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Abstract

Let G be a graph with e(G) edges. We say that G is omnitonal if for every sufficiently
large n there exists a minimum integer ot(n,G) such that the following holds true: For
any 2-coloring f : E(Kn) → {red, blue} with more than ot(n,G) edges from each
color, and for any pair of non-negative integers r and b with r + b = e(G), there is
a copy of G in Kn with exactly r red edges and b blue edges. We give a structural
characterization of omnitonal graphs from which we deduce that omnitonal graphs
are, in particular, bipartite graphs, and prove further that, for an omnitonal graph
G, ot(n,G) = O(n2−

1

m ), where m = m(G) depends only on G. We also present a class
of graphs for which ot(n,G) = ex(n,G), the celebrated Turán numbers. Many more
results and problems of similar flavor are presented.

1 Introduction and problem setting

Our main interest in this paper is a certain kind of problems that lie in the junction of
Ramsey theory, extremal graph theory, zero-sum Ramsey theory and interpolation theorems
in graph theory; general references to these topics are [1, 2, 3, 5, 14, 16, 17, 18].

We consider 2-colorings of the set of edges E(Kn) of the complete graph Kn. Given
a graph G with e(G) edges, non-negative integers r and b such that r + b = e(G), and a
2-coloring f : E(Kn) → {red, blue}, we say that f induces an (r, b)-colored copy of G, if
there is a copy of G in Kn such that f assigns the color red to exactly r edges and the color
blue to exactly b edges of that copy of G.
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By Ramsey’s theorem we know that any 2-coloring of E(Kn) (where n is sufficiently
large) induces either a (e(G), 0)-colored copy of G, or a (0, e(G))-colored copy of G. To force
the existence of G with other color patterns, we need, as a natural minimum requirement,
not only to ensure a large n, but also a minimum amount of edges of each color. In this
paper, we study which graphs are unavoidable under a prescribed color pattern in every
2-coloring of E(Kn), whenever n is sufficiently large and there are enough edges from each
color. A similar approach has been studied in [4, 10, 12], where the emphasis is given on
determining the minimum n required to guarantee the existence of a given graph with a
prescribed color pattern in every coloring of Kn where each color appears in some positive
fraction of the edges of Kn. In contrast, our approach has more like a Turán flavor in the
sense that we focus our attention, on the one hand, on the maximum edge number that can
have the smallest color class in a 2-coloring of E(Kn) which is free of a copy of the given
graph in the prescribed pattern, and, on the other, in characterizing the extremal colorings.

Observe that, in case e(G) ≡ 0 (mod 2), the study of the existence of a zero-sum copy
of G over Z-weightings of E(Kn), in particular over {−1, 1}-weightings of E(Kn), carries
along similarity to classical Ramsey theory by simply defining all red edges to have weight
−1 and all blue edges to have weight 1. Thus, a zero-sum copy of G translates into a copy of
G with equal number of red and blue edges, or equivalently to an (e(G)/2, e(G)/2)-colored
copy of G. The study of the existence of such a balanced copy will be one of the purposes
of this paper, thus further developing the line of research studied in [6, 8, 9]. The second
problem we will focus on, and in which we will make use of interpolation techniques, deals
with the existence of an (r, b)-colored copy of G for every pair of non-negative integers r
and b such that r + b = e(G). As in the previous case, this problem is related to the study
of the existence of a zero-sum copy of G over Z-weightings of E(Kn) with range {−p, q},
where p and q are positive integers with gcd(p, q) = 1 and e(G) ≡ 0 (mod p + q). These
problems will lead us to the definition of two graph families which will be the center of this
work: balanceable graphs and omnitonal graphs.

1.1 Notation

For a given graph G, we use V (G) and E(G) to denote the sets of vertices and, respectively,
of edges of G. Given a partition of the vertex set V (G) = X ∪Y , we denote by E(X,Y ) the
set of edges of G with one end in X and the other one in Y . Also, we define n(G) = |V (G)|,
e(G) = |E(G)| and e(X,Y ) = |E(X,Y )|. For a set W ⊆ V (G), G[W ] stands for the
subgraph of G induced by the vertices in W . Similarly, if F ⊆ E(G), G[F ] denotes the
graph induced by the edges from F . A set W ⊆ V (G) is called independent if G[W ] is
edgeless.

Let p, q and k be non-negative integers. We will denote with Kp,q the complete bipartite
graph with one partition set having p vertices an the other q. The graph K1,k will be also
called a k-star. Moreover, a k-path Pk denotes a path on k+1 vertices and k edges. A graph
G is a (p, q)-split graph if there is a partition of the vertex set V (G) = X ∪ Y with |X| = p
and |V | = q such that G[X] ∼= Kp induces a complete graph and Y is an independent set.
Furthemore, the split graph G is called complete if G[E(X,Y )] ∼= Kp,q.

A coloring of the edges of a graph G is a mapping f : E(G) → C to a set of colors C.
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If |C| = c, we talk about a c-edge coloring, or for short a c-coloring. In the whole paper,
we will deal with red and blue colorings on the complete graph, that is, we will consider
mappings f : E(Kn) → {red, blue}. Since such a coloring induces a partition of the edge
set of Kn into the set of red edges and the set of blue edges, we can talk about the red graph
R and the blue graph B induced by the red and, respectively, blue edges of this coloring.
In the following, in order to avoid talking every time of the mapping, we will talk about
the 2-coloring E(Kn) = E(R) ∪ E(B), assuming implicitly that R and B are the graphs
induced by the red and the blue edges.

1.2 Problem setting

Balanceable graphs

For a given graph G, we say that a 2-coloring E(Kn) = E(R) ∪ E(B) contains a balanced
copy of G, if, in the so colored Kn, we can find an (e(G)/2, e(G)/2)-colored copy of G in case
e(G) ≡ 0 (mod 2), and a (⌈e(G)/2⌉, ⌊e(G)/2⌋)-colored copy of G or an (⌊e(G)/2⌋, ⌈e(G)/2⌉)-
colored copy of G in case e(G) ≡ 1 (mod 2).

Definition 1.1. For a given graph G let bal(n,G) be the minimum integer, if it exists,
such that any 2-coloring E(Kn) = E(R)∪E(B) with min{e(R), e(B)} > bal(n,G) contains
a balanced copy of G. If bal(n,G) exists for every sufficiently large n, we say that G
is balanceable1. For a balanceable graph G, let Bal(n,G) be the family of graphs with
exactly bal(n,G) edges such that a coloring E(Kn) = E(R)∪E(B) with min{e(R), e(B)} =
bal(n,G) contains no balanced copy of G if and only if R or B is isomorphic to some
H ∈ Bal(n,G).

We shall be interested in finding balanceable graphs as well as in, if possible, determining
bal(n,G) or, if not, in finding good estimates. If bal(n,G) is known, we also consider the
problem of characterizing the extremal colorings, meaning that we aim to determine the
family Bal(n,G). Note that, to prove that a graph G is not balanceable, it is enough to
exhibit infinitely many values of n for which there is a 2-edge coloring of Kn with the same
or almost the same (differing by at most one unit) number of red and blue edges without a
balanced copy of G.

As we shall show, there is a plethora of balanceable graphs, including K4 but not any
other complete graphKm with e(Km) even, as proved in [8], where bal(n,K4) and Bal(n,K4)
were also determined.

The connection to the zero-sum analogue with {−1, 1}-weightings is already explained
in the introduction section. The case when e(G) ≡ 1 (mod 2) has no direct analogue as
a zero-sum problem. However, we mention that such odd-case variations have been con-
sidered in [9] in the context of {−1, 1}-sequences. This establishes the bridge between the
current paper and the results on {−1, 1}-weightings given for instance in [6, 8, 9].

Omnitonal graphs

As we will formally define below, omnitonal graphs will be those graphs that appear in all

1For graphs with an odd number of edges, there is a stronger notion of balanceable graphs that
one can naturally consider: instead of seeking for one of both, a (⌈e(G)/2⌉, ⌊e(G)/2⌋)-colored copy or a
(⌊e(G)/2⌋, ⌈e(G)/2⌉)-colored copy of G, one can study the existence of both patterns.
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possible tonal variations of red and blue in every 2-edge coloring of the complete graph, as
long as the latter is large enough.

Definition 1.2. For a given graph G, let ot(n,G) be the minimum integer, if it exists,
such that any 2-coloring E(Kn) = E(R) ∪ E(B) with min{e(R), e(B)} > ot(n,G) contains
an (r, b)-colored copy of G for any r ≥ 0 and b ≥ 0 such that r + b = e(G). If ot(n,G)
exists for every sufficiently large n, we say that G is omnitonal. For an omnitonal graph
G, let Ot(n,G) be the family of graphs with exactly ot(n,G) edges such that a coloring
E(Kn) = E(R) ∪ E(B) with min{e(R), e(B)} = ot(n,G) contains no (r, b)-colored copy of
G for some pair r, b ≥ 0 with r + b = e(G) if and only if R or B is isomorphic to some
H ∈ Ot(n,G).

We shall be interested in finding omnitonal graphs as well as in, if possible, determining
ot(n,G) or, if not, finding good estimates. If we are able to determine ot(n,G), we also
consider the problem of characterizing the extremal colorings, that is, in finding Ot(n,G).

To determine if a graph G is omnitonal is a problem within the scope of interpolation
theorems in graph theory; as we shall see, we will incorporate proof techniques typical to
this area together with techniques typical in Ramsey theory and extremal graph theory to
obtain results concerning omnitonal graphs.

As in the case of balanceable graphs, to prove that a graph G is not omnitonal, it is
enough to exhibit infinitely many values of n for which there is a 2-edge coloring of Kn with
the same or almost the same (differing by at most one unit) number of red and blue edges
without an (r, b)-colored copy of G for some r ≥ 0 and b ≥ 0 such that r + b = e(G).

Observe that, if a graph G is omnitonal, then it is balanceable (by choosing r and b
such that r = b in case e(G) ≡ 0 (mod 2) and |r − b| = 1 in case e(G) ≡ 1 (mod 2))
but not necessarily vice versa. For instance, K4 is balanceable (see Theorem 3.1) but the
following construction shows that K4 is not omnitonal: Consider a partition of the vertex
set V (Kn) = A∪B and a coloring of the edges such that all edges inside A are colored red,
all other edges are colored blue and we choose |A| and |B| so that e(R) and e(B) are equal
(this can be done for infinitely many values of n, see Lemma 2.3). Evidently, there are no
(2, 4)-colored copies of K4 in this coloring. Moreover, concerning Km for arbitrary m ≥ 3,
observe that the pattern (r, b) = (2,

(m
2

)

− 2) can never be realized for a copy of Km in the
coloring of Kn given above, implying that no complete graph is omnitonal.

The connection to the zero-sum problem with {−p, q}-weightings is explained below.

Remark 1.3. Let p and q be positive integers with gcd(p, q) = 1 and let G be an omnitonal
graph with e(G) ≡ 0 (mod p + q). Then, for large enough n, any coloring f : E(Kn) →
{−p, q} with min{|f−1(−p)|, |f−1(q)|} > ot(n,G) contains a zero-sum copy G∗ of G (that
is, a copy G∗ of G where

∑

e∈E(G∗) f(e) = 0). To see this, define another coloring g :
E(Kn) → {red, blue} where g(e) = red iff f(e) = −p and g(e) = blue iff f(e) = q. Since G
is omnitonal, and g is such that min{e(R), e(B)} > ot(n,G), we can find an (r, b)-colored

copy G∗ of G with r = pe(G)
p+q and b = qe(G)

p+q . Then G∗ is a zero-sum copy of G under coloring
f :

∑

e∈E(G∗)

f(e) = −qr + pb =
−qpe(G∗)

p+ q
+

pqe(G∗)

p+ q
=

(−qp+ qp)e(G∗)

p+ q
= 0.

We are unaware of a systematic study along the lines suggested by the omnitonal graphs,
which we start here.
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1.3 Results

After this introductory part, the article is divided into four sections. In Section 2, we
establish structural results for both balanceable and omnitonal graphs. In Corollary 2.5 and
Theorem 2.6, we give necessary and sufficient conditions for a graph to be balanceable and,
respectively, omnitonal. The characterization of balanceable graphs is actually a particular
case of Theorem 2.4 which provides necessary and sufficient conditions for a graph to be
r-tonal (see Definition 2.2). From these characterizations we derive easily, for example,
that trees are omnitonal and, therefore, also balanceable graphs. All these results are
consequences of Theorem 2.1, proved in Section 2.1, which is a new version of a result by
Cutler and Montágh [10] solving a conjecture proposed by Bollobás (see [10]).

When considering the problem of determining if a graph is balanceable or omnitonal,
the study of two particular 2-colorings of E(K2t), which we will call type-A (where one
color forms a clique of order t) and type-B (where one color forms two disjoint cliques
of order t) colorings, arises naturally. It was shown in [10] that, for sufficiently large n,
every 2-edge-coloring of Kn with a positive fraction of edges of each color contains a copy
of a type-A or a type-B colored K2t. Without seeking a sharp bound on n, our result
prescinds from the quadratic amount of edges of each color, and replaces it with a sub-
quadratic constraint, implying that, in case of existence, bal(n,G) and ot(n,G) are always
sub-quadratic as functions of n. The nature of our proof of Theorem 2.1 avoids probabilistic
arguments and relies on the Ramsey Theorem, the Turán numbers and the Zarankiewicz
numbers. It also prevents to get good upper bounds on bal(n,G) and ot(n,G), which are
left for further research to be improved.

Another major idea in this work, presented in Section 2.2, is the study of a class of
graphs called amoebas (see Definition 2.11). These graphs were developed here along the
proof techniques used in interpolation theorems in graph theory, building upon ideas from [8]
and [9]. In particular, we prove that every amoeba is balanceable (Theorem 2.15) and that
every bipartite amoeba G is omnitonal with ot(n,G) = ex(n,G) and Ot(n,G) = Ex(n,G),
where ex(n,G) and Ex(n,G) are the Turán number for G and the corresponding family of
extremal graphs (Theorem 2.14).

In Section 3, we determine bal(n,G) as well as Bal(n,G) for paths and stars with an
even edge number. Further, in Section 4, we determine ot(n,G) and Ot(n,G) for stars.
Moreover, we show that ot(n, T ) ≤ (k − 1)n for every tree T on k edges. Since paths are
bipartite amoebas, ot(n, Pk) and Ot(n, Pk) are already covered in Section 2.2.

Finally, in Section 5, we discuss further variants of these concepts and present several
open problems.

2 Structural results

2.1 Characterization of balanceable and omnitonal graphs

Let t and n be integers with 1 ≤ t < n. A 2-edge-colored complete graph Kn is said to be
of type A(t) if the edges of one of the colors induce a complete graph Kt, and it is of type
B(t) if the edges of one of the colors induce a complete bipartite graph Kt,n−t. If n = 2t,
we eliminate the parameter t and write for short type-A and type-B colorings.
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For a given graph G, we denote by R(G,G) the 2-color Ramsey number, that is, the
minimum integer R(G,G) such that, whenever n ≥ R(G,G), any coloring E(Kn) = E(R)∪
E(B) contains either a blue or a red copy of G. For a given graph G, we denote by ex(n,G)
the Turán number for G, that is, the maximum number of edges in a graph with n vertices
containing no copy of G. The well-known Kővari-Sós-Turán theorem [15] implies that, for
the balanced complete bipartite graph Kt,t,

ex(n,Kt,t) <
1

2

(

(t− 1)1/tn2−1/t +
1

2
(t− 1)n

)

. (1)

For a given positive integer t, we denote by z(n, t) the Zarankiewicz number, that is, the
maximum number of edges in a bipartite graph with n vertices in each part, containing no
copy of Kt,t. Here again, the Kővari-Sós-Turán theorem yields the following upper bound
for z(n, t):

z(n, t) < (t− 1)1/tn2−1/t +
1

2
(t− 1)n. (2)

The following Theorem 2.1 is a new version of a result first proved by Cutler and
Montágh [10] solving a conjecture raised by Bollobás (see [10]) about the existence, for n
sufficiently large, of a type-A or type-B colored K2t in every 2-edge-coloring of Kn with a
positive fraction of edges of each color. The bound on the Ramsey parameter concerning
this problem was further improved by Fox and Sudakov in [12]. In both papers, the authors
explicitly assume min{e(R), e(B)} = ǫ

(n
2

)

for some ǫ > 0 and estimate an upper bound on
the smallest n for which this ǫ-balancing forces a type-A or a type-B colored copy of K2t.
Not seeking a sharp bound on n, our result, in contrast, prescinds from the ǫ-balancing
restriction and replaces it with a weaker constraint, which in turn allows us to give a
subquadratic bound, as a function of n, on the minimum number of edges of each color
required on the 2-edge coloring of the Kn. The proof of our version avoids probabilistic
arguments and uses only the classical Ramsey and Turán numbers for complete bipartite
graphs and the Zarankiewicz numbers instead.

Theorem 2.1. Let t be a positive integer. For all sufficiently large n, there exists a positive
integer m = m(t) and a number ϕ(n, t) = O(n2− 1

m ) such that any coloring E(Kn) =
E(R)∪E(B) with min{e(R), e(B)} ≥ ϕ(n, t) contains a type-A or a type-B colored copy of
K2t.

Proof. Let q ≥ t be an integer such that

(t− 1)1/t(2q)2−1/t + (t− 1)q + 1 ≤ 2q2, (3)

and set m = R(Kq,Kq). Now define

ϕ(n, t) = ex(n,Km,m) +m(m− 1) + 2m(n− 2m) + 1,

which, by (18), is clearly O(n2− 1

m ). Assume n to be large enough such that we can take
a coloring E(Kn) = E(R) ∪ E(B) with min{e(R), e(B)} ≥ ϕ(n, t). This is possible since
ϕ(n, t) = o(n2). By definition, there is a monochromatic, say red, copy of Km,m in Kn. Let
X ∪ Y be a vertex set partition of such a red copy of Km,m, where |X| = |Y | = m and all
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edges between X and Y are red. Consider now the complete graph Kn−2m obtained from
Kn by removing the vertex set X ∪Y . Since we lose at most 2

(m
2

)

+2m(n−2m) blue edges,
by the definition of ϕ(n, t), there are at least ex(n − 2m,Km,m) + 1 blue edges in Kn−2m.
Hence, there is a blue copy of Km,m in Kn−2m. Let Z ∪ W be a vertex set partition of
such a blue copy of Km,m, where |Z| = |W | = m and all edges between Z and W are blue.
Observe that the red and the blue copies of Km,m that we obtain are vertex disjoint.

Now consider the 2-edge colored graph induced by X ∪ Y . By the definition of m, we
know that there are monochromatic copies of Kq inside both X and Y . If at least one of
these monochromatic copies of Kq is blue then, since all edges between X and Y are red,
we will have a copy of K2q which is either of type A or of type B; and since q ≥ t we are
done in this case. Otherwise, we get two red monochromatic copies of Kq, one inside X
an the other inside Y , which indeed is a monochromatic, red, copy of K2q. Similarly, by
looking at the 2-edge colored graph induced by Z ∪W , either we are done or we get a blue
copy of K2q. Hence, we can assume that we have two vertex disjoint monochromatic copies
of K2q, one red and one blue. Call C the set of vertices of the red one, and D the set of
vertices of the blue one.

Finally, we consider the 2-edge colored complete bipartite graph, K2q,2q, induced by
C ∪ D. Clearly, one of the colors, say red, has at least half of the edges. In other words,
there are at least 1

2 (2q)
2 = 2q2 red edges in K2q,2q. By computing the upper bound (2) of

the Zarankiewicz number z(2q, t), we obtain the left hand of (3). Thus, by the definition of
q, we gain a monochromatic copy of Kt,t in K2q,2q. That is, there are subsets C ′ ⊂ C and
D′ ⊂ D, with |C ′| = |D′| = t, such that all edges between C ′ and D′ are red. Observe that
the 2-edge colored complete graph K2t induced by C ′ ∪D′ is of type A, which completes
the proof.

As we said before, for a given graph G, Ramsey’s Theorem guaranties, for large enough
n, the existence of either a (0, e(G))-colored copy or a (e(G), 0)-colored copy of G in every
2-coloring of E(Kn), while, to force the existence of other color patterns, there also have to
be enough edges from each color. The precise amount of edges from each color needed to this
aim, if it exists, is the parameter that we are interested in. The following definition extends
Definition 1.1 from a balanced proportion of the colors to other proportion variations.

Definition 2.2. Let G be a graph and r an integer with 0 < r ≤ ⌊e(G)/2⌋. Let balr(n,G)
be the minimum integer, if it exists, such that every 2-coloring E(Kn) = E(R)∪E(B) with
min{e(R), e(B)} > balr(n,G) contains, either an (r, e(G) − r)-colored copy of G, or an
(e(G)−r, r)-colored copy of G. If balr(n,G) exists for every n sufficiently large, we say that
G is r-tonal.

Observe that, if balr(n,G) exists, then balr(n,G) ≤ 1
2

(n
2

)

. Clearly this happens, too, for
omnitonal graphs: ot(n,G) ≤ 1

2

(n
2

)

.

Theorem 2.1 allows us to give a characterization of r-tonal (thus also balanceable) graphs
and omnitonal graphs. We will use the following lemma that follows directly from Lemmas
3.1 and 3.2 given in [8].

Lemma 2.3 ([8]). For infinitely many positive integers n, we can choose t = t(n) in a way
that the type-A(t) coloring of Kn is balanced. Also, for infinitely many positive integers n,
we can choose t = t(n) in a way that the type-B(t) coloring of Kn is balanced.
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Theorem 2.4. Let G be a graph and let r be an integer with 0 < r ≤ ⌊e(G)/2⌋. Then G is
r-tonal if and only if G has both a partition V (G) = X ∪Y and a set of vertices W ⊆ V (G)
such that e(X,Y ), e(G[W ]) ∈ {r, e(G) − r}.

Proof. Suppose that G is r-tonal. Let n be large enough such that balr(n,G) exists and
chosen such that there is a balanced type-A(t) coloring of Kn for some t = t(n), which is
possible by Lemma 2.3. Suppose, without loss of generality, that the graph induced by the
red edges in such a coloring of Kn is isomorphic to Kt. Since G is r-tonal and balr(n,G) ≤
1
2

(n
2

)

= e(R) = e(B), there must be a copy of G in Kn with r or e(G)−r red edges, implying
that there is a set W ⊆ V (G) with e(G[W ]) ∈ {r, e(G) − r}. Analogously, we take now an
n large enough such that balr(n,G) exists and chosen such that there is a balanced type-
B(t) coloring of Kn for some t = t(n), which, again, is possible by Lemma 2.3. Suppose,
without loss of generality, that the graph induced by the red edges in such a coloring of
Kn is isomorphic to Kt,n−t. Since G is r-tonal and balr(n,G) ≤ 1

2

(n
2

)

= e(R) = e(B), there
must be a copy of G in Kn with r or e(G) − r edges, implying that there is a partition
V (G) = X ∪ Y with e(X,Y ) ∈ {r, e(G) − r}.

Conversely, suppose that G has both a partition V (G) = X ∪ Y and a set of vertices
W ⊆ V (G) such that e(X,Y ), e(G[W ]) ∈ {r, e(G) − r}. Let E(Kn) = E(R) ∪ E(B) be an
edge coloring of Kn with min{e(R), e(B)} ≥ ϕ(n, t), where t = n(G) and ϕ(n, t) is like in
Theorem 2.1. Hence, for n sufficiently large, there is a type-A or a type-B copy of K2t. If
this copy is of type A, say we have one red Kt and one blue Kt and all edges in between
are blue, then we can find a copy of G placing the set W inside the red Kt and the other
vertices inside the blue Kt. If this copy is of type B, say we have two red Kt’s joined by
blue edges, then we can find a copy of G placing the edge cut e(X,Y ) such that X and Y
are each in one of the red Kt’s.

Since a graph G is balanceable if and only if it is ⌊e(G)/2⌋-tonal, the following corollary
is immediate from Theorem 2.4.

Corollary 2.5. A graph G is balanceable if and only if G has both a partition V (G) = X∪Y
and a set of vertices W ⊆ V (G) such that e(X,Y ), e(G[W ]) ∈ {⌊12e(G)⌋, ⌈12 e(G)⌉}.

Adopting the same proof technieque from Theorem 2.4, we obtain the next result.

Theorem 2.6. A graph G is omnitonal if and only if, for every integer r with 0 ≤ r ≤
e(G), G has both a partition V (G) = X ∪ Y and a set of vertices W ⊆ V (G) such that
e(X,Y ) = e(G[W ]) = r.

Proof. Suppose that G is omnitonal. Let n be large enough such that ot(n,G) exists and
chosen such that there is a balanced type-A(t) coloring of Kn for some t = t(n), which
is possible by Lemma 2.3. Suppose, without loss of generality, that the graph induced by
the red edges in such a coloring of Kn is isomorphic to Kt. Since G is omnitonal and
ot(n,G) ≤ 1

2

(n
2

)

= e(R) = e(B), there must be a copy of G in Kn with r red edges for
every 0 ≤ r ≤ e(G). This implies that there is a set W ⊆ V (G) with e(G[W ]) = r for every
0 ≤ r ≤ e(G). Analogously, we take now an n large enough such that ot(n,G) exists and
chosen such that there is a balanced type-B(t) coloring of Kn for some t = t(n), which,
again, is possible by Lemma 2.3. Suppose, without loss of generality, that the graph induced
by the red edges in such a coloring of Kn is isomorphic to Kt,n−t. Since G is omnitonal and
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ot(n,G) ≤ 1
2

(n
2

)

= e(R) = e(B), there must be a copy of G in Kn with r edges for every
0 ≤ r ≤ e(G). It follows that there is a partition V (G) = X ∪Y with e(X,Y ) = r for every
0 ≤ r ≤ e(G).

Conversely, suppose that G has both a partition V (G) = X∪Y and a set of vertices W ⊆
V (G) such that e(X,Y ) = e(G[W ]) = r for every 0 ≤ r ≤ e(G). Let E(Kn) = E(R)∪E(B)
be an edge coloring of Kn with min{e(R), e(B)} ≥ ϕ(n, t), where t = n(G) and ϕ(n, t) is
like in Theorem 2.1. Hence, for n sufficiently large, there is a type-A or a type-B colored
copy of K2t. If this copy is of type A, then there are two possibilities: either we have one
red Kt and one blue Kt and all edges in between are blue or the colors are reversed. In the
first case, we can use a set W with e(G[W ]) = r to find a copy of G with r red edges and
e(G)− r blue edges. In the second, we can use a set W ′ with e(G[W ′]) = e(G)− r to find a
copy of G with r red edges and e(G) − r blue edges. The case of having a type-B colored
copy of K2t is similar.

Having determined the structure of r-tonal and omnitonal graphs in Theorems 2.4 and
2.6, we learn from Theorem 2.1 that balr(n,G), thus also bal(n,G), and ot(n,G) are all
sub-quadratic as functions of n.

Corollary 2.7. If G is an r-tonal graph, then balr(n,G) = O(n2− 1

m ), where m = m(G)
depends only on G (this holds true, in particular, for balanceable graphs). Also, if G is

omnitonal, then ot(n,G) = O(n2− 1

m ), where m = m(G) depends only on G.

The next result concerns the chromatic number of omnitonal graphs.

Theorem 2.8. Omnitonal graphs are bipartite.

Proof. Take an n large enough such that ot(n,G) exists and chosen such that there is a
balanced type-B(t) coloring of Kn for some t = t(n), which is allowed by Lemma 2.3.
Suppose, without loss of generality, that the graph R, induced by the red edges in such a
coloring of Kn, is isomorphic to Kt,n−t. Since G is omnitonal and ot(n,G) ≤ 1

2

(n
2

)

= e(R) =
e(B), there must be a red copy of G contained in the red graph R, which is bipartite. Hence,
G must be bipartite.

Remark 2.9. There are bipartite graphs which are not balanceable and hence neither omni-
tonal. For example, cycles Ct of lenght t ≡ 2 (mod 4) do not appear balanced in any type-B
colored Kn. Moreover, balanceable graphs are not necessarily bipartite: K4 is an example
(see Theorem 3.1).

In contrast with the fact that certain even length cycles are not balanceable as given in
the above remark, the situation for trees (and for forests) is completely different.

Theorem 2.10. Every tree is omnitonal.

Proof. Let T be a tree. According to Theorem 2.6, we have to verify that, for every
integer r with 0 ≤ r ≤ e(T ), T has both a partition V (T ) = X ∪ Y and a set of vertices
W ⊆ V (T ) such that e(X,Y ) = e(G[W ]) = r. We proceed by induction on e(T ). If
e(T ) = 1 then both conditions are clearly satisfied for 0 ≤ r ≤ 1. Let T be a tree with
e(T ) = m, and let v ∈ V (T ) be a leaf where u is the only vertex of T adjacent to v. By the

9



induction hypothesis, the tree T ′ = T −{v} satisfies that, for every 0 ≤ r ≤ m− 1 = e(T ′),
there are both a partition V (T ′) = X ′ ∪ Y ′ and a set of vertices W ⊆ V (T ′) such that
e(X ′, Y ′) = e(T ′[W ]) = r. Note that for every 0 ≤ r ≤ m−1 the subsetW ⊆ V (T ′) ⊂ V (T )
satisfies e(T [W ]) = r. Likewise, for every 0 ≤ r ≤ m − 1 we can obtain a partition
V (T ) = X ∪ Y with e(X,Y ) = r by taking X = X ′ ∪ {v} and Y = Y ′ if u ∈ X ′, or X = X ′

and Y = Y ′ ∪ {v} if u ∈ Y ′. To show that there are both a partition V (T ) = X ∪ Y and a
set of vertices W ⊆ V (T ) such that e(X,Y ) = e(T [W ]) = m = e(T ) is trivial and the proof
is concluded.

It is not difficult to see that the disjoint union of two omnitonal graphs is again an om-
nitonal graph. Hence, it follows directly from Theorem 2.10 that every forest is omnitonal.

2.2 Amoebas

In this section, we describe a class of graphs which we call amoebas. We are interested in
such graphs since, as we shall see below, amoebas are balanceable and provide a wide family
of omnitonal graphs, too.

Given a graph G of order n(G) embedded in a complete graph Kn, where n ≥ n(G),
we say that H (also embedded in Kn) is obtained from G by an edge-replacement, if for
some e1 ∈ E(G) and e2 ∈ E(Kn) \ E(G), E(H) = (E(G) \ {e1}) ∪ {e2}. Isolated vertices
will play no role here, so all graphs considered further on may be the ones induced by its
corresponding edge set.

Definition 2.11. A graph G is an amoeba if there exist n0 = n0(G) > n(G), such
that for all n ≥ n0 and any two copies F and H of G in Kn, there is a chain F =
G0, G1, G2, · · · , Gt = H such that, for every i ∈ {1, · · · , t}, Gi

∼= G and Gi is obtained from
Gi−1 by an edge-replacement.

For example, it is not hard to see that a path Pk is an amoeba for every k ≥ 1, while a
cycle Ck is not an amoeba for any k ≥ 3.

The following is a basic interpolation lemma for amoebas.

Lemma 2.12. Let G be an amoeba and consider a 2-coloring E(Kn) = E(R)∪E(B) where
n ≥ n0(G). Let α, β, α′, β′ be integers such that α + β = α′ + β′ = e(G) and 0 ≤ α ≤ α′

and 0 ≤ β′ ≤ β. If there are both, an (α, β)- and an (α′, β′)-colored copy of G, then, there
is an (r, b)-colored copy of G for all integers r and b such that r + b = e(G), α ≤ r ≤ α′

and β′ ≤ b ≤ β.

Proof. Under the hypothesis of the lemma, let F be an (α, β)-colored copy of G, and H
be an (α′, β′)-colored copy of G with 0 ≤ α ≤ α′ and 0 ≤ β′ ≤ β. Since G is an amoeba,
and n ≥ n0(G), we know there is a chain F = G0, G1, G2, · · · , Gt = H such that, for
every i ∈ {1, · · · , t}, Gi

∼= G and Gi is obtained from Gi−1 by an edge-replacement. Let
ri = |R ∩ E(Gi)| be the number of red edges in Gi, and bi = |B ∩ E(Gi)| be the number
of blue edges in Gi, so that, for every i ∈ {1, · · · , t}, Gi is an (ri, bi)-colored copy of G.
Observe that an edge-replacement modifies the color pattern in at most one unit, that is,
for every i ∈ {1, · · · , t}, |ri − ri−1| ≤ 1 as well as |bi − bi−1| ≤ 1 and ri + bi = e(G). Thus, if
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we start with an (r0, b0)-colored copy of G, and we end with an (rt, bt)-colored copy of G, we
must cover all (r, b)-color patterns with α = r0 ≤ r ≤ rt = α′ and β′ = bt ≤ b ≤ b0 = β.

Remark 2.13. Since, by the Kővari-Sós-Turán theorem [15], ex(n,G) = o(n2) for any
bipartite graph G, we have, for large enough n, 2(ex(n,G) + 1) ≤

(n
2

)

. This means that we
can consider 2-colorings E(Kn) = E(R) ∪ E(B) with min{e(R), e(B)} ≥ ex(n,G) + 1 if n
is sufficiently large.

Note that Lemma 2.12 implies that, for a given amoeba G and a given 2-coloring
E(Kn) = E(R) ∪ E(B), where n ≥ n0(G), if we can find both a (0, e(G))-colored copy
and an (e(G), 0)-colored copy of G, then the so colored Kn will contain the graph G in ev-
ery possible (r, b)-color pattern for r and b with r+b = e(G), 0 ≤ r ≤ e(G) and 0 ≤ b ≤ e(G).
Therefore, by means of Lemma 2.12 and Remark 2.13, we can prove our next theorem.

Theorem 2.14. Every bipartite amoeba G is omnitonal with ot(n,G) = ex(n,G) and
Ot(n,G) = Ex(n,G), provided n is large enough to fulfill

(n
2

)

≥ 2ex(n,G)+1 and n ≥ n0(G).

Proof. Let G be a bipartite amoeba. By Remark 2.13 we can consider, for sufficiently large
n, 2-colorings of E(Kn) with n ≥ n0(G) and at least ex(n,G) + 1 edges of each color.
Since, any coloring E(Kn) = E(R)∪E(B) with min{e(R), e(B)} ≥ ex(n,G) + 1 contains a
(0, e(G))-colored copy of G and an (e(G), 0)-colored copy of G, by Lemma 2.12, there is an
(r, b)-colored copy of G for all integers r and b such that 0 ≤ r, b ≤ e(G) and r + b = e(G).
Thus, G is omnitonal and ot(n,G) ≤ ex(n,G). In order to see that ex(n,G) ≤ ot(n,G),
notice that we can give a 2-coloring of E(Kn) with min{e(R), e(B)} = ex(n,G) such that
there are no (e(G), 0)-colored copies of G, and therefore G cannot be omnitonal. Further,
observe that the fact that ot(n,G) = ex(n,G) implies that Ex(n,G) ⊆ Ot(n,G). Suppose
now there is a graph H ∈ Ot(n,G) \ Ex(n,G) and let E(Kn) = E(R) ∪E(B) be a coloring
of the edges of Kn such that R ∼= H. Then e(R) = ex(n,G) but, since R /∈ Ex(n,G), R
contains a subgraph isomorphic to G, that is, there is an (e(G), 0)-copy of G contained in
the colored Kn. Since 2ex(n,G) + 1 ≤

(

n
2

)

, clearly e(B) ≥ ex(n,G) + 1 and there is also
a (0, e(G))-copy of G in Kn. Hence, by Lemma 2.12, there is an (r, b)-copy of G for every
pair of non-negative integers r, b with r + b = e(G), a contradiction to the hypothesis that
R ∼= H ∈ Ot(n,G). Therefore, Ot(n,G) = Ex(n,G).

Since the balanceable property is not as restrictive as the omnitonal property, we will see
that we can prescind from the bipartite condition to prove that every amoeba is balanceable.
For the proof, we will make use of an old argument of Erdős which states that every graph
G has a bipartition V (G) = X ∪ Y such that e(X,Y ) ≥ ⌈e(G)/2⌉ (see Lemma 2.14 in
[13]). Deleting edges if necessary, one can easily see that every graph G contains a bipartite
subgraph B with e(B) = ⌈e(G)/2⌉.

Theorem 2.15. Every amoeba is balanceable.2

Proof. Let G be an amoeba. By the observation above, we may consider a bipartite sub-
graph B of G having exactly e(B) = ⌈e(G)/2⌉ edges. Let E(Kn) = E(R) ∪ E(B) be a

2Observe that the proof of this theorem yields actually that every amoeba is strongly balanceable in the
sence discussed in the footnote of Definition 1.1.
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2-coloring with min{e(R), e(B)} ≥ ex(n,B) + 1, which is possible for n large enough be-
cause of Remark 2.13. Hence, we know that Kn contains a (0, e(B))-colored copy of B
and a (e(B), 0)-colored copy of B. Now we can complete those copies of B into copies of
G in an arbitrary way to get an (α, β)-colored copy of G, and an (α′, β′)-colored copy of
G, where ⌈e(G)/2⌉ ≤ β and ⌈e(G)/2⌉ ≤ α′. Since α + β = α′ + β′ = e(G), we also have
α ≤ ⌊e(G)/2⌋ and β′ ≤ ⌊e(G)/2⌋. Altogether we have α ≤ ⌊e(G)/2⌋ ≤ ⌈e(G)/2⌉ ≤ α′

and β′ ≤ ⌊e(G)/2⌋ ≤ ⌈e(G)/2⌉ ≤ β. Hence, Lemma 2.12 implies that Kn contains a
(⌊e(G)/2⌋ , ⌈e(G)/2⌉)-copy and a (⌈e(G)/2⌉ , ⌊e(G)/2⌋)-copy of G.

Remark 2.16. Observe that not every amoeba is bipartite. For example, one can easily
check that odd cyles together with a pendant vertex are non-bipartite amoebas. Moreover,
there are also omnitonal graphs which are not amoebas. For instance, due to the fact that
every tree is omnitonal (Theorem 2.10), stars K1,k with k ≥ 3 leaves are omnitonal, too,
but it is evident that they are not amoebas.

Amoebas are interesting not only because of their good behavior concerning balanceable
and omnitonal graphs, but we think they are interesting for their own. A forthcoming paper
under preparation [7] will deal with such an analysis.

3 Balanceable graphs

The study of balanceable graphs (in disguise) has already been started in the following three
recent papers. The first one is a paper by Caro and Yuster [6], where zero-sum weighting
over Z are introduced and several zero-sum theorems are proved that fit to the framework
of balanceable graphs as explained above. The other two [8, 9] develop further the study on
{−1, 1}-weightings on the set of positive integers {1, 2, ..., n} or on the set of edges of Kn,
forcing zero-sum copies of given structures (blocks of consecutive integers in the first case,
copies of graphs in the second case) which can be translated into the language of colorings
and balanceable graphs.

We restate here, in the language of red-blue coloring, instead of {−1, 1}-weighting and
zero-sum language, a part of the main theorem from [9], which is a sort of role-model for
the results in this section.

Theorem 3.1 ([9]).

(i) For any positive integer m ≥ 2, m 6= 4, m ≡ 0, 1 (mod 4) the complete graph Km is
not balanceable.

(ii) The complete graph K4 is balanceable with bal(n,K4) = n, if n ≡ 0 (mod 4), and
bal(n,K4) = n − 1, else. Moreover, Bal(n,K4) = {H} with H = J ∪

⋃q
i=1C4, where

J ∈ {∅,K1,K2, P2}, depending on the residue of n (mod 4), and q = ⌊n4 ⌋.

So Theorem 3.1 determines which complete graphs with an even number of edges are
balanceable and which are not. To show that Km is not balanceable for m ≡ 0, 1 (mod 4),
we exhibit infinitely many values of n for which there is a balanced red-blue coloring of
E(Kn) without a balanced copy of Km [9].
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We know, from Theorem 2.10, that trees are omnitonal and, therefore, balanceable. In
this section, we determine bal(n,G) and describe Bal(n,G) for the cases where G is a star
or a path with an even number of edges. However, for the general case that G is a tree, the
best upper bound we get emerges as a corollary from the bound we obtain for ot(n,G) (see
Section 4.2).

3.1 Stars

In this section we determine bal(n,K1,k) and describe Bal(n,K1,k) for k ≥ 2 even, and n
sufficiently large.

Theorem 3.2. Let k and n be integers with k ≥ 2 even and such that n ≥ max{3, k
2

4 +1}.
Then

bal(n,K1,k) =

(

k − 2

2

)

n−
k2

8
+

k

4
,

and Bal(n,K1,k) contains only one graph, namely the complete (k−2
2 , n− k−2

2 )-split graph.

Proof. Let

h(n, k) :=

(

k − 2

2

)

n−
k2

8
+

k

4
.

First observe that the condition min{e(R), e(B)} > h(n, k) is satisfiable, that is, we need

to prove that e(Kn) = n(n−1)
2 ≥ 2h(n, k) + 2 holds true for all n ≥ max{3, k

2

4 + 1}. If

k = 2, then h(n, k) = 0 and the condition is satisfied for every n ≥ 3 = max{3, k
2

4 + 1}. If

k ≥ 4, we have to verify that 2h(n, k) + 2 = n(k − 2) − k2

4 + k
2 + 2 ≤ n(n−1)

2 . Equivalently,

n2 − (2k − 3)n + k2

2 − k − 4 ≥ 0, which is indeed the case for n ≥ k2

4 + 1 and k ≥ 4.

Let H be the complete (k−2
2 , n − k−2

2 )-split graph. We first show that H has exactly
h(n, k) edges:

e(H) =
1

2

(

k − 2

2

)(

k − 2

2
− 1

)

+

(

k − 2

2

)(

n−
k − 2

2

)

=

(

k − 2

2

)

n+

(

k − 2

2

)(

k − 2

4
−

1

2
−

k − 2

2

)

=

(

k − 2

2

)

n+

(

k

2
− 1

)(

k

4
−

k

2

)

=

(

k − 2

2

)

n−
k2

8
+

k

4
.

Now, observe that any 2-coloring E(Kn) = E(R)∪E(B) where R or B is isomorphic to
H contains no balanced copy of K1,k. To see this note that, for such a coloring, there are
two types of vertices v ∈ V (Kn), the ones for which {degR(v), degB(r)} = {0, n − 1}, and
the ones for which {degR(v), degB(v)} = {k

2 − 1, n− k
2}. In any case, it is imposible to have

a balanced K1,k.
So far, we have proved that bal(n,K1,k) ≥ h(n, k) and that H ∈ Bal(n,K1,k). To prove

that bal(n,K1,k) ≤ h(n, k) and that Bal(n,K1,k) = {H} we will show that any coloring
E(Kn) = E(R) ∪ E(B) with min{e(R), e(B)} ≥ h(n, k) and such that R and B are not
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isomorphic to H contains a balanced copy of K1,k. For this purpose, we define the following
sets

VR =

{

v ∈ V (Kn) | degR(v) ≥
k

2

}

, and

VB =

{

v ∈ V (Kn) | degB(v) ≥
k

2

}

.

Let E(Kn) = E(R) ∪ E(B) be a coloring with min{e(R), e(B)} ≥ h(n, k) and such that R
and B are not isomorphic to H. If there is a vertex v ∈ VR ∩ VB then we are done as there
would be a balanced K1,k. So we may assume that VR ∩ VB = ∅. Note that, since every
vertex in Kn has degree n− 1 ≥ k then V (Kn) = VR ∪ VB , hence

|VR|+ |VB | = n. (4)

Assume without lost of generality that |VR| ≤ |VB |.

Case 1: Suppose |VR| ≤
k
2 − 1. Thus,

2e(R) =
∑

v∈V (Kn)

degR(v) =
∑

v∈VR

degR(v) +
∑

v∈VB

degR(x)

≤ |VR|(n− 1) + |VB |

(

k − 2

2

)

= |VR|(n− 1) + (n− |VR|)

(

k − 2

2

)

≤

(

k

2
− 1

)

(n − 1) +

(

n−
k

2
+ 1

)(

k − 2

2

)

= 2

(

k − 2

2

)

n−
k2

4
+

k

2
= 2h(n, k). (5)

Consequently, e(R) ≤ h(n, k). By assumption we know that min{e(R), e(B)} ≥ h(n, k),
so we must have e(R) = h(n, k). Looking back to the inequalities in (5), it must be that
|VR| =

(

k
2 − 1

)

and R is isomorphic to H, a contradiction to our assumption.

Case 2: Suppose know that |VR| ≥
k
2 . Denote by e′(R) the number of red edges between

VR and VB . Since a vertex v ∈ VR satisfies degB(v) <
k
2 then each vertex in VR contributes

to e′(R) with at least |VB | −
k
2 + 1 edges, thus

e′(R) ≥ |VR|

(

|VB | −
k

2
+ 1

)

≥
k

2

(

|VB | −
k

2
+ 1

)

. (6)

On the other hand, each vertex in VB contributes to e′(R) with no more than k
2 edges, so

that

e′(R) ≤

(

k

2
− 1

)

|VB |. (7)

Now, from (6) and (7), we obtain

k

2

(

|VB | −
k

2
+ 1

)

≤

(

k

2
− 1

)

|VB |,
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from which, by means of (4) and the assumption that |VR| ≥
k
2 , it follows that

−
k2

4
+

k

2
≤ −|VB| = |VR| − n ≤

k

2
− n. (8)

This yields n ≤ k2

4 , a contradiction to the hypothesis.

3.2 Paths

In this section we determine bal(n, Pk) and describe Bal(n, Pk) for k ≥ 2 even and n
sufficiently large.

Theorem 3.3. Let k ≥ 2 and n be integers with k even and such that n ≥ 9
32k

2 + 1
4k + 1.

Then

bal(n, Pk) =

{

(

k−2
4

)

n− k2

32 + 1
8 , for k ≡ 2 (mod 4),

(

k−4
4

)

n− k2

32 + k
8 + 1, for k ≡ 0 (mod 4),

and Bal(n, Pk) contains only one graph, namely the complete
(

k−2
4 , n− k−2

4

)

-split graph, if

k ≡ 2 (mod 4), and the complete (k−4
4 , n− k−4

4 )-split graph plus one edge, if k ≡ 0 (mod 4).

Proof. Let

h(n, k) :=

{

(

k−2
4

)

n− k2

32 + 1
8 , for k ≡ 2 (mod 4),

(

k−4
4

)

n− k2

32 + k
8 + 1, for k ≡ 0 (mod 4),

First observe that the condition min{e(R), e(B)} > h(n, k) is satisfiable, that is, we

need to prove that e(Kn) = n(n−1)
2 ≥ 2h(n, k) + 2 holds true for all n ≥ 9

32k
2 + 1

4k + 1.
If k = 2, then h(n, k) = 0 and the condition is satisfied for every n ≥ 3. Since h(n, k) ≤
(

k−2
4

)

n − k2

32 + k
8 + 1 we have to verify, for k ≥ 4, that

(

k−2
2

)

n − k2

16 + k
4 + 4 ≤ n(n−1)

2 .

Equivalently, n2−n(k− 1)+ k2

8 − k
2 − 8 ≥ 0, which is indeed the case for n ≥ 9

32k
2+ 1

4k+1
and k ≥ 4.

Let H be the complete (
⌊

k−2
4

⌋

, n−
⌊

k−2
4

⌋

)-split graph, plus one edge if k ≡ 0 (mod 4).
We first show that H has exactly h(n, k) edges. If k ≡ 2 (mod 4), we get

e(H) =
k − 2

4

(

n−
k − 2

4

)

+
1

2

(

k − 2

4

)(

k − 2

4
− 1

)

=

(

k − 2

4

)

n−
(k − 2)2

16
+

1

2

(k − 2)2

16
−

(k − 2)

8

=

(

k − 2

4

)

n−
(k − 2)2

32
−

(k − 2)

8

=

(

k − 2

4

)

n−
k2

32
+

1

8
= h(n, k).
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On the other hand, we obtain, for k ≡ 0 (mod 4),

e(H) =
k − 4

4

(

n−
k − 4

4

)

+
1

2

(

k − 4

4

)(

k − 4

4
− 1

)

+ 1

=

(

k − 4

4

)

n−
(k − 4)2

16
+

1

2

(k − 4)2

16
−

(k − 4)

8
+ 1

=

(

k − 4

4

)

n−
(k − 4)2

32
−

(k − 4)

8
+ 1

=

(

k − 4

4

)

n−
k2

32
+

k

8
+ 1 = h(n, k).

Now, we show that any 2-coloring E(Kn) = E(R)∪E(B) with min{e(R), e(B)} = h(n, k)
where R or B is isomorphic to H contains no balanced copy of Pk. Suppose without lost
of generality that R is the one isomorphic to H. Let V (Kn) = V1 ∪ V2 be a partition
such that all edges induced by V2, minus one if k ≡ 0 (mod 4), are blue and all remaining
edges are red. A balanced copy of Pk must contains k

2 edges of each color; if k ≡ 2 (mod

4) then |V1| =
k−2
4 , hence, the maximal number of red edges that a path can contain is

2
(

k−2
4

)

= k
2 − 1; if k ≡ 0 (mod 4) then |V1| =

k−4
4 and we have and extra red edge in V2,

hence the maximal number of red edges that a path can contain is 2
(

k−4
4

)

+ 1 = k
2 − 1

Thus, no coloring where R or B is isomorphic to H can have a balanced Pk.
So far, we have proved that bal(n, Pk) ≥ h(n, k) and that H ∈ Bal(n, Pk). To prove

that bal(n, Pk) ≤ h(n, k) and that Bal(n, Pk) = {H}, we will show by induction on k that
any coloring E(Kn) = E(R) ∪ E(B) with min{e(R), e(B)} ≥ h(n, k) and such that R and
B are not isomorphic to H contains a balanced copy of Pk.

If k = 2, then h(n, 2) = 0 and H is the complete (0, n)-split graph. It is evident that
every 2-coloring of E(Kn), where n ≥ 3, with at least one edge of each color contains a
balanced P2.

Let k ≥ 4 and assume that the theorem is valid for k − 2. Let n ≥ 9
32k

2 + 1
4k + 1, and

consider E(Kn) = E(R)∪E(B) with min{e(R), e(B)} ≥ h(n, k) and such that R and B are
not isomorphic to H. Since h(n, k − 2) < h(n, k) for every k ≥ 4 and every n ≥ 1 then, by
the induction hypothesis, there exists a balanced (k − 2)-path, say P = x1x2 . . . xk−1. Let
U = V (Kn) \ V (P ). Since n ≥ 9

32k
2 + 1

4k + 1, we have |U | ≥ 2. Suppose for contradiction
that there is no balanced k-path. Next, we will analyze the edges from U to {x1, xk−1} and
the edges induced by vertices in U .

Claim 1. The edges in (U, {x1, xk−1}) are all of the same color.
Suppose there are two edges x1u, xk−1v with u, v ∈ U , u 6= v, such that one is blue and one
is red. Then uPv is a balanced k-path, a contradiction. ⋄

In the following, we will assume, without lost of generality, that all edges from U to
{x1, xk−1} are blue. Then,

Claim 2. All edges in E(U) are blue.
Suppose there is a red uv ∈ E(U). Then, due to Claim 1, uvP is a balanced k-path, a
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contradiction. ⋄

Let X = {x2, ..., xk−2}. We will analyze the edges contained in E(U,X). From Claims
1 and 2 we know that all red edges in E(Kn) are incident to a vertex in X. Let W ⊆ X be
the set of vertices that are incident to at least one red edge from E(U,X). We will call a
vertex xi ∈ X a red vertex, if both xi−1xi and xixi+1 are red edges.

Claim 3. All vertices in W are red vertices.
Suppose to the contrary that there is a vertex xi ∈ W such that xi−1xi is a blue edge. Since
xi ∈ W , there is a red edge xiu for some u ∈ U . Now take v ∈ U \ {u} and note that
vxk−1xk−2 . . . xiux1x2 . . . xi−1 is a balanced k-path, a contradiction. Hence, xi−1xi is a red
edge. By a symmetric argument, we can conclude that xixi+1 must be also red. ⋄

Claim 4. If xi ∈ W , then then all edges in E(U, {xi−1, xi+1}) are blue.
Suppose to the contrary that xi−1u is a red edge for some u ∈ U . By Claim 3 we know
that xi−1xi is also a red edge. If uxi is red, take v ∈ U such that v 6= u and note that
vx1 . . . xi−1uxi . . . xk−1 is a balanced k-path, a contradiction. If uxi is not red then, since
xi ∈ W , we know that there is a vertex v ∈ U , v 6= u, such that vxi is a red edge. In this
case note that x1 . . . xi−1uvxi+1 . . . xk−1 is a balanced k-path, a contradiction. Hence, all
edges from xi−1 to U are blue edges. By a symmetric argument, we can conclude that all
edges from xi+1 to U must be also blue. ⋄

Claim 5. |W | =
⌊

k−2
4

⌋

and all red edges of P , with exception of one if k ≡ 0 (mod 4), are
incident with a vertex in W .
By Claim 3, we know that W contains only red vertices, and, by Claim 4, we conclude that
W contains no consecutive red vertices. Hence, since P contains exactly k−2

2 red edges,

|W | ≤
⌊

k−2
4

⌋

. Now suppose for contradiction that |W | ≤
⌊

k−2
4

⌋

−1. Then, considering that

all edges from W to U and, with exception of the k−2
2 blue edges on P , all edges induced

by V (P ) may be red edges, we have at most the following number of red edges:

e(R) ≤

(⌊

k − 2

4

⌋

− 1

)

(n− (k − 1)) +
(k − 1)(k − 2)

2
−

k − 2

2

=

⌊

k − 2

4

⌋

n− (k − 1)

⌊

k − 2

4

⌋

− n+ k − 1 +
(k − 2)2

2
.

On the other hand, we know by hypothesis that

⌊

k − 2

4

⌋

n−
k2

32
≤ h(n, k) ≤ e(R). (9)

Thus,

⌊

k − 2

4

⌋

n−
k2

32
≤ e(R) ≤

⌊

k − 2

4

⌋

n− (k − 1)

⌊

k − 2

4

⌋

− n+ k − 1 +
(k − 2)2

2
.
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This gives, together with the inequalities ⌊k−2
4 ⌋ ≥ k−4

4 that

n ≤
k2

32
− (k − 1)

⌊

k − 2

4

⌋

+ k − 1 +
(k − 2)2

2

≤
k2

32
−

(k − 1)(k − 4)

4
+ k − 1 +

(k − 2)2

2

=
k2

32
−

k2 − 5k + 4

4
+ k − 1 +

k2 − 4k + 4

2

=
9

32
k2 +

1

4
k,

a contradiction to the assumption that n ≥ 9
32k

2 + 1
4k + 1.

Note that, to achieve |W | = ⌊k−2
4 ⌋, all red edges from P , with exception of one if k ≡ 0

(mod 4), appear in pairs surrounding a vertex from W . Therefore, if k ≡ 2 (mod 4) then
all red edges in P are incident with a vertex in W and, if k ≡ 0 (mod 4) then all red edges
except one are incident with a vertex in W . Our purpose now is to prove that the remaining
red edges induced by V (P ) are all incident with a vertex in W .

Claim 6. x1xk−1 is a blue edge.
Suppose that xk−1x1 is red. Then take a blue edge xixi+1 in P and two vertices u, v ∈ U ,
u 6= v. By Claim 3, we know that uxi and vxi+1 are blue edges, then vxi+1 . . . xk−1x1 . . . xiu
is a balanced k-path, a contradiction. ⋄

Claim 7. If xixj is a red edge for some 1 ≤ i < j ≤ k− 1, j 6= i+ 1, then either xi or xj is
in W .
Suppose for contradiction that neither xi nor xj belong to W . We will prove the existence
of a balanced k-path. Consider P ′ = uxi+1 . . . xjxi . . . x1, xk−1 . . . xj+1v. Observe that

E(P ′) = (E(P ) \ {xixi+1, xjxj+1}) ∪ {uxi+1, vxj+1, x1xk−1, xixj},

where x1xk−1 is a blue edge, and xixj is a red edge. Thus, in order to show that P ′ is a
balanced k-path, it remains to see that xixi+1 and uxi+1 are edges of the same color as well
as xjxj+1 and vxj+1. If xixi+1 and xjxj+1 are blue, then uxi+1 and vxj+1 are also blue (by
Claim 3) so we are done. Suppose then, without lost of generality, that xixi+1 is red. Since
xi 6∈ W , xixi−1 must be blue, which implies that xjxj−1 is red (otherwise, by symmetric
arguments we obtain that the k-path P ′′ = vxj−1 . . . xixj . . . xk−1, x1 . . . xi−1u is balanced).
Now notice that since xj 6∈ W , xjxj+1 must be blue and the cardinality of W forces that one
of xi+1 or xj−1 belongs to W . If xi+1 ∈ W , we can choose u such that uxi+1 is a red edge,
and we are done; if xj−1 ∈ W , we use the path P ′′ instead of P ′ to find the balanced k-path.
In all cases there is a balanced k-path wich is a contradiction, and so either xi or xj is inW . ⋄

To conclude the proof, we will count which is the maximum number of possible red
edges in Kn. Since all edges induced by W , and all edges from a vertex in W to a vertex
in V (Kn) \W , plus one if k ≡ 0 (mod 4), are the only ones being possibly red, we obtain

e(R) ≤

⌊

k − 2

4

⌋(

n−

⌊

k − 2

4

⌋)

+
1

2

⌊

k − 2

4

⌋(⌊

k − 2

4

⌋

− 1

)

+ ǫ, (10)
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where ǫ = 0 if k ≡ 2 (mod 4), and ǫ = 1 if k ≡ 0 (mod 4). Note that the right hand of (10)
is exactly the number of edges of H, that is exactly h(n, k) as shown at the beginning of the
proof. Since we assume min{e(R), e(B)} ≥ h(n, k), then e(R) = h(n, k). Moreover, note
that R is forced to be isomorphic to H, which is a contradiction. So, a balanced k-path
exist.

4 Omnitonal trees

We already know that every omnitonal graph G satisfies ot(n,G) = O(n2− 1

m ), where m =
m(G) depends only on G (Corollary 2.7). We also have seen two classes of graphs which are
omnitonal: trees (Theorem 2.10) and bipartite amoebas (Theorem 2.14). Moreover, when
a graph G is a bipartite amoeba, Theorem 2.14 yields ot(n,G) = ex(n,G) and Ot(n,G) =
Ex(n,G). Hence, in particular, we have

ot(n, Pk) = ex(n, Pk) ≤

(

k − 1

2

)

n, (11)

where the second inequality is well known [11]). In this section, we will determine ot(n,G)
and Ot(n,G) for the case that G is a star. We also provide a linear (on n) upper bound for
ot(n, T ) where T is a tree. This bound yields naturally an upper bound for bal(n, T ).

4.1 Stars

The following theorem determines ot(n,G) and Ot(n,G) when G is a star K1,k.

Theorem 4.1. Let n and k be positive integers such that n ≥ 4k. Then

ot(n,K1,k) =

{
⌊(

k−1
2

)

n
⌋

, for k ≤ 3,

(k − 2)n− k2

2 + 3
2k − 1, for k ≥ 4,

(12)

and Ot(n,K1,k) is the family of graphs containing

1. the empty graph Kn, if k = 1;

2. a disjoint union of n
2 K2’s, when n is even, and of n−1

2 K2’s and a K1, when n is
odd, if k = 2;

3. a disjoint union of cycles, if k = 3;

4. a complete (k − 2, n − k + 2)-split graph, if k ≥ 4.

Proof. Let

h(n, k) =

{
⌊

(k−1
2 )n

⌋

, for k ≤ 3,

(k − 2)n − k2

2 + 3
2k − 1, for k ≥ 4,

First observe that the condition min{e(R), e(B)} > h(n, k) is satisfiable, that is, we need

to prove that e(Kn) = n(n−1)
2 ≥ 2h(n, k) + 2 is satisfied for n ≥ 4k. If k ≤ 3, it is

easy to check that 2h(n, k) + 2 ≤ n(k − 1) + 2 ≤ n(n−1)
2 . If k ≥ 4, we have to verify that
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2h(n, k)+2 = 2n(k−2)−k2+3k ≤ n(n−1)
2 , which is equivalent to n2−(4k−7)n+2k2−6k ≥ 0.

This is indeed the case for n ≥ 4k, as we have

n2 − (4k − 7)n + 2k2 − 6k =

(

n−
4k − 7

2

)2

−

(

4k − 7

2

)2

+ 2k2 − 6k

≥

(

4k −
4k − 7

2

)2

−

(

2k −
7

2

)2

+ 2k2 − 6k

=

(

2k +
7

2

)2

−

(

2k −
7

2

)2

+ 2k2 − 6k

= 28k + 2k2 − 6k = 22k + 2k2 ≥ 0.

Next, observe that the colorings described in items 1–3 contains no (r, b)-colored copy of
K1,k for some pair (r, b) ∈ {(0, k), (k, 0)} (that is, there is no blue or red copy of K1,k). The
coloring of item 4 does not contain a K1,k with k − 1 blue edges and one red edge or the
other way around.

Now let E(Kn) = E(R) ∪ E(B) be a 2-coloring with min{e(R), e(B)} ≥ h(n, k) and
such that R and B are not as in items 1–4 from the theorem. We will show that the so
colored Kn contains an (r, b)-colored copy of K1,k for every pair r, b ≥ 0 with r + b = k.
With this purpose, we define the sets

Rr = {v ∈ V (Kn) | degR(v) ≥ r}, and

Bb = {v ∈ V (Kn) | degB(v) ≥ b},

for integers b, r ≥ 0 such that b+ r = k. If there is a vertex x ∈ Bb ∩Rr for a pair b, r ≥ 0
with b+r = k, then x is the center of a star K1,k with b blue edges and r red edges. Hence, if
Bb∩Rr 6= ∅ for every pair b, r ≥ 0 with b+ r = k, then Kn contains an (r, b)-colored copy of
K1,k for every pair r, b ≥ 0 with r+b = k and we are done. So we may assume that there is a
particular pair b, r ≥ 0 with b+r = k such that Bb∩Rr = ∅. Clearly, V (Kn)\(Bb∪Rr) = ∅,
otherwise there would be a vertex of degree at most b+ r− 2 = k− 2, which is not possible
since every vertex in Kn has degree n − 1 ≥ k − 1. Hence, V (Kn) = Bb ∪ Rr, where the
union is disjoint. Observe that B0 = R0 = V (Kn) and so, if b = 0 and r = k, we obtain
Rk = ∅.

Case 1: Let k = 1. Then say b = 0 and r = 1, giving B0 = V (Kn) and R1 = ∅, and thus R
is the empty graph, which is not possible by assumption.

Case 2: Let k = 2. Then {r, b} = {0, 2} or r = b = 1. Say, in the first case, that b = 0 and
r = 2. Then B0 = V (Kn) and R2 = ∅. Then we have

2e(R) ≤

{

n− 1, if n odd,
n, if n even,

}

= 2h(n, 2).

Since by assumption e(R) ≥ h(n, k), we obtain equality in the above inequality chain.
This is only possible if R is a disjoint union of n

2 K2’s, when n is even, and of n−1
2 K2’s

and a K1, when n is odd, which is not allowed by hypothesis. Hence, b = r = 1. Since
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min{e(R), e(B)} ≥ h(n, k) =
⌊

n
2

⌋

, B1, R1 6= ∅. Thus, degB(v) = 0 for all v ∈ R1, implying
that the edges between B1 and R1 are all red. On the other hand, we have also degR(v) = 0
for all v ∈ B1, implying that the edges between B1 and R1 are all blue, a contradiction.

Case 3: Let k = 3. Then {r, b} = {0, 3} or {r, b} = {1, 2}. Say, in the first case, that b = 0
and r = 3. Then B0 = V (Kn) and R3 = ∅, and 2e(R) ≤ 2n = 2h(n, 2). Since by assumption
e(R) ≥ h(n, k), it follows that e(R) = n and that all vertices have degree 2 in R, that is, R
is a union of cycles, which is not possible by assumption. Thus {r, b} = {1, 2}, so say that
b = 1 and r = 2. Then degB(v) = 0 for all v ∈ R2, implying that all edges between B1 and
R2 are red. But degR(u) ≤ 1 for all u ∈ B1 and so we infer that |B1| ≤ 1, which leads us to
conclude that there are no blue edges, contradicting the hypothesis e(B) ≥ h(n, 3) = n > 0.

Case 4: Let k ≥ 4. Observe that B0 = R0 = V (Kn) and so, if b = 0 and r = k, we obtain
Rk = ∅, leading to the contradiction 2e(R) ≤ n(k−1) < 2h(n, k). The case b = k and r = 0
is analogous. Hence, we have 1 ≤ r, b ≤ k − 1. If Bb = ∅, then we would have the same
contradiction with

2e(B) ≤ n(b− 1) ≤ n(k − 1) < 2h(n, k). (13)

The same happens if Rr = ∅. Hence, Bb, Rr 6= ∅ and, assuming without loss of generality
that |Bb| ≤ |Rr|, we have 1 ≤ |Bb| ≤ |Rr| ≤ n− 1. Now we distinguish two cases.

Subcase 4.1: Suppose that |Bb| ≤ b− 1. Then we have

2e(B) =
∑

v∈Rr
degB(v) +

∑

v∈Bb
degB(v)

≤ (n− |Bb|)(b − 1) + |Bb|(n− 1)
= |Bb|(n − b) + n(b− 1)
≤ (b− 1)(n − b) + n(b− 1)
= −b2 + (2n + 1)b− 2n.

(14)

Define the function g(b) = −b2+(2n+1)b−2n and observe that g′(b) = −2b+2n+1 > 0
for b ∈ [1, k−1]. Hence, the maximum of the function g(b) on the domain [1, k−1] is attained
when b = k − 1, and thus

2e(B) ≤ −b2 + (2n + 1)b− 2n
≤ −(k − 1)2 + (2n+ 1)(k − 1)− 2n
= 2nk − 4n − k2 + 3k − 2 = 2h(n, k).

(15)

Since, by assumption, e(B) ≤ h(n, k), we obtain equality all along the inequality chains
(14) and (15). This gives us that b = k − 1, r = 1, |Bb| = |Bk−1| = b− 1 = k − 2, and that
each u ∈ R1 and v ∈ Bk−1 have degB(u) = b− 1 = k− 2 and degB(v) = n− 1. Hence, B is
a complete (k − 2, n − k + 2)-split graph, a contradiction to our assumptions.

Subcase 4.2: Suppose that |Bb| ≥ b. Considering eR(Rr, Bb), the number of red edges with
one vertex in Rr and one in Bb, we have

|Bb|(|Bb| − b+ 1) ≤ |Rr|(|Bb| − b+ 1) ≤ eR(Rr, Bb) ≤ |Bb|(r − 1). (16)
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In particular, it follows that |Bb|−b+1 ≤ r−1 which is the same as |Bb| ≤ r+b−2 = k−2.
Hence, we have 1 ≤ b ≤ |Bb| ≤ k − 2. Moreover, counting the blue edges and using that
degB(v) ≤ b− 1 for every v ∈ Rr and (16), we obtain

2e(B) =
∑

v∈Rr

degB(v) +
∑

v∈Bb

degB(v)

≤ |Rr|(b− 1) + |Bb|(n− 1)− eR(Rr, Bb)

≤ |Rr|(b− 1) + |Bb|(n− 1)− |Rr|(|Bb| − b+ 1)

= |Rr|(−|Bb|+ 2b− 2) + |Bb|(n− 1)

= (n − |Bb|)(−|Bb|+ 2b− 2) + |Bb|(n− 1)

= |Bb|
2 − 2|Bb|b+ |Bb|+ 2nb− 2n.

Let g(x, y) be the function g(x, y) = x2 − 2xy + x + 2ny − 2n. Since 1 ≤ b ≤ |Bb| ≤ k − 2
and by the above inequality chain, 2e(B) ≤ g(|Bb|, b), we are interested in finding where is
the maximum of g(x, y) among the domain [1, k − 2] × [1, k − 2] and with the constraint
y ≤ x. Observe that the derivatives dg

dx(x, y) = 2x−2y+1 and dg
dy (x, y) = −2x+2n are both

positive for (x, y) ∈ [1, k− 2]× [1, k− 2] and y ≤ x. So g(x, y) grows in [1, k− 2]× [1, k− 2]
with x and y, assuming y ≤ x, and the maximum of the function is attained when x = k−2
and y = k − 2. Continuing the computation above, it follows that

2e(B) ≤ |Bb|
2 − 2|Bb|b+ |Bb|+ 2nb− 2n = g(|Bb|, b)

≤ (k − 2)2 − 2(k − 2)2 + (k − 2) + 2n(k − 2)− 2n

= (k − 2)(−(k − 2) + 1 + 2n)− 2n

= (k − 2)(−k + 3 + 2n)− 2n

= 2nk − 6n− k2 + 5k − 6

= 2

(

n(k − 3)−
k2

2
+

5

2
k − 3

)

< 2h(n, k),

which is a contradiction.

Hence, we have shown that Bb ∩Rr 6= ∅ for every pair b, r ≥ 0 with b+ r = k, implying
that Kn contains an (r, b)-colored copy of K1,k for every pair r, b ≥ 0 with r + b = k.
Altogether we have shown that ot(n,K1,k) = h(n, k) and that Ot(n,K1,k) is the family of
graphs described in items 1–4.

4.2 Trees

By Theorem 2.10, we know that trees are omnitonal. Also, Theorem 2.14 yields that a tree
T which is an amoeba satisfies ot(n, T ) = ex(n, T ), but we also know that not every tree
is an amoeba (like stars with at least three leaves). However, we will prove that ot(n, T ) is
linear on n for every tree t. More precisely, we will show that more than (k−1)n edges from
each color are enough to guarantee the existence of every tree on k edges in all different
tonal variations.

In 1962, Erdős and Sós conjecture that the trivial lower bound ex(n, T ) ≥ n
(

k−1
2

)

is
tight (see [13]). A proof of this conjecture for sufficiently large k was announced years ago
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by Ajtai, Komlós, Simonovits and Szemerédi, but the proof remains unpublished. For our
purpose, we will use the following weaker statement, which is folklore (see for example [13]).
Denote by Tk the class of trees on k edges.

Remark 4.2. Let k be a positive integer and let T ∈ Tk. Then, ex(T, n) < (k − 1)n.

Before stating the theorem, we need one more definition. In a tree that is not a star,
there are at least two vertices such that all but one of its neighbors are leaves. The star
induced by such a vertex together with its neighbor-leaves is called an end-star. Hence, for
every tree T different from a star, there is an end-star vertex v with deg(v) ≤ e(T )+1

2 .

Theorem 4.3. Let n and k be positive integers such that n ≥ 4k. Then, for every T ∈ Tk,
ot(n, T ) ≤ (k − 1)n.

Proof. First observe that the condition min{e(R), e(B)} ≥ (k − 1)n is satisfiable. This is

clearly so, since e(Kn) =
n(n−1)

2 ≥ 2(k − 1)n is satisfied for n ≥ 4k.
We proceed now by induction on k. A tree T with k = 1, 2, or 3 edges is either a star

or a path, and it follows from (11) and (12) that ot(n, T ) ≤
(

k−1
2

)

n ≤ (k− 1)n, so that the
statement holds true in these cases. For a fix k ≥ 3, assume that the statement is true for
every tree with less than k edges. Let T be a tree with k edges, let n ≥ 4k, and consider a
2-coloring E(Kn) = E(R) ∪ E(B) such that

min{e(B), e(R)} > (k − 1)n. (17)

Note that, by Remark 4.2, we get both a (0, k)-colored copy, and a (k, 0)-colored copy of T .
Thus, we only need to prove that, for every 1 ≤ r ≤ k− 1, there is a (r, k− r)-colored copy
of T under the the given coloring. Also note that, if T is a star we are done by Theorem
4.1. Then we assume that T is not a star. By the discussion above the statement of the
theorem, there is an end-star vertex v ∈ V (T ) such that degT (v) = t and

2 ≤ t ≤
k + 1

2
. (18)

Denote by w the only neighbor of v which is not a leaf, and let T ′ be the tree on k− t edges
obtained by deleting v and all its leaf-neighbors from T . By the induction hypothesis, there
is a copy of T ′ in every tone. For each 0 ≤ s ≤ k−t, let T ′

s be an (s, k−t−s)-copy of T ′. Let
Ws = V (Kn)\V (T ′

s) and let B∗

s and R∗

s be the graphs induced by the blue and, respectively,
red edges inWs. Observe that |Ws| = n−(k−t+1) ≥ 4k−(k−t+1) = 3k−t+1 ≥ 5t+1 > 4t.
Moreover,

min{e(B∗

s ), e(R
∗

s)} > (k − 1)n−

(

n(T ′

s)

2

)

− n(T ′)(n − n(T ′

s))

= (k − 1)n−
1

2
(k − t+ 1)(k − t)− (k − t+ 1)(n − (k − t+ 1))

= ((k − 1)− (k − t+ 1))(n − (k − t+ 1)) + (k − t+ 1)

(

(k − 1)−
1

2
(k − t)

)

= (t− 2)(n− k + t− 1) +
1

2
(k − t+ 1)(k + t− 2).
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Since k ≥ 2t− 1 by (18), we get 1
2(k − t+ 1)(k + t− 2) ≥ 1

2t(3t− 3) > 0 for t ≥ 2, and so
we can conlcude that

min{e(B∗

s ), e(R
∗

s)} > (t− 2)(n − k + t− 1).

Hence, by Theorem 4.1, there is a copy of K1,t in Ws in every tone. In particular, there is
a (1, t − 1) and a (t − 1, 1) copy of K1,t. Now we will show that, for every 1 ≤ r ≤ k − 1,
there is an (r, k − r)-colored copy of T in Kn. To this aim, we distinguish two cases.

Case 1: r ≥ t− 1. Set s = r − t + 1 and consider T ′

s, the (s, k − t − s)-colored copy of T ′

in Ws. Let w
∗ be the copy of w in T ′

s. By the discussion above, there is a (t− 1, 1)-colored
copy of K1,t in Ws with, say, central vertex v∗ and leaves x1, x2, . . . , xt, and such that vxi
is red for 1 ≤ i ≤ t− 1, and v∗xt is blue. In order to find the desired (r, k − r) copy of T ,
proceed as follows:

• If w∗v∗ is red, take the set of vertices V (T ′

s) ∪ {v∗, x2, . . . , xt} and edge set E(T ′

s) ∪
{w∗v∗, v∗x2, . . . , v

∗xt}.

• If w∗v is blue, take the set of vertices V (Ts)∪ {v∗, x1, . . . , xt−1} and edge set E(T ′

s)∪
{w∗v∗, v∗x1, . . . , v

∗xt−1}.

In both cases we obtain a copy of T with s+ t− 1 = (r − t+ 1) + t− 1 = r red edges and
k − t− s+ 1 = k − t− (r − t+ 1) + 1 = k − r blue edges.

Case 2: r ≤ t − 2. Set s = r − 1 and consider T ′

s, the (s, k − t − s)-colored copy of T ′ in
Ws. Let w

∗ be the copy of w in T ′

s. In this case, we will use a (1, t− 1)-colored copy of K1,t

contained in Ws with, say, central vertex v∗ and leaves x1, x2, . . . , xt, and such that vxi is
blue for 1 ≤ i ≤ t− 1, and v∗xt is red. To find the desired (r, k − r) copy of T , we do the
following:

• If w∗v∗ is red, take the set of vertices V (T ′

s)∪ {v∗, x1, . . . , xt−1} and edge set E(T ′

s)∪
{w∗v∗, v∗x1, . . . , v

∗xt−1}.

• If w∗v is blue, take the set of vertices V (Ts) ∪ {v∗, x2, . . . , xt} and edge set E(T ′

s) ∪
{w∗v∗, v∗x2, . . . , v

∗xt}.

In both cases we obtain a copy of T with s+1 = (r−1)+1 = r red edges and (k−t−s)+t−1 =
(k − t− (r − 1)) + t− 1 = k − r blue edges.

The bound from Theorem 4.3 yields a better bound for bal(n, T ) than the one we get
by means of a direct approach using Theorem 3.2. The problem with this approach is that,
when considering balanceable graphs, we can deal only with graphs with an even number of
edges, and we lose tightness when the subtrees in which we split our tree in the induction
step have odd edge number. A better bound may be obtained if the stronger notion of
balaceable graphs is considered, as proposed in Footnote 1.

Corollary 4.4. Let n and k be positive integers such that n ≥ 4k. Then, for every T ∈ Tk,
bal(n, T ) ≤ (k − 1)n.
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5 Open problems and further research

In this section, we discuss some of the many problems and variations that one can consider.

Corollary 2.5 and Theorem 2.6 provide the necessary and sufficient conditions for a
graph G to be balanceable and, respectively, omnitonal. From those structural results we
can deduce, for instance, that trees are omnitonal, and therefore also balanceable. To find
more families of graphs which are omnitonal and/or balanceable is one of our main interests.
Hence, we have to deal with the recognition problem and its complexity.

Problem 1. What is the computational complexity of determining if a graph G is omnitonal
or balanceable?

When considering the balanceable problem, we have dealt, up to now, only with graphs
with an even number of edges. We know that paths and stars with even edge number are
balanceable and we have determined the corresponding parameters and extremal colorings.
The odd case for these graphs should not be very different from the even case and our proofs
may be adapted easily. In the context of complete graphs, we know that K4 is the only
balanceable complete graph with an even number of edges. However, the odd case, which
could be interesting, has still to be settled.

Problem 2. Let Km be the complete graph on m vertices, where m ≡ 2, 3 (mod 4). De-
termine for which m’s Km is balanceable and for which not and determine, for the positive
cases, bal(n,Km) and Bal(n,Km).

Of course, there are many other graph families, like certain tree types (with small di-
ameter or bounded maximum degree, for example), cycles, etc. that we have not discussed
yet and which could be interesting to study, too. Also, in case of an odd number of edges,
the strongly balanceable notion mentioned in the footnote of Definition 1.1 can be another
direction to follow.

The graph family of amoebas was born from the study of balanceable and omnitonal
graphs, but it is interesting by its own. Thus, the following problems may be considered.

Problem 3. What is the computational complexity of determining if a given graph G is an
amoeba?

In this work, we have fully concentrated on the balanceable and the omnitonal prob-
lems, but of course one can consider the problem of whether a graph is r-tonal as given
in Definiton 2.2. Clearly, such a graph has to fulfill the conditions of Theorem 2.4. An-
other possibility to consider is, a bit more restrictive, to ask if, given a positive integer r, a
graph G appears (r, e(G)−r)-colored in every 2-coloring of the complete graph with enough
edges from both colors; or one can even look for the stronger version of whether both the
(r, e(G)− r)-colored as well as the (e(G)− r, r)-colored graph G are unavoidable. Certainly,
for these versions, there will be a corresponding theorem to Theorem 2.4. Another idea is,
given a graph G with a fix edge coloring f , check if this graph with this particular pattern,
say (G, f), is unavoidable in every 2-coloring of the complete graph with enough edges from
each color. By Theorem 2.1, this is the case if and only if (G, f) is contained in any balanced
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type-A(t) as well as in any balanced type-B(t) coloring of Kn (for n large enough and so
chosen, along with t, that the coloring is balanced). For example, for k ≥ 3, consider a
k-path P colored in such a way that there are three consecutive edges with the pattern
red-blue-red. Then P is not contained in any balanced type-A(t) coloring of Kn where the
red edges induce a complete graph on t vertices. Hence, not every pattern in a path will be
unavoidable. On the other side, because the edges in a star play all the same role, and stars
are omnitonal, for every pattern of a star we could try to determine the minimum number
edges of each color that guarantees the existence of a star with this precise pattern.

Another natural direction to consider is to have more than two colors. The notion
of balanceable graphs, strongly balanceable graphs and omnitonal graphs can be easily
modified to the case where c ≥ 3 colors are used. A generalization of Theorem 2.1 to c ≥ 2
colors was already done in [4]. However, when considering omnitonal graphs, it is easy to
show that, for c ≥ 3 colors, they must be disconnected, in sharp contrast to the case of
c = 2. This direction is postponed to another paper under preparation.
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