
assume that for all i € {1,2,..., f1(n)}, all graphs G[X; UY]] are isomorphic
to exactly one of Ko, 3 Koy, Kop Xl Koy, Kop 3 Koy, and Koy, X1 Kop,.

We now apply Theorem LT}, the sunflower lemma, to sets Y1, Ya,..., Yy, (n)-
As we choose fi(n) > (2n)In?", {Y1,Ya,... s Yf,(n)} contains a sunflower JF
with n + 1 petals. We may assume that F = {Y7,Y5,...,Y,41}. Let Q be
the core of F, that is ﬂ?:ll Y;. Note that either ) has at least n+ 1 vertices,
or Y;\@ has at least n vertices for all i = 1,2,...,n+ 1. We divide into two
cases depending on the size of the core.

First, suppose that |@Q] = n + 1. Let Q* be a subset of Q with |Q*| =
n. For i = 1,2,...,n, let X be the set of vertices in X; paired with
vertices in Q* € Y; in the graph G[X; u Y;]. Then each X} is a clique and
G[XT v Xy u---u X} is isomorphic to nk,. Let w e Q\Q*.

If all G[X} U Q*] are isomorphic to K, X] K,,, then X, has a vertex
v adjacent to all vertices in Q*. In this case, we take G’ := G *v. Then for
every i € {1,2,...,n}, G'[ X} U Q*] is isomorphic to K,, X K.

If all G[X U Q*] are isomorphic to K, H K,,, then we take G’ := G *w.
Then all G'[ X} U Q*] are isomorphic to K, H K.

If all G[X} U Q*] are isomorphic to K, H K, or K, X K,, then we take
G = G.

We conclude that G has a vertex-minor G’ on Xj u X5 u---u X} U Q*
such that each X' is a clique in G, X' is anti-complete to X Fforalli##j
in G', and one of K, H K, or K, X K, is isomorphic to G'[ X} u Q*] for all
i€{1,2,...,n}. So, G’ provides a desired vertex-minor of the first type.

Now it remains to consider the case that |Q] < n. Then for all i €
{1,2,...,n}, |[Y;\Q| = n. For each i = 1,2,...,n, let Y;* be a subset of ¥;\Q
with |Y*| = n. Fori =1,2,...,n, let X* be the set of vertices in X; paired
with vertices in Y;* in the graph G[X; u Y;]. Then we deduce that G[ X} U
X3u---uX¥]is isomorphic to nK, and for all i = 1,2,...,n, all G[ X} UY*]
are isomorphic to exactly one of K, @K, K, X K,, K,EK,, or K, K K,.
and X7, X5, ..., X7 Y5, Y55, ... Y, F are disjoint. So, (X7, X5,...,X}) and
(Y%, Y55, ..., Y.¥) provide a desired induced subgraph of the second type. [

In the rest, we will find a vertex-minor isomorphic to P, or n13, when
a given graph satisfies (i) or (ii) of Proposition

12
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Figure 4: Three graphs in the proof of Lemma 7 when n = 5.

4.1 The first case

Lemma 4.6. Let n > 2 be an integer. Let G be a graph on n® + n vertices
such that V(G) = X uXou-- U X, uQ for disjoint sets X1, Xo,..., X, Q
of n vertices, each X; is a clique in G, G| X1 U Xy U --- U X,] is isomorphic
to nK,, and all G[X; U Q] are isomorphic to K, & K,. Then G has a
vertez-minor isomorphic to Ps,_1.

Proof. Let vy, va, ..., v, be an arbitrary enumeration of vertices in Q.
For each i € {1,2,...,n — 1}, there are two vertices z;, y; in X; such that
Na(zi) n Q = {vi}, Na(yi) n @ = {vi11}. Let z,, be the neighbor of v, in
X,. Then vix1y1v2T2Yy2vs - - - Uy Ty is an induced path on 3n—1 vertices. [

Lemma 4.7. Let n > 2 be an integer. Let G be a graph on n® + n vertices
such that V(G) = X uXou---u X, uQ for disjoint sets X1, Xo,..., X,,,Q
of n vertices, each X; is a clique in G, G| X1 U Xy U ---u X,] is isomorphic
to nK,, and all G[X; U Q] are isomorphic to K, X K,. Then G has a
verter-minor isomorphic to Py, _s.
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Proof. Let v be a vertex in . Let v; be the vertex in X; non-adjacent to
v. Let
a {G*vl*v2*~-*vn—v—Xn if n is even,
L=

Gsvy*xvgx---%v, 1 —v—X, ifnisodd.

Observe that every vertex in X;\{v;} has degree 2 in Gy and Ng, (v;) =
(Xi\{vi}) v (Q\{v}) for all i € {1,2,...,n — 1}. See Figure [ for an illus-
tration. Let G9 be the graph obtained from G; by applying local comple-
mentations at all vertices in U:.:ll(Xi\{vi}). It is easy to see that G is
obtained from G; by deleting all edges from v; to Q\{v} for all i < n — 1.
Then Ng,(vi) = X;\{vi} and Go[(X;\{vi}) U (Q\{v})] is isomorphic to
K, 1HK,_1. Let wy, wo, ..., wy_1 be an arbitrary enumeration of vertices
in Q\{v}. For each i € {1,2,...,n — 2}, there are vertices x;,y; € X;\{v;}
such that Ng,(z;) 0 Q = {w;} and Ng,(y;) N Q@ = {w;+1}. Let x,—1 be the
neighbor of w,_1 in X,,_1. Then w;x;v;y;w;11 is an induced path and so
WIT1V1Y1W2T2V2Y2 * * * Wy 2Ty —2Un—2Yn—2Wn—1Tn—1Vp—1 is an induced path
onn—1+3(n—2)+2=4n—>5 vertices in Ga. Thus, G has a vertex-minor
isomorphic to Py, _5. O

4.2 The second case

We will use the product Ramsey theorem described below.

Theorem 4.8 ([26, Theorem 11.5]; See also [13]). Let r,t be positive inte-

gers, and let ki, ko, ...,k be nonnegative integers, and let my,mao,...,my
be integers with m; = k; for each i € {1,2,...,t}. Then there exists an inte-
ger R = Ryroq(r,ts ki, ko, ... kesma,ma, ... my) such that if X1, Xo,..., X,
are sets with |X;| = R for each i € {1,2,...,t}, then for every func-
tion f : (‘2{11) X (‘2{22) X e X (f:) — {1,2,...,r}, there exist an element
a € {1,2,...,r} and subsets Y1,Yo,...,Y: of X1,Xo,..., Xy, respectively,
so that |Y;| = m; for each i € {1,2,...,t}, and f maps every element of

(k) % () > oo x (3) to

Lemma 4.9. For integers s and t, there exist M = f(s,t) and N = g(s,t)
such that for m = M and n = N, if a graph G has 2m disjoint n-vertex
sets X1, Xoy.oo, Xon, Y1, Y0, ..., Y, each X is a clique of G, G[ X1 u X U
-+ U Xp] is isomorphic to mK,, and one of K, O K,, K,BK,, K, X K,,
and K, X K,, is isomorphic to all G[X; u'Y;], then there exist indices 1 <
i1 <ig < --- <is <m and subsets X{', X5, ..., X} of X;,, Xip, ..., Xi

respectively and subsets Y{*, Y5', ..., Y of Y3, Ys,, ..., ..., Y}, respectively
such that the following hold.
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(1) | XF| =Y | =t foralll <i<s,
(ii) one of Ky A Ky, K; K, Ki X Ky, and Ky X1 K; is isomorphic to all
G XY™ foralll1<i<s,
(111) X} is complete to Y for alli < j or X} is anti-complete to Y for
all i < 7,
(tv) Y;* is complete to X3 for alli < j or Y;* is anti-complete to X7 for
all© < j,
v) Y.* is complete to Y.* for alli < j or Y.* is anti-complete to Y.* for all
) 7 ? J
1< 7.
In other words, G has an induced subgraph isomorphic to one of
(KB K, (KB K, (KKK, and (K KKy
for some 0-1 matriz A = (95).

Proof. Let m = M := R(s;8) and let
nz=N:= Rpmd(S(ZL),m;l,l,...,1;t,t,...,t).

The first step of the proof is to clean up edges between X; U'Y; and X; U'Y;
for distinct ¢ and j. We consider a function that maps (v1,va,...,v,,) for
v; € Y; to an edge-coloring of K, with colors on the edges 75 based on the
three possible adjacencies between a pair of v; and its unique neighbor or
non-neighbor in X; and a pair of v; and its unique neighbor or non-neighbor
in X;. Each edge of K,, will receive one of 23 colors and the range of this

function has at most 8(%) edge-colorings of K,,. By Theorem [4.8] there exist
subsets X1, X5, ..., X, Y], Y], ..., Y] of X1, Xo,..., X, Y1,Y2, ..., Y,
respectively, such that

(i) |Xi] = Yi] =t

(ii) foreachi # j, X; is complete or anti-complete to Y}, and Y} is complete
or anti-complete to Yj’ ,

(iii) one of Ky O K;, K; H K;, K; X K¢, and K; X K; is isomorphic to all
G[X[vY/].

Now our next goal is to take a subset of {1,2,...,m} by using Ramsey’s
theorem. Let us color the edges ij of K, (i < j) by the one of 8 colors
determined by the following:
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e X/ is complete to Y} or not.
e Y/ is complete to X’ or not.
e Y/ is complete to Y or not.

Then by Ramsey’s theorem, there exists a subset I of {1,2,...,m} with
|I| = s such that every edge of K, has the same color. Let I = {iy,i2,...,1s}
for iy <ig < -+ <4 and X* Xijs Y =Y, for 1 < j < s. This provides
our conclusion. O

Now we will see that in many cases, we will have a vertex-minor isomor-
phic to nTs .

Lemma 4.10. Let n be a positive integer.

(1) Kni1 B Kni1 contains a vertez-minor isomorphic to Ty.,.
(2) KpioHE Kyyo contains a vertez-minor isomorphic to Ty .
(3) Kni2X Ky 1o contains a vertez-minor isomorphic to Ty.,.

(4) Kp+1 X Kpy1 contains a vertez-minor isomorphic to T .

Therefore, if A = (39), then all of (Knt1 B Knt1)%, (Knt2 B Knt2)'y,
(Kpi2 X Kn+2)A, and (Kn41 X Kn41)'y have vertex-minors isomorphic to
nTgm.

Proof. (1) Let V(Kp41) = {vi: 1 <i<n+1} and V(Kp41) = {w; 1 1 <
i<n+1}. The graph (Kn+1 =P wl) * v1 is isomorphic to T3 ;.

(2) Let {v; : 1 <i<n+2}and {w; : 1 <i<n+2} be the vertex sets of
two copies of K, 9. The graph ((Kp+2 B Kyt — {vi,wa}) % vg xwy) — {wy}
is isomorphic to 75 ,.

(3) Let V(Kpy2) = {v; : 1 <i<n+2}and V(Kpy2) = {w; : 1 <i <
n+2}. The graph ((K,42X K12 — {wl, va}) * V1 * wa) — {wa} is isomorphic
to Tgm.

(4) Let {v; : 1 <i<n+1} and {w; : 1 <i < n+ 1} be the vertex sets
of two copies of K,,11. The graph (K, 1 X Kn+1 — w1 ) * vy is isomorphic
to the graph obtained from K, H K,, by adding a vertex v; adjacent to all
other vertices. Thus, the graph (K11 X1 K41 — wq) # U1 % Vg % -+« % Upyq 1S
isomorphic to T3 ,,. O

In the following lemma, we show that if A is not symmetric, then we
obtain P,, as a vertex-minor.
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Lemma 4.11. Let n > 2 be an integer. If A = (94) is a 0-1 matriz such
that b # c, then both (K1 B K1) and (K1 ¥ K1)\ have vertex-minors
isomorphic to P,.

Proof. 1f d = 0, then (K;HK;)"} is isomorphic to K,V K,, and (KlKl)ff‘Jrl
contains an induced subgraph isomorphic to K, 1 K,,. If d = 1, then
(K185K,)"; is isomorphic to K, 1K, and (K Kl)ff;r1 contains an induced
subgraph isomorphic to K, 1 K,. By Lemma 2.2] there is a vertex-minor
isomorphic to Ps,_5 in both cases. O

Lemma 4.12. Let n > 2 be an integer. If A = (879), then all of (K428
Knso)3, (Ko B EKns2)y (Ko K Kpio)5H, and (40 K Kpp2)5
have vertez-minors isomorphic to nIs,,.

Proof. Let H be the one of K, o8 Kpi2, KnioEKpio, KpioX Ko, or
KpioX K, o and let G = HXH. Let Xy, Y7 be the sets of vertices of the
first copy of H in G where X; denotes the set of vertices in K,,,9 and Y7
denotes the other vertices. Let w be a vertex in Y7.

Then G*w contains an induced subgraph isomorphic to (Ky+285Kn12)’,
(Kn+2 Em)%v (Kn+2 Kn+2)§§, or (Kn+2 m)% for B = (8 8)' By
Lemma .10 it has a vertex-minor isomorphic to nTs ,,. O

Lemma 4.13. Let n > 2 be an integer. If A = (9}) for some d € {0,1},
then all of (K2 EKH+2)Z+2) (Knq2 EKn+2)Zx+2, (K2 Kn+2)z+2; and
(Ko Kn+2)2+2 have vertex-minors isomorphic to nTs .

Proof. Let H be the one of K19 E Kpt2, Knio E Knyo, Kpio K Kppo,
or K,19X K42 and let G = Hz”. There exists an induced subgraph G’
of G and an edge zy of G’ such that G’ — x — y is isomorphic to HZH,
x is complete to the bottom part of copies of H, and anti-complete to the
top part of copies of H, and y is complete to the top part of copies of H,
and is either complete or anti-complete to the bottom part of copies of H,
because we can choose a vertex x from the top part of H and a neighbor y
is chosen from the bottom part in the same copy of H. Now, it is easy to
see that G’ * x * y * x — x — y is isomorphic to one of (K, 12 H Kn+2)%+1,
(Kn+2 Em)%+lv (Kn+2 Kn+2)%+17 and (Kn+2 m)%ﬂ for a matrix
B =(39). By Lemmas {10l and [£12] G has a vertex-minor isomorphic to

nTgm. |

5 Main proof

We are ready to prove our main theorem, restated below.
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Theorem [1.3l. A vertez-minor ideal C has bounded depth-2 rank-brittleness
if and only if
{P17P27P37P47"'} $C7

and
{T51,2T52,3153,4T54,...} ¢ C.

Before the proof, let us discuss why the two conditions in Theorem [I.3]
{P1,P5,Ps,...} £Cand {I51,2152,3T%3,...} ¢ C, are incomparable. First
we sketch the proof showing that no path contains 753 as a vertex-minor.
The tree T3 is a tree having a vertex v such that 753 — v contains three
components having linear rank-width 1. (The definition of linear rank-width
will be discussed in Section [6l) It implies that it has linear rank-width
at least 2, by a characterization of linear rank-width on trees, see [l 2].
However, paths have linear rank-width 1 and therefore no path contains
T53 as a vertex-minor. Thus, if C is the set of all vertex-minors of P,
for all n, then C does not satisfy the first condition but satisfies the second
condition. Secondly we claim that no nT5,, contains a long path as a vertex-
minor. It is not difficult to see that n73, has depth-3 rank-brittleness at
most 3. However, {P;, P», P3,...} has unbounded rank-depth [6], and thus
unbounded depth-3 rank-brittleness. So, if C is the set of all vertex-minors
of nTy, for all n, then C does not satisfy the second condition but satisfies
the first condition.

Now let us start the proof of Theorem Our first lemma is to
prove the forward implication. It is already known that {P;, P5, Ps, ...} has
unbounded rank-depth [6] and therefore it has unbounded depth-2 rank-
brittleness. Thus, to prove the forward implication, it is enough to show
that {T% 1,275 9,315 3,475 4, ...} has unbounded depth-2 rank-brittleness.

Lemma 5.1. The class {T51,2152,3T23,4T5 4, ...} has unbounded depth-2
rank-brittleness.

Proof. We claim that nT5,, has depth-2 rank-brittleness at least n/2. Sup-
pose that nT5, admits a (m,2)-decomposition (7,0) with m < n/2. Then
T has a root r from which every leaf is within distance at most 2, and we
may assume that r is not a leaf. By subdividing an edge if necessary, we
may further assume that no leaf is adjacent to .

Let 71, 72, ..., 7y be the neighbors of r. We color each vertex v of nT5
by i € {1,2,...,m} if the component of T'— r containing o(v) has r;. An
edge of n'Ty,, is colorful if its ends have distinct colors. Let Cq, Co, ..., Cy

be the components of nT5 ,,.
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Suppose that a component C; is fully contained in X; for some j. Then,
since C; contains an induced matching of size n, the width of r; has to be
at least n. This contradicts the assumption that (7', o) has width less than
n/2. Thus, we may assume that no component C; is fully contained in some
Xj. So every component C; has a colorful edge and therefore n75, has a
set F' of n colorful edges in distinct components.

Let X be asubset of {1,2,...,m} chosen uniformly at random. A colorful
edge of nTy ,, is X -colorful if one end has a color in X and the other end has
a color not in X. Then by the linearity of expectation, the expected number
of X-colorful edges in F' is n/2. This means that there exists X such that
there are at least n/2 X-colorful edges in distinct components of nT5 , and
so the width of r is at least n/2, contradicting the assumption on (7,0). O

The following proposition proves the backward implication of Theo-

rem [[3]

Proposition 5.2. For every integer n > 2, there exists an integer N := d(n)
such that every graph G of depth-2 rank-brittleness at least N contains a
vertez-minor isomorphic to P, or nly,,.

Proof. Let o be the function defined in Proposition and let f, g be the
functions defined in Lemma Let m := max(n, f(n + 2,n + 2),9(n +
2,n 4 2)). and let d(n) := o(m). By Proposition [£5], G has a vertex-minor
G’ satisfying one of the following:

(i) V(@) = XFuX5u---uX} uQ* for disjoint sets X7, X5,..., X}, Q*
of m vertices such that each X is a clique in G/, G'[ Xfu Xju--- U X} ]
is isomorphic to mK,,, and either K,, 5 K,, or K,,XK,, is isomorphic
to all G'[ X} U Q*].

i) V(@) =XfuXsu---uXuY*uYFfu---uY? for disjoint sets
X7, X5, X YR Y5 LY of movertices such that each X is a
clique in ¢/, G'[ X} v X5 U --- U X} ] is isomorphic to mK,,, and one
of Ky B Ky K B K, Ky XKy, and K, X K,, is isomorphic to all
G'[ X} uY™].

(iii) G’ is isomorphic to Pp,.

If (i) holds, then by Lemmas and [17] G’ has a vertex-minor isomorphic
to P31 or Pyp—5. So if (i) or (iii) holds, then G has a vertex-minor
isomorphic to P,. If (ii) holds, then by Lemma [£9 G’ has an induced
subgraph isomorphic to one of

(Kn+2|E|Kn+2)Z+27 (Kn+2EKn+2)Z+2, (Kn+2Kn+2)Z+2a (Kn+2Kn+2)Z+2
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for some 0-1 matrix A = (2%). By Lemmas {10, E11] 412 and I3, G’

has a vertex-minor isomorphic to P, to nT5 . O

6 Rank-depth and linear rank-width

By Theorem [[.3] for a fixed positive integer n, nPs-vertex-minor free graphs
have bounded depth-2 rank-brittleness, and thus have bounded rank-depth.
We will show that they have bounded linear rank-width. Indeed, we will
show that graphs of bounded rank-depth have bounded linear rank-width.
This was also proved by Ganian, Hlinény, Nesetfil, Obdrzalek, and Ossona
de Mendez [11l Proposition 3.4] in terms of shrub-depth and linear clique-
width, but our proof provides an explicit bound.

First let us review the definition of linear rank-width [10, 15, 23]. For a
graph G, an ordering (z1,...,x,) of the vertex set V(G) is called a linear
layout of G. If [V (G)| = 2, then the width of a linear layout (x1,...,x,) of G
is defined as 1<1g1<a5<_1pg({x1, ..., 2;}), and if |V(G)| = 1, then the width is

defined to be 0. The linear rank-width of G, denoted by Irw(G), is defined
as the minimum width over all linear layouts of G. It is easy to see that if
H is a vertex-minor of G, then Irw(H) < Irw(G).

Proposition 6.1. For a graph G, rw(G) < rd(G)?.

Proof. If G has 1 vertex, then Irw(G) = rd(G) = 0. So, we may assume
that G has at least 2 vertices. Let k = rd(G), and let (T,0) be a (k, k)-
decomposition of G. Let r be a node of T" within distance at most k from
every node of T'.

Let vy,v9,...,v, be a DFS ordering of T. Let n = |V(G)|. Let
wi,ws, ..., W, be an ordering of the vertices of G such that for all 1 <
i < j <mn, o(i) appears before o(j) in the DFS ordering vy, vo, ..., v, of T.
We claim that (w1, ws,...,w,) has width at most k2. Let i € {1,2,...,m},
A; = {vr,...,v}, Bi == V(T)\A;, A, = {v € v(G) : o(v) € A;}, and
B! = {v e V(G) : o(v) € B;}. By the property of the depth-first search, T
has a path P, from r consisting of nodes in A; such that for each node w in
B;, the first vertex in A; in the path from w to r is on P;.

As T has radius at most k, we can take P; to have length at most k — 1.

For w € V(P;), let X,, be the set of all vertices x of G mapped to a node
o(z) in B; such that w is the first vertex in A; in the path from o(x) to r is
on P;.

Since (T, 0) has width at most k, the cut-rank of X, is at most k. As
B = Uyev(p,) Xw, we deduce that pg(B;) < Xy ev(p,) 6 (Xw) < k? by the
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submodularity of the cut-rank function. This implies that the width of the
linear layout is at most k2. O

Corollary T4l For every positive integer n, graphs with no vertex-minors
isomorphic to nPs; have bounded depth-2 rank-brittleness, bounded rank-
depth, and bounded linear rank-width.

Proof. Let C be the class of nPs-vertex-minor free graphs. Then Pg,, ¢ C and
nTy,, ¢ C. Thus, by Theorem [[3] C has bounded depth-2 rank-brittleness,
and thus bounded rank-depth. By Proposition [6.1] it also has bounded
linear rank-width. O
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