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Abstract

We characterize classes of graphs closed under taking vertex-minors
and having no Pn and no disjoint union of n copies of the 1-subdivision
of K1,n for some n. Our characterization is described in terms of a tree
of radius 2 whose leaves are labelled by the vertices of a graph G, and
the width is measured by the maximum possible cut-rank of a partition
of V pGq induced by splitting an internal node of the tree to make two
components. The minimum width possible is called the depth-2 rank-
brittleness of G. We prove that for all n, every graph with sufficiently
large depth-2 rank-brittleness contains Pn or disjoint union of n copies
of the 1-subdivision of K1,n as a vertex-minor.

1 Introduction

Tree-depth is a graph parameter in the theory of sparse graph classes, which
measures how far a graph is from being a star, introduced by Nešetřil and
Ossona de Mendez [19]. An equivalent concept has been introduced a few
times under the names like the vertex ranking number and the minimum
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height elemination tree [3, 5, 25]. It is known that a graph has large tree-
depth if and only if it has a long path, see [20, Section 6.2].

For some applications, it is desirable to say that complete graphs are
also very similar to stars. However, complete graphs have unbounded tree-
depth. To design a graph parameter similar to tree-depth but more suitable
for dense graph classes, DeVos, Kwon, and Oum [6] introduced the rank-
depth of a graph. Roughly speaking, the rank-depth of a graph G is defined
in terms of a decomposition, which is a tree whose leaves are labelled by the
vertices of G. A decomposition has two qualities, one of which is the radius
of the tree, and the other is the maximum width of internal nodes, measured
by some connectivity function of G. The rank-depth of a graph G is defined
as the minimum integer k such that G admits a decomposition of radius at
most k and width at most k. The detailed definition of rank-depth will be
reviewed in Section 2. In fact, there was an equivalent concept called the
shrub-depth of classes of graphs, introduced by Ganian, Hliněný, Nešetřil,
Obdržálek, Ossona de Mendez, and Ramadurai [11, 12]. The definition of
shrub-depth uses logical terms similar to the definition of clique-width [4],
while the definition of rank-depth uses a tree-like decomposition similar to
that of rank-width [24]. DeVos, Kwon, and Oum [6] showed that a class of
graphs has bounded rank-depth if and only if it has bounded shrub-depth.

Hliněný, Kwon, Obdržálek, and Ordyniak [14] proposed the following
conjecture, which we state in terms of rank-depth. To state their conjecture,
we first introduce vertex-minors. The local complementation at a vertex v of
a graph G is an operation to obtain a new graph G˚v from G by removing all
edges xy between two adjacent pairs x, y of neighbors of v and adding edges
xy for all non-adjacent pairs x, y of neighbors of v. A graph H is a vertex-
minor of a graph G if H can be obtained from G by a sequence of local
complementations and vertex deletions. It is known that the rank-depth
of a vertex-minor of G is at most the rank-depth of G and so it is natural
to think of an obstruction for graphs of bounded rank-depth in terms of
vertex-minors. The following conjecture states that paths are obstructions
for having bounded rank-depth. This conjecture was verified for graphs of
rank-width 1 by Novotný [21, Theorem 6.3.2].

Conjecture 1.1 (Hliněný, Kwon, Obdržálek, and Ordyniak [14]). A class C
of graphs has bounded rank-depth if and only if there exists an integer t such
that no graph G P C contains a path of length t as a vertex-minor.

As a step towards Conjecture 1.1, we define a new parameter called
depth-d rank-brittleness for an integer d by restricting the radius of the tree
in the decomposition to be at most d in the definition of rank-depth. The
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Figure 1: Graphs P5 and T2,5.

depth-d rank-brittleness of a graph G is the minimum integer k such that G
admits a decomposition of radius at most d and width at most k. We denote
this parameter by rbritdpGq. By definition, the rank-depth of a graph G is
at most maxtd, rbritdpGqu for all d ě 1 and

rbrit1pGq ě rbrit2pGq ě rbrit3pGq ě ¨ ¨ ¨ .

In Section 6, we will show that a graph of rank-depth k has linear rank-width
at most k2.

A class C of graphs is a vertex-minor ideal if for every graph G P C, C
contains all graphs isomorphic to vertex-minors of G. For a graph H, we
write nH for the disjoint union of n copies of H. It is straightforward to
deduce the following proposition by using Ramsey-type results. To see this,
one can use Theorem 2.3, Ramsey’s theorem, and Lemma 2.2. It can be
also seen as a special case of a theorem due to Kwon and Oum [18, Theorem
1.4], which is stated in Theorem 4.2.

Proposition 1.2. A vertex-minor ideal C has bounded depth-1 rank-brittleness
if and only if tK2, 2K2, 3K2, . . .u Ę C.

In this paper, we characterize classes of graphs of bounded depth-2 rank-
brittleness in terms of forbidden vertex-minors. Let T2,n be the 1-subdivision
of K1,n, see Figure 1. Here is our main theorem.

Theorem 1.3. A vertex-minor ideal C has bounded depth-2 rank-brittleness
if and only if

tP1, P2, P3, P4, . . .u Ę C and tT2,1, 2T2,2, 3T2,3, 4T2,4, . . .u Ę C.

Since T2,n contains P5 if n ě 2, we obtain the following corollary, con-
firming a weaker statement of Conjecture 1.1.

Corollary 1.4. For every positive integer n, graphs with no vertex-minors
isomorphic to nP5 have bounded depth-2 rank-brittleness, bounded rank-
depth, and bounded linear rank-width.
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We sketch the proof of Theorem 1.3. It is straightforward to show that
Pn and nT2,n have large depth-2 rank-brittleness. We mainly show that for
every fixed n, if a graph G has sufficiently large depth-2 rank-brittleness,
then it has a vertex-minor isomorphic to Pn or nT2,n. A theorem of Kwon
and Oum [18, Theorem 1.4] will imply that every graph of large depth-2
rank-brittleness has a vertex-minor isomorphic to aKb for large a and b.
By taking a graph locally equivalent to G, we may assume that G has an
induced subgraph isomorphic to aKb.

In Section 3, we prove that if a graph H contains 3 pairwise twins,
then one of them can be removed without decreasing the depth-2 rank-
brittleness. Using that, each component C of aKb can be partitioned into
at least b{2 sets such that vertices in distinct sets are not twins. By the
Ramsey-type result on bipartite graphs, we will extract a large (induced)
matching or an anti-matching or a half graph between C and the rest. We
find this for each component of aKb. Then using the sunflower lemma and
Ramsey’s theorem, we will clean up all the structures and find a vertex-
minor isomorphic to nT2,n or Pn. Section 4 is devoted to describe all the
intermediate structures. The proof of Theorem 1.3 is given in Section 5.
Section 6 shows an inequality between linear rank-width and rank-depth
and presents a corollary of Theorem 1.3 for graphs with no vertex-minors
isomorphic to nP5.

2 Preliminaries

All graphs in this paper are simple and undirected. For a graph G, we
denote by V pGq and EpGq the vertex set and the edge set of G, respectively.
Let G be a graph. For S Ď V pGq, we denote by GrSs the subgraph of G
induced by S, and for two disjoint vertex subsets S and T of G, we denote by
GrS, T s the bipartite graph with bipartition pS, T q such that for a P S and
b P T , a, b are adjacent in GrS, T s if and only if they are adjacent in G. For
v P V pGq, we denote by G´v the graph obtained from G by removing v and
all edges incident with v. For a set X of vertices, we denote by G ´ X the
graph obtained from G by deleting all vertices in X and all edges incident
with those vertices. For v P V pGq, the set of neighbors of v in G is denoted
by NGpvq, and the degree of v is the size of NGpvq. We denote by ApGq the
adjacency matrix of G.

For two disjoint vertex subsets A and B of G, we say that A is complete
to B if every vertex in A is adjacent to all vertices in B. Similarly, A is
anti-complete to B, if every vertex in A is non-adjacent to all vertices in B.
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A clique is a set of pairwise adjacent vertices and an independent set is a
set of pairwise non-adjacent vertices.

Two vertices v and w in a graph G are called twins if NGpvqztv,wu “
NGpwqztv,wu. Note that a set of pairwise twins is either a clique or an
independent set.

Let Kn denote the complete graph on n vertices, and let K1,n denote
the star with n leaves. Let Pn denote the path on n vertices. For a graph
G, we denote by G the complement of G, that is, two vertices v and w in G

are adjacent if and only if they are not adjacent in G.
We write Rpn; kq to denote the minimum number N such that every

coloring of the edges of KN into k colors induces a monochromatic com-
plete subgraph on n vertices. The classical theorem of Ramsey implies that
Rpn; kq exists.

We also use the sunflower lemma. Let F be a family of sets. A subset
tM1,M2, . . . ,Mpu of F is a sunflower with core A (possibly an empty set)
and p petals if for all distinct i, j P t1, 2, . . . , pu, Mi X Mj “ A.

Theorem 2.1 (Sunflower Lemma [9, Erdős and Rado]). Let k and p be
positive integers, and F be a family of sets each of cardinality k. If |F| ą
k!pp ´ 1qk, then F contains a sunflower with p petals.

2.1 Vertex-minors

For a vertex v in a graph G, to perform local complementation at v, replace
the subgraph of G induced on NGpvq by its complement graph. We write
G˚v to denote the graph obtained fromG by applying local complementation
at v. Two graphs G and H are locally equivalent if G can be obtained from
H by a sequence of local complementations. A graph H is a vertex-minor of
a graph G if H is an induced subgraph of a graph which is locally equivalent
to G.

2.2 Rank-depth and rank-brittleness

The cut-rank function of a graph G, denoted by ρGpSq for a subset S of
V pGq, is defined as the rank of an S ˆ pV pGqzSq 0-1 matrix over the binary
field whose pa, bq-entry for a P S, b R S is 1 if a, b are adjacent and 0 other-
wise. The cut-rank function is invariant under the local complementation,
see Oum [22]. The cut-rank function satisfies the submodular inequality,
that is, for all X,Y Ď V pGq, ρGpXq ` ρGpY q ě ρGpX X Y q ` ρGpX Y Y q.
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The ρG-width of a partition P “ pX1,X2, . . . ,Xmq of V pGq, for some m, is

max

#

ρG
`

ď

iPI

Xi

˘

: I Ď t1, 2, . . . ,mu

+

.

A decomposition of a graph G is a pair pT, σq of a tree T with at least
one internal node and a bijection σ from V pGq to the set of leaves of T . The
radius of a decomposition pT, σq is defined to be the radius of the tree T .
For an internal node v P V pT q, the components of the graph T ´ v give
rise to a partition Pv of V pGq by σ and the width of v is defined to be the
ρG-width of Pv. The width of the decomposition pT, σq is the maximum
width of an internal node of T . We say that a decomposition pT, σq is a
pk, rq-decomposition of G if the width is at most k and the radius is at most
r. The rank-depth of a graph G, denoted by rdpGq, is the minimum integer k
such that G admits a pk, kq-decomposition. If |V pGq| ă 2, then there exists
no decomposition and rank-depth is defined to be 0. Note that every tree
in a decomposition has radius at least 1 and therefore the rank-depth of a
graph is at least 1 if |V pGq| ě 2.

The depth-d rank-brittleness of a graph G, denoted by rbritdpGq, is the
minimum integer k such that G admits a pk, dq-decomposition. If |V pGq| ă
2, then we define rbritdpGq “ 0. Note that the depth-1 rank-brittleness of a
graph G is equal to maxAĎV pGq ρGpAq.

2.3 Constructions of common graphs

For two graphs G and H on the disjoint vertex sets, each having n vertices,
we would like to introduce operations to construct graphs on 2n vertices
by making the disjoint union of them and adding some edges between two
graphs. Roughly speaking, G a H will add a perfect matching, G b H will
add the complement of a perfect matching, and GmH will add a half graph.
Formally, for two n-vertex graphs G and H with fixed ordering on the vertex
sets tv1, v2, . . . , vnu and tw1, w2, . . . , wnu respectively, let G a H, G b H,
G m H be graphs on the vertex set V pGq Y V pHq whose subgraph induced
by V pGq or V pHq is G or H, respectively such that for all i, j P t1, 2, . . . , nu,

(i) viwj P EpG a Hq if and only if i “ j,

(ii) viwj P EpG b Hq if and only if i ‰ j,

(iii) viwj P EpG m Hq if and only if i ě j.
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Figure 2: K5 a K5, K5 b K5, and K5 m K5.

See Figure 2 for illustrations of K5 a K5, K5 b K5, and K5 m K5.
We will use the following lemma. Similar lemmas appeared in [17,

Lemma 2.8], [14, Proposition 6.2], and [16, Lemma 5.6].

Lemma 2.2 (Kwon and Oum [18, Lemma 6.5]). Let n be a positive integer.

(1) Kn m Kn is locally equivalent to P2n.

(2) Kn m Kn is locally equivalent to P2n.

(3) If n ě 2, then Kn m Kn has a vertex-minor isomorphic to P2n´2.

We also use the Ramsey-type result on bipartite graphs without twins.

Theorem 2.3 (Ding, Oporowski, Oxley, and Vertigan [8]). For every pos-
itive integer n, there exists an integer Bpnq such that for every bipartite
graph G with a bipartition pS, T q, if no two vertices in S have the same set
of neighbors and |S| ě Bpnq, then S and T have n-element subsets S1 and
T 1, respectively, such that GrS1, T 1s is isomorphic to Kn aKn, Kn mKn, or
Kn b Kn.

For a positive integer t, a 2ˆ 2 matrix A “ p a b
c d q, and a binary operator

d P ta,b,mu on two graphs of the same number of vertices, we define
pG d HqtA as the graph on the disjoint union of t copies of G d H such that
for all 1 ď i ă j ď t,

(i) the i-th copy of G is complete to the j-th copy of G if a “ 1 and
anti-complete if a “ 0,

(ii) the i-th copy of G is complete to the j-th copy of H if b “ 1, and
anti-complete if b “ 0,

(iii) the i-th copy of H is complete to the j-th copy of G if c “ 1, and
anti-complete if c “ 0,
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Figure 3: The graph pK4 a K4q3A for A “
`

0 1
0 1

˘

.

(iv) the i-th copy of H is complete to the j-th copy of H if d “ 1, and
anti-complete if d “ 0.

See Figure 3 for an illustration.

3 Lemma on three twins

In this section, we prove that if a graph has three pairwise twins, then one
of them can be removed without decreasing its depth-d rank-brittleness for
d ě 2. It holds for all d ě 2 but we will only use it for d “ 2 later.

Lemma 3.1. Let d ě 2 be an integer. Let v, w, z be vertices of a graph G

that are pairwise twins. Then rbritdpGq “ rbritdpG ´ vq.

Proof. The inequality rbritdpGq ě rbritdpG ´ vq is trivial by definition. We
will show that if G ´ v has a pk, dq-decomposition pT, σq, then G also has a
pk, dq-decomposition.

Let r be a node of T , called a root of T , which has distance at most d

to every node of T . We may assume that r is not a leaf node. Let a be the
leaf of T with a “ σpwq and b be the parent of a in T , which is the unique
neighbor of a in T . We obtain a decomposition pT1, σ1q of G as follows: T1 is
the tree obtained from T by adding a new node a1 adjacent to b, and assign
σ1pvq :“ a1 and σ1pxq :“ σpxq for all x P V pGqztvu. We claim that pT1, σ1q
is a pk, dq-decomposition of G. Clearly, T1 has radius at most d. So, it is
sufficient to show that every internal node of T1 has width at most k. For
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each internal node t of T1, let Pt be the partition of V pGq derived from the
components of T1 ´ t by σ´1

1 .
For an internal node t ‰ b in T1, the width of t in pT1, σ1q is the same as

its width in the decomposition pT, σq because v and w are twins of G and v

and w lie on the same part of Pt.
We claim that the width of b in pT1, σ1q is at most k. Let P 1 Ď Pb and

A :“
Ť

XPP 1 X. In the bipartition pA,V pGqzAq, if v is contained in a part to-
gether with w or z, then the bipartition obtained by removing v arises in the
decomposition pT, σq as well. So, without loss of generality, we may assume
that w, z P A and v P V pGqzA. But in this case, as v,w, z are pairwise twins,
the bipartition obtained by exchanging v and w has the same cut-rank. As
w is a single-vertex part of Pb, the bipartition pAztwu, V pGqzpAztwuqq arises
in the decomposition pT, σq. So,

ρGpAq “ ρGppAztwuq Y tvuq “ ρG´vpAztwuq ď k.

We conclude that the width of every internal node of T1 is at most k.

4 Reducing to two cases

We recall the definition of rank k-brittleness [18]. The rank k-brittleness of
a graph G, denoted by β

ρ
kpGq, is the minimum ρG-width of all partitions of

V pGq into parts of size at most k.

Lemma 4.1. rbrit2pGq ď maxp2, k, βρ
k pGqq for every positive integer k.

Proof. Suppose that pX1,X2, . . . ,Xmq is a partition of V pGq whose ρG-
width is βρ

kpGq. We create a decomposition pT, σq of G as follows. Let r be
the root of T , and let r1, r2, . . . , rm be the children of T , and each ri has
exactly |Xi| leaves adjacent to ri, and we assign Xi to these leaves by σ. It
is easy to see that each ri has width at most k, and the root r has width at
most βρ

kpGq. Thus, rbrit2pGq ď maxp2, k, βρ
k pGqq.

Kwon and Oum [18] proved the following.

Theorem 4.2 (Kwon and Oum [18, Theorem 1.4]). For every positive in-
teger n, there exists N such that every graph G with β

ρ
kpGq ě N contains

a vertex-minor isomorphic to nH for some connected graph H on k ` 1
vertices.

Every large connected graph has a long induced path or a vertex of large
degree.
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Proposition 4.3 (See Diestel [7, Proposition 1.3.3]). For integers k ą 3 and
ℓ ą 0, every connected graph on at least pk ´ 1qpk ´ 2qℓ´2{pk ´ 3q vertices
contains a vertex of degree at least k or an induced path on ℓ vertices.

As a corollary we deduce the following. Essentially its proof is almost
identical to the proof of [18, Theorem 1.6].

Corollary 4.4. For all positive integers k and n, there exists N “ hpn, kq
such that every graph G with depth-2 rank-brittleness at least N has a vertex-
minor isomorphic to nKk.

Proof. We may assume that k ą 3 by increasing k if necessary. Let

M :“ rpRpk ´ 1; 2q ´ 1qpRpk ´ 1; 2q ´ 2q2pk´1q´2{pRpk ´ 1; 2q ´ 3qs.

By Proposition 4.3, every connected graph with at least M vertices has a
vertex of degree at least Rpk ´ 1; 2q or an induced subgraph isomorphic
to P2pk´1q. By Theorem 4.2, there exists N such that N ě M and every
graph G with β

ρ
M´1

pGq ě N contains nH for some connected graph H on
M vertices. By Lemma 2.2(2), if H contains P2k as an induced subgraph,
then H contains Kk as a vertex-minor. If H contains a vertex of degree at
least Rpk ´ 1; 2q, then it contains K1,k´1 or Kk as an induced subgraph. In
all cases, H contains Kk as a vertex-minor and so nH contains nKk as a
vertex-minor.

If G has depth-2 rank-brittleness at least N , then by Lemma 4.1,

β
ρ
M´1pGq ě N

and therefore G has a vertex-minor isomorphic to nKk.

Proposition 4.5. For every integer n ě 2, there exists an integer σpnq
such that every graph G of depth-2 rank-brittleness at least σpnq contains a
vertex-minor G1 satisfying one of the following.

(i) V pG1q “ X˚
1 YX˚

2 Y¨ ¨ ¨YX˚
n YQ˚ for disjoint sets X˚

1 , X
˚
2 , . . . ,X

˚
n , Q

˚

of n vertices such that each X˚
i is a clique in G1, G1rX˚

1 YX˚
2 Y¨ ¨ ¨YX˚

ns
is isomorphic to nKn, and either Kn a Kn or Kn b Kn is isomorphic
to all G1rX˚

i Y Q˚s.

(ii) V pG1q “ X˚
1 Y X˚

2 Y ¨ ¨ ¨ Y X˚
n Y Y ˚

1 Y Y ˚
2 Y ¨ ¨ ¨ Y Y ˚

n for disjoint sets
X˚

1 , X
˚
2 , . . . ,X

˚
n , Y

˚
1 , Y

˚
2 , . . . , Y

˚
n of n vertices such that each X˚

i is a
clique in G1, G1rX˚

1 Y X˚
2 Y ¨ ¨ ¨ Y X˚

ns is isomorphic to nKn, and one
of Kn a Kn, Kn a Kn, Kn b Kn, and Kn b Kn is isomorphic to all
G1rX˚

i Y Y ˚
i s.
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(iii) G1 is isomorphic to Pn.

Proof. If G contains a component with at least 3 vertices, then it contains
a vertex-minor isomorphic to P3. Thus, we may assume that n ě 4.

Let B be the function defined in Theorem 2.3, and h be the function
defined in Corollary 4.4. Let

f2pnq :“ Rp2n; 2q,

f1pnq :“ p2nq!n2n ` 1,

σpnq :“ hp4f1pnq, 2Bpf2pnqqq.

We may assume that no proper vertex-minor of G has depth-2 rank-
brittleness at least σpnq. By Lemma 3.1, every graph locally equivalent to
G has no three vertices that are pairwise twins.

By Corollary 4.4, G has a vertex-minor isomorphic to

H :“ p4f1pnqqK2Bpf2pnqq.

We may assume that p4f1pnqqK2Bpf2pnqq is an induced subgraph of G by
applying local complementations. Let C1, C2, . . . , C4f1pnq be the set of con-
nected components of H, and let U :“ V pGqzV pHq.

Observe that G has no three vertices that are pairwise twins. It means
that in each Ci, there are no three vertices that have the same neighborhood
on U in G, and thus each Ci contains a subset Si with

|Si| “ r|Ci|{2s “ Bpf2pnqq

that have pairwise distinct sets of neighbors on U .
Now, we consider the bipartite graph GrSi, U s for each i. In this bipartite

graph, since vertices in Si have distinct neighborhoods on U and |Si| “
Bpf2pnqq, by Theorem 2.3, there exist X 1

i Ď Si and Y 1
i Ď U such that

GrX 1
i , Y

1
i s is isomorphic to Kf2pnq aKf2pnq, Kf2pnq mKf2pnq, or Kf2pnq bKf2pnq

for each i P t1, 2, . . . , 4f1pnqu.
As f2pnq “ Rp2n; 2q, by Ramsey’s theorem, there exist Xi Ď X 1

i and
Yi Ď Y 1

i with |Xi| “ |Yi| “ 2n where

• Yi is a clique or an independent set in G,

• GrXi, Yis is isomorphic to K2n a K2n, K2n m K2n, or K2n b K2n.

This can be done by selecting Yi from Y 1
i by using Ramsey’s theorem and

then selecting Xi by using the relation between X 1
i and Y 1

i . If GrXi, Yis
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is isomorphic to K2n m K2n for some i, then G contains a vertex-minor
isomorphic to a path on 4n ´ 2 ě n vertices by Lemma 2.2. Thus, we
may assume that GrXi, Yis is isomorphic to K2n aK2n or K2n bK2n for all
i P t1, 2, . . . , 4f1pnqu. So GrXi Y Yis for each i is isomorphic to K2n a K2n,
K2n bK2n, K2n aK2n, or K2n bK2n. By the pigeonhole principle, we may
assume that for all i P t1, 2, . . . , f1pnqu, all graphs GrXi YYis are isomorphic
to exactly one of K2n a K2n, K2n b K2n, K2n a K2n, and K2n b K2n.

We now apply Theorem 2.1, the sunflower lemma, to sets Y1, Y2, . . . , Yf1pnq.
As we choose f1pnq ą p2nq!n2n, tY1, Y2, . . . , Yf1pnqu contains a sunflower F
with n ` 1 petals. We may assume that F “ tY1, Y2, . . . , Yn`1u. Let Q be
the core of F , that is

Şn`1
i“1 Yi. Note that either Q has at least n`1 vertices,

or YizQ has at least n vertices for all i “ 1, 2, . . . , n ` 1. We divide into two
cases depending on the size of the core.

First, suppose that |Q| ě n ` 1. Let Q˚ be a subset of Q with |Q˚| “
n. For i “ 1, 2, . . . , n, let X˚

i be the set of vertices in Xi paired with
vertices in Q˚ Ď Yi in the graph GrXi Y Yis. Then each X˚

i is a clique and
GrX˚

1 Y X˚
2 Y ¨ ¨ ¨ Y X˚

ns is isomorphic to nKn. Let w P QzQ˚.
If all GrX˚

i Y Q˚s are isomorphic to Kn b Kn, then Xn`1 has a vertex
v adjacent to all vertices in Q˚. In this case, we take G1 :“ G ˚ v. Then for
every i P t1, 2, . . . , nu, G1rX˚

i Y Q˚s is isomorphic to Kn b Kn.
If all GrX˚

i YQ˚s are isomorphic to Kn aKn, then we take G1 :“ G ˚w.
Then all G1rX˚

i Y Q˚s are isomorphic to Kn a Kn.
If all GrX˚

i Y Q˚s are isomorphic to Kn a Kn or Kn b Kn, then we take
G1 :“ G.

We conclude that G has a vertex-minor G1 on X˚
1 YX˚

2 Y ¨ ¨ ¨ YX˚
n YQ˚

such that each X˚
i is a clique in G1, X˚

i is anti-complete to X˚
j for all i ‰ j

in G1, and one of Kn aKn or Kn bKn is isomorphic to G1rX˚
i YQ˚s for all

i P t1, 2, . . . , nu. So, G1 provides a desired vertex-minor of the first type.
Now it remains to consider the case that |Q| ď n. Then for all i P

t1, 2, . . . , nu, |YizQ| ě n. For each i “ 1, 2, . . . , n, let Y ˚
i be a subset of YizQ

with |Y ˚
i | “ n. For i “ 1, 2, . . . , n, let X˚

i be the set of vertices in Xi paired
with vertices in Y ˚

i in the graph GrXi Y Yis. Then we deduce that GrX˚
1 Y

X˚
2 Y¨ ¨ ¨YX˚

ns is isomorphic to nKn and for all i “ 1, 2, . . . , n, all GrX˚
i YY ˚

i s
are isomorphic to exactly one of Kn aKn, Kn bKn, Kn aKn, or Kn bKn.
and X˚

1 ,X
˚
2 , . . . ,X

˚
n , Y

˚
1 , Y

˚
2 , . . . , Y

˚
n are disjoint. So, pX˚

1 ,X
˚
2 , . . . ,X

˚
nq and

pY ˚
1 , Y

˚
2 , . . . , Y

˚
n q provide a desired induced subgraph of the second type.

In the rest, we will find a vertex-minor isomorphic to Pn or nT2,n when
a given graph satisfies (i) or (ii) of Proposition 4.5.
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G1
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w1

v1

w2
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v4

G2
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v2

w3

v3
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y2

y3

x1

x2

x3

x4

Figure 4: Three graphs in the proof of Lemma 4.7 when n “ 5.

4.1 The first case

Lemma 4.6. Let n ě 2 be an integer. Let G be a graph on n2 ` n vertices
such that V pGq “ X1YX2Y¨ ¨ ¨YXnYQ for disjoint sets X1, X2, . . . ,Xn, Q

of n vertices, each Xi is a clique in G, GrX1 YX2 Y ¨ ¨ ¨ YXns is isomorphic
to nKn, and all GrXi Y Qs are isomorphic to Kn a Kn. Then G has a
vertex-minor isomorphic to P3n´1.

Proof. Let v1, v2, . . ., vn be an arbitrary enumeration of vertices in Q.
For each i P t1, 2, . . . , n ´ 1u, there are two vertices xi, yi in Xi such that
NGpxiq X Q “ tviu, NGpyiq X Q “ tvi`1u. Let xn be the neighbor of vn in
Xn. Then v1x1y1v2x2y2v3 ¨ ¨ ¨ vnxn is an induced path on 3n´1 vertices.

Lemma 4.7. Let n ě 2 be an integer. Let G be a graph on n2 ` n vertices
such that V pGq “ X1YX2Y¨ ¨ ¨YXnYQ for disjoint sets X1, X2, . . . ,Xn, Q

of n vertices, each Xi is a clique in G, GrX1 YX2 Y ¨ ¨ ¨ YXns is isomorphic
to nKn, and all GrXi Y Qs are isomorphic to Kn b Kn. Then G has a
vertex-minor isomorphic to P4n´5.

13



Proof. Let v be a vertex in Q. Let vi be the vertex in Xi non-adjacent to
v. Let

G1 “

#

G ˚ v1 ˚ v2 ˚ ¨ ¨ ¨ ˚ vn ´ v ´ Xn if n is even,

G ˚ v1 ˚ v2 ˚ ¨ ¨ ¨ ˚ vn´1 ´ v ´ Xn if n is odd.

Observe that every vertex in Xiztviu has degree 2 in G1 and NG1
pviq “

pXiztviuq Y pQztvuq for all i P t1, 2, . . . , n ´ 1u. See Figure 4 for an illus-
tration. Let G2 be the graph obtained from G1 by applying local comple-
mentations at all vertices in

Ťn´1
i“1 pXiztviuq. It is easy to see that G2 is

obtained from G1 by deleting all edges from vi to Qztvu for all i ď n ´ 1.
Then NG2

pviq “ Xiztviu and G2rpXiztviuq Y pQztvuqs is isomorphic to
Kn´1 aKn´1. Let w1, w2, . . ., wn´1 be an arbitrary enumeration of vertices
in Qztvu. For each i P t1, 2, . . . , n ´ 2u, there are vertices xi, yi P Xiztviu
such that NG2

pxiq X Q “ twiu and NG2
pyiq X Q “ twi`1u. Let xn´1 be the

neighbor of wn´1 in Xn´1. Then wixiviyiwi`1 is an induced path and so
w1x1v1y1w2x2v2y2 ¨ ¨ ¨wn´2xn´2vn´2yn´2wn´1xn´1vn´1 is an induced path
on n´ 1` 3pn´ 2q ` 2 “ 4n´ 5 vertices in G2. Thus, G has a vertex-minor
isomorphic to P4n´5.

4.2 The second case

We will use the product Ramsey theorem described below.

Theorem 4.8 ([26, Theorem 11.5]; See also [13]). Let r, t be positive inte-
gers, and let k1, k2, . . . , kt be nonnegative integers, and let m1,m2, . . . ,mt

be integers with mi ě ki for each i P t1, 2, . . . , tu. Then there exists an inte-
ger R “ Rprodpr, t; k1, k2, . . . , kt;m1,m2, . . . ,mtq such that if X1,X2, . . . ,Xt

are sets with |Xi| ě R for each i P t1, 2, . . . , tu, then for every func-
tion f :

`

X1

k1

˘

ˆ
`

X2

k2

˘

ˆ ¨ ¨ ¨ ˆ
`

Xt

kt

˘

Ñ t1, 2, . . . , ru, there exist an element
α P t1, 2, . . . , ru and subsets Y1, Y2, . . . , Yt of X1,X2, . . . ,Xt, respectively,
so that |Yi| ě mi for each i P t1, 2, . . . , tu, and f maps every element of
`

Y1

k1

˘

ˆ
`

Y2

k2

˘

ˆ ¨ ¨ ¨ ˆ
`

Yt

kt

˘

to α.

Lemma 4.9. For integers s and t, there exist M “ fps, tq and N “ gps, tq
such that for m ě M and n ě N , if a graph G has 2m disjoint n-vertex
sets X1, X2, . . . ,Xm, Y1, Y2, . . . , Ym, each Xi is a clique of G, GrX1 Y X2 Y
¨ ¨ ¨ YXms is isomorphic to mKn, and one of Kn aKn, Kn aKn, Kn bKn,
and Kn b Kn is isomorphic to all GrXi Y Yis, then there exist indices 1 ď
i1 ă i2 ă ¨ ¨ ¨ ă is ď m and subsets X˚

1 , X
˚
2 , . . ., X

˚
s of Xi1 , Xi2 , . . ., Xis

respectively and subsets Y ˚
1 , Y

˚
2 , . . ., Y

˚
s of Yi1 , Yi2 , . . ., . . ., Yis respectively

such that the following hold.
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(i) |X˚
i | “ |Y ˚

i | “ t for all 1 ď i ď s,

(ii) one of Kt a Kt, Kt a Kt, Kt b Kt, and Kt b Kt is isomorphic to all
GrX˚

i Y Y ˚
i s for all 1 ď i ď s,

(iii) X˚
i is complete to Y ˚

j for all i ă j or X˚
i is anti-complete to Y ˚

j for
all i ă j,

(iv) Y ˚
i is complete to X˚

j for all i ă j or Y ˚
i is anti-complete to X˚

j for
all i ă j,

(v) Y ˚
i is complete to Y ˚

j for all i ă j or Y ˚
i is anti-complete to Y ˚

j for all
i ă j.

In other words, G has an induced subgraph isomorphic to one of

pKt a Ktq
s
A, pKt a Ktq

s
A, pKt b Ktq

s
A, and pKt b Ktq

s
A

for some 0-1 matrix A “ p 0 b
c d q.

Proof. Let m ě M :“ Rps; 8q and let

n ě N :“ Rprodp8pm
2
q,m; 1, 1, . . . , 1; t, t, . . . , tq.

The first step of the proof is to clean up edges between Xi Y Yi and Xj YYj

for distinct i and j. We consider a function that maps pv1, v2, . . . , vmq for
vi P Yi to an edge-coloring of Km with colors on the edges ij based on the
three possible adjacencies between a pair of vi and its unique neighbor or
non-neighbor in Xi and a pair of vj and its unique neighbor or non-neighbor
in Xj . Each edge of Km will receive one of 23 colors and the range of this

function has at most 8pm
2
q edge-colorings of Km. By Theorem 4.8, there exist

subsets X 1
1, X

1
2, . . ., X

1
m, Y 1

1 , Y
1
2 , . . ., Y

1
m of X1, X2, . . . ,Xm, Y1, Y2, . . . , Ym,

respectively, such that

(i) |X 1
i| “ |Y 1

i | “ t,

(ii) for each i ‰ j, X 1
i is complete or anti-complete to Y 1

j , and Y 1
i is complete

or anti-complete to Y 1
j ,

(iii) one of Kt a Kt, Kt a Kt, Kt b Kt, and Kt b Kt is isomorphic to all
GrX 1

i Y Y 1
i s.

Now our next goal is to take a subset of t1, 2, . . . ,mu by using Ramsey’s
theorem. Let us color the edges ij of Km (i ă j) by the one of 8 colors
determined by the following:

15



• X 1
i is complete to Y 1

j or not.

• Y 1
i is complete to X 1

j or not.

• Y 1
i is complete to Y 1

j or not.

Then by Ramsey’s theorem, there exists a subset I of t1, 2, . . . ,mu with
|I| “ s such that every edge ofKm has the same color. Let I “ ti1, i2, . . . , isu
for i1 ă i2 ă ¨ ¨ ¨ ă is and X˚

j “ Xij , Y
˚
j “ Yij for 1 ď j ď s. This provides

our conclusion.

Now we will see that in many cases, we will have a vertex-minor isomor-
phic to nT2,n.

Lemma 4.10. Let n be a positive integer.

(1) Kn`1 a Kn`1 contains a vertex-minor isomorphic to T2,n.

(2) Kn`2 a Kn`2 contains a vertex-minor isomorphic to T2,n.

(3) Kn`2 b Kn`2 contains a vertex-minor isomorphic to T2,n.

(4) Kn`1 b Kn`1 contains a vertex-minor isomorphic to T2,n.

Therefore, if A “ p 0 0
0 0 q, then all of pKn`1 a Kn`1qnA, pKn`2 a Kn`2qnA,

pKn`2 b Kn`2qnA, and pKn`1 b Kn`1qnA have vertex-minors isomorphic to
nT2,n.

Proof. (1) Let V pKn`1q “ tvi : 1 ď i ď n ` 1u and V pKn`1q “ twi : 1 ď
i ď n ` 1u. The graph pKn`1 a Kn`1 ´ w1q ˚ v1 is isomorphic to T2,n.

(2) Let tvi : 1 ď i ď n` 2u and twi : 1 ď i ď n` 2u be the vertex sets of
two copies of Kn`2. The graph ppKn`2 a Kn`2 ´ tv1, w2uq ˚ v2 ˚ w1q ´ tw1u
is isomorphic to T2,n.

(3) Let V pKn`2q “ tvi : 1 ď i ď n ` 2u and V pKn`2q “ twi : 1 ď i ď
n` 2u. The graph ppKn`2 bKn`2 ´ tw1, v2uq ˚ v1 ˚w2q ´ tw2u is isomorphic
to T2,n.

(4) Let tvi : 1 ď i ď n ` 1u and twi : 1 ď i ď n ` 1u be the vertex sets
of two copies of Kn`1. The graph pKn`1 b Kn`1 ´ w1q ˚ v1 is isomorphic
to the graph obtained from Kn a Kn by adding a vertex v1 adjacent to all
other vertices. Thus, the graph pKn`1 b Kn`1 ´ w1q ˚ v1 ˚ v2 ˚ ¨ ¨ ¨ ˚ vn`1 is
isomorphic to T2,n.

In the following lemma, we show that if A is not symmetric, then we
obtain Pn as a vertex-minor.
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Lemma 4.11. Let n ě 2 be an integer. If A “ p 0 b
c d q is a 0-1 matrix such

that b ‰ c, then both pK1 a K1qnA and pK1 b K1qn`1
A have vertex-minors

isomorphic to Pn.

Proof. If d “ 0, then pK1aK1qnA is isomorphic to KnmKn and pK1bK1qn`1
A

contains an induced subgraph isomorphic to Kn m Kn. If d “ 1, then
pK1aK1qnA is isomorphic to Kn mKn and pK1 bK1qn`1

A contains an induced
subgraph isomorphic to Kn m Kn. By Lemma 2.2, there is a vertex-minor
isomorphic to P2n´2 in both cases.

Lemma 4.12. Let n ě 2 be an integer. If A “ p 0 0
0 1 q, then all of pKn`2 a

Kn`2qn`1
A , pKn`2 a Kn`2qn`1

A , pKn`2 b Kn`2qn`1
A , and pKn`2 b Kn`2qn`1

A

have vertex-minors isomorphic to nT2,n.

Proof. Let H be the one of Kn`2 a Kn`2, Kn`2 a Kn`2, Kn`2 b Kn`2, or
Kn`2 b Kn`2 and let G “ Hn`1

A . Let X1, Y1 be the sets of vertices of the
first copy of H in G where X1 denotes the set of vertices in Kn`2 and Y1

denotes the other vertices. Let w be a vertex in Y1.
Then G˚w contains an induced subgraph isomorphic to pKn`2aKn`2qnB ,

pKn`2 a Kn`2qnB , pKn`2 b Kn`2qnB , or pKn`2 b Kn`2qnB for B “ p 0 0
0 0 q. By

Lemma 4.10, it has a vertex-minor isomorphic to nT2,n.

Lemma 4.13. Let n ě 2 be an integer. If A “ p 0 1
1 d q for some d P t0, 1u,

then all of pKn`2 a Kn`2qn`2
A , pKn`2 a Kn`2qn`2

A , pKn`2 b Kn`2qn`2
A , and

pKn`2 b Kn`2qn`2
A have vertex-minors isomorphic to nT2,n.

Proof. Let H be the one of Kn`2 a Kn`2, Kn`2 a Kn`2, Kn`2 b Kn`2,
or Kn`2 b Kn`2 and let G “ Hn`2

A . There exists an induced subgraph G1

of G and an edge xy of G1 such that G1 ´ x ´ y is isomorphic to Hn`1
A ,

x is complete to the bottom part of copies of H, and anti-complete to the
top part of copies of H, and y is complete to the top part of copies of H,
and is either complete or anti-complete to the bottom part of copies of H,
because we can choose a vertex x from the top part of H and a neighbor y
is chosen from the bottom part in the same copy of H. Now, it is easy to
see that G1 ˚ x ˚ y ˚ x ´ x ´ y is isomorphic to one of pKn`2 a Kn`2qn`1

B ,
pKn`2 aKn`2qn`1

B , pKn`2 bKn`2qn`1
B , and pKn`2 bKn`2qn`1

B for a matrix
B “ p 0 0

0 d q. By Lemmas 4.10 and 4.12, G has a vertex-minor isomorphic to
nT2,n.

5 Main proof

We are ready to prove our main theorem, restated below.

17



Theorem 1.3. A vertex-minor ideal C has bounded depth-2 rank-brittleness
if and only if

tP1, P2, P3, P4, . . .u Ę C,

and
tT2,1, 2T2,2, 3T2,3, 4T2,4, . . .u Ę C.

Before the proof, let us discuss why the two conditions in Theorem 1.3,
tP1, P2, P3, . . .u Ę C and tT2,1, 2T2,2, 3T2,3, . . .u Ę C, are incomparable. First
we sketch the proof showing that no path contains T2,3 as a vertex-minor.
The tree T2,3 is a tree having a vertex v such that T2,3 ´ v contains three
components having linear rank-width 1. (The definition of linear rank-width
will be discussed in Section 6.) It implies that it has linear rank-width
at least 2, by a characterization of linear rank-width on trees, see [1, 2].
However, paths have linear rank-width 1 and therefore no path contains
T2,3 as a vertex-minor. Thus, if C is the set of all vertex-minors of Pn

for all n, then C does not satisfy the first condition but satisfies the second
condition. Secondly we claim that no nT2,n contains a long path as a vertex-
minor. It is not difficult to see that nT2,n has depth-3 rank-brittleness at
most 3. However, tP1, P2, P3, . . .u has unbounded rank-depth [6], and thus
unbounded depth-3 rank-brittleness. So, if C is the set of all vertex-minors
of nT2,n for all n, then C does not satisfy the second condition but satisfies
the first condition.

Now let us start the proof of Theorem 1.3. Our first lemma is to
prove the forward implication. It is already known that tP1, P2, P3, . . .u has
unbounded rank-depth [6] and therefore it has unbounded depth-2 rank-
brittleness. Thus, to prove the forward implication, it is enough to show
that tT2,1, 2T2,2, 3T2,3, 4T2,4, . . .u has unbounded depth-2 rank-brittleness.

Lemma 5.1. The class tT2,1, 2T2,2, 3T2,3, 4T2,4, . . .u has unbounded depth-2
rank-brittleness.

Proof. We claim that nT2,n has depth-2 rank-brittleness at least n{2. Sup-
pose that nT2,n admits a pm, 2q-decomposition pT, σq with m ă n{2. Then
T has a root r from which every leaf is within distance at most 2, and we
may assume that r is not a leaf. By subdividing an edge if necessary, we
may further assume that no leaf is adjacent to r.

Let r1, r2, . . ., rm be the neighbors of r. We color each vertex v of nT2,n

by i P t1, 2, . . . ,mu if the component of T ´ r containing σpvq has ri. An
edge of nT2,n is colorful if its ends have distinct colors. Let C1, C2, . . ., Cn

be the components of nT2,n.
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Suppose that a component Ci is fully contained in Xj for some j. Then,
since Ci contains an induced matching of size n, the width of rj has to be
at least n. This contradicts the assumption that pT, σq has width less than
n{2. Thus, we may assume that no component Ci is fully contained in some
Xj . So every component Ci has a colorful edge and therefore nT2,n has a
set F of n colorful edges in distinct components.

LetX be a subset of t1, 2, . . . ,mu chosen uniformly at random. A colorful
edge of nT2,n is X-colorful if one end has a color in X and the other end has
a color not in X. Then by the linearity of expectation, the expected number
of X-colorful edges in F is n{2. This means that there exists X such that
there are at least n{2 X-colorful edges in distinct components of nT2,n and
so the width of r is at least n{2, contradicting the assumption on pT, σq.

The following proposition proves the backward implication of Theo-
rem 1.3.

Proposition 5.2. For every integer n ě 2, there exists an integer N :“ dpnq
such that every graph G of depth-2 rank-brittleness at least N contains a
vertex-minor isomorphic to Pn or nT2,n.

Proof. Let σ be the function defined in Proposition 4.5 and let f , g be the
functions defined in Lemma 4.9. Let m :“ maxpn, fpn ` 2, n ` 2q, gpn `
2, n ` 2qq. and let dpnq :“ σpmq. By Proposition 4.5, G has a vertex-minor
G1 satisfying one of the following:

(i) V pG1q “ X˚
1 YX˚

2 Y¨ ¨ ¨YX˚
mYQ˚ for disjoint sets X˚

1 , X
˚
2 , . . . ,X

˚
m, Q˚

ofm vertices such that each X˚
i is a clique in G1, G1rX˚

1 YX˚
2 Y¨ ¨ ¨YX˚

ms
is isomorphic to mKm, and either Km aKm or Km bKm is isomorphic
to all G1rX˚

i Y Q˚s.

(ii) V pG1q “ X˚
1 Y X˚

2 Y ¨ ¨ ¨ Y X˚
m Y Y ˚

1 Y Y ˚
2 Y ¨ ¨ ¨ Y Y ˚

m for disjoint sets
X˚

1 , X
˚
2 , . . . ,X

˚
m, Y ˚

1 , Y
˚
2 , . . . , Y

˚
m of m vertices such that each X˚

i is a
clique in G1, G1rX˚

1 Y X˚
2 Y ¨ ¨ ¨ Y X˚

ms is isomorphic to mKm, and one
of Km aKm, Km aKm, Km bKm, and Km bKm is isomorphic to all
G1rX˚

i Y Y ˚
i s.

(iii) G1 is isomorphic to Pm.

If (i) holds, then by Lemmas 4.6 and 4.7, G1 has a vertex-minor isomorphic
to P3m´1 or P4m´5. So if (i) or (iii) holds, then G has a vertex-minor
isomorphic to Pn. If (ii) holds, then by Lemma 4.9, G1 has an induced
subgraph isomorphic to one of

pKn`2aKn`2qn`2
A , pKn`2aKn`2qn`2

A , pKn`2bKn`2qn`2
A , pKn`2bKn`2qn`2

A
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for some 0-1 matrix A “ p 0 b
c d q. By Lemmas 4.10, 4.11, 4.12, and 4.13, G1

has a vertex-minor isomorphic to Pn to nT2,n.

6 Rank-depth and linear rank-width

By Theorem 1.3, for a fixed positive integer n, nP5-vertex-minor free graphs
have bounded depth-2 rank-brittleness, and thus have bounded rank-depth.
We will show that they have bounded linear rank-width. Indeed, we will
show that graphs of bounded rank-depth have bounded linear rank-width.
This was also proved by Ganian, Hliněný, Nešetřil, Obdržálek, and Ossona
de Mendez [11, Proposition 3.4] in terms of shrub-depth and linear clique-
width, but our proof provides an explicit bound.

First let us review the definition of linear rank-width [10, 15, 23]. For a
graph G, an ordering px1, . . . , xnq of the vertex set V pGq is called a linear
layout of G. If |V pGq| ě 2, then the width of a linear layout px1, . . . , xnq of G
is defined as max

1ďiďn´1
ρGptx1, . . . , xiuq, and if |V pGq| “ 1, then the width is

defined to be 0. The linear rank-width of G, denoted by lrwpGq, is defined
as the minimum width over all linear layouts of G. It is easy to see that if
H is a vertex-minor of G, then lrwpHq ď lrwpGq.

Proposition 6.1. For a graph G, lrwpGq ď rdpGq2.

Proof. If G has 1 vertex, then lrwpGq “ rdpGq “ 0. So, we may assume
that G has at least 2 vertices. Let k “ rdpGq, and let pT, σq be a pk, kq-
decomposition of G. Let r be a node of T within distance at most k from
every node of T .

Let v1, v2, . . . , vm be a DFS ordering of T . Let n “ |V pGq|. Let
w1, w2, . . . , wn be an ordering of the vertices of G such that for all 1 ď
i ă j ď n, σpiq appears before σpjq in the DFS ordering v1, v2, . . . , vm of T .
We claim that pw1, w2, . . . , wnq has width at most k2. Let i P t1, 2, . . . ,mu,
Ai :“ tv1, . . . , viu, Bi :“ V pT qzAi, A1

i “ tv P vpGq : σpvq P Aiu, and
B1

i “ tv P V pGq : σpvq P Biu. By the property of the depth-first search, T
has a path Pi from r consisting of nodes in Ai such that for each node w in
Bi, the first vertex in Ai in the path from w to r is on Pi.

As T has radius at most k, we can take Pi to have length at most k ´ 1.
For w P V pPiq, let Xw be the set of all vertices x of G mapped to a node

σpxq in Bi such that w is the first vertex in Ai in the path from σpxq to r is
on Pi.

Since pT, σq has width at most k, the cut-rank of Xw is at most k. As
B1

i “
Ť

wPV pPiq Xw, we deduce that ρGpB1
iq ď

ř

wPV pPiq ρGpXwq ď k2 by the
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submodularity of the cut-rank function. This implies that the width of the
linear layout is at most k2.

Corollary 1.4. For every positive integer n, graphs with no vertex-minors
isomorphic to nP5 have bounded depth-2 rank-brittleness, bounded rank-
depth, and bounded linear rank-width.

Proof. Let C be the class of nP5-vertex-minor free graphs. Then P6n R C and
nT2,n R C. Thus, by Theorem 1.3, C has bounded depth-2 rank-brittleness,
and thus bounded rank-depth. By Proposition 6.1, it also has bounded
linear rank-width.
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