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PERFECT MATCHINGS IN RANDOM SUBGRAPHS OF REGULAR

BIPARTITE GRAPHS

ROMAN GLEBOV, ZUR LURIA, AND MICHAEL SIMKIN

Abstract. Consider the random process in which the edges of a graph G are added
one by one in a random order. A classical result states that if G is the complete graph
K2n or the complete bipartite graph Kn,n, then typically a perfect matching appears
at the moment at which the last isolated vertex disappears. We extend this result to

arbitrary k-regular bipartite graphs G on 2n vertices for all k = ω

(

n

log1/3 n

)

.

Surprisingly, this is not the case for smaller values of k. Using a construction due
to Goel, Kapralov and Khanna, we show that there exist bipartite k-regular graphs
in which the last isolated vertex disappears long before a perfect matching appears.

1. Introduction

The study of the random graph model G (n; p) began with two influential papers by
Erdős and Rényi [7, 8]. In [7] and [9], they considered the range p = Θ(log n/n) and
the appearance of spanning structures in that regime. Later, several papers [1, 3, 14,
15, 16, 21] led to the following understanding. Consider a random graph process on
n vertices, in which edges are added one by one in a random order. Asymptotically
almost surely1, the first edge that makes the minimum degree one connects the graph,
and creates a perfect matching. Likewise, when the minimum degree becomes two,
the graph immediately contains a Hamilton cycle. Philosophically, spanning structures
appear once local obstructions disappear.

For a graph G = (V,E) and p ∈ [0, 1], let G(p) denote the distribution on subgraphs
of G in which each edge is retained with probability p, independently of the other
edges. Recently, a series of papers [17, 12, 18, 22] extended the above philosophy to
G(p) for various G. For example, in [17] it was shown that if G is a Dirac graph, then
the threshold for Hamiltonicity of G(p) remains Θ (log n/n). See [23] for a survey of
these and related results.

In this paper we consider the threshold p0 for the appearance of a perfect matching in
G(p) where G is a k-regular bipartite graph on 2n vertices. The celebrated permanent
inequalities of Bregman [5] and Egorychev–Falikman [6, 10] imply that the number of

perfect matchings in G is
(
(1 + o(1))ke

)n
. In particular, this number depends little on

the specific structure of G. It is therefore natural to conjecture that p0 depends only
on n and k. Furthermore, the logical candidate is the threshold for the disappearance
of isolated vertices in G(p), which is p = Θ(log n/k).

Roman Glebov was supported by ERC grant 678765 and ISF grant 1452/15.
1An event occurs “asymptotically almost surely” (a.a.s.) if the probability of its occurrence tends

to 1 as n → ∞. We say that a property holds for “almost every” element of a set if it holds a.a.s. for
a uniformly random element of the set.
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Indeed, Goel, Kapralov, and Khanna [13, Theorem 2.1] showed that there exists a
constant c such that for any k ≤ n, if p = cn log n/k2, then with high probability G(p)
contains a perfect matching. In particular, if k = Ω(n), p = O(log n/k) suffices.

For k = ω
(

n
log1/3 n

)
we considerably strengthen this result. Namely, we show that if

one reconstructs G by adding its edges one by one in a random order, then typically a
perfect matching appears at the same moment that the last isolated vertex vanishes.
As a consequence, it follows that for any C > 1, if p = C log(n)/k, then with high
probability G(p) contains a perfect matching.

Formally, a graph process in G = (V,E) is a sequence of graphs

(V, ∅) = G0, G1, . . . , G|E| = G

on the vertex set V , where for each i, Gi is obtained from Gi−1 by adding a single
edge of G. The hitting time of a monotone graph property P with respect to a graph
process is min{t : Gt ∈ P}.

For a graph process G̃, let τM (G̃) and τI(G̃) denote the hitting times for containing a
perfect matching and having no isolated vertices, respectively. Clearly, for every graph
process G̃ we have τM (G̃) ≥ τI(G̃). Our main result is that if G is sufficiently dense

and G̃ is chosen uniformly at random, equality a.a.s. holds.

Theorem 1.1. Let k = ω
(

n
log1/3 n

)
, let G be a k-regular bipartite graph on 2n vertices,

and let G̃ be a uniformly random graph process in G. Then, a.a.s. τM(G̃) = τI(G̃).

Corollary 1.2. For G and k as above,

• If p = logn−ω(1)
k , then a.a.s. G(p) does not contain a perfect matching.

• If p = logn+ω(1)
k , then a.a.s. G(p) contains a perfect matching.

Quite surprisingly, it turns out that these results fail when k is significantly smaller
than n/ log1/3 n. We analyze a construction of Goel, Kapralov, and Khanna [13] in
which the threshold for a perfect matching is much larger than the threshold for the
disappearance of isolated vertices.

Proposition 1.3. There exist infinitely many k-regular bipartite graphs G on n ver-

tices, with k = Ω
(

n
log(n)·log(log(n))

)
, such that a.a.s. the random subgraph G(p) does

not contain a perfect matching for any p ≤ 2 log n/k. On the other hand, if p =
(log n+ ω (1)) /k, then a.a.s. G(p) contains no isolated vertices.

We prove Proposition 1.3 in Appendix A.
Theorem 1.1 is almost a triviality if one assumes that G is pseudorandom (cf. [20,

Lemma 3.1]). The main element needed in our proof is a way to control induced
subgraphs of G with high discrepancy. To this end we prove a result on the structure
of high discrepancy sets in sufficiently dense, regular, bipartite graphs (Lemma 2.4).

The remainder of this paper is organized as follows. Section 1.1 introduces our nota-
tion. In Section 2 we prove Lemma 2.4, and in Section 3 we establish some probabilistic
tools. Finally, in Section 4, we prove Theorem 1.1.
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1.1. Notation. Throughout the paper, we disregard floor and ceiling signs to improve
readability. Large real numbers should be rounded to the nearest integer. We denote
by “log” the natural logarithm.

For an integer m ∈ N, we define [m] = {1, 2, . . . ,m}. Let X be a set and let
f : [|X|] → R. We sometimes abuse notation by writing

m∑

|S|=1

(|X|
|S|

)
f(|S|) =

∑

S⊆X:|S|∈[m]

f(|S|).

Let f, g : N → R. We write f = Õ(g) if, for some c > 0 and all large enough n ∈ N,
f(n) ≤ g(n) logc (g(n)).

Let G = (V,E) be a graph. For A,B ⊆ V , denote by EG(A,B) the set of edges
incident to both A and B, and let eG(A,B) = |EG(A,B)|. Let NG(A) denote the set
of neighbors of A, i.e., the set {v ∈ V : ∃a ∈ A s.t. av ∈ E} \ A. We define G \ A to
be the induced graph on the vertex set V (G) \ A.

Suppose G is a bipartite graph with vertex partition X,Y . A vertex set A is partite
if A ⊆ X or A ⊆ Y . We denote by Ac the complement of A w.r.t. its own part, i.e.,
X \A if A ⊆ X and Y \A if A ⊆ Y . If A is empty, it will be clear from context whether
Ac = X or Ac = Y .

By a common abuse of notation, we speak of G(p) as having a certain property,
instead of saying that G ∼ G(p) has that property.

In certain places we will need to show that events not only occur a.a.s., but that
the probability of their non-occurence decays at a polynomial rate. We will say that
such events occur with very high probability (w.v.h.p.). Formally, we say that a
sequence of events {An}n∈N occurs w.v.h.p. if log (P[Ac

n]) = −Ω (log n).

2. A Structural Lemma

Throughout this section G = (X∪̇Y,E) is a k-regular bipartite graph on 2n vertices.
A cut in G is a pair (S, T ) where S ⊆ X and T ⊆ Y . We call (S, T ) a Hall cut if
|S| > |T | and N(S) ⊆ T . Hall’s marriage theorem states that a balanced bipartite
graph contains a perfect matching if and only if it contains no Hall cuts. The main
idea in the proof of Theorem 1.1 is to show that a.a.s. GτI does not contain a Hall cut.

Let (S, T ) be a cut in G. We call EG(S, T
c) the outgoing edges of (S, T ). The cross

edges of G with respect to (S, T ) are those in E(S∪T, Sc∪T c). We call the remaining
edges parallel. For a vertex x ∈ V (G), we denote by degParG,S,T (x) and degCr

G,S,T (x) the
number of parallel and cross edges incident to x, respectively. Similarly, we denote by
NPar

G,S,T (x) the set of neighbors of x that are connected to x by a parallel edge. If the

cut (S, T ) is clear from the context, we sometimes write degParG (x) and degCr
G (x).

We define the following distance function on the set of cuts in G:

d((S1, T1), (S2, T2)) = |S1 \ S2|+ |S2 \ S1|+ |T1 \ T2|+ |T2 \ T1|.

For C ∈ R, we say that two cuts are C-close if their distance is at most C.

Observation 2.1. Let (S, T ) be a cut in G. Then e(S, T c) = k · (|S| − |T |) + e(Sc, T ).
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Proof. Since G is k-regular we have:

e(S, T ) + e(S, T c) = k · |S|
e(S, T ) + e(Sc, T ) = k · |T |.

Subtracting the second equation from the first yields the result. �

Observation 2.2. Let (S, T ) be a cut in G with |S| > |T |. Let C = eG(S ∪T, Sc ∪ T c)
be the number of cross edges in G w.r.t. (S, T ). Then, for any p ∈ (0, 1), it holds that:

P [(S, T ) is a Hall cut in G(p)] ≤ (1− p)C/2.

Proof. We have eG(S ∪ T, Sc ∪ T c) = eG(S, T
c) + eG(S

c, T ). As |S| > |T |, Observation
2.1 implies that eG(S, T

c) > eG(S
c, T ) and therefore eG(S, T

c) > eG(S ∪T, Sc ∪ T c)/2.
The probability that none of these cross edges are edges in G(p) (and thus (S, T ) is a

Hall cut) is therefore bounded from above by (1− p)C/2, as desired. �

The following structural lemma is the heart of our proof. Observation 2.2 implies that
if G has almost no cuts with few cross edges, a union bound is enough to show that a.a.s.
G(p) contains no Hall cuts. This is the case, for example, in random regular graphs.
However, in an arbitrary graph this need not hold. Therefore, we must understand
the behavior of cuts with few cross edges, and hence a significant chance of being Hall
cuts in G(p). We show that in any sufficiently dense, regular, bipartite graph, all such
cuts can be grouped into a small (specifically, subpolynomial) number of equivalence
classes. This allows us to control the contribution of these cuts to the probability that
G(p) contains a Hall cut.

Definition 2.3. Let c > 0. A cut (S, T ) is c-internal if it has at most 4cnk/ log n
cross edges.

If a cut is 1-internal, we sometimes just say that it is internal. Note that (S, T ) is
c-internal if and only if its complement (Sc, T c) is c-internal. Indeed, both cuts have
the same cross edges.

Lemma 2.4. Let G = (X∪̇Y,E) be a k-regular bipartite graph on 2n vertices, with

k = ω
(

n
log1/3 n

)
and n sufficiently large. Set ε = n

k log1/3(n)
= o (1). There exist

m = 2Θ(n/k) and cuts (S1, T1), . . . , (Sm, Tm) with the following properties.

(a) For every i ∈ [m] and x ∈ V (G), we have degCr
G,Si,Ti

(x) ≤ (1 + ε)k2 .
(b) Every internal cut (S, T ) with |S| > |T | is εk-close to (Si, Ti) for some i ∈ [m].

Remark 2.5. For graphs satisfying k = Ω(n) it is relatively straightforward to derive
Lemma 2.4 from Szemerédi’s regularity lemma (albeit with a vastly larger bound on
m). Alternatively, one could use the decomposition of dense regular graphs into “robust
components” (induced subgraphs with good expansion properties) due to Kühn, Lo,
Osthus, and Staden [19, Theorem 3.1].

In order to prove lemma 2.4, we first show that the internal cuts have a lattice-like
structure. The following claim implies that for sufficiently small c, the distance between
two c-internal cuts is either very large or very small.
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Claim 2.6. Let (S1, T1) and (S2, T2) be two c-internal cuts. Then

d((S1, T1), (S2, T2)) ≤
40cn

log n
or d((S1, T1), (S2, T2)) ≥

k

10
.

Proof. Let d = d((S1, T1), (S2, T2)). Without loss of generality assume that |S2 \ S1| ≥
d/4. As (S1, T1) is c-internal, we have:

eG (S2 \ S1, T1) ≤ eG (Sc
1, T1) ≤

4cnk

log n
.

Similarly, since (S2, T2) is c-internal, we have:

eG (S2 \ S1, T2) = eG (S2 \ S1, Y )− eG (S2 \ S1, T
c
2 ) ≥ eG (S2 \ S1, Y )− 4cnk

log n
.

Since G is k-regular, we have:

eG (S2 \ S1, Y ) = k |S2 \ S1| ≥
kd

4
.

Therefore:

(1) eG (S2 \ S1, T2 \ T1) ≥ eG (S2 \ S1, T2)− eG (S2 \ S1, T1) ≥
kd

4
− 8cnk

log n
.

On the other hand, it is certainly true that eG (S2 \ S1, T2 \ T1) ≤ |S2 \ S1| |T2 \ T1|.
As |S2 \ S1|+ |T2 \ T1| ≤ d, we have:

(2) eG (S2 \ S1, T2 \ T1) ≤
d2

4
.

Combining (1) and (2) and rearranging yields:

d (k − d) ≤ 32cnk

log n
.

Suppose d < k/10. Then k − d > 9k/10. We thus obtain the inequality:

d ≤ 320cn

9 log n
<

40cn

log n
,

as desired. �

Remark 2.7. Although Claim 2.6 holds for all c, it is only meaningful when 40cn/ log n <
k/10. For convenience, let δ = k/n denote the density of G. We will need to apply the

claim for c = O(1/δ2). Since δ = ω
(
log−1/3(n)

)
, this is in the regime where the claim

is meaningful. In fact, this is the source of the lower bound on k in Theorem 1.1.
For the rest of this section, c will always be bounded by O(1/δ2).

We say that two c-internal cuts are equivalent if they are (εk/100)-close. The
triangle inequality, together with Claim 2.6, implies that this is an equivalence relation.
Let Xc be the set of equivalence classes of c-internal cuts. We say that a cut is trivial
if it is equivalent to (∅, ∅).

Note that the quantity εk depends only on n, and not on k. We choose to write εk
in order to emphasize that this is asymptotically smaller than k.

We now define a meet operation on equivalence classes. Note that if the cuts (S1, T1)
and (S2, T2) are c1-internal and c2-internal, respectively, then the cut (S1 ∩ S2, T1 ∩ T2)
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is (c1+c2)-internal. Indeed, any cross edge of the intersection is a cross edge in at least
one of the cuts.

Denote the equivalence class of a c-internal cut (S, T ) by [(S, T )]c. When the value
of c is clear from the context, we omit the subscript.

Definition 2.8. Let c1 and c2 satisfy c1 + c2 = O(1/δ2). The meet of [(S1, T1)] ∈ Xc1

and [(S2, T2)] ∈ Xc2 is

[(S1, T1)] ∧ [(S2, T2)] := [(S1 ∩ S2, T1 ∩ T2)] ∈ Xc1+c2 .

The fact that this is well-defined, in the sense that it does not depend on the choice
of representatives, follows from Claim 2.6. Indeed, different choices of representatives
may only change the intersection by at most 80(c1+c2)n/ log n vertices. This is smaller
than εk/100, and therefore the two intersections are equivalent.

Definition 2.9. We say that the class [(S1, T1)] ∈ Xc1 is above [(S2, T2)] ∈ Xc2

if [(Sc
1, T

c
1 )] ∧ [(S2, T2)] is trivial. In this case, we also say that [(S2, T2)] is below

[(S1, T1)].

Note that if [(S, T )] is a nontrivial class then by Claim 2.6 |S ∪ T | ≥ k/10.

Observation 2.10. If [(S1, T1)] is not below [(S2, T2)], then for every (S′, T ′) ∈ [(S1, T1)]∧
[(S2, T2)], we have |S1 ∪ T1| − |S′ ∪ T ′| ≥ k/20.

Proof. Since [(S1, T1)] is not below [(S2, T2)], it holds that [(S1\S2, T1\T2)] is nontrivial,
and therefore |S1 \ S2| + |T1 \ T2| ≥ k/10. Note that S1 is the disjoint union of
S1 ∩ S2 and S1 \ S2, and that a similar statement holds for T1. This implies that
|S1 ∪ T1| ≥ |S1 ∩ S2|+ |T1 ∩ T2|+ k/10. As (S′, T ′) is equivalent to (S1 ∩ S2, T1 ∩ T2),
the observation follows. �

We now construct the building blocks used to create the cuts of Lemma 2.4. Consider
the following process:

Algorithm 2.11.

(a) Initialize [(S1, T1)] ∈ X1 to be an arbitrary nontrivial internal equivalence class.
(b) As long as there exists a class [(S∗, T ∗)] ∈ X1 that is neither above, nor has

trivial meet with, [(Si, Ti)], set [(Si+1, Ti+1)] = [(Si, Ti)] ∧ [(S∗, T ∗)].

Note that this process halts after at most 40/δ steps. This is because |S1∪T1| ≤ 2n,
and Observation 2.10 implies that for each i, |Si ∪ Ti| ≤ |Si−1 ∪ Ti−1| − k/20. In
consequence, the equivalence classes obtained at the end of this process are (40/δ)-
internal, because the meet of a c-internal cut with a 1-internal cut is (c + 1)-internal.
We may therefore think of these equivalence classes as members of X40/δ. We call these
classes atoms.

Observation 2.12.

(a) All of the atoms are nontrivial.
(b) Every pair of atoms has trivial meet.
(c) There are at most 30/δ atoms.
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Proof. Item (a) holds because at each stage of the process, [(Si, Ti)] and [(S∗, T ∗)] have
nontrivial meet.

For Item (b), assume that [(S, T )] and [(S′, T ′)] are distinct atoms. By definition
of the equivalence relation, d((S, T ), (S′, T ′)) ≥ εk/100. By Claim 2.6 this implies
that in fact d((S, T ), (S′, T ′)) ≥ k/10. Without loss of generality, we may assume
that |S \ S′| + |T \ T ′| ≥ k/20. Now, [(S′, T ′)] is the meet of at most 40/δ 1-internal
classes. Thus (S′, T ′) is εk/100-close to the intersection of at most 40/δ 1-internal cuts.
Therefore at least one of these classes, [(S∗, T ∗)], satisfies

|S \ S∗|+ |T \ T ∗| ≥
(

k

20
+

εk

100

)
· δ

40
.

Since k = ω
(

n
log1/3 n

)
, this is larger than 40

δ · 40n
logn . Therefore, by Claim 2.6, this implies

that [(S, T )] ∧ [(S∗c, T ∗c)] is nontrivial, and therefore [(S∗, T ∗)] is not above [(S, T )].
Suppose, for a contradiction, that [(S, T )] and [(S′, T ′)] have nontrivial meet. Then
[(S, T )] and [(S∗, T ∗)] also have nontrivial meet. Therefore [(S, T )], by definition, is
not an atom, which is a contradiction.

For Item (c), fix a representative for each atom. Each representative contains at least
k/10 vertices. Since each pair of atoms has trivial meet, by Claim 2.6, the intersection

of any two representatives has at most 1600n2

k logn vertices. Letting A denote the number

of atoms, the inclusion-exclusion formula implies that for all a ≤ A:

a ·
(

k

10

)
−
(
a

2

)
1600n2

k log n
≤ |V (G)| = 2n.

The inequality does not hold for a = 30/δ, and therefore A ≤ 30/δ. �

Claim 2.13. Suppose [(S, T )] is internal and above a nontrivial O(1/δ2)-internal class
[(S′, T ′)]. Then there exists an atom [(SA, TA)] below [(S, T )] such that [(SA, TA)] ∧
[(S′, T ′)] is nontrivial.

Proof. We will construct [(SA, TA)] using Algorithm 2.11, while ensuring throughout
that the meet [(Si, Ti)] ∧ [(S′, T ′)] is nontrivial. Here, [(Si, Ti)] refers to the sequence
of cuts constructed in Algorithm 2.11.

Set [(S1, T1)] = [(S, T )]. Suppose that at step i ≤ 40/δ we have a class [(Si, Ti)]
such that [(Si, Ti)]∧ [(S′, T ′)] is nontrivial. If [(Si, Ti)]40/δ is an atom take [(SA, TA)] =
[(Si, Ti)]40/δ . Otherwise, there exists an internal cut [(S∗, T ∗)] that is neither above,
nor has trivial meet with, [(Si, Ti)]. Therefore both [(Si, Ti)]∧ [(S∗, T ∗)] and [(Si, Ti)]∧
[(S∗, T ∗)]c := [((S∗)c, (T ∗)c)] are nontrivial.

Additionally, since [(Si, Ti)] ∧ [(S′, T ′)] is nontrivial, it holds that at least one of
[(S∗, T ∗)] ∧ [(Si, Ti)] ∧ [(S′, T ′)] and [(S∗, T ∗)]c ∧ [(Si, Ti)] ∧ [(S′, T ′)] are nontrivial.
Without loss of generality assume that [(S∗, T ∗)] ∧ [(Si, Ti)] ∧ [(S′, T ′)] is nontrivial
and set [(Si+1, Ti+1)] = [(S∗, T ∗)] ∧ [(Si, Ti)]. Observe that [(Si+1, Ti+1)] ∧ [(S′, T ′)] is
nontrivial and O(1/δ2)-internal.

Note that although it may look like the distance between (Si, Ti) and the trivial cut
is halved at each step, in fact Claim 2.6 implies that the distance is never less than
k/10. This implicitly uses the fact that [(Si, Ti)] ∧ [(S′, T ′)] is O

(
1/δ2

)
-internal. �
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Proof of Lemma 2.4. We first construct the cuts (S1, T1), . . . , (Sm, Tm). Let A be the
set of atoms. For each α ∈ A, fix a representative (Sα, Tα). For S ⊆ A, let (S′

S , T
′
S) be

the cut (∪α∈SSα,∪α∈STα). Finally, define the sets:

SS :=

{
x ∈ X : eG

(
{x}, T ′

S

)
≥ k

2

}
, TS :=

{
y ∈ Y : eG

(
{y}, S′

S

)
≥ k

2

}
.

Let (S1, T1), . . . , (Sm, Tm) be a list of the cuts {(SS , TS)}S⊆A. By Observation 2.12,

m ≤ 2|A| = 2O(n/k). It remains to prove that in each of these cuts, every vertex is
incident to few (i.e., less than (1 + ε)k/2) cross edges, and that every internal cut
(S, T ) with |S| > |T | is εk-close to one of the (Si, Ti)s.

Let S ⊆ A. Since, by Observation 2.12, every atom is (40/δ)-internal, the number

of cross edges with respect to (S′
S , T

′
S) is at most |A|40δ 4nk

logn = O
(

n3

k logn

)
. There-

fore there are at most εk/2 vertices x ∈ V (G) s.t. degCr
G,S′

S
,T ′

S

(x) > k/2. Thus

d ((S′
S , T

′
S) , (SS , TS)) ≤ εk/2. Let x ∈ V (G). By construction,

degCr
G,SS ,TS

(x) ≤ k

2
+ d

((
S′
S , T

′
S

)
, (SS , TS)

)
≤ (1 + ε)

k

2
,

as desired.
For the second property, let (S, T ) be an internal cut. Let S = {α1, . . . , αm} be the

set of atoms below [(S, T )]. We will show that (S, T ) is equivalent to (SS , TS). By the
triangle inequality it suffices to show that (S′

S , T
′
S) is equivalent to (S, T ).

Suppose, for a contradiction, that (S′
S , T

′
S) is not equivalent to (S, T ). Define

[(S′, T ′)] = [(S, T )] ∧
[(
S′
S , T

′
S

)]c
=

[
(S, T ) ∩

(
⋂

α∈S

(Sα, Tα)
c

)]
.

We observe that [(S, T )] is internal and above [(S′, T ′)]. Additionally, [(S′, T ′)] is
nontrivial. Indeed, by assumption, (S, T ) is not equivalent to (S′

S , T
′
S). Furthermore,

by construction, [(S, T )] is above [(S′
S , T

′
S)]. These facts together imply that [(S′, T ′)]

is nontrivial. Hence, by Claim 2.13, there exists an atom α that is below [(S, T )] (i.e.,
α ∈ S) and has nontrivial meet with [(S′, T ′)]. However, by construction, [(S′, T ′)] has
trivial meet with all atoms in S. Thus α /∈ S, a contradiction. �

3. Properties of Random Subgraphs

Let k = δn, with δ = ω(log−1/3 n), and fix a k-regular bipartite graph G = (X∪̇Y,E)
on 2n vertices. In this section we collect properties of random subgraphs of G that are
essential for our proof.

Set

p1 =
log n− log log log log n

k
,

p2 =
log n+ log log log log n

k
.
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We define the following random subgraphs of G:

G2 ∼ G(p2),

G1 ∼ G2

(
p1
p2

)
.

Observe that G1 ∼ G(p1). Furthermore, the same distribution on (G1, G2) can be

obtained as follows. Let G1 ∼ G(p1), G
′ ∼ G

(
p2−p1
1−p1

)
, and set G2 = G1 ∪G′.

We will show presently that a.a.s. G1 contains isolated vertices, while G2 does not.
Furthermore, the distance between any two vertices that are isolated in G1 is at least
2 in G2. This motivates the following construction: let G1 ⊆ GH ⊆ G2 be the random
graph obtained by adding, for each isolated vertex v in G1, an edge drawn uniformly
at random from {e ∈ E(G2) : v ∈ e}. If any of these sets are empty, or if there are
two isolated vertices in G1 that are connected in G2, set GH = G1. The next claim,
a variation of [4, Lemma 7.9], establishes that it is sufficient to prove that a.a.s. GH

contains a perfect matching.

Claim 3.1. Let Q be a monotone increasing property of subgraphs of G. If Q holds
a.a.s. for GH then, in almost every graph process in G, Q holds for GτI , the first graph
in which there are no isolated vertices.

We defer the proof until after establishing some properties of G1 and G2.

Claim 3.2. A.a.s. G1 contains isolated vertices and G2 does not. Furthermore, a.a.s.
there is no pair x, y of vertices that are isolated in G1 and xy ∈ E(G2).

Proof. The probability that a specific vertex is isolated in G(p) is (1−p)k. The expected
number of isolated vertices in G2 is therefore:

2n(1− p2)
k ≤ 2n exp (−p2k) = 2n

1

ω(n)
= o (1).

Applying Markov’s inequality, a.a.s. G2 contains no isolated vertices.
By a similar calculation, the probability that a specific vertex is isolated in G1 is

ω(1/n). Let the random variable I be the number of vertices in X that are isolated in
G1. Then E [I] = ω (1). Furthermore, the events that two vertices x, y ∈ X are each
isolated in G1 are independent. Thus Var [I] ≤ E [I], and by Chebychev’s inequality,
a.a.s. I > 0 and G1 contains isolated vertices.

For the second part of the claim, observe that by the calculations above a.a.s. the
number of isolated vertices in G1 is O(log n). Therefore the expected number of edges
between these vertices in G2 is o (1), and so by Markov’s inequality a.a.s. there are
none. �

Proof of Claim 3.1. We describe a coupling that relates G1, G2, and GH to GτI . Con-
sider the following random process. For each edge e of G, choose a real number
αe ∼ U [0, 1] uniformly at random from the interval [0, 1], all choices independent.
Let G′

1 and G′
2 be the subgraphs of G whose edges are E(G′

i) = {e ∈ E(G) : αe ≤ pi}
for i ∈ {1, 2}. Let G′

H be the random graph obtained by adding, for each isolated
vertex in G′

1, the edge incident to it in G′
2 whose α value is minimal. If G′

2 contains
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isolated vertices or an edge between two vertices that are isolated in G′
1, set instead

G′
H = G′

1.
Observe that the distributions of (G1, G2, GH) and (G′

1, G
′
2, G

′
H) are identical. Fur-

thermore, the distribution of the random graph process is identical to that of the process
in which edges are revealed in increasing order of α. With respect to this process, a.a.s.
G′

H is a subgraph of GτI . Therefore, if Q holds a.a.s. for GH , then Q holds a.a.s. for
G′

H , and as Q is monotone increasing, a.a.s. GτI ∈ Q. �

For a cut (S, T ) we define the set

Γ (S, T ) =
{
x ∈ V : degCr

G,S,T (x) ≥ n−1/20k
}

of vertices with high cross degree. We remind the reader that a sequence of events
occurs with very high probability (w.v.h.p.) if the probabilities of their non-occurence
decay at a polynomial rate.

Lemma 3.3. Let (S, T ) be a cut. Suppose R ⊆ V \Γ(S, T ) is a set of O(log n) isolated
vertices in G1. Then w.v.h.p. for every x ∈ R, degCr

GH
(x) = 0.

Proof. It suffices to show that a.a.s. for every x ∈ R, degCr
G2

(x) = 0. Indeed, the

expected number of cross edges incident to x in G2 is bounded above by n−1/20k p2−p1
1−p1

=

Õ
(
n−1/20

)
. The conclusion follows by applying Markov’s inequality and a union bound

over the O(log n) vertices. �

Lemma 3.4. Let (S, T ) be a cut, and let V ′ = V \ Γ(S, T ). Then, w.v.h.p. for every

x ∈ V ′, degCr
G1

(x) ≤ 30.

Proof. Observe that degCr
G1

(x) ∼ Bin
(
degCr

G (x), p1
)
. Therefore:

P
[
degCr

G1
(x) ≥ 30

]
≤
(
n−1/20k

30

)
p301 = Õ

(
1

n3/2

)
.

The lemma follows by applying a union bound over all O(n) vertices in V ′. �

Lemma 3.5. Let (S, T ) be a cut, and let Vlow be the set of vertices x ∈ V \ Γ(S, T )
such that degParG1

(x) ≤ 1
1000 log n. W.v.h.p. the following hold:

(a) |Vlow| ≤ n0.01.
(b) For each x, y ∈ Vlow, the distance between x and y in GH is at least 6.

Proof. We first show that w.v.h.p. |Vlow| ≤ n0.01. Indeed, suppose x ∈ V satisfies

degCr
G (x) < n−1/20k. The probability that x ∈ Vlow is at most

1
1000

logn∑

i=0

Pr
[
degParG1

(x) = i
]
≤ log n

1000

(
k

1
1000 log n

)
p

1
1000

logn
1 (1− p1)

(1−O(n−1/20))k

≤ log n

1000

(
e · kp1
1

1000 log n

) 1
1000

logn

exp
(
−
(
1−O(n−1/20)

)
kp1

)

≤ (1000e)
1

1000
logn · Õ

(
1

n

)
< n−0.991.
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Thus, E [|Vlow|] < n0.009. Therefore, by Markov’s inequality, P
[
|Vlow| ≥ n0.01

]
≤ n−0.001.

The proof of (b) is similar to the proof of [2, Claim 4.4] and property (P2) in
[11, Lemma 5.1.1]. Fix two distinct vertices u,w ∈ V \ Γ(S, T ) and consider a path
(u = v0, . . . , vr = w) in G, where 1 ≤ r ≤ 5. Denote by A the event that for every
0 ≤ i ≤ r− 1, we have {vi, vi+1} ∈ E(G2), i.e., the path exists in G2. Denote by B the
event that u,w ∈ Vlow. Clearly, P [A] = pr2, hence

P [B ∧ A] = pr2 · P [B|A] .

Let X denote the random variable which counts the number of parallel edges in G2

incident with u or w disregarding the pairs {u, v1}, {vr−1, w}, and {u,w}. Observing
that X ∼ Bin ((1− o (1))2k, p2) and using standard concentration inequalities, we have

P [B|A] ≤ P

[
X < 2

1

1000
log n

]
< n−1.8.

Fixing the two endpoints u,w, the number of such sequences is at most kr−1. Applying
a union bound over all pairs of vertices and possible paths between them, we conclude
that the probability of a path in G2 of length r ≤ 5 connecting two distinct vertices of
Vlow is at most

5∑

r=1

n2 · kr−1 · pr2 · n−1.8 = Õ

(
1

n0.8

)
.

This completes the proof of the lemma. �

Recall that a set A ⊂ V is partite if A ⊂ X or A ⊂ Y . A vertex is a parallel

neighbor of A if it is connected to a vertex in A via a parallel edge.

Lemma 3.6. Let (S, T ) be a cut. W.v.h.p. the following holds. If A ⊆ V is a partite
set satisfying

• |A| ≤ n0.9, and
• for every x ∈ A, degParG1

(x) ≥ 1
1000 log n,

then A has at least |A| 1
2000 log n parallel neighbors in G1.

Proof. Let A ⊆ V be a partite set, and let t = t(A) = |A| 1
2000 log n. Let P(A) be the

event that the minimum parallel degree of a vertex in A is at least 1
1000 log n.

For any fixed set B,

P [NG1
(A) ⊆ B ∧ P(A)] ≤ P [eG1

(A,B) ≥ 2t] ≤
(
eG(A,B)

2t

)
p2t1

≤
(|A||B|

2t

)
p2t1 ≤

(
e · |A||B|p1

2t

)2t

.
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Applying a union bound, we have:

P
[
∃A s.t. |A| ≤ n0.9 ∧ P(A) ∧ |NG1

(A)| ≤ t(A)
]

≤ 2
n0.9∑

|A|=1

(
n

|A|

)(
n

t(A)

)(
e|A|t(A)p1

2t(A)

)2t(A)

≤ 2
n0.9∑

|A|=1

(
ne

|A|

)|A|(ne3|A|2p21
4t(A)

)t(A)

≤ 2

n0.9∑

|A|=1

(
ne

|A|

)|A|(e3|A|2 log2(n)
4δ2t(A)n

)t(A)

≤
n0.9∑

|A|=1

n−t(A)/20 = O

(
1

n1/20

)
. �

4. Proof of Theorem 1.1

4.1. Outline. As mentioned previously, we prove Theorem 1.1 by showing that a.a.s.
GH does not contain a Hall cut. This is similar to the approach used in [9] to show
that p = log n/n is the threshold for Kn,n(p) to contain a perfect matching. There, a
union bound over all cuts (S, T ) (satisfying certain conditions) was sufficient for the
result. In this regard, the crucial property of Kn,n is that every cut has many outgoing
edges. Essentially the same approach was utilized in the proof of [20, Lemma 3.1] to
show that if a k-regular, bipartite graph G satisfies a certain expansion property, then
the threshold for G(p) to contain a perfect matching is p = Θ(log n/k). However,
for arbitrary G, there may be many cuts (S, T ) with few outgoing edges, potentially
foiling the union bound. Indeed, this is the case in the counterexamples described in
Appendix A.

To overcome this we take a more delicate approach, wherein we group the various
cuts in G into families that we treat separately. Informally, the steps are as follows:

(a) The first family contains all cuts that are not internal (in the sense of Definition
2.3), and therefore have many outgoing edges in G. Here a simple union bound
suffices to show that a.a.s. none of these cuts are Hall cuts in GH (Claim 4.1).

(b) At this point we apply Lemma 2.4 to conclude that any cut not covered in the

previous step is close to one of the m = 2Θ(n/k) cuts from the lemma. We fix
one of these cuts, (S′, T ′), and show that conditioned on GH having no isolated
vertices, w.v.h.p. none of the cuts that are εk-close to (S′, T ′) becomes a Hall
cut in GH . As m is subpolynomial, a union bound implies that a.a.s. GH does
not contain a Hall cut.

For a cut (S, T ), we define the set of shifted vertices:

∆ = ∆(S, T ) =
(
S \ S′

)
∪
(
S′ \ S

)
∪
(
T \ T ′

)
∪
(
T ′ \ T

)
.

We make use of the natural correspondence ∆ ↔ (S, T ), and interchange be-
tween them freely. We recall the definition of the set

Γ = Γ(S′, T ′) =
{
x ∈ V : degCr

G,S′,T ′(x) ≥ n−1/20k
}

of vertices with many cross edges in G w.r.t. (S′, T ′). We emphasize that Γ is
deterministic, i.e., depends only G and (S′, T ′).

(c) The second family of cuts consists of those with |∆| ≥ n0.9. The insight here is
that shifting a large number of vertices w.r.t. (S′, T ′) creates many cross edges.
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Here too, a union bound suffices to show that w.v.h.p. none of these are Hall
cuts in GH (Claim 4.2).

(d) The third family consists of cuts satisfying |∆| ≤ n−1/20

10 |Γ|. As the vertices in
Γ have, by definition, many cross edges, if ∆ is much smaller than Γ then most
of these cross edges are unaffected. This allows us to employ a union bound
here as well (Claim 4.3).

(e) We now argue that w.v.h.p. we may remove from GH a small matching M
covering all vertices that have low degree in G1, leaving the residual graph

G̃H = GH \ V (M). In Observation 4.8, we show that if GH contains a Hall cut

that is C-close to (S′, T ′), then G̃H contains a Hall cut that is C-close to

(S′ \ V (M),T ′ \ V (M)).

It therefore suffices to consider cuts in G̃H .

(f) It remains to consider ∆ such that n−1/20

10 |Γ| < |∆| < n0.9. We show that
w.v.h.p. there is no such Hall cut if either |∆| ≥ log n/ log log n or ∆ ∩ Γ 6= ∅
(Claim 4.11). Here we take advantage of the fact that once the low degree
vertices have been removed fromG1, the remaining vertices satisfy an expansion
property (Claim 4.9).

(g) Finally, we argue that w.v.h.p. there is no Hall cut satisfying |∆| ≤ log n/ log log n
and ∆ ∩ Γ = ∅ (Claim 4.12). Here we use the expansion property to show
that such a cut cannot exist: w.v.h.p. (S′, T ′) contains many outgoing edges
in G1, and it is impossible to make all these edges parallel by shifting only
log n/ log log n vertices.

4.2. The proof. We first show that if a cut has many outgoing edges, the probability
that it is a Hall cut in GH is very small.

Claim 4.1. A.a.s. GH contains no Hall cut (S, T ) that is not internal.

Proof. Since G1 ⊆ GH it suffices to prove the statement with GH replaced by G1.
Suppose (S, T ) is not internal. Then it has at least 4nk/ (log n) cross edges. By
Observation 2.2 the probability that it is a Hall cut is less than

(1− p1)
eG(S,T c) ≤ exp

(
−p1

2nk

log n

)
= exp(−(1− o (1))2n) = o

(
4−n

)
.

The claim follows by applying a union bound over all 4n cuts in G. �

We now apply Lemma 2.4 to obtain the cuts (S1, T1) . . . , (Sm, Tm). By Claim 4.1,
Lemma 2.4, and the fact that m is subpolynomial, it suffices to show that w.v.h.p. all
cuts (S, T ) that are εk-close to (Si, Ti) for some i are not Hall cuts in GH .

Fix an index i ∈ [m], set S′ = Si, T
′ = Ti, and define Γ and ∆ with respect to

(S′, T ′) as in the outline. Henceforth, cross edges, parallel edges, cross degrees and
parallel degrees are with respect to (S′, T ′).

Claim 4.2. W.v.h.p. for every ∆ such that n0.9 ≤ |∆| ≤ εk, (S, T ) is not a Hall cut
in GH .
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Proof. By Lemma 2.4, each x ∈ ∆ satisfies degParG (x) ≥ (1−ε)k2 . Most of these parallel
edges - all those with an endpoint not in ∆ - are cross edges w.r.t. (S, T ). Thus the
number of cross edges satisfies:

eG(S, T
c) + eG(S

c, T ) ≥ (1− ε)|∆|k
2
− |∆|2 ≥ |∆|k

3
.

By Observation 2.2 the probability that (S, T ) is a Hall cut in G1 is at most:

(1− p1)
|∆|k/6 ≤

(
1

n

)|∆|/7

.

Applying a union bound, the probability that there exists such a Hall cut is at most

εn∑

|∆|=n0.9

(
2n

|∆|

)(
1

n

)|∆|/7

= O

(
1

n

)
. �

Claim 4.3. W.v.h.p. for all ∆ s.t. |∆| ≤ n−1/20

10 |Γ|, the corresponding cut (S, T ) is not
a Hall cut in GH .

Proof. Suppose ∆ satisfies the claim’s hypothesis. By Lemma 2.4 and the definition of
Γ, each x ∈ Γ satisfies

min
{
degCr

G (x) ,degParG (x)
}
≥ n−1/20k.

Ignoring, for the moment, the possibility that NG(x) ∩∆ 6= ∅, this means that every

x ∈ Γ is incident to at least n−1/20k cross edges w.r.t. (S, T ), regardless of whether
x ∈ ∆. There are at most |∆|min{|Γ|, k} edges between ∆ and Γ. Accounting for
possible double counting of the edges incident to Γ, we obtain:

eG(S, T
c) + eG(S

c, T ) ≥ |Γ|n−1/20k

2
− |∆|min{|Γ|, k} ≥ 4|∆|k.

Applying Observation 2.2, the probability that (S, T ) is a Hall cut in G1 is at most

(1− p1)
4|∆|k/2 ≤

(
1

n

)1.9|∆|

.

We now observe that if ∆ = ∅ (i.e., (S, T ) = (S′, T ′)), then the probability that

(S, T ) is a Hall cut in G1 is at most (1− p1)
k = Õ(1/n). Let X be the number of cuts

satisfying the claim’s hypothesis that are Hall cuts in G1. Applying a union bound, we
have:

P [X > 0] ≤ Õ

(
1

n

)
+

∑

1≤|∆|≤min
{

n−1/20

10
|Γ|,n0.9

}

(
2n

|∆|

)(
1

n

)1.9|∆|

= O

(
1

n0.9

)
. �

Remark 4.4. As a consequence of Claim 4.3, if |Γ| ≥ 10n19/20 then w.v.h.p. none of
the cuts that are εk-close to (S′, T ′) become Hall cuts in GH . This is because Claim
4.2 covers all cases where |∆| ≥ n0.9, and the previous claim covers all cases where

|∆| ≤ n−1/20

10 |Γ|. Therefore, we proceed under the assumption that |Γ| < 10n19/20.
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Before continuing to steps (f) and (g), we modify GH by removing a small matching
covering the low degree vertices that are not in Γ. Moreover, this matching contains only
parallel edges. The following claim, together with Lemma 3.5, implies that conditioned
on GH having no isolated vertices, w.v.h.p. such a matching exists.

Claim 4.5. Conditioned on there being no isolated vertices in GH , w.v.h.p. every vertex
in V \ Γ is incident to at least one parallel edge in GH .

Proof. Assuming there are no isolated vertices in GH , if there exists some v ∈ V \Γ s.t.
degParGH

(v) = 0, then degParG1
(v) = 0 and degCr

G2
(v) > 0. We use the first moment method

to show that w.v.h.p. there are no vertices v /∈ Γ for which this holds. Indeed, if v /∈ Γ
then the probability of this occurring is bounded from above by

k

n1/20
p2(1− p1)

k(1−n−1/20) = Õ

(
1

n21/20

)
.

Therefore the expected number of such vertices is Õ
(
n−1/20

)
. By Markov’s inequality,

w.v.h.p. there are none. �

Recall that

Vlow =

{
x ∈ V \ Γ : degParG1

(x) ≤ 1

1000
log n

}
.

Conditioning on the conclusions of Lemma 3.5 and Claim 4.5 holding, there exists a
matching M ⊆ GH of size |Vlow| consisting of parallel edges that contains Vlow.

Claim 4.6. W.v.h.p. NGH
(Vlow) ∩ Γ = ∅.

Proof. By Remark 4.4 we may assume |Γ| < n0.96. Fix an arbitrary vertex x 6∈ Γ. Then

P [x ∈ Vlow ∧NGH
(x) ∩ Γ 6= ∅] ≤

∑

y∈Γ

P [x ∈ Vlow ∧ y ∈ NGH
(x)]

≤
∑

y∈Γ

P

[∣∣NPar
G1

(x) \ {y}
∣∣ ≤ 1

1000
log n ∧ y ∈ NG2

(x)

]

=
∑

y∈Γ

P

[∣∣NPar
G1

(x) \ {y}
∣∣ ≤ 1

1000
log n

]
· P [y ∈ NG2

(x)]

≤ |Γ|
(
1

n

)0.99

· p2 = O

(
1

n1.01

)
,

where the probability of the first event is estimated as in the proof of Lemma 3.5.
The equality between the second and third lines is due to the fact that the events∣∣NPar

G1
(x) \ {y}

∣∣ ≤ 1
1000 log n and y ∈ NG2

(x) are independent. The statement of the
claim follows from a union bound over all O(n) choices of x. �

Claim 4.7. W.v.h.p. the number of cross edges incident to V (M) in G is o
(
n0.99

)
.

Proof. By Lemma 3.5 and Claim 4.6, we may assume that |M | = |Vlow| ≤ n0.01 and
V (M) ∩ Γ = ∅. Therefore, each vertex in V (M) is incident to O

(
n0.95

)
cross edges,

and the claim follows. �
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Observe that the identity of M depends only on the parallel edges of GH w.r.t.
(S′, T ′). This allows us to think of G1 as being exposed in two independent stages. In
the first stage the parallel edges of G1 are exposed, and in the second the cross edges
are exposed.

Set

G̃ = G \ V (M),

G̃1 = G1 \ V (M),

G̃H = GH \ V (M),
(
S̃, T̃

)
=
(
S′ \ V (M), T ′ \ V (M)

)
,

and

Γbad =

{
x ∈ Γ : degParG1

(x) <
1

1000
log n

}
.

For a cut (S, T ) we define the set of shifted vertices with respect to (S̃, T̃ ) as

∆̃ = ∆̃(S \ V (M), T \ V (M)) = ∆(S, T ) \ V (M).

Observation 4.8. Suppose that GH has a Hall cut (S, T ) whose shifted vertex set is

∆. Then ∆̃ corresponds to a Hall cut in G̃H , and |∆| − |V (M)| ≤ |∆̃| ≤ |∆|.
Proof. Observe that there is no edge connecting S and T c. Therefore, |S ∩ V (M)| ≤
|T ∩ V (M)|, and so (S \ V (M), T \ V (M)) is also a Hall cut in G̃H .

Since ∆̃ is obtained from ∆ by removing at most |V (M)| vertices, the conclusion
follows. �

By Observation 4.8, it suffices to show that w.v.h.p. there are no Hall cuts in G̃H

with n−1/20

10 |Γ| − |V (M)| ≤ |∆̃| ≤ n0.9.

Claim 4.9. W.v.h.p every partite set A ⊆ V \ (V (M) ∪ Γbad) of size at most n0.9

satisfies ∣∣∣NPar
G̃1

(A)
∣∣∣ ≥ |A| 1

3000
log n.

Proof. Suppose the conclusion does not hold, i.e., there is a partite set A ⊆ V (G̃1)\Γbad

with |A| ≤ n0.9 s.t.
∣∣∣NG̃1

(A)
∣∣∣ < |A| 1

3000 log n. Then, for every x ∈ A, degParGH
(x) ≥

1
1000 log n. Furthermore,

NPar
G1

(A) ⊆ NPar
G̃1

(A) ∪
((
Vlow ∪NPar

GH
(Vlow)

)
∩NPar

G1
(A)
)
.

However,
∣∣∣
(
Vlow ∪NPar

GH
(Vlow)

)
∩NPar

G1
(A)
∣∣∣ ≤ |A|, because if a vertex in A has two

neighbors in Vlow ∪ NPar
GH

(Vlow), then there are two vertices in Vlow whose distance in
GH is at most 4, contradicting Lemma 3.5. Therefore:

∣∣NPar
G1

(A)
∣∣ ≤

∣∣∣NPar
G̃1

(A)
∣∣∣ + |A| ≤ |A| 1

3000
log n+ |A| < |A| 1

2000
log n.

The set A does not satisfy the conclusion of Lemma 3.6, which holds w.v.h.p. Therefore
the conclusion of the present claim holds w.v.h.p. as well. �
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Claim 4.10. W.v.h.p. |Γbad| ≤ |Γ|/n0.4.

Proof. By Lemma 2.4, every vertex has parallel degree in G at least (1−ε)k2 . Therefore

the probability that a vertex’s parallel degree in G1 is less than 1
1000 log n is bounded

above by

1

1000
log n

(
(1− ε)k2
1

1000 log n

)
p

1
1000

logn
1 (1− p1)

(1−ε)k/2− 1
1000

logn = O
(
n−0.49

)
.

The conclusion follows from an application of Markov’s inequality. �

Henceforth, unless otherwise specified, parallel degrees, cross degrees, etc., are with

respect to the vertex set V \ V (M) and the cut
(
S̃, T̃

)
.

Claim 4.11. The following holds w.v.h.p. Suppose ∆̃ of size n−1/20

10 |Γ| − |V (M)| ≤∣∣∣∆̃
∣∣∣ ≤ n0.9 satisfies one of:

(a) |∆̃| ≥ log n/ log log n.

(b) ∆̃ ∩ Γ 6= ∅.
Then ∆̃ does not correspond to a Hall cut in G̃H .

Proof. Let (S, T ) be the cut corresponding to ∆̃. Set:

a = S̃ \ S, b = S̃c \ Sc, c = T̃ c \ T c, d = T̃ \ T.
We note that |Γbad| = o

(
|∆̃|/ log n

)
. Indeed, by the previous claim |Γbad| ≤ |Γ|/n0.4.

Now, if |V (M)| ≤ n−1/20

20 |Γ| then |∆̃| = Ω(n−1/20|Γ|) and the conclusion follows. Other-

wise, |Γ| = O
(
n1/20|V (M)|

)
. By Lemma 3.5 |V (M)| ≤ 2|Vlow| = O

(
n0.01

)
. Therefore

|Γbad| ≤
|Γ|
n0.4

≤ n1/20|V (M)|
n0.4

= O
(
n−0.34

)
= o (1).

Thus, in fact, Γbad = ∅, and so |Γbad| = o
(
|∆̃|/ log n

)
.

We also observe that these calculations imply

(3)
|Γ|
|∆̃|

= O
(
n0.06

)
.

We now observe that if either NPar
G̃1

(b) * c or NPar
G̃1

(d) * a, then (S, T ) is not a Hall

cut. Thus we may assume that NPar
G̃1

(b) ⊆ c and NPar
G̃1

(d) ⊆ a. The conclusion of Claim

4.9 then implies that

|a| ≥ |d \ Γbad|
1

3000
log n, |c| ≥ |b \ Γbad|

1

3000
log n.

Since |Γbad| = o
(∣∣∣∆̃

∣∣∣ / log n
)
:

|b|+ |d| = |b \ Γbad|+ |b ∩ Γbad|+ |d \ Γbad|+ |d ∩ Γbad|

≤ O

( |a|+ |c|
log n

)
+ |Γbad| = O

(
|∆̃|
log n

)
.
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We may assume that |S| > |T |, for otherwise (S, T ) is not a Hall cut by definition. It
also holds that:

|S′| − |T ′| = |S̃| − |T̃ | = (|S|+ |a| − |b|)− (|T |+ |d| − |c|)

> |a|+ |c| − (|b|+ |d|) =
(
1−O

(
1

log n

))
|∆̃|.

Since G is k-regular,

eG(S̃, T̃
c) ≥

(
1−O

(
1

log n

))
|∆̃|k.

By Claim 4.7 the number of cross edges in G that are not cross edges in G̃ is at most
n0.99. Thus:

eG̃(S̃, T̃
c) ≥

(
1−O

(
1

log n

))
|∆̃|k.

Set ∆1 = ∆̃ ∩ Γ,∆2 = ∆̃ \ Γ. We then have:

∣∣∣EG̃(S, T
c) ∩ EG̃(S̃, T̃

c)
∣∣∣ ≥ eG̃(S̃, T̃

c)− |∆1|(1 + ε)
k

2
− |∆2|

k

n1/20

≥
(
1

2
− ε

)
|∆1|k +

(
1−O

(
1

log n

))
|∆2|k.

Therefore, the probability that none of the cross edges is in G̃1 is at most:

(1− p1)
( 1
2
−ε)|∆1|k(1− p1)

(

1−O
(

1
log n

))

|∆2|k.

Suppose (a) holds. Let m = max
{

n−1/20

10 |Γ| − |V (M)|, log n/ log log n
}
. Then, apply-

ing a union bound over all choices of ∆1 ⊆ Γ and ∆2:

α :=
∑

|∆̃|∈{m,...,n0.9}

|∆1|+|∆2|=|∆̃|

( |Γ|
|∆1|

)(
2n

|∆2|

)
(1− p1)

( 1
2
−ε)|∆1|k(1− p1)

(

1−O
(

1
logn

))

|∆2|k

≤
∑

|∆̃|∈{m,...,n0.9}

|∆1|+|∆2|=|∆̃|

|∆1|−|∆1||∆2|−|∆2|

(
e|Γ|

(
1

n

)1/2−2ε
)|∆1|

(O(log log log n))|∆2| .

Now

|∆1|−|∆1||∆2|−|∆2| ≤
(

2

|∆̃|

)|∆̃|

=

(
2

|∆̃|

)|∆1|( 2

|∆̃|

)|∆2|

.
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Thus:

α ≤
∑

|∆̃|∈{m,...,n0.9}

|∆1|+|∆2|=|∆̃|

(
2e|Γ|
|∆̃|

(
1

n

)1/2−2ε
)|∆1|(

O

(
log log log n

|∆̃|

))|∆2|

(3)

≤
∑

|∆̃|∈{m,...,n0.9}

|∆1|+|∆2|=|∆̃|

(
1

n2/5

)|∆1|
(
O

(
log |∆̃|
|∆̃|

))|∆2|

≤ n0.9

(
Õ

(
1

log n

))logn/ log logn

≤ n0.9 1

n1−o(1)
= O

(
1

n0.05

)
.

Otherwise, (b) holds. Then |∆1| ≥ 1. By a similar application of a union bound,

the probability that there exists any Hall cut (S, T ) in G̃1 satisfying the hypothesis is
bounded above by:

∑

|∆̃|∈[logn/ log logn]

|∆1|+|∆2|=|∆̃|

(
1

n2/5

)|∆1|
(
O

(
log |∆̃|
|∆̃|

))|∆2|

= Õ

(
1

n2/5

)
. �

It remains to show that w.v.h.p. there is no Hall cut with
∣∣∣∆̃
∣∣∣ ≤ log n/ log log n and

∆̃ ∩ Γ = ∅.
Claim 4.12. W.v.h.p. there exists no Hall cut (S, T ) in G̃H with |∆̃| < log n/ log log n

and ∆̃ ∩ Γ = ∅.

Proof. We first show that if
∣∣∣S̃
∣∣∣ ≤

∣∣∣T̃
∣∣∣ then w.v.h.p. there is no Hall cut satisfying the

claim’s hypothesis. Suppose that ∆̃ corresponds to a Hall cut (S, T ) and ∆̃ ∩ Γ = ∅.
We will show that |∆̃| = Ω(log n).

Recall the definition of a, b, c, and d from the previous proof. It holds that:

|S| − |T | =
∣∣∣S̃
∣∣∣−
∣∣∣T̃
∣∣∣− |a|+ |b| − |c|+ |d| =⇒

|b|+ |d| = |S| − |T |+ |T̃ | − |S̃|+ |a|+ |c| > 0.

Since ∆̃ ∩ Γ = ∅, we have b, d ⊆ V \ (V (M) ∪ Γ). Since (S, T ) is a Hall cut, for
every x ∈ b ∪ d, NG̃1

(x) ⊆ ∆. However, by Claim 4.9, w.v.h.p. for every such x,∣∣∣NG̃1
(x)
∣∣∣ = Ω(log n). Therefore |∆̃| = Ω(log n), as claimed.

We now assume that
∣∣∣S̃
∣∣∣−
∣∣∣T̃
∣∣∣ > 0. We will show presently that w.v.h.p. eG̃1

(
S̃, T̃ c

)
=

Ω(log n). Suppose (S, T ) is a cut satisfying the claim’s hypothesis. Then ∆̃ must con-

tain a vertex cover of EG̃1

(
S̃, T̃ c

)
. However, since ∆̃ ∩ Γ = ∅, by Lemma 3.4 w.v.h.p.

each vertex in ∆̃ is incident to at most 30 cross edges in G1. Since
∣∣∣∆̃
∣∣∣ < log n/ log log n,

∆̃ does not contain a vertex cover of EG̃1

(
S̃, T̃ c

)
, and so (S, T ) is not a Hall cut.
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Finally, we show that w.v.h.p. eG̃1

(
S̃, T̃ c

)
= Ω(log n). Since G is k-regular, we have

eG

(
S̃, T̃

)
≥ k

(∣∣∣S̃
∣∣∣−
∣∣∣T̃
∣∣∣
)
≥ k. By Claim 4.7, the number of cross edges of G incident

to V (M) is o
(
n0.99

)
, so G̃ has at least C = (1− o(1))k cross edges. Now, eG̃1

(
S̃, T̃

)
∼

Bin(C, p1). By an application of Chernoff’s inequality, w.v.h.p. eG̃1

(
S̃, T̃

)
≥ 1

2Cp1 =

Ω(log n). �

Appendix A. Proof of Proposition 1.3

It may be intuitive to think at first - as all three of us did - that the conclu-
sion of Theorem 1.1 holds for all large regular bipartite graphs, i.e., the requirement

k = ω
(

n
log1/3 n

)
is not necessary. In this section, we analyze a construction of Goel,

Kapralov, and Khanna [13] to show that this is not true, and indeed for small values
of k, G(p) might not contain a perfect matching even for relatively large p.

The intuition for all of our counterexamples comes from the following simple con-
struction.

Definition A.1. A k-resistor between two vertices x and y is the following bipartite
graph: The vertex set is {x, y}∪̇X ′∪̇Y ′, where X ′ and Y ′ have cardinality k. Let
x′ ∈ X ′, y′ ∈ Y ′ be “special” vertices. The edge set is:

{
xx′, yy′

}
∪
({

ab : a ∈ X ′, b ∈ Y ′
}
\
{
x′y′

})
.

In other words, starting from the complete bipartite graph on X ′ and Y ′, the edge x′y′

is removed, and the edges xx′ and yy′ are added.

Notice that of the 2k + 2 vertices of a k-resistor between x and y, all but x and y
have degree k. Furthermore, if a spanning subgraph of the resistor contains a perfect
matching, both edges xx′ and yy′ are present. This leads to the following construction.

Proposition A.2. Construct a k-regular, n = (2k2 + 2)-vertex bipartite graph G as
follows. Let x and y be two initial vertices. Add k distinct k-resistors between x and
y. Then, a.a.s. the random subgraph G(p) does not contain a perfect matching for any
p = o

(
n−1/4

)
. On the other hand, a.a.s. G(p) contains no isolated vertices for any

p = ω (log n/
√
n).

Proof. Both conclusions follow from the first moment method.
Let H ∼ G(p). Note that H contains a perfect matching only if for one of the

resistors, both edges xx′ and yy′ are present. This occurs with probability p2. As there
are k different resistors, and they are all edge-disjoint, the expected number of such
pairs is kp2. Since k = Θ(

√
n), if p = o

(
n−1/4

)
, a.a.s. there is no such pair in H.

The expected number of isolated vertices in H is n(1−p)k ≤ exp (log n− pk). When
p = ω (log n/

√
n) this tends to zero, and a.a.s. there are no isolated vertices. �

In this example we had k = Θ(
√
n), leaving a large gap between it and the range

k = Θ(n) in Theorem 1.1. We reduce this gap as follows.

Definition A.3. A (k, ℓ, r)-series of resistors between two vertices x and y is con-
structed as follows. Let K1,K2, . . . ,Kℓ be ℓ copies of the complete bipartite graph
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Kk,k, with respective vertex sets X1∪̇Y1,X2∪̇Y2, . . . ,Xℓ∪̇Yℓ. For each 1 ≤ i ≤ ℓ, let

x1i , x
2
i , . . . , x

r
i ∈ Xi, y

1
i , y

2
i , . . . , y

r
i ∈ Yi be distinct. Remove all edges of the form xjiy

j
i ,

and add all edges of the form yjix
j
i+1, as well as xx

j
1, y

j
ℓy.

The following proposition uses a construction similar to the one in Proposition A.2.

Proposition A.4. For n = 2 + 20k log k log log k, construct a k-regular n-vertex bi-
partite graph G as follows. Starting with two vertices x and y, add log k distinct(
k, 10 log log k, k

log k

)
-series of resistors between x and y. A.a.s. the random subgraph

G(p) does not contain a perfect matching for any p ≤ 2 log n/k. On the other hand,
p = (log n+ ω (1)) /k suffices for G(p) to contain no isolated vertices a.a.s.

Proof. For consistency with Definition A.3, let ℓ = 10 log log k and r = k/ log k. For a
spanning subgraph G′ ⊆ G to contain a perfect matching, there must be at least one

series of resistors containing at least one edge of the form xxj1, at least one edge of the

form yjℓy, and one edge of the form yji x
j
i+1 for each i between 1 and ℓ− 1. Therefore,

applying the union bound over all k/r choices of the (k, ℓ, r)-series, we obtain

P [G(p) contains a perfect matching] ≤ k

r
[1− (1− p)r]ℓ+1 .

Let p = 2 log n/k. Then (1− p)r ∼ e−2, and therefore

P [G(p) contains a perfect matching] ≤ log k
(
1− e−2

)10 log log k
= o (1).

The statement about isolated vertices follows from an argument similar to the one
in the proof of Proposition A.2. �
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