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Coloring rings
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Abstract

A ring is a graph R whose vertex set can be partitioned into k ≥ 4
nonempty sets, X1, . . . , Xk, such that for all i ∈ {1, . . . , k}, the set Xi

can be ordered as Xi = {u1
i
, . . . , u

|Xi|
i

} so that Xi ⊆ NR[u
|Xi|
i

] ⊆ · · · ⊆
NR[u

1
i
] = Xi−1 ∪ Xi ∪ Xi+1. A hyperhole is a ring R such that for

all i ∈ {1, . . . , k}, Xi is complete to Xi−1 ∪ Xi+1. In this paper, we
prove that the chromatic number of a ring R is equal to the maximum
chromatic number of a hyperhole in R. Using this result, we give a
polynomial-time coloring algorithm for rings.

Rings formed one of the basic classes in a decomposition theorem
for a class of graphs studied by Boncompagni, Penev, and Vušković
in [Journal of Graph Theory 91 (2019), 192–246]. Using our coloring
algorithm for rings, we show that graphs in this larger class can also
be colored in polynomial time. Furthermore, we find the optimal χ-
bounding function for this larger class of graphs, and we also verify
Hadwiger’s conjecture for it.

Keywords: chromatic number, vertex coloring, algorithms, optimal
χ-bounding function, Hadwiger’s conjecture.

1 Introduction

All graphs in this paper are finite, simple, and nonnull. As usual, the vertex
set and edge set of a graph G are denoted by V (G) and E(G), respectively;
for a vertex v of G, NG(v) is the set of neighbors of v in G, and NG[v] =
NG(v) ∪ {v}.
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A ring is a graph R whose vertex set can be partitioned into k ≥ 4
nonempty sets X1, . . . ,Xk (whenever convenient, we consider indices of the
Xi’s to be modulo k), such that for all i ∈ {1, . . . , k} the set Xi can be

ordered as Xi = {u1i , . . . , u
|Xi|
i } so that

Xi ⊆ NR[u
|Xi|
i ] ⊆ · · · ⊆ NR[u

1
i ] = Xi−1 ∪Xi ∪Xi+1.

(Note that this implies that X1, . . . ,Xk are all cliques1 of R, and that
u11, u

1
2, . . . , u

1
k, u

1
1 is a hole2 of length k in R.) Under such circumstances,

we also say that the ring R is of length k, or that R is a k-ring; furthermore,
(X1, . . . ,Xk) is called a ring partition of R. A ring is even or odd depend-
ing on the parity of its length. Rings played an important role in [2]: they
formed a “basic class” in the decomposition theorems for a couple of graph
classes defined by excluding certain “Truemper configurations” as induced
subgraphs (more on this in subsection 1.1). In that paper, the complexity of
the optimal vertex coloring problem for rings was left as an open problem.3

In the present paper, we give a polynomial-time coloring algorithm for rings
(see Theorems 4.3 and 5.2).

It can easily be shown that every ring is a circular-arc graph. Further-
more, rings have unbounded clique-width. To see this, let k ≥ 3 be an
integer, and let R be a (k + 1)-ring with ring partition (X1, . . . ,Xk,Xk+1)
such that the cliques Xi are all of size k+1, with vertices labeled 0, 1, . . . , k,
and furthermore, assume that vertices labeled p and q from consecutive
cliques of the ring partition are adjacent if and only if p + q ≤ k. Now,
the graph obtained from R by first deleting Xk+1, and then deleting all the
vertices labeled 0, is precisely the permutation graph Hk defined in [8], and
the clique-width of Hk is at least k (see Lemma 5.4 from [8]).

Given graphs H and G, we say that G contains H if G contains an
induced subgraph isomorphic to H; if G does not contain H, then G is H-
free. For a family H of graphs, we say that a graph G is H-free if G is H-free
for all H ∈ H.

Given a graph G, a clique of G is a (possibly empty) set of pairwise
adjacent vertices of G, and a stable set of G is a (possibly empty) set of
pairwise nonadjacent vertices of G. The clique number of G, denoted by
ω(G), is the maximum size of a clique of G, and the stability number of G,
denoted by α(G), is the maximum size of a stable set of G. A proper coloring
of G is an assignment of colors to the vertices of G in such a way that no
two adjacent vertices receive the same color. For a positive integer r, G is
said to be r-colorable if there is a proper coloring of G that uses at most
r colors. The chromatic number of G, denoted by χ(G), is the minimum

1A clique is a set of pairwise adjacent vertices.
2A hole is an induced cycle of length at least four.
3In fact, only odd rings are difficult in this regard; even rings are readily colorable in

polynomial time (see Lemma 3.2).
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number of colors needed to properly color G. An optimal coloring of G is a
proper coloring of G that uses only χ(G) colors.

Given a graph G, a vertex v ∈ V (G), and a set S ⊆ V (G) \ {v}, we say
that v is complete (resp. anticomplete) to S in G provided that v is adjacent
(resp. nonadjacent) to every vertex of S; given disjoint sets X,Y ⊆ V (G),
we say that X is complete (resp. anticomplete) to Y in G provided that every
vertex in X is complete (resp. anticomplete) to Y in G.

A hole is a chordless cycle on at least four vertices; the length of a hole is
the number of its vertices, and a hole is even or odd according to the parity
of its length. When we say “H is a hole in G,” we mean that H is a hole
that is an induced subgraph of G.

A hyperhole is any graph H whose vertex set can be partitioned into k ≥
4 nonempty cliques X1, . . . ,Xk (whenever convenient, we consider indices
of the Xi’s to be modulo k) such that for all i ∈ {1, . . . , k}, Xi is complete
to Xi−1 ∪Xi+1 and anticomplete to V (H) \ (Xi−1 ∪Xi ∪Xi+1); under such
circumstances, we also say that H is a hyperhole of length k, or that H is a
k-hyperhole. A hyperhole is even or odd according to the parity of its length.
Note that every hole is a hyperhole, and every hyperhole is a ring. When
we say “H is a hyperhole in G,” we mean that H is a hyperhole that is an
induced subgraph of G.

Hyperholes can be colored in linear time [11]. Furthermore, the following
lemma gives a formula for the chromatic number of a hyperhole.

Lemma 1.1. [11] Let H be a hyperhole. Then χ(H) = max
{
ω(H),

⌈
|V (H)|
α(H)

⌉}
.

The main result of the present paper is the following theorem.

Theorem 1.2. Let k ≥ 4 be an integer, and let R be a k-ring. Then
χ(R) = max{χ(H) | H is a k-hyperhole in R}.

It was shown in [2] that all holes of a k-ring (k ≥ 4) are of length k;4

consequently, all hyperholes in a k-ring are of length k. Thus, Theorem 1.2 in
fact establishes that the chromatic number of a ring is equal to the maximum
chromatic number of a hyperhole in the ring.

It is easy to see that the stability number of any k-hyperhole (k ≥ 4)
is ⌊k/2⌋. Thus, the following is an immediate corollary of Lemma 1.1 and
Theorem 1.2.

Corollary 1.3. Let k ≥ 4 be an integer, and let R be a k-ring. Then

χ(R) = max
(
{ω(R)} ∪

{⌈
|V (H)|
⌊k/2⌋

⌉
| H is a k-hyperhole in R

})
.

Using Theorem 1.2,5 we construct an O(n6) algorithm that computes
an optimal coloring of an input ring (see Theorem 4.3). Furthermore, using

4In the present paper, this result is stated as Lemma 2.2(b).
5More precisely, we use Lemma 4.1, which is a corollary of Theorem 1.2 and Lemma 3.5.

Lemma 3.5, in turn, is the main part of the proof of Theorem 1.2.
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Corollary 1.3, we also give an O(n3) time algorithm that computes the
chromatic number of a ring without actually finding an optimal coloring of
that ring (see Theorem 5.2).

1.1 Terminology, notation, and paper outline

For a function f : A → B and a set A′ ⊆ A, we denote by f ↾ A′ the
restriction of f to A′.

The complement of a graph G is denoted by G. For a nonempty set
X ⊆ V (G), we denote by G[X] the subgraph of G induced by X; for vertices
x1, . . . , xt ∈ V (G), we often write G[x1, . . . , xt] instead of G[{x1, . . . , xt}].
For a set S $ V (G), we denote by G \ S the subgraph of G obtained by
deleting S, i.e. G \ S = G[V (G) \ S]; if G has at least two vertices and
v ∈ V (G), then we often write G \ v instead of G \ {v}.6

A class of graphs is hereditary if it is closed under isomorphism and
induced subgraphs. More precisely, a class G of graphs is hereditary if for
every graph G ∈ G, the class G contains all isomorphic copies of induced
subgraphs of G.

A theta is any subdivision of the complete bipartite graph K2,3; in par-
ticular, K2,3 is a theta. A pyramid is any subdivision of the complete graph
K4 in which one triangle remains unsubdivided, and of the remaining three
edges, at least two edges are subdivided at least once. A prism is any subdi-
vision of C6 in which the two triangles remain unsubdivided; in particular,
C6 is a prism. A three-path-configuration (or 3PC for short) is any theta,
pyramid, or prism.

A wheel is a graph that consists of a hole and an additional vertex that
has at least three neighbors in the hole. If this additional vertex is adjacent
to all vertices of the hole, then the wheel is said to be a universal wheel; if
the additional vertex is adjacent to three consecutive vertices of the hole,
and to no other vertex of the hole, then the wheel is said to be a twin wheel.
A proper wheel is a wheel that is neither a universal wheel nor a twin wheel.

A Truemper configuration is any 3PC or wheel (for a survey, see [15]).
Note that every Truemper configuration contains a hole. Note, furthermore,
that every prism or theta contains an even hole, and every pyramid contains
an odd hole. Thus, even-hole-free graphs contain no prisms and no thetas,
and odd-hole-free graphs contain no pyramids.

GT is the class of all (3PC, proper wheel, universal wheel)-free graphs;
thus, the only Truemper configurations that a graph in GT may contain
are the twin wheels. Clearly, the class GT is hereditary. A decomposition
theorem for GT (where rings form one of the “basic classes”) was obtained
in [2],7 as were polynomial-time algorithms that solve the recognition, max-
imum weight clique, and maximum weight stable set problems for the class

6Since our graphs are nonnull, if G has just one vertex, say v, then G \ v is undefined.
7In the present paper, this decomposition theorem is stated as Theorem 2.11.
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GT. The complexity of the optimal coloring problem for GT was left open
in [2], and the main obstacle in this context were rings. In the present
paper, we show that graphs in GT can be colored in polynomial time (see
Theorems 4.4 and 5.3).

A simplicial vertex is a vertex whose neighborhood is a (possibly empty)
clique. For an integer k ≥ 4, let Rk be the class of all graphs G that have
the property that every induced subgraph of G either is a k-ring or has a
simplicial vertex; clearly, Rk is hereditary, and furthermore (by Lemma 2.8)
it contains all k-rings. We remark that graphs in Rk are precisely the
chordal graphs,8 and the graphs that can be obtained from a k-ring by
(possibly) repeatedly adding simplicial vertices (see Lemma 2.9). Further,

for all integers k ≥ 4, we set R≥k =
∞⋃
i=k

Ri; clearly, R≥k is hereditary, and

furthermore (by Lemma 2.8) it contains all rings of length at least k. In
particular, the class R≥4 is hereditary and contains all rings. We show that
graphs inR≥4 can be colored in polynomial time (see Theorems 4.3 and 5.2).

A clique-cutset of a graph G is a (possibly empty) clique C $ V (G)
of G such that G \ C is disconnected. A clique-cut-partition of a graph
G is a partition (A,B,C) of V (G) such that A and B are nonempty and
anticomplete to each other, and C is a (possibly empty) clique. Clearly, a
graph admits a clique-cutset if and only if it admits a clique-cut-partition.

A graph is perfect if all its induced subgraphs H satisfy χ(H) = ω(H).
The Strong Perfect Graph Theorem [3] states that a graph G is perfect if
and only if neither G nor G contains an odd hole.

N is the set of all positive integers. A hereditary class G is χ-bounded
if there exists a function f : N → N (called a χ-bounding function for G)
such that all graphs G ∈ G satisfy χ(G) ≤ f(ω(G)). For a hereditary
χ-bounded class G that contains all complete graphs (equivalently: that
contains graphs of arbitrarily large clique number), we say that a χ-bounding
function f : N → N for G is optimal if for all n ∈ N, there exists a graph
G ∈ G such that ω(G) = n and χ(G) = f(n). It was shown in [2] that GT is χ-
bounded by a linear function; more precisely, it was shown that every graph

G ∈ GT satisfies χ(G) ≤
⌊
3
2ω(G)

⌋
.9 In the present paper, we improve this

χ-bounding function, and in fact, we find the optimal χ-bounding function
for the class GT (see Theorem 6.15).

Finally, we consider Hadwiger’s conjecture. Let H be an n-vertex graph
with vertex set V (H) = {v1, . . . , vn}. We say that a graph G contains H as
a minor if there exist pairwise disjoint, nonempty subsets S1, . . . , Sn ⊆ V (G)
(called branch sets) such that G[S1], . . . , G[Sn] are all connected, and such
that for all distinct i, j ∈ {1, . . . , n} with vivj ∈ E(H), there is at least one
edge between Si and Sj in G. As usual, the complete graph on k vertices is

8A graph is chordal if it contains no holes.
9See Theorem 7.6 from [2].
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denoted by Kk. Hadwiger’s conjecture states that every graph G contains
Kχ(G) as a minor. Using Theorem 1.2, we prove that rings satisfy Hadwiger’s
conjecture (see Lemma 7.2), and as a corollary, we obtain that graphs in GT

also satisfy Hadwiger’s conjecture (see Theorem 7.4).
A hyperantihole is a graph A whose vertex set can be partitioned into

nonempty cliques X1, . . . ,Xk (k ≥ 4)10 such that for all i ∈ {1, . . . , k}, Xi is
complete to V (A) \ (Xi−1 ∪Xi ∪Xi+1) and anticomplete to Xi−1 ∪Xi+1.

11

Under these circumstances, we also say that the hyperantihole A is of length
k, and that A is a k-hyperantihole. A hyperantihole is odd or even depending
on the parity of its length.

The remainder of this paper is organized as follows. In section 2, we
state a few results from the literature that we need in the remainder of the
paper; in section 2, we also prove a few easy lemmas about rings and their
induced subgraphs, and about classes Rk and R≥k (k ≥ 4). In section 3, we
prove Theorem 1.2, and we also give a polynomial-time coloring algorithm
for even rings (see Lemma 3.2). In section 4, we give an O(n6) time coloring
algorithm for rings (see Theorem 4.3).12 Even rings are easy to color (see
Lemma 3.2); our coloring algorithm for odd rings relies on ideas from the
proof of Theorem 1.2. Using our coloring algorithm for rings, as well as
various results from the literature, we also construct an O(n7) time coloring
algorithm for graphs in GT (see Theorem 4.4). In section 5, we construct an
O(n3) time algorithm that computes the chromatic number of a ring (see
Theorem 5.2),13 and more generally, we construct an O(n5) time algorithm
that computes the chromatic number of graphs in GT (see Theorem 5.3).14

In section 6, we obtain the optimal χ-bounding function for the class GT (see
Theorem 6.15). Furthermore, in section 6, for each odd integer k ≥ 5, we
obtain the optimal bound for the chromatic number in terms of the clique
number for k-hyperholes and k-hyperantiholes.15 Finally, in section 7, we
prove Hadwiger’s conjecture for the class GT (see Theorem 7.4).

10Whenever convenient, we consider indices of the Xi’s to be modulo k.
11Note that the complement of a hyperantihole need not be a hyperhole.
12In fact, this is a coloring algorithm for graphs in R≥4. By Lemma 2.8, R≥4 contains

all rings.
13In fact, our algorithm computes the chromatic number of graphs in R≥4.
14The difference between the algorithms from Theorems 4.3 and 4.4 on the one hand,

and the algorithms from Theorems 5.2 and 5.3 on the other, is that the former compute
an optimal coloring of the input graph from the relevant class, whereas the latter only
compute the chromatic number (but are significantly faster than the former).

15We only defined χ-boundedness for hereditary classes, and so, technically, these are
not “χ-bounding functions” for the classes of k-hyperholes and k-hyperantiholes. They
are, however, the optimal χ-bounding functions for the closures of these classes under
induced subgraphs. See section 6 for the details.
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2 A few preliminary lemmas

In this section, we state a few results from the literature, which we use later
in the paper. We also prove a few easy results about rings and their induced
subgraphs, and about classes Rk and R≥k (k ≥ 4).

Given a graph G and distinct vertices u, v ∈ V (G), we say that u dom-
inates v in G, and that v is dominated by u in G, whenever NG[v] ⊆
NG[u]. The following lemma was stated without proof in [2] (see Lemma 1.4
from [2]); it readily follows from the definition of a ring, as the reader can
check.

Lemma 2.1. [2] Let G be a graph, and let (X1, . . . ,Xk), with k ≥ 4, be a
partition of V (G). Then G is a k-ring with ring partition (X1, . . . ,Xk) if
and only if all the following hold:16

(a) X1, . . . ,Xk are cliques;

(b) for all i ∈ {1, . . . , k}, Xi is anticomplete to V (G)\ (Xi−1 ∪Xi∪Xi+1);

(c) for all i ∈ {1, . . . , k}, some vertex of Xi is complete to Xi−1 ∪Xi+1;

(d) for all i ∈ {1, . . . , k}, and all distinct yi, y
′
i ∈ Xi, one of yi, y

′
i domi-

nates the other.

Recall that a graph is chordal if it contains no holes. The following is
Lemma 2.4(a)-(d) from [2].

Lemma 2.2. [2] Let R be a k-ring (k ≥ 4) with ring partition (X1, . . . ,Xk).
Then all the following hold:

(a) every hole in R intersects each of X1, . . . ,Xk in exactly one vertex;

(b) every hole in R is of length k;

(c) for all i ∈ {1, . . . , k}, R \Xi is chordal;

(d) R ∈ GT.

Note that Lemma 2.2(b) states that, for an integer k ≥ 4, every hyper-
hole in a k-ring is of length k. On the other hand, Lemma 2.2(d) implies
that R≥4 ⊆ GT,

17 but we will not need this in the remainder of the paper.

16As usual, indices of the Xi’s are understood to be modulo k.
17Indeed, suppose that G ∈ R≥4, and assume inductively that all graphs in R≥4 on

fewer than |V (G)| vertices belong to GT. If G is a ring, then Lemma 2.2(d) guarantees
that G ∈ GT. So suppose that G is not a ring. Then by the definition of R≥4, G has a
simplicial vertex, call it v. Obviously, K1 ∈ GT, and so we may assume that |V (G)| ≥ 2.
Note that no Truemper configuration contains a simplicial vertex, and so v does not belong
to any induced Truemper configuration in G. Since GT was defined by forbidding certain
Truemper configurations as induced subgraphs, we deduce that G belongs to GT if and
only if G\v does. Now, since R≥4 is hereditary and contains G, we see that G\v belongs
to R≥4. It then follows from the induction hypothesis that G \ v belongs to GT, and we
deduce that G ∈ GT.
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Rings can be recognized in polynomial time. More precisely, the follow-
ing is Lemma 8.14 from [2]. (In all our algorithms, n denotes the number of
vertices and m the number of edges of the input graph.)

Lemma 2.3. [2] There exists an algorithm with the following specifications:

• Input: A graph G;

• Output: Either the true statement that G is a ring, together with the
length and ring partition of the ring, or the true statement that G is
not a ring;

• Running time: O(n2).

As an easy corollary of Lemma 2.3, we can obtain Lemma 2.4 (below).
We remark that the proof (but not the statement) of Lemma 8.14 from [2]
in fact gives precisely Lemma 2.4. For the sake of completeness, we give a
full proof.

Lemma 2.4. There exists an algorithm with the following specifications:

• Input: A graph G;

• Output: Exactly one of the following:

– the true statement that G is a ring, together with the length k
and a ring partition (X1, . . . ,Xk) of the ring G, and for each

i ∈ {1, . . . , k}, an ordering Xi = {u1i , . . . , u
|Xi|
i } of Xi such that

Xi ⊆ NG[u
|Xi|
i ] ⊆ · · · ⊆ NG[u

1
i ] = Xi−1 ∪Xi ∪Xi+1,

– the true statement that G is not a ring;

• Running time: O(n2).

Proof. We first run the algorithm from Lemma 2.3 with input G; this takes
O(n2) time. If the algorithm returns the statement that G is not a ring, then
we return this statement as well, and we stop. So assume that the algorithm
returned the statement that G is a ring, together with the length k and ring
partition (X1, . . . ,Xk) of the ring. We then find the degrees of all vertices

of G, and for each i ∈ {1, . . . , k}, we order Xi as Xi = {u1i , . . . , u
|Xi|
i }

so that degG(u
1
i ) ≥ · · · ≥ degG(u

|Xi|
i ); this takes O(n2) time. Since we

already know that (X1, . . . ,Xk) is a ring partition of G, it is easy to see

that for all i ∈ {1, . . . , k}, we have that Xi ⊆ NG[u
|Xi|
i ] ⊆ · · · ⊆ NG[u

1
i ] =

Xi−1 ∪Xi ∪Xi+1. We now return the statement that G is a ring of length
k, the ring partition (X1, . . . ,Xk) of G, and for each i ∈ {1, . . . , k}, the

ordering Xi = {u1i , . . . , u
|Xi|
i } of Xi, and we stop. Clearly, the algorithm is

correct, and its running time is O(n2).
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We remind the reader that a simplicial vertex is a vertex whose neigh-
borhood is a (possibly empty) clique. A simplicial elimination ordering of
a graph G is an ordering v1, . . . , vn of the vertices of G such that for all
i ∈ {1, . . . , n}, vi is simplicial in the graph G[vi, vi+1, . . . , vn]. It is well
known (and easy to show) that a graph is chordal if and only if it has a
simplicial elimination ordering (see [7]); in particular, every chordal graph
contains a simplicial vertex. We also note that there is an O(n + m) time
algorithm that either produces a simplicial elimination ordering of the input
graph, or determines that the graph is not chordal [12]. Recall that a graph
is perfect if all its induced subgraphs H satisfy χ(H) = ω(H); it is well
known (and easy to show) that chordal graphs are perfect [1, 4].

The following algorithm is a minor modification of the algorithm de-
scribed in the introduction of [9].18

Lemma 2.5. There exists an algorithm with the following specifications:

• Input: A graph G;

• Output: A maximal sequence v1, . . . , vt (t ≥ 0) of pairwise distinct
vertices of G such that for all i ∈ {1, . . . , t}, vi is simplicial in the
graph G \ {v1, . . . , vi−1};

19

• Running time: O(n3).

Proof. Step 0. First, for all distinct x, y ∈ V (G), we set

diff(x, y) =





|NG[x] \NG[y]| if xy ∈ E(G)

0 if xy /∈ E(G)

Clearly, computing diff(x, y) for all possible choices of distinct x, y ∈ V (G)
can be done in O(n3) time. We will update diff(x, y) as the algorithm
proceeds. Note that a vertex x ∈ V (G) is simplicial in G if and only if for
all y ∈ V (G) \ {x}, we have that diff(x, y) = 0. Let L be the empty list. We
now go to Step 1.

Step 1. We first check if there is a vertex x ∈ V (G) such that for all
y ∈ V (G) \ {x}, we have that diff(x, y) = 0; this can be done in O(n2) time.
If we found no such vertex, then G has no simplicial vertices; in this case, we
return the list L and stop. Suppose now that we found such a vertex x. First,
we set L := L, x (i.e. we update L by adding x to the end of L). If x is the

18The algorithm from [9] produces a maximal sequence v1, . . . , vt (t ≥ 0) of pairwise
distinct vertices of the input graph G such that for all i ∈ {1, . . . , t}, vi is simplicial in
either G \ {v1, . . . , vi−1} or G \ {v1, . . . , vi−1}. Thus, the algorithm from Lemma 2.5 is in
fact obtained from the algorithm from [9] by omitting some steps. The running time of
the two algorithms is the same. For the sake of completeness, we give all the details for
the algorithm that we need (i.e. for the algorithm from Lemma 2.5).

19If t = 0, then the sequence v1, . . . , vt is empty and G has no simplicial vertices.
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only vertex ofG, then we return L and stop. Suppose now that G has at least
two vertices. Then, for all distinct x′, y ∈ V (G) \ {x}, we update diff(x′, y)
as follows: if x ∈ NG[x

′] \ NG[y], then we set diff(x′, y) := diff(x′, y) − 1,
and otherwise, we do not change diff(x′, y); this update takes O(n2) time.
Finally, we update G by setting G := G \ x, and we go to Step 1 with input
G, L, and diff(x′, y) for all distinct x′, y ∈ V (G).

Clearly, the algorithm terminates and is correct. Step 0 takes O(n3)
time. We make O(n) calls to Step 1, and otherwise, the slowest step of
Step 1 takes O(n2) time. Thus, the total running time of the algorithm is
O(n3).

Recall that chordal graphs are precisely those graphs that admit a sim-
plicial elimination ordering [7]. So, the algorithm from Lemma 2.5 can be
used to recognize chordal graphs in O(n3) time.20

Lemma 2.6 (below) follows immediately from Theorem 8.25 from [2].

Lemma 2.6. [2] There exists an algorithm with the following specifications:

• Input: A graph G;

• Output: Either ω(G), or the true statement that G /∈ GT;

• Running time: O(n3).

By Lemma 2.2(d), rings belong to GT, and so Lemma 2.6 guarantees
that the clique number of a ring can be computed in O(n3) time.

Lemma 2.7. Let k ≥ 4 be an integer. Then every induced subgraph of a
k-ring either contains a simplicial vertex or is a k-ring. More precisely,
let R be a k-ring with ring partition (X1, . . . ,Xk), and let Y ⊆ V (R) be a
nonempty set. Then either R[Y ] contains a simplicial vertex, or R[Y ] is a
k-ring with ring partition (X1 ∩ Y, . . . ,Xk ∩ Y ).

Proof. For all i ∈ {1, . . . , k}, we set Xi = {u1i , . . . , u
|Xi|
i } so that Xi ⊆

NR[u
|Xi|
i ] ⊆ · · · ⊆ NR[u

1
i ] = Xi−1 ∪Xi ∪Xi+1, as in the definition of a ring.

For all i ∈ {1, . . . , k}, we set Yi = Xi ∩ Y . If at least one of Y1, . . . , Yk is
empty, then Lemma 2.2(c) implies that R[Y ] is chordal, and consequently
(by [7]), R[Y ] contains a simplicial vertex. So from now on, we assume that
Y1, . . . , Yk are all nonempty.

For all i ∈ {1, . . . , k}, let ji ∈ {1, . . . , |Xi|} be maximal with the property
that ujii ∈ Yi; then ujii is dominated in R[Y ] by all other vertices in Yi. If

20Indeed, suppose that, given an n-vertex input graph G, the algorithm from Lemma 2.5
returned the sequence v1, . . . , vt. If t = n (i.e. V (G) = {v1, . . . , vt}), then v1, . . . , vt is a
simplicial elimination ordering of G, and therefore (by [7]) G is chordal. Suppose now that
t < n. Then the maximality of v1, . . . , vt guarantees that G\{v1, . . . , vt} has no simplicial
vertices. Then by [7], G \ {v1, . . . , vt} is not chordal, and consequently, G is not chordal
either.
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for some i ∈ {1, . . . , k}, ujii is anticomplete to Yi−1 or Yi+1, then it is easy

to see that ujii is a simplicial vertex of R[Y ], and we are done; otherwise,
Lemma 2.1 implies that R[Y ] is a ring with ring partition (Y1, . . . , Yk).

Lemma 2.8. For all integers k ≥ 4, both the following hold:

• the class Rk is hereditary and contains all k-rings;

• the class R≥k is hereditary and contains all rings of length at least k.

In particular, the class R≥4 is hereditary and contains all rings.

Proof. This follows immediately from Lemma 2.7 and from the relevant
definitions.

The following lemma (Lemma 2.9) will not be used in the remainder of
the paper, but the reader may find it informative. We remark that, for each
integer k ≥ 4, Lemmas 2.3, 2.5, and 2.9 readily yield O(n3) time recognition
algorithms for the classes Rk and R≥k. However, we will not need these
algorithms in the remainder of the paper, and so we leave the details to the
reader.

Lemma 2.9. Let k ≥ 4 be an integer, and let G be a graph. Then the
following are equivalent:

(a) G ∈ Rk;

(b) either G is chordal, or G is a k-ring, or G can be obtained from a
k-ring by repeatedly adding simplicial vertices.

Proof. Suppose first that (a) holds, i.e. that G ∈ Rk. Let v1, . . . , vt (t ≥ 0)
be a maximal sequence of pairwise distinct vertices of G such that for all
i ∈ {1, . . . , t}, vi is simplicial in G \ {v1, . . . , vi−1}. If V (G) = {v1, . . . , vt},
then v1, . . . , vt is a simplicial elimination ordering of G, and so (by [7]) G is
chordal. Suppose now that {v1, . . . , vt} $ V (G). Set R = G \ {v1, . . . , vt}.
Since G ∈ Rk, and since Rk is hereditary, we see that R ∈ Rk. On the other
hand, by the maximality of v1, . . . , vt, we know that R has no simplicial
vertices. So, by the definition of Rk, R is a k-ring. If t = 0, then G = R,
and we have that G is a k-ring. On the other hand, if t ≥ 1, then G can be
obtained from the k-ring R by adding simplicial vertices vt, . . . , v1 (in that
order). So, (b) holds.

Suppose now that (b) holds. Clearly, every induced subgraph of a chordal
graph is chordal. Furthermore, by [7], every chordal graph has a simplicial
vertex. So, if G is chordal, then all its induced subgraphs contain a simplicial
vertex, and it follows that G ∈ Rk. Suppose now that G can be obtained
from a k-ring by (possibly) repeatedly adding simplicial vertices. But then
Lemma 2.7 implies that every induced subgraph of G either is a k-ring or
has a simplicial vertex, and so G ∈ Rk. Thus, (a) holds.
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Lemma 2.10. Let G be a graph on at least two vertices, and let v be a
simplicial vertex of G. Then ω(G) = max{|NG[v]|, ω(G \ v)} and χ(G) =
max{ω(G), χ(G \ v)}.

Proof. We first show that ω(G) = max{|NG[v]|, ω(G\v)}. Since v is simpli-
cial, NG[v] is a clique, and we deduce that max{|NG[v]|, ω(G \ v)} ≤ ω(G).
To prove the reverse inequality, let K be a clique of size ω(G) in G. If
v /∈ K, then K is a clique of G \ v, and so ω(G) = |K| ≤ ω(G \ v) ≤
max{|NG[v]|, ω(G\v)}. So suppose that v ∈ K. SinceK is a clique, it follows
that K ⊆ NG[v], and so ω(G) = |K| ≤ |NG[v]| ≤ max{|NG[v]|, ω(G \ v)}.
This proves that ω(G) = max{|NG[v]|, ω(G \ v)}.

It remains to show that χ(G) = max{ω(G), χ(G \ v)}. It is clear
that max{ω(G), χ(G \ v)} ≤ χ(G). For the reverse inequality, we set
ℓ = max{ω(G), χ(G\v)}, and we construct a proper coloring of G that uses
at most ℓ colors. First, we properly color G \ v with colors 1, . . . , ℓ. Next,
since NG[v] is a clique, we see that |NG(v)| = |NG[v]|−1 ≤ ω(G)−1 ≤ ℓ−1;
thus, at least one of our ℓ colors was not used on NG(v), and we can assign
this “unused” color to v. This produces a proper coloring of G that uses at
most ℓ colors, and we are done.

We complete this section by stating the decomposition theorem for the
class GT proven in [2] (this is Theorem 1.8 from [2]).

Theorem 2.11. [2] Let G ∈ GT. Then one of the following holds:

• G is a complete graph, a ring, or a 7-hyperantihole;

• G admits a clique-cutset.

Finally, we remark that graphs in GT can be recognized in O(n3) time
(see Theorem 8.23 from [2]), but we do not need this result in the remainder
of the paper.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. We begin with an easy lemma.

Lemma 3.1. Let R be a k-ring (with k ≥ 4) such that χ(R) = ω(R). Then
R contains a k-hyperhole H such that χ(H) = χ(R).

Proof. Let (X1, . . . ,Xk) be a ring partition of R, and for all i ∈ {1, . . . , k},

let Xi = {u1i , . . . , u
|Xi|
i } be an ordering of Xi such that Xi ⊆ NR[u

|Xi|
i ] ⊆

· · · ⊆ NR[u
1
i ] = Xi−1 ∪Xi ∪Xi+1, as in the definition of a ring. Let Q be a

clique of size ω(R) in R. By the definition of a ring, and by symmetry, we
may assume that Q ⊆ X1 ∪ X2. Since u11 is complete to X2, and since u12
is complete to X1, the maximality of Q guarantees that u11, u

1
2 ∈ Q, and in
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particular, Q intersects both X1 and X2. Set H = R[Q ∪ {u13, u
1
4, . . . , u

1
k}].

Clearly, H is a k-hyperhole. Furthermore, we have that ω(R) = |Q| ≤
ω(H) ≤ χ(H) ≤ χ(R); since χ(R) = ω(R), it follows that χ(H) = χ(R).

In view of Lemma 3.1, our next lemma (Lemma 3.2) shows that Theo-
rem 1.2 holds for even rings. We will also rely on Lemma 3.2 in our coloring
algorithm for rings in section 4.

Lemma 3.2. Even rings are perfect.21 Furthermore, there exists an algo-
rithm with the following specifications:

• Input: A graph G;

• Output: Either an optimal coloring of G, or the true statement that G
is not an even ring;

• Running time: O(n3).

Proof. We begin by constructing the algorithm. We first call the algorithm
from Lemma 2.4 with input G; this takes O(n2) time. If the algorithm
returns the answer that G is not a ring, then we return the answer that
G is not an even ring, and we stop. So from now on, we assume that the
algorithm returned all the following:

• the true statement that G is a ring;

• the length k and a ring partition (X1, . . . ,Xk) of the ring G;

• for each i ∈ {1, . . . , k}, an ordering Xi = {u1i , . . . , u
|Xi|
i } of Xi such

that Xi ⊆ NG[u
|Xi|
i ] ⊆ · · · ⊆ NG[u

1
i ] = Xi−1 ∪Xi ∪Xi+1.

If k is odd, then we return the answer that G is not an even ring, and we
stop. So assume that k is even. Since G is a ring, Lemma 2.2(d) guarantees
that G ∈ GT, and so we can compute ω(G) by running the algorithm from
Lemma 2.6 with input G; this takes O(n3) time. We now color G as follows.
For all odd i ∈ {1, . . . , k} and all j ∈ {1, . . . , |Xi|}, we assign color j to the
vertex uji ; and for all even i ∈ {1, . . . , k} and all j ∈ {1, . . . , |Xi|}, we assign

color ω(G)− j+1 to the vertex uji . Since |Xi| ≤ ω(G) for all i ∈ {1, . . . , k},
we see that our coloring uses only colors 1, . . . , ω(G). Let us show that the
coloring is proper. Suppose otherwise. By Lemma 2.1(b), there exist some
i ∈ {1, . . . , k}, j ∈ {1, . . . , |Xi|}, and ℓ ∈ {1, . . . , |Xi+1|} such that uji and

uℓi+1 are adjacent in G and were assigned the same color. Since uji and

uℓi+1 are adjacent, we see that {u1i , . . . , u
j
i} and {u1i+1, . . . , u

ℓ
i+1} are cliques,

21We remind the reader that a graph is perfect if all its induced subgraphs H satisfy
χ(H) = ω(H). In particular, every perfect graph G satisfies χ(G) = ω(G). The fact that
even rings are perfect easily follows from the Strong Perfect Graph Theorem [3]. However,
here we give an elementary proof of this fact.
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complete to each other;22 thus, {u1i , . . . , u
j
i} ∪ {u1i+1, . . . , u

ℓ
i+1} is a clique,

and consequently, j + ℓ ≤ ω(G). On the other hand, by construction, we
have that:

• if i is odd, then uji received color j, and uℓi+1 received color ω(G)−ℓ+1;

• if i is even, then uji received color ω(G)− j+1, and uℓi+1 received color
ℓ.

Since vertices uji and uℓi+1 received the same color, it follows that either
j = ω(G)−ℓ+1 or ω(G)−j+1 = ℓ; in either case, we get that j+ℓ = ω(G)+1,
contrary to the fact that j+ ℓ ≤ ω(G). This proves that our coloring of G is
indeed proper. Furthermore, as pointed out above, this coloring uses at most
ω(G) colors. Since ω(G) ≤ χ(G), we deduce that our coloring is optimal,
and that χ(G) = ω(G). We now return this coloring of G, and we stop.

Clearly, the algorithm is correct, and its running time is O(n3). Note,
furthermore, that we have established that all even rings R satisfy χ(R) =
ω(R). The fact that even rings are perfect now follows from Lemmas 2.7
and 2.10 by an easy induction.

As we pointed out above, Lemmas 3.1 and 3.2 together imply that even
rings satisfy Theorem 1.2. We devote the remainder of the section to proving
Theorem 1.2 for odd rings.

Given a graph G, a coloring c of G, and distinct colors a, b used by c,
we set T a,b

G,c = G[{x ∈ V (G) | c(x) = a or c(x) = b}];23 note that if c is a

proper coloring of G, then T a,b
G,c is a bipartite graph, and if, in addition, G

contains no even holes, then T a,b
G,c is a forest. After introducing a few more

definitions, we describe the structure of the components Q of T a,b
G,c when G

is an induced subgraph of an odd ring (see Lemma 3.3).
We now need a few more definitions. Let k ≥ 5 be an odd integer, let

R be a k-ring with ring partition (X1, . . . ,Xk), and for each i ∈ {1, . . . , k},

let Xi = {u1i , . . . , u
|Xi|
i } be an ordering of Xi such that Xi ⊆ NR[u

|Xi|
i ] ⊆

· · · ⊆ NR[u
1
i ] = Xi−1 ∪ Xi ∪ Xi+1, as in the definition of a ring. For all

i ∈ {1, . . . , k} and j, ℓ ∈ {1, . . . , |Xi|} such that j ≤ ℓ (resp. j < ℓ), we say
that uji is lower (resp. strictly lower) than uℓi , and that uℓi is higher (resp.

strictly higher) than uji ; under these circumstances, we also write uji ≤ uℓi
(resp. uji < uℓi) and uℓi ≥ uji (resp. uℓi > uji ). For each i ∈ {1, . . . , k} let

si = u1i and ti = u
|Xi|
i .24 Further, suppose that c is a proper coloring of

R \ t2. For all X ⊆ V (R) \ {t2}, set c(X) = {c(x) | x ∈ X}. Given distinct
colors a, b ∈ c(V (R) \ {t2}) and an index i ∈ {1, . . . , k}, we say that a is

22This follows from the properties of our orderings of Xi and Xi+1.
23Thus, T a,b

G,c is the subgraph of G induced by the vertices colored a or b.
24Thus, si is the lowest and ti the highest vertex in Xi. Note that this means that si is

a highest-degree and ti a lowest-degree vertex in Xi.
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lower than b in Xi with respect to c, and that b is higher than a in Xi with
respect to c, provided that either

• a ∈ c(Xi \ {t2}) and b /∈ c(Xi \ {t2}),
25 or

• there exist indices j, ℓ ∈ {1, . . . , |Xi|} such that j < ℓ, c(uji ) = a, and
c(uℓi) = b.

Let c1 = c(s1).
26 We say that c is unimprovable if for all colors a ∈ c(V (R)\

{t2}) such that a 6= c1, and all components Q of T c1,a
R\t2,c

that do not contain
s1, both the following are satisfied:

• for all odd i ∈ {3, . . . , k} such that Q intersects Xi, c1 is lower than a
in Xi with respect to c;

• for all even i ∈ {3, . . . , k} such that Q intersects Xi, c1 is higher than
a in Xi with respect to c.

We remark that if c is an unimprovable coloring of R\ t2, then by definition,
c is a proper coloring of R \ t2, but it need not be an optimal coloring of
R \ t2, i.e. it may possibly use more than χ(R \ t2) colors.

Lemma 3.3. Let k ≥ 5 be an odd integer, let R be a k-ring with ring

partition (X1, . . . ,Xk), and for each i ∈ {1, . . . , k}, let Xi = {u1i , . . . , u
|Xi|
i }

be an ordering of Xi such that Xi ⊆ NR[u
|Xi|
i ] ⊆ · · · ⊆ NR[u

1
i ] = Xi−1 ∪

Xi ∪ Xi+1. Let G be an induced subgraph of R, let c be a proper coloring
of G, let a, b be distinct colors used by c, and let Q be any component of
T a,b
G,c. Then there are integers i, j ∈ {1, . . . , k} such that V (Q) ⊆ Xi∪Xi+1∪

· · · ∪ Xj−1 ∪ Xj ,
27 and such that Q consists of an induced path pi, . . . , pj ,

where pℓ ∈ Xℓ for all ℓ ∈ {i, . . . , j}, plus, optionally for each ℓ ∈ {i, . . . , j},
a vertex p′ℓ ∈ Xℓ, strictly higher than pℓ in Xℓ,

28 with NQ(p
′
ℓ) = {pℓ}.

Proof. By Lemma 2.2, all holes in R are of length k, and in particular, R
contains no even holes. The result now readily follows from the relevant
definitions.

Our next lemma shows that any proper coloring of R \ t2 (where R and
t2 are as above) can be turned into an unimprovable coloring that uses no
more colors than the original coloring of R \ t2.

29

Lemma 3.4. There exists an algorithm with the following specifications:

25Obviously, if i 6= 2, then Xi \ {t2} = Xi.
26Note that this means that c1 /∈ c(X2 \{t2}). This is because c(s1) = c1, s1 is complete

to X2 in R, and c is a proper coloring of R \ t2.
27As usual, indices are understood to be modulo k.
28So, if p′ℓ exists, then it is dominated by pℓ in R.
29In particular, this implies that if R\t2 is r-colorable, then there exists an unimprovable

coloring of R \ t2 that uses at most r colors.
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• Input: An odd ring R with ring partition (X1, . . . ,Xk), for each i ∈

{1, . . . , k}, an ordering Xi = {u1i , . . . , u
|Xi|
i } of Xi such that Xi ⊆

NR[u
|Xi|
i ] ⊆ · · · ⊆ NR[u

1
i ] = Xi−1 ∪Xi ∪Xi+1, and a proper coloring c

of R \ u
|X2|
2 ;

• Output: An unimprovable coloring of R\u
|X2|
2 that uses no more colors

than c does;

• Running time: O(n4).

Proof. To simplify notation, for all i ∈ {1, . . . , k}, we set si = u1i and ti =

u
|Xi|
i . (Thus, c is a proper coloring of R \ t2.) Let r be the number of colors

used by c; by symmetry, we may assume that c : V (R) \ {t2} → {1, . . . , r}.
Set c1 = c(s1).

Now, for every proper coloring c̃ : V (R)\{t2} → {1, . . . , r} of R\ t2 such
that c̃(s1) = c1,

30 we define the rank of c̃, denoted by rank(c̃), as follows.

• For all odd i ∈ {3, . . . , k}, if there exists an index j ∈ {1, . . . , |Xi|}
such that c̃(uji ) = c1,

31 then we set ri(c̃) = j, and otherwise, we set
ri(c̃) = |Xi|+ 1.

• For all even i ∈ {3, . . . , k}, if there exists an index j ∈ {1, . . . , |Xi|}
such that c̃(uji ) = c1,

32 then we set ri(c̃) = |Xi|− j+2, and otherwise,
we set ri(c̃) = 1.

• We set rank(c̃) =
k∑

i=3
ri(c̃).

33

The algorithm proceeds as follows. We check whether the input coloring
c is unimprovable by examining all colors a ∈ {1, . . . , r} \ {c1}, and all
components Q of T c1,a

R\t2,c
that do not contain s1; this can be done in O(n3)

time. If c is unimprovable, then we return c, and we stop. Otherwise, the
algorithm found some color a ∈ {1, . . . , r} \ {c1}, some component Q of
T c1,a
R\t2,c

that does not contain s1, and some index i∗ ∈ {3, . . . , k} such that
Q intersects Xi∗ and either

• i∗ is odd, and a is lower than c1 in Xi∗ with respect to c; or

• i∗ is even, and a is higher than c1 in Xi∗ with respect to c.

30Note that this implies that c1 /∈ c̃(X2\{t2}). This is because c̃(s1) = c1, s1 is complete
to X2 in R, and c̃ is a proper coloring of R \ t2.

31Note that if j exists, then it is unique. This is because Xi is a clique of R \ t2, and c̃
is a proper coloring of R \ t2.

32As before, if j exists, then it is unique.

33Note that k−2 ≤ rank(c̃) ≤ k−2+
k∑

i=3

|Xi|. So, rank can take at most 1+
k∑

i=3

|Xi| < n

different values.
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Lemma 3.3 then implies that both the following hold:

• for all odd i ∈ {3, . . . , k} such that Q intersects Xi, a is lower than c1
in Xi with respect to c;

• for all even i ∈ {3, . . . , k} such that Q intersects Xi, a is higher than
c1 in Xi with respect to c.

Let c′ be the coloring of R \ t2 obtained from c by swapping colors c1 and
a on Q.34 Note that rank(c′) < rank(c). We now update the coloring c by
setting c := c′, and we obtain an unimprovable coloring of R \ t2 by making
a recursive call to the algorithm.

The algorithm terminates because the rank of the coloring c decreases
before each recursive call. We make O(n) recursive calls,35 and otherwise,
the slowest step of the algorithm takes O(n3) time. So, the total running
time of the algorithm is O(n4).

We now prove a technical lemma (Lemma 3.5) that is at the heart of
our proof of Theorem 1.2 for odd rings. We also rely on Lemma 3.5 in our
coloring algorithm for rings.36 We remark that in our proof of Lemma 3.5,
we repeatedly rely on Lemma 3.3 without explicitly stating this.37

Lemma 3.5. Let k ≥ 5 be an odd integer, let R be a k-ring with ring

partition (X1, . . . ,Xk), and for each i ∈ {1, . . . , k}, let Xi = {u1i , . . . , u
|Xi|
i }

be an ordering of Xi such that Xi ⊆ NR[u
|Xi|
i ] ⊆ · · · ⊆ NR[u

1
i ] = Xi−1 ∪

Xi ∪ Xi+1. For all i ∈ {1, . . . , k}, set si = u1i and ti = u
|Xi|
i . Let c be an

unimprovable coloring of R \ t2, and let r be the number of colors used by
c.38 Let c1 = c(s1), and let S = {x ∈ V (R) | x 6= t2, c(x) = c1}.

39 Then
both the following hold:

(a) either ω(R \ S) ≤ r − 1, or R contains a k-hyperhole of chromatic
number r + 1;

(b) if every k-ring R′ such that |V (R′)| < |V (R)| contains a k-hyperhole
of chromatic number χ(R′), then either χ(R\S) ≤ r−1, or R contains
a k-hyperhole of chromatic number r + 1.

34Since Q does not contain s1, we have that c′(s1) = c(s1) = c1.
35This is because rank can take at most n different values, and the rank of our coloring

decreases before each recursive call.
36More precisely, our coloring algorithm for rings relies on Lemma 4.1, which is an easy

corollary of Lemma 3.5 and Theorem 1.2.
37Essentially, every time we consider a component Q as in Lemma 3.3, we keep in mind

the structure of Q, as described in Lemma 3.3.
38In particular, c is a proper coloring of R\ t2. Furthermore, we have that χ(R\ t2) ≤ r,

and this inequality may possibly be strict.
39Note that S is a stable set in R \ t2. Furthermore, s1 ∈ S, and in particular, S 6= ∅.
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Proof. By hypotheses, we have that χ(R \ t2) ≤ r; it follows that ω(R) ≤
χ(R) ≤ r+1. If ω(R) = r+1, then both (a) and (b) follow from Lemma 3.1;
thus, we may assume that ω(R) ≤ r.

Set Y1 = NR(t2)∩X1, X
′
2 = X2 \{t2}, and Y3 = NR(t2)∩X3. Note that

NR(t2) = Y1 ∪X ′
2 ∪ Y3, with Y1,X

′
2, Y3 pairwise disjoint. Furthermore, we

have that s1 ∈ Y1 and s3 ∈ Y3, and in particular, Y1 and Y3 are nonempty
(the set X ′

2 may possibly be empty). Finally, we remark that Y1 ∪X2 and
X2 ∪ Y3 are maximal cliques of R.

Let C be the set of colors used by c; then |C| = r. To simplify notation,

for all distinct colors a, b ∈ C, we write T a,b instead of T a,b
R\t2,c

. Further, for

all i ∈ {1, . . . , k} \ {2} and a ∈ c(Xi), we denote by xai the (unique) vertex
of Xi to which c assigned color a; similarly, for all a ∈ c(X ′

2), we denote by
xa2 the (unique) vertex of X ′

2 to which c assigned color a. Finally, when we
say that some color is higher or lower than some other color in some Xi, we
always mean this with respect to our coloring c.

Claim 1. Either ω(R \ S) ≤ r− 1, or R contains a k-hyperhole
of chromatic number r + 1. In other words, (a) holds.

Proof of Claim 1. Since ω(R) ≤ r, we have that ω(R \ S) ≤ r. Thus, we
may assume that ω(R \ S) = r, for otherwise we are done; since ω(R) ≤ r,
this implies that ω(R) = r.

Since c is a proper coloring of R \ t2 that uses only r colors, and since S
is a color class of the coloring c, we see that S intersects all cliques of size
r in R that do not contain t2. Furthermore, there are exactly two maximal
cliques in R that contain t2, namely Y1∪X2 and X2∪Y3. Since S intersects
Y1 ∪X2 (because s1 ∈ Y1 ∩ S), we deduce that X2 ∪ Y3 is the unique clique
of R \ S of size r. (Note that this implies that X ′

2 ∪ Y3 is a clique of size
r − 1.) In particular, c1 /∈ c(X ′

2 ∪ Y3).
Consider any color a ∈ c(Y3), and let Q be the component of T c1,a that

contains the vertex of Y3 colored a. Since c1 /∈ c(Y3), we see that a 6= c1,
and furthermore, a is lower than c1 in X3. So, since c is unimprovable, we
have that s1 ∈ V (Q). Further, since c1 /∈ c(X ′

2), we see that V (Q)∩X ′
2 = ∅.

We now deduce that the following hold:

• for every odd i 6= 1, we have that c(Y3) ⊆ c(Xi);

• for every even i 6= 2, some vertex ofXi is colored c1,
40 and furthermore,

this vertex is adjacent to all vertices of Xi−1 ∪ Xi+1 that received a
color used on Y3.

40Recall that this vertex is called xc1
i .
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For odd i ≥ 5, let hi be the highest vertex of Xi that is adjacent both
to xc1i−1 and to xc1i+1.

41 We now define sets Z1, . . . , Zk as follows:

• let Z1 = {s1}, Z2 = X2, and Z3 = Y3;

• for all even i ≥ 4, let Zi = {x ∈ Xi | x ≤ xc1i };

• for all odd i ≥ 5, let Zi = {x ∈ Xi | x ≤ hi}.

Finally, let H = R[Z1 ∪ Z2 ∪ · · · ∪ Zk].
By construction, H is a k-hyperhole of R; thus, χ(H) ≤ χ(R) ≤ r + 1.

If χ(H) = r + 1, then we are done. So assume that χ(H) ≤ r. Then⌈
2|V (H)|
k−1

⌉
=

⌈
|V (H)|
α(H)

⌉
≤ χ(H) ≤ r. It follows that |V (H)| ≤ k−1

2 r, and

consequently, |V (H) \ {t2}| <
k−1
2 r. Now, X ′

2 ∪Y3 is a clique of size r− 1 in
R\t2, and so |c(X ′

2∪Y3)| = r−1. Furthermore, we know that c1 /∈ c(X ′
2∪Y3),

and so |{c1}∪ c(X ′
2∪Y3)| = r. Since |V (H)\{t2}| <

k−1
2 r, we see that some

color from {c1} ∪ c(X ′
2 ∪ Y3) appears on fewer than k−1

2 vertices of H \ t2.

Now, by construction, every color from {c1} ∪ c(Y3) appears k−1
2 times on

H \ t2. It follows that some color d ∈ c(X ′
2) appears fewer than k−1

2 times
on H \ t2. Thus, there exists some even i ≥ 4 such that d /∈ c(Zi);

42 let
i be the smallest such index. Thus, d appears on each Zj, for even j < i,
and there are i

2 − 1 such j’s. On the other hand, let Q be the component
of T c1,d that contains xc1i . Now, we have that i ≥ 4 is even, and that d is
higher than c1 in Xi; since c is unimprovable, we deduce that s1 ∈ V (Q).
It follows that each Zj , for odd j > i, contains a vertex colored d; there are
⌈k−i

2 ⌉ = k−i+1
2 such j’s. So, in total, at least ( i2 − 1) + k−i+1

2 = k−1
2 vertices

of H \ t2 are colored d, contrary to our choice of d. �

It remains to prove (b). For this, we assume that both the following
hold:

• every k-ring R′ such that |V (R′)| < |V (R)| contains a k-hyperhole of
chromatic number χ(R′);

• χ(R \ S) ≥ r;

and we prove that R contains a k-hyperhole of chromatic number r + 1.
Since S is a color class of a proper coloring of R \ t2 that uses at most r

colors, we see that χ
(
R \ (S ∪ {t2})

)
≤ r − 1; consequently, χ(R \ S) ≤ r.

41Let us check that such an hi exists. Since i ≥ 5 is odd, we see that either 5 ≤ i ≤ k−2
or i = k. If 5 ≤ i ≤ k − 2, then i − 1, i + 1 ≥ 4 are both even, and so by what we just
showed, xc1

i−1 and xc1
i+1 are both defined. If i = k, then once again, i−1 ≥ 4 is even, and so

xc1
i−1 is defined, and furthermore, since our subscripts are understood to be modulo k, we

have that xc1
i+1 = xc1

1 = s1. So, in either case, xc1
i−1 and xc1

i+1 are both defined. Moreover,
at least one vertex of Xi (namely, the vertex si) is adjacent both to xc1

i−1 and to xc1
i−1. So,

hi exists.
42By the construction of Zi, this implies that d 6= c1, and that d is higher than c1 in Xi.
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Since χ(R \ S) ≥ r, it follows that χ(R \ S) = r. Further, in view of (a), we
may assume that ω(R \ S) ≤ r − 1.

Claim 2. R \ S contains a k-hyperhole H such that χ(H) =⌈
2|V (H)|
k−1

⌉
= r.

Proof of Claim 2. Let v1, . . . , vt (with t ≥ 0) be a maximal sequence of
pairwise distinct vertices in R \ S such that for all i ∈ {1, . . . , t}, vi is
simplicial in R \ (S ∪ {v1, . . . , vi−1}). Set A = {v1, . . . , vt}. Suppose first
that R \S = A. Then v1, . . . , vt is a simplicial elimination ordering of R \S,
and so by coloring R \ S greedily using the ordering vt, . . . , v1, we obtain
a proper coloring of R \ S that uses only ω(R \ S) colors, contrary to the
fact that χ(R \ S) = r > ω(R \ S). So, R \ S 6= A. Lemma 2.7 and the
maximality of A now imply that R \ (S ∪ A) is a k-ring. Since S 6= ∅, the
k-ring R \ (S ∪A) has fewer vertices than R, and so R \ (S ∪A) contains a

k-hyperhole H such that χ(H) = χ
(
R \ (S ∪A)

)
.

Now, Lemma 2.10 and an easy induction guarantee that

χ(R \ S) = max
{
ω(R \ S), χ

(
R \ (S ∪A)

)}
.

Since χ(R \ S) = r, ω(R \ S) ≤ r − 1, and χ(H) = χ
(
R \ (S ∪ A)

)
,

we deduce that χ(H) = r. Since ω(H) ≤ ω(R \ S) ≤ r − 1, we see that

ω(H) < χ(H), and so Lemma 1.1 implies that χ(H) =
⌈
|V (H)|
α(H)

⌉
=

⌈
2|V (H)|
k−1

⌉
.

Thus, χ(H) =
⌈
2|V (H)|
k−1

⌉
= r. �

From now on, let H be as in Claim 2. Our goal is to find a hyperhole in
R of size at least |V (H)|+ k+1

2 ; this will imply43 that the chromatic number
of that hyperhole is at least r + 1,44 which is what we need.

For each i ∈ {1, . . . , k}, let hi be the highest vertex of Xi ∩ V (H). Then
h1, . . . , hk, h1 is a k-hole in R, and we may assume that for all i ∈ {1, . . . , k},
we have that V (H) ∩Xi = {x ∈ Xi | x ≤ hi} \ S.

45 In particular, we have
that s1, . . . , sk ∈ V (H) ∪ S.

43The details are given at the end of the proof of the lemma.
44Since χ(R) ≤ r+1, we see that any hyperhole in R of chromatic number at least r+1

in fact has chromatic number exactly r + 1.

45Indeed, set H ′ = R[
k⋃

i=1

({x ∈ Xi | x ≤ hi} \ S)]. It is clear that H ′ is a k-hyperhole

in R \ S, and that H ′ contains H as an induced subgraph. So, r = χ(H) ≤ χ(H ′) ≤
χ(R \ S) = r, and it follows that χ(H ′) = r. On the other hand, ω(H ′) ≤ ω(R \ S) ≤

r − 1 < χ(H ′), and so Lemma 1.1 implies that χ(H ′) =
⌈

|V (H′)|
α(H′)

⌉
=

⌈
2|V (H′)|

k−1

⌉
. Thus,

χ(H ′) =
⌈

2|V (H′)|
k−1

⌉
= r. So, if H ′ 6= H , then from now on, instead of H , we simply

consider H ′.
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Recall that c1 = c(s1). Let j be the largest odd index such that c(si) = c1
for all odd i ∈ {1, . . . , j}. Then j ≤ k−2.46 Furthermore, since sj is complete
to Xj+1, we have that c1 /∈ c(Xj+1).

Claim 3. c1 ∈ c(Xi) for every even index i ≥ j + 3.47

Proof of Claim 3. Suppose otherwise, and fix the smallest even index i ≥ j+3
such that c1 /∈ c(Xi). If c(si−1) = c1, then:

• if i− 1 = j + 2, then the choice of j is contradicted;

• if i− 1 ≥ j + 4, then the choice of i is contradicted.48

It follows that c(si−1) 6= c1. Set ci−1 = c(si−1); since si−1 is complete to
Xi, we have that ci−1 /∈ c(Xi). Let Q be the component of T c1,ci−1 that
contains si−1. We know that c1, ci−1 /∈ c(Xi), and so V (Q) ∩ Xi = ∅. On
the other hand, by the parity of i and j, and by the fact that c1 /∈ c(Xj+1),
we have that V (Q) ∩Xj+1 = ∅. Thus, V (Q) ⊆ Xj+2 ∪ · · · ∪Xi−1. We now
have that s1 /∈ V (Q), that i − 1 ≥ 3 is odd, that Q intersects Xi−1, and
that ci−1 is lower than c1 in Xi−1. But this contradicts the fact that c is
unimprovable. �

Recall that hi be the highest vertex of Xi ∩ V (H). Let ℓ be the largest
odd index such that for every odd i ∈ {1, . . . , ℓ}, the coloring c assigns color
c1 to some vertex of Xi lower than hi.

49 Clearly, j ≤ ℓ ≤ k − 2.50 Now, we
define vertices w1, . . . , wk as follows:

• for i ≤ ℓ+ 2, let wi = hi;

• for even i ≥ ℓ+ 3, let wi = max{hi, x
c1
i };51

• for odd i ≥ ℓ + 4, let wi be the highest vertex of Xi ∩ V (H) that is
adjacent to xc1i−1.

52

46Indeed, sk and s1 are adjacent, and c(s1) = c1; so, c(sk) 6= c1, and it follows that
j 6= k. Since j and k are both odd, we deduce that j ≤ k − 2.

47So, xc1
i is defined for every even index i ≥ j + 3.

48We are using the fact that si−1 is complete to Xi−2, and so c(si−1) /∈ c(Xi−2).
49So, for all odd i ∈ {1, . . . , ℓ}, we have that xc1

i is defined and satisfies xc1
i ≤ hi.

50The fact that j ≤ ℓ is immediate from the the choice of j and ℓ. The fact that ℓ 6= k
follows from the fact that c(s1) = c1, and that s1 is complete to Xk, so that c1 /∈ c(Xk).
Since ℓ and k are both odd, it follows that ℓ ≤ k − 2.

51Claim 3 guarantees that c1 ∈ c(Xi), and so xc1
i is defined.

52Let us check that such a wi exists. First, Claim 3 guarantees that xc1
i−1 is defined.

It now suffices to show that some vertex of Xi ∩ V (H) is adjacent to xc1
i−1. Clearly, si

is adjacent to xc1
i−1. Since c(xc1

i−1) = c1, and since c is a proper coloring of R \ t2, we
have that c(si) 6= c1; consequently, si /∈ S. Since s1, . . . , sk ∈ V (H) ∪ S, we deduce that
si ∈ V (H). So, Xi ∩ V (H) contains a vertex (namely si) that is adjacent to xc1

i−1.
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For all i ∈ {1, . . . , k}, let Wi = {x ∈ Xi | x ≤ wi}. Further, let W =
R[W1 ∪ · · · ∪Wk]. Finally, let SW = {x ∈ V (W ) | x 6= t2, c(x) = c1}. We
note that, by construction, |SW | ≥ k−1

2 .

Claim 4. W is a k-hyperhole.

Proof of Claim 4. Suppose otherwise. Then there exists some even i ≥ ℓ+3
such that xc1i is nonadjacent to wi−1.

53 Let a = c(wi−1).
Suppose that i = ℓ+3. Then by the choice of ℓ, no vertex inWi−1 = Wℓ+2

is colored c1. So, a 6= c1, and c1 is higher than a in Xi−1 = Xℓ+2. Let Q be
the component of T c1,a that contains wi−1. By construction, V (Q)∩Xi = ∅,
i.e. V (Q) ∩Xℓ+3 = ∅; on the other hand, by the parity of i and j, and by
the fact that c1 /∈ c(Xj+1), we see that V (Q) ∩ Xj+1 = ∅. Thus, V (Q) ⊆
Xj+2 ∪ · · · ∪Xℓ+2. We now have that s1 /∈ V (Q), that ℓ+2 ≥ 3 is odd, that
Q intersects Xℓ+2, and that a is lower than c1 in Xℓ+2. But this contradicts
the fact that c is unimprovable.

Thus, i ≥ ℓ + 5. By construction, xc1i−2 is adjacent to wi−1, and so if
c1 ∈ c(Xi−1), then wi−1 < xc1i−1. Thus, a 6= c1, and a is lower than c1 inXi−1.
Let Q be the component of T c1,a that contains wi−1. Then V (Q) ∩Xj+1 =
V (Q) ∩Xi = ∅,54 and we deduce that V (Q) ⊆ Xj+2 ∪ · · · ∪Xi−1. But now
s1 /∈ V (Q), i − 1 ≥ 3 is odd, Q intersects Xi−1, and a is lower than c1 in
Xi−1; this contradicts the fact that c is unimprovable. �

Claim 5. |V (W )| ≥ |V (H)|+ k−1
2 .

Proof of Claim 5. To simplify notation, for all i ∈ {1, . . . , k}, we set Hi =
V (H) ∩ Xi. Recall that SW = {x ∈ V (W ) | x 6= t2, c(x) = c1}. We then
have that SW ⊆ S, that SW is a stable set in R\t2, and that V (H)∩SW = ∅.
Further, recall that |SW | ≥ k−1

2 . Thus, it suffices to show that |V (H)| ≤
|V (W ) \ SW |.

53Let us justify this. By supposition, W is not a k-hyperhole, and so there exists some
i ∈ {1, . . . , k} such that wi is nonadjacent to wi−1 in R. By the construction of W , we
have that w1, . . . , wℓ+2 ∈ V (H), as well as that wk ∈ V (H); since H is a hyperhole, we
deduce that i ≥ ℓ + 3. Suppose that i is odd (thus, i ≥ ℓ + 4). By Claim 3, xc1

i−1 is
defined, and since i ≥ ℓ + 4 is odd, we know that wi is adjacent to xc1

i−1. On the other
hand, since i ≥ ℓ+ 4 is odd, we have that wi ∈ V (H), and so wi is adjacent to hi−1. But
since i− 1 ≥ ℓ + 3 is even, we have by construction that wi−1 = max{hi−1, x

c1
i−1}; so, wi

is adjacent to wi−1, a contradiction. This proves that i is even. Since i ≥ ℓ + 3 is even,
we have that wi = max{hi, x

c1
i }. Furthermore, i − 1 is odd, and so wi−1 ∈ V (H); since

H is a hyperhole, it follows that hi is adjacent to wi−1. Since wi is nonadjacent to wi−1,
we deduce that wi = xc1

i , and that xc1
i is nonadjacent to wi−1.

54As before, the fact that V (Q)∩Xj+1 = ∅ follows from the parity of i and j, and from
the fact that c1 /∈ c(Xj+1). The fact that V (Q) ∩Xi = ∅ follows from the fact that wi−1

is nonadjacent to xc1
i .
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By the construction of W , for all indices i ∈ {1, . . . , k} such that either
i ≤ ℓ+2 or i is even, we have that Hi ⊆ Wi \SW . We may now assume that
for some even index i ≥ ℓ+3, we have that |Wi \(Hi∪SW )| < |Hi+1 \Wi+1|,
for otherwise we are done. Since Wi \ (Hi ∪ SW ) and Hi+1 \Wi+1 are both
cliques of R \ t2, and since c is a proper coloring of R \ t2, we have that
|c(Wi \ (Hi ∪SW ))| < |c(Hi+1 \Wi+1)|; fix a ∈ c(Hi+1 \Wi+1) \ c(Wi \ (Hi ∪
SW )). Then a 6= c1.

55 Furthermore, we have that a /∈ c(Wi),
56 whereas by

the construction of W , and by the fact that i ≥ ℓ+ 3 is even, we have that
c1 ∈ c(Wi). It then follows from the construction of W that a is higher than
c1 in Xi (possibly a /∈ c(Xi)).

Since a ∈ c(Hi+1 \Wi+1), we have that xai+1 ∈ Hi+1 \Wi+1. Since i+ 1
is odd with i + 1 ≥ ℓ + 4, we see from the construction of W that xai+1 is
nonadjacent to xc1i . Let Q be the component of T c1,a that contains xc1i . Then
V (Q)∩Xj+1 = V (Q)∩Xi+1 = ∅,57 and it follows that V (Q) ⊆ Xj+2∪· · ·∪Xi.
We now have that s1 /∈ V (Q), that i ≥ 4 is even, that Q intersects Xi,
and that a is higher than c1 in Xi. But this contradicts the fact that c is
unimprovable. �

By Claim 4, W is a k-hyperhole; since k is odd, we see that α(W ) = k−1
2 .

Using Claims 2 and 5, we now get that

χ(W ) ≥
⌈
|V (W )|
α(W )

⌉
=

⌈
2|V (W )|

k−1

⌉
≥

⌈
2|V (H)|
k−1

⌉
+ 1 = r + 1.

On the other hand, we have that χ(W ) ≤ χ(R) ≤ r+1, and we deduce that
χ(W ) = r + 1. This proves (b), and we are done.

We are now ready to prove Theorem 1.2, restated below for the reader’s
convenience.

Theorem 1.2. Let k ≥ 4 be an integer, and let R be a k-ring. Then
χ(R) = max{χ(H) | H is a k-hyperhole in R}.

Proof. If k is even, then the result follows from Lemmas 3.1 and 3.2. So
from now on, we assume that k is odd. Clearly, it suffices to show that R
contains a k-hyperhole of chromatic number χ(R). We assume inductively
that this holds for smaller k-rings, i.e. we assume that every k-ring R′ such
that |V (R′)| < |V (R)| contains a k-hyperhole of chromatic number χ(R′).

Let (X1, . . . ,Xk) be a ring partition of R. For each i ∈ {1, . . . , k},

let Xi = {u1i , . . . , u
|Xi|
i } be an ordering of Xi such that Xi ⊆ NR[u

|Xi|
i ] ⊆

55This is because a ∈ c(Hi+1), and c does not assign color c1 to any vertex in V (H)\{t2}.
56By construction, a /∈ c(Wi\(Hi∪SW )), and since a 6= c1, we also have that a /∈ c(SW ).

Further, a ∈ c(Hi+1), and so since Hi is complete to Hi+1, we have that a /∈ c(Hi). Thus,
a /∈ c(Wi).

57The fact that V (Q) ∩ Xi+1 = ∅ follows from the fact that a is higher than c1 in Xi,
and xc1

i is nonadjacent to xa
i+1. The fact that V (Q)∩Xj+1 = ∅ follows from the parity of

i and j, and from the fact that c1 /∈ c(Xj+1).
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· · · ⊆ NR[u
1
i ] = Xi−1 ∪ Xi ∪ Xi+1, as in the definition of a ring. For all

i ∈ {1, . . . , k}, set si = u1i and ti = u
|Xi|
i . Set r = χ(R \ t2), and note that

this implies that r ≤ χ(R) ≤ r + 1. Thus, we may assume that R contains
no hyperhole of chromatic number r + 1, for otherwise we are done.

Let c be an unimprovable coloring of R \ t2 that uses exactly r colors
(the existence of such a coloring follows from Lemma 3.4). Let C be the
set of colors used by c (thus, |C| = r), and set c1 = c(s1) and S = {x ∈
V (R) | x 6= t2, c(x) = c1}. Lemma 3.5 now implies that ω(R \ S) ≤ r − 1
and χ(R \ S) ≤ r − 1. Since S is a stable set in R, we see that χ(R) ≤
χ(R \ S) + 1 ≤ r; we already saw that r ≤ χ(R) ≤ r + 1, and so we deduce
that χ(R) = r. Further, since ω(R \ S) ≤ r − 1, and since S is a stable
set, we see that ω(R) ≤ r. If ω(R) = r, then χ(R) = ω(R), and the result
follows from Lemma 3.1. Thus, we may assume that ω(R) ≤ r− 1. Clearly,
this implies that ω(R \ t2) ≤ r − 1. Since χ(R \ t2) = r, we have that
ω(R \ t2) < χ(R \ t2).

Suppose that |X2| = 1, i.e. that X2 = {t2}. Then by Lemma 2.2(c),
R \ t2 is chordal, and therefore (by [1, 4]) perfect. So, χ(R \ t2) = ω(R \ t2),
contrary to the fact that ω(R \ t2) < χ(R \ t2). So, |X2| ≥ 2. Since every
vertex in X2\{t2} dominates t2 in R, Lemma 2.1 readily implies that R\t2 is
a k-ring with ring partition (X1,X2 \{t2},X3, . . . ,Xk). So, by the induction
hypothesis, R \ t2 contains a k-hyperhole H of chromatic number χ(R \ t2).
But recall that χ(R \ t2) = r = χ(R). So, H is a k-hyperhole in R of
chromatic number χ(R), which is what we needed.

4 Coloring rings

We remind the reader that R≥4 is the class of all graphs G that have the
property that every induced subgraph of G either is a ring or has a simpli-
cial vertex. By Lemma 2.8, R≥4 is hereditary and contains all rings. Our
goal in this section is to construct a polynomial-time coloring algorithm for
graphs in R≥4 (see Theorem 4.3), and more generally, for graphs in GT (see
Theorem 4.4). We already know how to color even rings (see Lemma 3.2).
In the remainder of the section, we focus primarily on odd rings.

The following lemma is an easy corollary of Theorem 1.2 and Lemma 3.5,
and it is at the heart of our coloring algorithm for odd rings.

Lemma 4.1. Let k ≥ 5 be an odd integer, let R be a k-ring with ring

partition (X1, . . . ,Xk), and for each i ∈ {1, . . . , k}, let Xi = {u1i , . . . , u
|Xi|
i }

be an ordering of Xi such that Xi ⊆ NR[u
|Xi|
i ] ⊆ · · · ⊆ NR[u

1
i ] = Xi−1 ∪

Xi ∪ Xi+1. For all i ∈ {1, . . . , k}, set si = u1i and ti = u
|Xi|
i . Let c be an

unimprovable coloring of R \ t2, and let r be the number of colors used by
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c.58 Let c1 = c(s1), and let S = {x ∈ V (R) | x 6= t2, c(x) = c1}.
59 Then

either χ(R \ S) ≤ r − 1 or χ(R) = r + 1.

Proof. By Theorem 1.2, the hypotheses of Lemma 3.5(b) are satisfied, and
we deduce that either χ(R \ S) ≤ r − 1, or R contains a k-hyperhole of
chromatic number r + 1. In the former case, we are done. So assume that
R contains a k-hyperhole H such that χ(H) = r + 1. But then

r + 1 = χ(H) ≤ χ(R) ≤ χ(R \ t2) + 1 ≤ r + 1,

and we deduce that χ(R) = r + 1.

Lemma 4.2. There exists an algorithm with the following specifications:

• Input: All the following:

– an odd ring R,

– a ring partition (X1, . . . ,Xk) of R,

– for all i ∈ {1, . . . , k}, an ordering Xi = {u1i , . . . , u
|Xi|
i } of Xi such

that Xi ⊆ NR[u
|Xi|
i ] ⊆ · · · ⊆ NR[u

1
i ] = Xi−1 ∪Xi ∪Xi+1,

– a proper coloring c of R \ u
|X2|
2 ;

• Output: A proper coloring of R that uses at most max{χ(R), r} colors,
where r is the number of colors used by the input coloring c of R \

u
|X2|
2 ;60

• Running time: O(n5).

Proof. To simplify notation, for all i ∈ {1, . . . , k}, we set si = u1i and ti =

u
|Xi|
i . So, c is a proper coloring of R \ t2. We may assume that c uses the

color set {1, . . . , r}, i.e. that c : V (R) \ {t2} → {1, . . . , r}.
First, we update c by running the algorithm from Lemma 3.4 and trans-

forming it into an unimprovable coloring of R \ t2 that uses only colors from
the set {1, . . . , r}; this takes O(n4) time. We may assume that c(s1) = r.
Let S = {x ∈ V (R) | x 6= t2, c(x) = r}.61 Our first goal is to compute a
proper coloring c̃ of R \ S that uses at most max{χ(R \ S), r − 1} colors.

58In particular, c is a proper coloring of R\ t2. Furthermore, we have that χ(R\ t2) ≤ r,
and this inequality may possibly be strict.

59Note that S is a stable set in R \ t2.
60Thus, the algorithm outputs a proper coloring of R that is either optimal or uses no

more colors than the input coloring c of R\u|X2|
2 does. Clearly, χ(R) ≤ χ(R\t2)+1 ≤ r+1.

So, the output coloring of R uses at most max{χ(R), r} ≤ r + 1 colors. Furthermore, if
it uses exactly r + 1 colors, then χ(R) = r + 1, and our output coloring of R is optimal.
However, if our output coloring of R uses at most r colors, then we do not know whether
or not the coloring is optimal.

61Clearly, S is a stable set.
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Then, depending on how many colors c̃ uses, we will construct the needed
coloring of R by either extending the coloring c of R\ t2 or by extending the
coloring c̃ of R \ S.

Let v1, . . . , vt (t ≥ 0) be a maximal sequence of pairwise distinct ver-
tices of R \ S such that for all i ∈ {1, . . . , t}, vi is simplicial in R \ (S ∪
{v1, . . . , vi−1}); this sequence can be found in O(n3) time by running the
algorithm from Lemma 2.5 with input R \S. Suppose first that V (R) \S =
{v1, . . . , vt}. Then v1, . . . , vt is a simplicial elimination ordering of R \ S,
and we construct the coloring c̃ by coloring R \ S greedily using the or-
dering vt, . . . , v1. Clearly, c̃ uses only ω(R \ S) colors, and we have that
ω(R \ S) ≤ χ(R \ S) ≤ max{χ(R \ S), r − 1}.

Suppose now that V (R)\S 6= {v1, . . . , vt}. Set R
′ := R\(S∪{v1, . . . , vt}).

The maximality of v1, . . . , vt guarantees that R′ has no simplicial vertices,
and so it follows from Lemma 2.7 that R′ is a k-ring with ring partition(
X1 ∩ V (R′), . . . ,Xk ∩ V (R′)

)
. Let c′ = c ↾ (V (R′) \ {t2}), and note that

c′ uses only colors from the set {1, . . . , r − 1}. If t2 /∈ V (R′), then we set
c′′ := c′. On the other hand, if t2 ∈ V (R′), then we make a recursive call
to the algorithm with input R′ and c′,62 and we obtain a proper coloring
c′′ of R′ that uses at most max{χ(R′), r − 1} colors. So, in either case (i.e.
independently of whether t2 does or does not belong to V (R′)), we have
now obtained a proper coloring c′′ of R′ that uses at most max{χ(R′), r−1}
colors. We now extend c′′ to a proper coloring c̃ of R \S by assigning colors
greedily to the vertices vt, . . . , v1 (in that order). Note that the coloring c̃
uses at most max{ω(R \ S), χ(R′), r − 1} ≤ max{χ(R \ S), r − 1} colors.

In either case,63 we have constructed a proper coloring c̃ of R \ S that
uses at most max{χ(R \S), r−1} colors. If c̃ uses at most r−1 colors, then
we extend c̃ to a proper coloring of R that uses at most r colors by assigning
the same new color to all the vertices of the stable set S; we then return this
coloring of R, and we stop. Suppose now that the coloring c̃ uses at least r
colors. Then χ(R\S) ≥ r, and so Lemma 4.1 implies that χ(R) = r+1. We
now extend the coloring c of R \ t2 to a proper coloring of R by assigning
color r + 1 to the vertex t2. Our coloring of R uses at most r + 1 = χ(R)
colors,64 we return this coloring, and we stop.

Clearly, the algorithm is correct. We make O(n) recursive calls, and
otherwise, the slowest step of the algorithm takes O(n4) time. Thus, the
total running time of the algorithm is O(n5).

Theorem 4.3. There exists an algorithm with the following specifications:

62We also input the ring partition
(
X1 ∩ V (R′), . . . , Xk ∩ V (R′)

)
of R′, and well as the

orderings of the sets Xi ∩ V (R′) inherited from our input orderings of the sets Xi.
63That is: both in the case when V (R)\S = {v1, . . . , vt} and in the case when V (R)\S 6=

{v1, . . . , vt}.
64So, in fact, our coloring of R uses exactly χ(R) colors, and it is therefore optimal.
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• Input: A graph G;

• Output: Either an optimal coloring of G, or the true statement that
G /∈ R≥4;

• Running time: O(n6).

Proof. First, we form a maximal sequence v1, . . . , vt (t ≥ 0) of pairwise
distinct vertices of G such that, for all i ∈ {1, . . . , t}, vi is simplicial in
G \ {v1, . . . , vi−1}; this can be done in O(n3) time by running the algorithm
from Lemma 2.5 with input G.

Suppose first that t ≥ 1. If V (G) = {v1, . . . , vt}, so that v1, . . . , vt is a
simplicial elimination ordering of G, then we color G greedily in O(n2) time
using the ordering vt, . . . , v1; clearly, the resulting coloring of G is optimal,
we return this coloring, and we stop. So assume that V (G)\{v1, . . . , vt} 6= ∅.
We then make a recursive call to the algorithm with input G \ {v1, . . . , vt}.
If we obtain an optimal coloring of G \ {v1, . . . , vt}, then we greedily extend
this coloring to an optimal coloring of G using the ordering vt, . . . , v1, we
return this coloring of G, and we stop. On the other hand, if the algorithm
returns the statement that G\{v1, . . . , vt} /∈ R≥4, then we return the answer
that G /∈ R≥4 (this is correct because R≥4 is hereditary), and we stop.

From now on, we assume that t = 0. Thus, G contains no simplicial
vertices, and so by the definition of R≥4, either G is a ring, or G /∈ R≥4.
We now run the algorithm from Lemma 2.4 input G; this takes O(n2) time.
If the algorithm returns the answer that G is not a ring, then we return
the answer that G /∈ R≥4. So assume the algorithm returned the statement
that G is a ring, along with the length k and ring partition (X1, . . . ,Xk) of

G, and for each i ∈ {1, . . . , k} an ordering Xi = {u1i , . . . , u
|Xi|
i } of Xi such

that Xi ⊆ NG[u
|Xi|
i ] ⊆ · · · ⊆ NG[u

1
i ] = Xi−1 ∪Xi ∪Xi+1. If k is even, then

we obtain an optimal coloring of G in O(n3) time by running the algorithm
from Lemma 3.2, we return this coloring, and we stop. So from now on, we
assume that k is odd, so that G is an odd ring. For each i ∈ {1, . . . , k}, we

set ti = u
|Xi|
i . Since G is a ring, Lemma 2.8 guarantees that G ∈ R≥4, and

since R≥4 is hereditary, we see that G \ t2 belongs to R≥4. We now obtain
an optimal coloring c of G \ t2 by making a recursive call to the algorithm.
We then call the algorithm from Lemma 4.2 with input G and c,65 and we
obtain a proper coloring of G that uses at most max{χ(G), χ(G\t2)} = χ(G)
colors;66 this takes O(n5) time. We now return this coloring of G, and we
stop.

Clearly, the algorithm is correct. We make O(n) recursive calls to the
algorithm, and otherwise, the slowest step of the algorithm takes O(n5) time.
Thus, the total running time of the algorithm is O(n6).

65We also input the ring partition (X1, . . . , Xk) of the ring G, as well as our orderings
of the sets X1, . . . , Xk.

66Clearly, this coloring of G is optimal.
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We complete this section by giving a polynomial-time coloring algorithm
for graphs in GT.

Theorem 4.4. There exists an algorithm with the following specifications:

• Input: A graph G;

• Output: Either an optimal coloring of G, or the true statement that
G /∈ GT;

• Running time: O(n7).

Proof. We first check whether G has a clique-cutset, and if so, we obtain
a clique-cut-partition (A,B,C) of G such that G[A ∪ C] does not admit
a clique-cutset; this can be done in O(n3) time by running the algorithm
from [14] with input G. If we obtained the answer that G does not admit a
clique-cutset, then we set A = V (G), B = ∅, and C = ∅. On the other hand,
if we obtained (A,B,C), then we make a recursive call to the algorithm with
input G[B ∪ C]; if we obtained the answer that G[B ∪ C] /∈ GT, then we
return the answer that G /∈ GT (this is correct because GT is hereditary),
and we stop. So from now on, we assume that one of the following holds:

• B = C = ∅;

• (A,B,C) is a clique-cut-partition of G, and we recursively obtained
an optimal coloring cB of G[B ∪ C].

In either case, we also have that G[A ∪ C] does not admit a clique-cutset.
We now run the algorithm from Theorem 4.3 with input G[A ∪ C]; this

takes O(n6) time. The algorithm either returns an optimal coloring cA of
G[A ∪ C], or it returns the answer that G[A ∪ C] /∈ R≥4. If the algorithm
returned the answer that G[A∪C] /∈ R≥4, then our goal is to either produce
an optimal coloring cA of G[A∪C] in another way, or to determine that G /∈
GT. In this case (i.e. if the algorithm returned the answer that G[A ∪ C] /∈
R≥4), we proceed as follows. Since R≥4 contains all rings (by Lemma 2.8),
we have that G[A∪C] is not a ring. Recall that G[A∪C] does not admit a
clique-cutset. Thus, Theorem 2.11 implies that either G[A∪C] is a complete
graph, or G[A ∪ C] is a 7-hyperantihole, or G[A ∪ C] /∈ GT (in which case,
G /∈ GT, since GT is hereditary). Clearly, complete graphs have stability
number one, and hyperantiholes have stability number two. Thus, either
α(G[A ∪ C]) ≤ 2 or G /∈ GT. We determine whether α(G[A ∪ C]) ≤ 2
by examining all triples of vertices in G[A ∪ C]; this takes O(n3) time. If
α(G[A ∪ C]) ≥ 3, then we return the answer that G /∈ GT, and we stop.
So suppose that α(G[A ∪ C]) ≤ 2. This means that each color class of a
proper coloring of G[A∪C] is of size at most two, and that, taken together,
color classes of size exactly two correspond to a matching of G[A ∪ C] (the
complement of G[A ∪ C]). So, we form the graph G[A ∪ C] in O(n2) time,
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and we find a maximum matching M in G[A∪C] in O(n4) time by running
the algorithm from [6]. We now color G[A ∪ C] as follows: each member
of M is a two-vertex color class,67 and each vertex in A ∪ C that is not
an endpoint of any member of M forms a one-vertex color class.68 This
produces an optimal coloring cA of G[A ∪C].

So from now on, we may assume that we have obtained an optimal
coloring cA of G[A∪C]. If B = C = ∅, then cA is in fact an optimal coloring
of G; in this case, we return cA, and we stop. So assume that B ∪ C 6= ∅.
Then we have already obtained an optimal coloring cB of G[B ∪ C]. After
possibly renaming colors, we may assume that the color set used by one of
cA, cB is included in the color set used by the other one. Now, C is a clique
in G, and so cA assigns a different color to each vertex of C, and the same
is true for cB . So, after possibly permuting colors, we may assume that cA
and cB agree on C, i.e. that cA ↾ C = cB ↾ C. Now c := cA ∪ cB is an
optimal coloring of G. We return c, and we stop.

Clearly, the algorithm is correct. We make O(n) recursive calls to the
algorithm, and otherwise, the slowest step takes O(n6) time. Thus, the total
running time of the algorithm is O(n7).

5 Computing the chromatic number of a ring

In section 4, we gave an O(n6) time coloring algorithm for graphs in R≥4

(see Theorem 4.3),69 and we also gave an O(n7) time coloring algorithm for
graphs in GT (see Theorem 4.4). These algorithms produce optimal colorings
of input graphs from the specified classes; however, for some applications,
it is enough to compute the chromatic number, without actually finding an
optimal coloring of the input graph. In this section, we use Corollary 1.3
and Lemma 2.6 to construct an O(n3) time algorithm that computes the
chromatic number of a graph in R≥4 (see Theorem 5.2), and using this
result, we construct an O(n5) time algorithm that computes the chromatic
number of a graph in GT (see Theorem 5.3).

First, we give an O(n3) time algorithm that computes a maximum hy-
perhole in a ring (see Lemma 5.1).70 We begin with some terminology and
notation. Let k ≥ 4 be an integer, let R be a k-ring with ring partition

(X1, . . . ,Xk), and for all i ∈ {1, . . . , k}, let Xi = {u1i , . . . , u
|Xi|
i } be an or-

dering of Xi such that Xi ⊆ NG[u
|Xi|
i ] ⊆ · · · ⊆ NG[u

1
i ] = Xi−1 ∪Xi ∪Xi+1,

as in the definition of a ring. Let H be a hyperhole in R. By Lemma 2.2,

67By construction, members of M are edges of G[A ∪ C]; consequently, members of M
are stable sets of size two in G[A ∪ C].

68So, in total, we used |M |+ (|A ∪ C| − 2|M |) = |A ∪ C| − |M | colors.
69Recall that, by Lemma 2.8, the class R≥4 contains all rings.
70We remind the reader that, by Lemma 2.2(b), every hyperhole in a ring is of the same

length as that ring. As usual, a maximum hyperhole in a ring is a hyperhole of maximum
size in that ring.
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the hyperhole H is of length k, and it intersects each of the sets X1, . . . ,Xk.
For all i ∈ {1, . . . , k}, let ℓi = max{ℓ ∈ {1, . . . , |Xi|} | uℓi ∈ V (H)} and

Yi = {u1i , . . . , u
ℓi
i }. Finally, let H̃ = R[Y1∪· · ·∪Yk] and CH = {uℓ11 , . . . , uℓkk }.

Clearly, H̃ is a hyperhole, with V (H) ⊆ V (H̃). Furthermore, CH induces a
hole in R, and it uniquely determines H̃. We say that H is normal in R if
H = H̃. Clearly, any maximal hyperhole (and therefore, any hyperhole of
maximum size) in R is normal. Thus, to find a maximum hyperhole in an
input ring, we need only consider normal hyperholes in that ring.

Lemma 5.1. There exists an algorithm with the following specifications:

• Input: A graph R;

• Output: Either a maximum hyperhole H in R, or the true statement
that R is not a ring;

• Running time: O(n3).

Proof. We first run the algorithm from Lemma 2.4 with input R; this
takes O(n2) time. If the algorithm returns the answer that R is not a
ring, then we return that answer as well and stop. So assume the algo-
rithm returned the statement that R is a ring, along with the length k and
ring partition (X1, . . . ,Xk) of R, and for each i ∈ {1, . . . , k} an ordering

Xi = {u1i , . . . , u
|Xi|
i } of Xi such that Xi ⊆ NR[u

|Xi|
i ] ⊆ · · · ⊆ NR[u

1
i ] =

Xi−1 ∪Xi ∪Xi+1.
For each j ∈ {1, . . . , |X1|}, we will find a normal hyperhole Hj of R such

that V (Hj) ∩X1 = {u11, . . . , u
j
1}, and subject to that, |V (Hj)| is maximum.

We will then compare the sizes of all the Hj’s (with 1 ≤ j ≤ |X1|), and we
will return an Hj of maximum size.

We begin by constructing an auxiliary weighted digraph (D,w),71 as fol-

lows. First, we construct a set of |X1| new vertices, Xk+1 = {u1k+1, . . . , u
|X1|
k+1},

with Xk+1 ∩ V (R) = ∅.72 Let D be the digraph with vertex set V (D) =
V (R) ∪Xk+1 and arc set:

A(D) =
k−1⋃
i=1

({
−→xy | x ∈ Xi, y ∈ Xi+1, xy ∈ E(R)

}

∪
{−−−→
xuℓk+1 | x ∈ Xk, xuℓ1 ∈ E(R), 1 ≤ ℓ ≤ |X1|

})
.

Finally, for every arc
−−−−→
upi u

q
i+1 in A(D), with i ∈ {1, . . . , k}, p ∈ {1, . . . , |Xi|},

and q ∈ {1, . . . , |Xi+1|}, we set w(
−−−−→
upi u

q
i+1) = (|Xi| − p) + (|Xi+1| − q).

Now, for a fixed j ∈ {1, . . . , |X1|}, we find the hyperhole Hj as follows.

Let Pj be a minimum weight directed path between uj1 and ujk+1 in the

71The weight function w will assign nonnegative interger weights to the arcs of D.
72So, |Xk+1| = |X1|, and we think of Xk+1 as a copy of X1.
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weighted digraph (D,w). Such a path can be found in O(n2) time using
Dijkstra’s algorithm [5, 13]. For each i ∈ {1, . . . , k}, let ℓi,j ∈ {1, . . . , |Xi|} be

the (unique) index such that u
ℓi,j
i ∈ V (Pj), and let Yi,j = {uℓi | 1 ≤ ℓ ≤ ℓi,j}.

Finally, let Hj = R[Y1,j ∪ · · · ∪ Yk,j]. Clearly, Hj is a normal hyperhole of

R, and V (Hj) ∩X1 = {u11, . . . , u
j
1}. Moreover, we have that

|V (Hj)| =
k∑

i=1
|Yi,j|

=
k∑

i=1
ℓi,j

= |V (R)| −
k∑

i=1
(|Xi| − ℓi,j)

= |V (R)| − 1
2w(Pj),

and so the fact that Pj has minimum weight implies that Hj has maximum

size among all hyperholes H in R that satisfy V (H) ∩ X1 = {u11, . . . , u
j
1}.

So, Hj is the desired hyperhole for a given j.
We now compare the sizes of the hyperholes H1, . . . ,H|X1| (this takes

O(n2) time), and we return one of maximum size.
Clearly, the algorithm is correct. The total running time is O(n3), since

computing Hj (for fixed j) takes O(n2) time, and we do this for O(n) values
of j.

We now give a polynomial-time algorithm that computes the chromatic
number of graphs in R≥4.

Theorem 5.2. There exists an algorithm with the following specifications:

• Input: A graph G;

• Output: Either χ(G), or the true statement that G /∈ R≥4;

• Running time: O(n3).

Proof. First, we form a maximal sequence v1, . . . , vt (t ≥ 0) of pairwise
distinct vertices of G such that, for all i ∈ {1, . . . , t}, vi is simplicial in
G \ {v1, . . . , vi−1}; this can be done in O(n3) time by calling the algorithm
from Lemma 2.5 with input G.

Suppose first that V (G) = {v1, . . . , vt}, so that v1, . . . , vt is a simplicial
elimination ordering ofG. In this case, we greedily color G using the ordering
vt, . . . , v1,

73 we return the number of colors that we used, and we stop; this
takes O(n2) time.

73Clearly, this produces an optimal coloring of G.
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From now on, we assume that V (G) 6= {v1, . . . , vt}, and we form the
graph R := G \ {v1, . . . , vt} in O(n2) time. The maximality of v1, . . . , vt
guarantees that R contains no simplicial vertices, and so by the definition
of R≥4, we have that either R is a ring, or G /∈ R≥4.

74

We now run the algorithm from Lemma 2.3 with input R; this takes
O(n2) time. If the algorithm returns the answer that R is not a ring, then
we return the answer that G /∈ R≥4, and we stop. So assume the algorithm
returned the statement that R is a ring, along with the length k and ring
partition (X1, . . . ,Xk) of R. Next, we call the algorithm from Lemma 2.6;
this takes O(n3) time. Since R is a ring, Lemma 2.2(d) guarantees that
R ∈ GT, and so the algorithm returns ω(R). Next, we run the algorithm
from Lemma 5.1 with input R; this takes O(n3) time. Since R is a ring,
we know that the algorithm returns a hyperhole H of R of maximum size;
since R is a k-ring, Lemma 2.2(b) guarantees that H is a k-hyperhole. Set

r := max
{
ω(R),

⌈
|V (H)|
⌊k/2⌋

⌉}
; by Corollary 1.3, we have that χ(R) = r.

If t = 0 (so that G = R), then we return r, and we stop. So assume
that t ≥ 1. For each i ∈ {1, . . . , t}, set ri = |NG[vi] \ {v1, . . . , vi−1}|; com-
puting the constants r1, . . . , rt takes O(n2) time. An easy induction using
Lemma 2.10 now establishes that χ(G) = max{r1, . . . , rt, r}. So, we return
max{r1, . . . , rt, r}, and we stop.

Clearly, the algorithm is correct, and its running time is O(n3).

We complete this section by showing how to compute the chromatic
number of graphs in GT in polynomial time. We remark that this algorithm
is very similar to the one from Theorem 4.4, except that we use Theorem 5.2
instead of Theorem 4.3. Nevertheless, for the sake of completeness, we give
all the details.

Theorem 5.3. There exists an algorithm with the following specifications:

• Input: A graph G;

• Output: Either χ(G), or the true statement that G /∈ GT;

• Running time: O(n5).

Proof. We first check whether G has a clique-cutset, and if so, we obtain
a clique-cut-partition (A,B,C) of G such that G[A ∪ C] does not admit
a clique-cutset; this can be done by running the algorithm from [14] with
input G, and it takes O(n3) time. If we obtained the answer that G does
not admit a clique-cutset, then we set A = V (G), B = ∅, and C = ∅, and
we set r = 0. On the other hand, if we obtained (A,B,C), then we make

74Indeed, suppose that G ∈ R≥4. Since R≥4 is hereditary, it follows that R ∈ R≥4. By
the maximality of v1, . . . , vt, the graph R has no simplicial vertices. So, by the definition
of R≥4, we have that R is a ring.
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a recursive call to the algorithm with input G[B ∪ C]; if we obtained the
answer that G[B ∪ C] /∈ GT, then we return the answer that G /∈ GT and
stop,75 and otherwise (i.e. if we obtained the chromatic number of G[B∪C])
we set r = χ(G[B ∪ C]).

We may now assume that we have obtained the number r (for otherwise,
we terminated the algorithm). Clearly, χ(G) = max{χ(G[A∪C]), r}. Next,
we run the algorithm from Theorem 5.2 with inputG[A∪C]; this takes O(n3)
time. If the algorithm returned χ(G[A ∪ C]), then we return the number
max{χ(G[A ∪ C]), r}, and we stop. So assume the algorithm returned the
answer that G[A ∪ C] is not a ring.

So far, we know that G[A∪C] does not admit a clique-cutset and is not
a ring. Theorem 2.11 now guarantees that either G[A ∪ C] is a complete
graph or a 7-hyperantihole, or G[A ∪C] /∈ GT (in which case, G /∈ GT, since
GT is hereditary). Clearly, complete graphs have stability number one, and
hyperantiholes have stability number two. Thus, either α(G[A ∪ C]) ≤ 2
or G /∈ GT. Now, we determine whether α(G[A ∪ C]) ≤ 2 by examining all
triples of vertices in G[A∪C]; this takes O(n3) time. If α(G[A∪C]) ≥ 3, then
we return the answer that G /∈ GT and stop. Assume now that α(G[A∪C]) ≤
2. Then we form the graph G[A∪C] (the complement of G[A∪C]) in O(n2)
time, and we find a maximum matching M in G[A ∪ C] by running the
algorithm from [6]; this takes O(n4) time. Since α(G[A∪C]) ≤ 2, we see that
χ(G[A∪C]) = |A∪C|−|M |; we now return the number max{|A∪C|−|M |, r},
and we stop.

Clearly, the algorithm is correct. The slowest step takes O(n4) time, and
we make O(n) recursive calls. Thus, the total running time of the algorithm
is O(n5).

6 Optimal χ-bounding functions

For all integers k ≥ 4, we let Hk be the class of all induced subgraphs of
k-hyperholes, and we let Ak be the class of all induced subgraphs of k-
hyperantiholes; clearly, classes Hk and Ak are both hereditary, and they
contain all complete graphs.76 Recall that for all integers k ≥ 4, Rk is the
class of all graphs G that have the property that every induced subgraph
of G either is a k-ring or has a simplicial vertex; clearly, Rk is hereditary
and contains all complete graphs, and by Lemma 2.8, all k-rings belong to
Rk (in particular, Hk ⊆ Rk). In this section, for all integers k ≥ 4, we
find the optimal χ-bounding functions for the classes Hk (see Theorem 6.5),
Ak (see Theorem 6.12), and Rk (see Theorem 6.8). Further, for all integers

75This is correct because GT is hereditary.
76The reason we emphasize that these classes contain all complete graphs is that we

defined optimal χ-bounding functions only for hereditary, χ-bounded classes that contain
all complete graphs.
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k ≥ 4, we set H≥k =
∞⋃
i=k

Hi and A≥k =
∞⋃
i=k

Ai, and we remind the reader

that R≥k =
∞⋃
i=k

Ri.
77 For all integers k ≥ 4, we find the optimal χ-bounding

functions for the classes H≥k (see Corollary 6.6), A≥k (see Corollary 6.13),
and R≥k (see Corollary 6.9); see also Theorem 6.14. Finally, we find the
optimal χ-bounding function for the class GT (see Theorem 6.15).

Recall that N is the set of all positive integers, and let iN be the identity
function on N, i.e. let iN : N → N be given by iN(n) = n for all n ∈ N.

We define the function fT : N → N by setting

fT(n) =





⌊5n/4⌋ if n ≡ 0, 1 (mod 4)

⌈5n/4⌉ if n ≡ 2, 3 (mod 4)

for all n ∈ N.
For all odd integers k ≥ 5, we define the function fk : N → N by setting

fk(n) =





⌊
kn
k−1

⌋
if n ≡ 0, 1 (mod k − 1)

⌈
kn
k−1

⌉
if n ≡ 2, . . . , k − 2 (mod k − 1)

for all n ∈ N.
For all odd integers k ≥ 5, we define the function gk : N → N by setting

gk(n) =





⌊
kn
k−1

⌋
if n ≡ 0, . . . , k−3

2 (mod k − 1)

⌈
kn
k−1

⌉
if n ≡ k−1

2 , . . . , k − 2 (mod k − 1)

for all n ∈ N.
Note that fT = f5 = g5. Before turning to the classes mentioned at

the beginning of this section, we prove a few technical lemmas concerning
functions fT, fk, and gk.

Lemma 6.1. Let k ≥ 5 be an odd integer, and let n ∈ N. Then fk(n) =

n+
⌈
2⌊n/2⌋
k−1

⌉
.

Proof. Set m = ⌊ n
k−1⌋ and ℓ = n − (k − 1)m. Clearly, m is a nonnegative

integer, ℓ ∈ {0, . . . , k − 2}, n = (k − 1)m+ ℓ, and n ≡ ℓ (mod k − 1).

77Clearly, for all integers k ≥ 4 we have that: H≥k is the class of all induced subgraphs of
hyperholes of length at least k; A≥k is the class of all induced subgraphs of hyperantiholes
of length at least k; and R≥k contains all induced subgraphs of rings of length at least
k. In particular, H≥k ⊆ R≥k. It is clear that H≥k, A≥k, and R≥k are hereditary and
contain all complete graphs.
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Since k is odd, we have that k − 1 is even, and so

⌈
2⌊n/2⌋
k−1

⌉
=

⌈
2

⌊
(k−1)m+ℓ

2

⌋

k−1

⌉
= m+

⌈
2⌊ℓ/2⌋
k−1

⌉
.

If 0 ≤ ℓ ≤ 1, then fk(n) = ⌊ kn
k−1⌋, and we have that

n+
⌈
2⌊n/2⌋
k−1

⌉
= n+m+

⌈
2⌊ℓ/2⌋
k−1

⌉

= n+m

= ⌊ kn
k−1⌋

= fk(n),

and we are done.
Suppose now that 2 ≤ ℓ ≤ k − 2; then fk(n) = ⌈ kn

k−1⌉. First, we have
that

n+
⌈
2⌊n/2⌋
k−1

⌉
= n+m+

⌈
2⌊ℓ/2⌋
k−1

⌉
= n+m+ 1 = ⌊ kn

k−1⌋+ 1.

Since ℓ 6= 0, we see that kn
k−1 is not an integer, and so ⌊ kn

k−1⌋+1 = ⌈ kn
k−1⌉. It

now follows that

n+
⌈
2⌊n/2⌋
k−1

⌉
= ⌊ kn

k−1⌋+ 1 = ⌈ kn
k−1⌉ = fk(n),

which is what we needed. This completes the argument.

Lemma 6.2. Let k ≥ 5 be an odd integer, and let n ∈ N. Then gk(n) =

n+
⌈
⌊ 2n
k−1⌋/2

⌉
.

Proof. Set m = ⌊ n
k−1⌋ and ℓ = n − (k − 1)m. Clearly, m is a nonnegative

integer, ℓ ∈ {0, . . . , k − 2}, n = (k − 1)m+ ℓ, and n ≡ ℓ (mod k − 1).
First, we have that

⌈
⌊ 2n
k−1⌋/2

⌉
=

⌈⌊
2((k−1)m+ℓ)

k−1

⌋
/2
⌉

= m+
⌈
⌊ 2ℓ
k−1⌋/2

⌉
.

Suppose first that 0 ≤ ℓ ≤ k−3
2 ; then gk(n) = ⌊ kn

k−1⌋. We now have that

n+
⌈
⌊ 2n
k−1⌋/2

⌉
= n+m+

⌈
⌊ 2ℓ
k−1⌋/2

⌉

= n+m

= ⌊ kn
k−1⌋

= gk(n),
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which is what we needed.
Suppose now that k−1

2 ≤ ℓ ≤ k− 2; then gk(n) = ⌈ kn
k−1⌉. Now, note that

n+
⌈
⌊ 2n
k−1⌋/2

⌉
= n+m+

⌈
⌊ 2ℓ
k−1⌋/2

⌉

= n+m+ 1

= ⌊ kn
k−1⌋+ 1.

Since ℓ 6= 0, we see that kn
k−1 is not an integer, and so ⌊ kn

k−1⌋ + 1 = ⌈ kn
k−1⌉.

We now have that

n+
⌈
⌊ 2n
k−1⌋/2

⌉
= ⌊ kn

k−1⌋+ 1 = ⌈ kn
k−1⌉ = gk(n),

which is what we needed. This completes the argument.

Given functions f, g : N → N, we write f ≤ g and g ≥ f , if for all
n ∈ N, we have that f(n) ≤ g(n). As usual, a function f : N → N is said
to be nondecreasing if for all n1, n2 ∈ N such that n1 ≤ n2, we have that
f(n1) ≤ f(n2).

Lemma 6.3. Function fT is nondecreasing, and fT = f5 = g5. Further-
more, for all odd integers k ≥ 5, all the following hold:

(a) fT ≥ fk ≥ gk;

(b) functions fk and gk are nondecreasing;

(c) fk ≥ fk+2 and gk ≥ gk+2.

Proof. The fact that fT is nondecreasing, and that fT = f5 = g5, follows
from the definitions of fT, f5, and g5. Further, it follows from construction
that for all odd integers k ≥ 5, we have that fk ≥ gk. The rest readily
follows from Lemmas 6.1 and 6.2.

Lemma 6.4. Let k ≥ 5 be an odd integer. Then all k-hyperholes H satisfy
χ(H) ≤ fk(ω(H)). Furthermore, there exists a sequence {Hk

n}
∞
n=2 of k-

hyperholes such that for all integers n ≥ 2, we have that ω(Hk
n) = n and

χ(Hk
n) = fk(n).

Proof. We begin by proving the first statement of the lemma. Let H be
a k-hyperhole, and let (X1, . . . ,Xk) be a partition of V (H) into nonempty
cliques such that for all i ∈ {1, . . . , k}, Xi is complete to Xi−1 ∪Xi+1 and
anticomplete to V (H) \ (Xi−1 ∪ Xi ∪ Xi+1), as in the definition of a k-
hyperhole. Since H is a k-hyperhole, and since k is odd, we have that
α(H) = ⌊k/2⌋ = k−1

2 . Then by Lemma 1.1, we have that

χ(H) = max
{
ω(H),

⌈
|V (H)|
α(H)

⌉}
= max

{
ω(H),

⌈
2|V (H)|
k−1

⌉}
.
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It is clear that ω(H) ≤ fk(ω(H)), and so it suffices to show that
⌈
2|V (H)|
k−1

⌉
≤

fk(ω(H)). Clearly, for all i ∈ {1, . . . , k}, Xi ∪ Xi+1 is a clique, and so
|Xi| + |Xi+1| ≤ ω(H). In particular, |Xk| + |X1| ≤ ω(H), and so either
|Xk| ≤ ⌊ω(H)/2⌋ or |X1| ≤ ⌊ω(H)/2⌋; by symmetry, we may assume that
|Xk| ≤ ⌊ω(H)/2⌋. Now, using the fact that k is odd, we get that

|V (H)| =
k∑

i=1
|Xi|

=
( (k−1)/2∑

i=1
(|X2i−1|+ |X2i|)

)
+ |Xk|

≤ k−1
2 ω(H) + ⌊ω(H)/2⌋.

But now by Lemma 6.1, we have that

⌈
2|V (H)|
k−1

⌉
≤

⌈
2

(
k−1
2

ω(H)+⌊ω(H)/2⌋

)

k−1

⌉

= ω(H) +
⌈
2⌊ω(H)/2⌋

k−1

⌉

= fk(ω(H)),

which is what we needed. This proves the first statement of the lemma.
It remains to prove the second statement of the lemma. We fix an integer

n ≥ 2, and we construct Hk
n as follows. Let X1, . . . ,Xk be pairwise disjoint

sets such that for all i ∈ {1, . . . , k},

• if i is odd, then |Xi| = ⌊n/2⌋, and

• if i is even, then |Xi| = ⌈n/2⌉.

Since n ≥ 2, sets X1, . . . ,Xk are all nonempty. Now, let Hk
n be the graph

whose vertex set is V (Hk
n) = X1 ∪ · · · ∪Xk, and with adjacency as follows:

• X1, . . . ,Xk are all cliques;

• for all i ∈ {1, . . . , k}, Xi is complete to Xi−1 ∪Xi+1 and anticomplete
to V (Hk

n) \ (Xi−1 ∪Xi ∪Xi+1).

Clearly, Hk
n is a k-hyperhole, and ω(Hk

n) = ⌊n/2⌋+⌈n/2⌉ = n. It remains to
show that χ(Hk

n) = fk(n). But by the first statement of the lemma, we have
that χ(Hk

n) ≤ fk(n), and so in fact, it suffices to show that χ(Hk
n) ≥ fk(n).

It is clear that χ(Hk
n) ≥

⌈
|V (Hk

n)|
α(Hk

n)

⌉
. Further, by construction, and by the

fact that k is odd, we have that
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• α(Hk
n) = ⌊k/2⌋ = k−1

2 , and

• |V (Hk
n)| = ⌈k/2⌉⌊n/2⌋ + ⌊k/2⌋⌈n/2⌉ = k−1

2 n+ ⌊n/2⌋.

Thus,

χ(Hk
n) ≥

⌈
|V (Hk

n)|
α(Hk

n)

⌉
=

⌈
2

(
k−1
2

n+⌊n/2⌋

)

k−1

⌉
= n+

⌈
2⌊n/2⌋
k−1

⌉
.

Lemma 6.1 now implies that

χ(Hk
n) ≥ n+

⌈
2⌊n/2⌋
k−1

⌉
= fk(n),

which is what we needed. This proves the second statement of the lemma.

Theorem 6.5. Let k ≥ 4 be an integer. Then Hk is χ-bounded. Further-
more, if k is even, then the identity function iN is the optimal χ-bounding
function for Hk, and if k is odd, then fk is the optimal χ-bounding function
for Hk.

Proof. Note that every induced subgraph of a k-hyperhole is either a k-
hyperhole or a chordal graph.78 Since chordal graphs are perfect (by [1, 4]),
it follows that all graphs in Hk are either k-hyperholes or perfect graphs.
Furthermore, by construction, Hk contains all k-hyperholes. Thus, if k is
odd, then Lemma 6.4 implies that fk is the optimal χ-bounding function for
Hk.

79 Suppose now that k is even. By Lemma 3.2, all even hyperholes are
perfect, and we deduce that all graphs in Hk are perfect. Furthermore, Hk

contains all complete graphs. So, iN is the optimal χ-bounding function for
Hk.

Corollary 6.6. Let k ≥ 4 be an integer. Then H≥k is χ-bounded. Further-
more, if k is even, then fk+1 is the optimal χ-bounding function for H≥k,
and if k is odd, then fk is the optimal χ-bounding function for H≥k.

Proof. This follows immediately from Lemma 6.3(c) and Theorem 6.5.

Lemma 6.7. Let k ≥ 5 be an odd integer. Then all k-rings R satisfy
χ(R) ≤ fk(ω(R)). Furthermore, there exists a sequence {Rk

n}
∞
n=2 of k-rings

such that for all integers n ≥ 2, we have that ω(Rk
n) = n and χ(Rk

n) = fk(n).

Proof. Since every k-hyperhole is a k-ring, the second statement of the
lemma follows immediately from the second statement of Lemma 6.4. It
remains to prove the first statement. Let R be a k-ring. Then by Theo-
rem 1.2, there exists a k-hyperhole H in R such that χ(R) = χ(H). By

78This is easy to see by inspection, but it also follows from Lemma 2.2(c).
79We are also using the fact that K1 ∈ Hk, ω(K1) = 1, and χ(K1) = 1 = fk(1).
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Lemma 6.4, we have that χ(H) ≤ fk(ω(H)). Clearly, ω(H) ≤ ω(R), and by
Lemma 6.3(b), fk is a nondecreasing function. We now have that

χ(R) = χ(H) ≤ fk(ω(H)) ≤ fk(ω(R)),

which is what we needed. This completes the argument.

Theorem 6.8. Let k ≥ 4 be an integer. Then Rk is χ-bounded. Further-
more, if k is even, then the identity function iN is the optimal χ-bounding
function for Rk, and if k is odd, then fk is the optimal χ-bounding function
for Rk.

Proof. Suppose first that k is even. By Lemma 3.2, every k-ring R satisfies
χ(R) = ω(R). Lemma 2.10 and an easy induction now imply that Rk is χ-
bounded by iN, and it is obvious that this χ-bounding function is optimal.

Suppose now that k is odd. By Lemma 2.8, all k-rings belong to Rk.
Thus, it suffices to show that Rk is χ-bounded by fk, for optimality will
then follow immediately from Lemma 6.7.80

So, fix G ∈ Rk, and assume inductively that all graphs G′ ∈ Rk with
|V (G′)| < |V (G)| satisfy χ(G′) ≤ fk(ω(G

′)). We must show that χ(G) ≤
fk(ω(G)). If G is a complete graph, then χ(G) = ω(G) ≤ fk(ω(G)), and we
are done. So assume that G is not complete, and in particular, G has at
least two vertices.

Suppose that G has a simplicial vertex v. Then by Lemma 2.10, χ(G) =
max{ω(G), χ(G \ v)}. Clearly, ω(G) ≤ fk(ω(G)). On the other hand,
using the induction hypothesis and the fact that fk is nondecreasing (by
Lemma 6.3(b)), we get that χ(G \ v) ≤ fk(ω(G \ v)) ≤ fk(ω(G)). It now
follows that χ(G) = max{ω(G), χ(G \ v)} ≤ fk(ω(G)), which is what we
needed.

Suppose now that G does not contain a simplicial vertex. Then by the
definition of Rk, G is a k-ring, and so Lemma 6.7 implies that χ(G) ≤
fk(ω(G)). This completes the argument.

Corollary 6.9. Let k ≥ 4 be an integer. Then R≥k is χ-bounded. Further-
more, if k is even, then fk+1 is the optimal χ-bounding function for R≥k,
and if k is odd, then fk is the optimal χ-bounding function for R≥k.

Proof. This follows immediately from Lemma 6.3(c) and Theorem 6.8.

A cobipartite graph is a graph whose complement is bipartite. Equiv-
alently, a graph is cobipartite if its vertex set can be partitioned into two
(possibly empty) cliques.

80We are also using the fact that K1 ∈ Rk, ω(K1) = 1, and χ(K1) = 1 = fk(1).
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Lemma 6.10. Let k ≥ 4 be an integer, let A be a k-hyperantihole, and let
(X1, . . . ,Xk) be a partition of V (A) into nonempty cliques such that for all
i ∈ {1, . . . , k}, Xi is complete to V (A)\(Xi−1∪Xi∪Xi+1) and anticomplete
to Xi−1 ∪Xi+1. Then for all i ∈ {1, . . . , k}, A \Xi is perfect. Furthermore,
if k is even, then A is perfect.

Proof. The Perfect Graph Theorem [10] states that a graph is perfect if
and only if its complement is perfect; bipartite graphs are obviously perfect,
and it follows that cobipartite graphs are also perfect. Clearly, for all i ∈
{1, . . . , k}, A \Xi is cobipartite and consequently perfect. Furthermore, if k
is even, then A is cobipartite and consequently perfect.

Lemma 6.11. Let k ≥ 5 be an odd integer. Then all k-hyperantiholes A
satisfy ω(A) ≥ k−1

2 and χ(A) ≤ gk(ω(A)). Furthermore, there exists a

sequence {Ak
n}

∞
n= k−1

2

of k-hyperantiholes such that for all integers n ≥ k−1
2 ,

we have that ω(Ak
n) = n and χ(Ak

n) = gk(n).

Proof. We begin by proving the first statement of the lemma. Let A be a
k-hyperantihole, and let (X1, . . . ,Xk) be a partition of V (A) into nonempty
cliques such that for all i ∈ {1, . . . , k}, Xi is complete to V (A) \ (Xi−1 ∪
Xi ∪ Xi+1) and anticomplete to Xi−1 ∪ Xi+1, as in the definition of a k-
hyperantihole. Since A is a k-hyperantihole, and since k is odd, we see that
ω(A) ≥ ⌊k2⌋ =

k−1
2 .

By symmetry, we may assume that |X2| = min{|X1|, . . . , |Xk|}. Since
(k−1)/2⋃

i=1
X2i is a clique, we see that

(k−1)/2∑
i=1

|X2i| ≤ ω(A), and so by the mini-

mality of |X2|, we have that |X2| ≤
⌊
2ω(A)
k−1

⌋
.

By construction, X2 is anticomplete to X1 ∪ X3 in A, and |X2| ≤

|X1|, |X3|. Fix any X2
1 ⊆ X1 and X2

3 ⊆ X3 such that either |X2
1 | =

⌊
|X2|/2

⌋

and |X2
3 | =

⌈
|X2|/2

⌉
, or |X2

1 | =
⌈
|X2|/2

⌉
and |X2

3 | =
⌊
|X2|/2

⌋
.81 Let

X∗
2 = X2

1 ∪X2 ∪X2
3 . Note that X2 and X∗

2 \X2 = X2
1 ∪X2

3 are cliques in
A, they are anticomplete to each other in A, and they are both of size |X2|.
Thus, χ(A[X∗

2 ]) = |X2|.
By Lemma 6.10, A \X2 is perfect. Since A \X∗

2 is an induced subgraph
of A \ X2, it follows that χ(A \ X∗

2 ) = ω(A \ X∗
2 ). Let K be a maximum

81This way, we maintain full symmetry between X1 and X3.
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clique of A \X∗
2 . (In particular, K ∩X2 = ∅.) Then

χ(A) ≤ χ(A \X∗
2 ) + χ(A[X∗

2 ])

= ω(A \X∗
2 ) + |X2|

= |K|+ |X2|

= |K ∪X2|.

Suppose first that K intersects neither X1 \ X2
1 nor X3 \ X2

3 . Since
K ⊆ V (A) \X∗

2 , it follows that K ∩ (X1 ∪X3) = ∅. Then X2 is complete
to K. Thus, K ∪X2 is a clique of A, and it follows that |K ∪X2| ≤ ω(A);
consequently,

χ(A) ≤ |K ∪X2| ≤ ω(A) ≤ gk(ω(A)),

and we are done.
Suppose now that K intersects at least one of X1 \X

2
1 and X3 \X

2
3 ; by

symmetry, we may assume that K ∩ (X1 \X
2
1 ) 6= ∅. Then K ∪X2

1 is a clique
of A,82 and it follows that |K ∪X2

1 | ≤ ω(A); consequently,

|K| ≤ ω(A)− |X2
1 | ≤ ω(A)−

⌊
|X2|/2

⌋
,

and so
χ(A) ≤ |K|+ |X2|

≤ (ω(A)−
⌊
|X2|/2

⌋
) + |X2|

= ω(A) +
⌈
|X2|/2

⌉

≤ ω(A) +
⌈⌊

2ω(A)
k−1

⌋
/2
⌉
.

By Lemma 6.2, we now have that

χ(A) ≤ ω(A) +
⌈⌊

2ω(A)
k−1

⌋
/2
⌉

= gk(ω(A)),

and again we are done. This proves the first statement of the lemma.
It remains to prove the second statement of the lemma. We fix an

integer n ≥ k−1
2 , and we construct Ak

n as follows. Set m = ⌊ n
k−1⌋ and

ℓ = n − (k − 1)m. Clearly, m is a nonnegative integer, ℓ ∈ {0, . . . , k − 2},
n = (k − 1)m+ ℓ, and n ≡ ℓ (mod k − 1). Now, let X1, . . . ,Xk be pairwise
disjoint sets such that for all i ∈ {1, . . . , k},

82Since K ⊆ V (A) \X∗
2 and X2

1 ⊆ X∗
2 , we have that K and X2

1 are disjoint.

41



• if 0 ≤ ℓ ≤ k−3
2 , then |X1| = · · · = |X2ℓ| = 2m+ 1 and |X2ℓ+1| = · · · =

|Xk| = 2m;

• if k−1
2 ≤ ℓ ≤ k − 2, then |X1| = · · · = |X2ℓ−k+1| = 2m + 2 and

|X2ℓ−k+2| = · · · = |Xk| = 2m+ 1.

Since n ≥ k−1
2 , sets X1, . . . ,Xk are all nonempty. Let Ak

n be the graph with
vertex set V (Ak

n) = X1 ∪ · · · ∪Xk, and with adjacency as follows:

• X1, . . . ,Xk are all cliques;

• for all i ∈ {1, . . . , k}, Xi is complete to V (Ak
n) \ (Xi−1 ∪ Xi ∪ Xi+1)

and anticomplete to Xi−1 ∪Xi+1.

Clearly, Ak
n is a k-hyperantihole. We must show that ω(Ak

n) = n and
χ(Ak

n) = gk(n).
We first show that ω(Ak

n) = n. Suppose first that 0 ≤ ℓ ≤ k−3
2 . Now 2ℓ

consecutive Xi’s are of size 2m+ 1 (since they are consecutive, at most ℓ of
them can be included in a clique of Ak

n), and all the other Xi’s are of size
2m. So, a maximum clique of Ak

n is the union of ℓ sets Xi of size 2m + 1,
and of k−1

2 − ℓ sets Xi of size 2m. It follows that

ω(Ak
n) = ℓ(2m+ 1) +

(
k−1
2 − ℓ

)
2m = (k − 1)m+ ℓ = n,

which is what we needed.
Suppose now that k−1

2 ≤ ℓ ≤ k − 2. Then 2ℓ − k + 1 consecutive Xi’s

are of size 2m+ 2 (since they are consecutive, at most ⌈2ℓ−k+1
2 ⌉ = ℓ− k−1

2
of them can be included in a clique of Ak

n), and all the other Xi’s are of size
2m+ 1. So, a maximum clique of Ak

n is the union of ℓ− k−1
2 sets Xi of size

2m+2, and of k−1
2 − (ℓ− k−1

2 ) = k− ℓ− 1 sets Xi of size 2m+1. It follows
that

ω(Ak
n) =

(
ℓ− k−1

2

)
(2m+ 2) + (k − ℓ− 1)(2m+ 1)

= (k − 1)m+ ℓ

= n,

which is what we needed.
We have now shown that ω(Ak

n) = n. It remains to show that χ(Ak
n) =

gk(n). But by the first statement of the lemma, we have that χ(Ak
n) ≤

gk(n), and so in fact, it suffices to show that χ(Ak
n) ≥ gk(n). Clearly,

χ(Ak
n) ≥

⌈
|V (Ak

n)|
α(Ak

n)

⌉
, and since Ak

n is a hyperantihole, we see that α(Ak
n) = 2.

Thus, χ(Ak
n) ≥

⌈
1
2 |V (Ak

n)|
⌉
.
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Suppose first that 0 ≤ ℓ ≤ k−3
2 . Then gk(n) = ⌊ kn

k−1⌋, and we have that

χ(An
k) ≥

⌈
1
2 |V (Ak

n)|
⌉

=
⌈
1
2

(
2ℓ(2m+ 1) + (k − 2ℓ)2m

)⌉

= km+ ℓ

= n+m

= ⌊ kn
k−1⌋

= gk(n),

which is what we needed.
Suppose now that k−1

2 ≤ ℓ ≤ k − 2. Since ℓ 6= 0, we see that kn
k−1 is not

an integer, and so ⌊ kn
k−1⌋ + 1 = ⌈ kn

k−1⌉. Further, since k−1
2 ≤ ℓ ≤ k − 2, we

have that gk(n) = ⌈ kn
k−1⌉. We then see that

χ(An
k) ≥

⌈
1
2 |V (Ak

n)|
⌉

=
⌈
1
2

(
(2ℓ− k + 1)(2m + 2) + (2k − 2ℓ− 1)(2m + 1)

)⌉

=
⌈
km+ ℓ+ 1

2

⌉

= km+ ℓ+ 1

= n+m+ 1

= ⌊ kn
k−1⌋+ 1

= ⌈ kn
k−1⌉

= gk(n),

which is what we needed. This proves the second statement of the lemma.

Theorem 6.12. Let k ≥ 4 be an integer. Then Ak is χ-bounded. Further-
more, if k is even, then the identity function iN is the optimal χ-bounding
function for Ak, and if k is odd, then gk is the optimal χ-bounding function
for Ak.
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Proof. If k is even, then by Lemma 6.10, all graphs in Ak are perfect, and
it follows that iN is the optimal χ-bounding function for Ak.

Suppose now that k is odd. Clearly, all k-hyperantiholes belong to Ak;
on the other hand, it follows from Lemma 6.10 that all graphs in Ak are
either k-hyperantiholes or perfect graphs. So, by Lemma 6.11, Ak is χ-
bounded by gk. It remains to establish the optimality of gk. Fix n ∈ N. If
n ≤ k−3

2 , then gk(n) = n, and we observe that Kn ∈ Ak, ω(Kn) = n, and

χ(Kn) = n = gk(n). On the other hand, if n ≥ k−1
2 , then we let Ak

n be as in
Lemma 6.11, and we observe that Ak

n ∈ Ak, ω(A
k
n) = n, and χ(Ak

n) = gk(n).
This proves that the χ-bounding function gk for Ak is indeed optimal.

Corollary 6.13. Let k ≥ 4 be an integer. Then A≥k is χ-bounded. Further-
more, if k is even, then gk+1 is the optimal χ-bounding function for A≥k,
and if k is odd, then gk is the optimal χ-bounding function for A≥k.

Proof. This follows immediately from Lemma 6.3(c) and Theorem 6.12.

We remind the reader that the function fT : N → N is given by

fT(n) =





⌊5n/4⌋ if n ≡ 0, 1 (mod 4)

⌈5n/4⌉ if n ≡ 2, 3 (mod 4)

for all n ∈ N.
Note that H≥4 is the class of all induced subgraphs of hyperholes, and

that A≥4 is the class of all induced subgraphs of hyperantiholes. Further-
more, by Lemma 2.8, R≥4 contains all induced subgraphs of rings. In par-
ticular, H≥4 ⊆ R≥4.

Theorem 6.14. Classes H≥4, A≥4, and R≥4 are χ-bounded. Furthermore,
fT is the optimal χ-bounding function for all three classes.

Proof. By Lemma 6.3, we have that fT = f5 = g5. The result now follows
immediately from Corollaries 6.6, 6.9, and 6.13.

Theorem 6.15. GT is χ-bounded. Furthermore, fT is the optimal χ-bounding
function for GT.

Proof. We begin by showing fT is a χ-bounding function for GT. First,
by Lemma 6.3, we have that fT is nondecreasing, and that fT = f5 = g5.
Now, fix G ∈ GT, and assume inductively that for all G′ ∈ GT such that
|V (G′)| < |V (G)|, we have that χ(G′) ≤ fT(ω(G

′)).
By Theorem 2.11, we know that either G is a complete graph, a ring, or a

7-hyperantihole, orG admits a clique-cutset. IfG is a complete graph, a ring,
or a 7-hyperantihole, thenG ∈ R≥4∪A≥4, and Theorem 6.14 guarantees that
χ(G) ≤ fT(ω(G)). It remains to consider the case when G admits a clique-
cutset. Let (A,B,C) be a clique-cut-partition of G, and set GA = G[A∪C]
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and GB = G[B ∪ C]. Clearly, χ(G) = max{χ(GA), χ(GB)}. Using the
induction hypothesis and the fact that fT is nondecreasing, we now get that

χ(G) = max{χ(GA), χ(GB)}

≤ max{fT(ω(GA)), fT(ω(GB))}

≤ fT(ω(G)),

which is what we needed. This proves that fT is indeed a χ-bounding
function for GT.

It remains to establish the optimality of fT. Let n ∈ N; we must exhibit
a graph G ∈ GT such that ω(G) = n and χ(G) = fT(n). If n = 1, then
we observe that K1 ∈ GT, ω(K1) = 1, and χ(K1) = 1 = fT(1). So assume
that n ≥ 2. Let H5

n be as in the statement of Lemma 6.4. Then H5
n is a

5-hyperhole, and it is easy to see that all hyperholes belong to GT;
83 thus,

H5
n ∈ GT. Further, since fT = f5, Lemma 6.4 guarantees that ω(H5

n) = n
and χ(H5

n) = f5(n) = fT(n). Thus, fT is indeed the optimal χ-bounding
function for GT.

7 Class GT and Hadwiger’s conjecture

In this section, we prove Hadwiger’s conjecture for the class GT (see Theo-
rem 7.4). Recall that a graph is perfect if all its induced subgraphs H satisfy
χ(H) = ω(H). Obviously, Hadwiger’s conjecture is true for perfect graphs:
every perfect graph G contains Kχ(G) an induced subgraph, and therefore
as a minor as well.

Lemma 7.1. Every hyperhole H contains Kχ(H) as a minor.

Proof. Let H be a hyperhole, and let k be its length. Let (X1, . . . ,Xk) be a
partition of V (H) into nonempty cliques such that for all i ∈ {1, . . . , k}, Xi

is complete toXi−1∪Xi+1 and anticomplete to V (H)\(Xi−1∪Xi∪Xi+1). By
symmetry, we may assume that |X1| = min{|X1|, |X2|, . . . , |Xk|}. Clearly,
χ(H \ X1) = ω(H \ X1),

84 and furthermore, there exists some index j ∈
{2, . . . , k − 1} such that ω(H \ X1) = |Xj ∪ Xj+1|. By the choice of X1,
we see that there are |X1| vertex-disjoint induced paths between Xj−1 and
Xj+2, none of them passing through Xj∪Xj+1. We then take our |X1| paths
and the vertices of Xj ∪Xj+1 as branch sets, and we obtain a K|X1|+ω(H\X1)

minor in G. Since χ(H) ≤ |X1|+χ(H \X1) = |X1|+ω(H \X1), we conclude
that H contains Kχ(H) as a minor.

83Alternatively, we observe that every hyperhole is a ring, and by Lemma 2.2(d), all
rings belong to GT.

84By Lemma 2.2(c), H \ X1 is chordal, and by [1, 4], chordal graphs are perfect. So,
H \X1 is perfect and therefore satisfies χ(H \X1) = ω(H \X1).
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Lemma 7.2. Every ring R contains Kχ(R) as a minor.

Proof. This follows immediately from Theorem 1.2 and Lemma 7.1.

Lemma 7.3. Every hyperantihole A contains Kχ(A) as a minor.

Proof. Let A be a hyperantihole, and let (X1, . . . ,Xk), with k ≥ 4, be a
partition of V (A) into nonempty cliques, such that for all i ∈ {1, . . . , k}, Xi

is complete to A \ (Xi−1 ∪Xi ∪Xi+1) and anticomplete to Xi−1 ∪Xi+1, as
in the definition of a hyperantihole. If k = 4, then V (K) can be partitioned
into two cliques (namely X1∪X3 and X2∪X4), anticomplete to each other,
and the result is immediate. From now on, we assume that k ≥ 5.

By symmetry, we may assume that |X1| = min{|X1|, |X2|, . . . , |Xk|}.
Clearly, χ(A) ≤ χ(A \ X1) + |X1|. On the other hand, by Lemma 6.10,
A \ X1 is perfect, and in particular, χ(A \ X1) = ω(A \ X1). Let K be a
clique of size ω(A\X1) in A\X1. Then, χ(A) ≤ |K|+ |X1|, and so it suffices
to show that A contains K|K|+|X1| as a minor.

If K ∩ (Xk ∪X2) = ∅, then X1 is complete to K in A, K ∪X1 is a clique
of size |K|+ |X1| in A, and we are done.

From now on, we assume that K intersects at least one of X2 and Xk.
By symmetry, we may assume that K ∩X2 6= ∅. Since X2 is anticomplete
to X3, and since K is a clique, we see that K ∩ X3 = ∅. Since Xk−1 and
Xk are anticomplete to each other, and since K is a clique, we see that K
intersects at most one of Xk−1,Xk, and we deduce that |(Xk−1∪Xk)\K| ≥
min{|Xk−1|, |Xk|} ≥ |X1|. So, there exist |X1| pairwise disjoint three-vertex
subsets of V (A) \K, each of them containing exactly one vertex from each
of the sets X1, X3, and Xk−1 ∪Xk. Clearly, each of these three-vertex sets
induces a connected subgraph of A. We now take our |X1| three-vertex sets
and all the vertices of K as branch sets, and we obtain a K|K|+|X1| minor in
A. This completes the argument.

Theorem 7.4. Every graph G ∈ GT contains Kχ(G) as a minor.

Proof. Fix G ∈ GT, and assume inductively that every graph G′ ∈ GT with
|V (G′)| < |V (G)| contains Kχ(G′) as a minor. We must show that G contains
Kχ(G) as a minor. We apply Theorem 2.11. Suppose first that G admits
a clique-cutset, and let (A,B,C) be a clique-cut-partition of G. Clearly,
χ(G) = max{χ(G[A ∪ C]), χ(G[B ∪ C])}, and the result follows from the
induction hypothesis. So assume that G does not admit a clique-cutset.
Then Theorem 2.11 implies that G is a complete graph, a ring, or a 7-
hyperantihole; in the first case, the result is immediate, in the second, it
follows from Lemma 7.2, and in the third, it follows from Lemma 7.3.
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