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Abstract

An induced path factor of a graph G is a set of induced paths in G with the property

that every vertex of G is in exactly one of the paths. The induced path number ρ(G) of G

is the minimum number of paths in an induced path factor of G. We show that if G is a

connected cubic graph on n > 6 vertices, then ρ(G) 6 (n− 1)/3.

Fix an integer k > 3. For each n, define Mn to be the maximum value of ρ(G) over

all connected k-regular graphs G on n vertices. As n → ∞ with nk even, we show that

ck = lim(Mn/n) exists. We prove that 5/18 6 c3 6 1/3 and 3/7 6 c4 6 1/2 and that

ck = 1
2 −O(k−1) for k →∞.

Keywords: Induced path, path factor, covering, regular graph, subcubic graph.

Classifications: 05C70, 05C38.

1 Introduction

We denote the path of order n by Pn. A subgraph H of a graph G is said to be induced if, for

any two vertices x and y of H, x and y are adjacent in H if and only if they are adjacent in

G. An induced path factor (IPF) of a graph G is a set of induced paths in G with the property

that every vertex of G is in exactly one of the paths. We allow paths of any length in an IPF,

including the trivial path P1. The induced path number ρ(G) of G is defined as the minimum

number of paths in an IPF of G. The main aim of this paper is to show:

Theorem 1. Suppose that G is a connected cubic graph on n vertices. If n 6 6 then ρ(G) = 2

and if n > 6 then ρ(G) 6 (n− 1)/3.

Of course, for disconnected cubic graphs the smallest IPF consists of a minimal IPF of each

component. In particular, Theorem 1 immediately implies:

Corollary 2. A cubic graph on n vertices has an IPF with at most n/2 paths. Equality holds

if and only if every component is isomorphic to the complete graph K4.

Theorem 1 does not generalise to cubic multigraphs. If n is even, then by adding a parallel

edge to every second edge of an n-cycle we get a connected cubic multigraph with no IPF with

fewer than n/2 paths. Theorem 1 also does not generalise to subcubic graphs. To see this, start

with an (n/4)-cycle and for every vertex v add a triangle which is connected to v by one edge,

as in Figure 1. This graph has n vertices but cannot be covered with fewer than 3n/8 paths.
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Figure 1: Graph showing 3n/8 paths may be required for a subcubic graph.

It is not clear whether the n/3− O(1) bound in Theorem 1 can be improved. However, in

§5 we construct a family of connected cubic graphs G for which ρ(G) > 5n/18 + O(1). In the

same section we find asymptotic bounds for the maximum value of ρ(G)/n among connected

k-regular graphs with n vertices, for general k.

The concept of induced path number was introduced by Chartrand et al. [3], who gave

the induced path numbers of complete bipartite graphs, complete binary trees, 2-dimensional

meshes, butterflies and general trees. Broere et al. [2] determined the induced path numbers

for complete multipartite graphs. In [2], it was shown that if G is a graph of order n, then√
n 6 ρ(G) + ρ(G) 6 d3n

2
e, where G denotes the complement of G. In [6], the best possible

upper and lower bounds for ρ(G)ρ(G) were given for two variants: (i) when both G and G are

connected and (ii) when neither G nor G has isolated vertices. Pan and Chang [11] presented

an O(|V |+ |E|)-time algorithm for finding a minimal IPF on graphs whose blocks are complete

graphs. Le et al. [9] proved for general graphs that it is NP-complete to decide if there is an

IPF with a given number of paths.

Several variants of induced path numbers have been investigated in the literature. An IPF

in which all paths have order at least two is called an induced nontrivial path factor (INPF).

In [1] the following was proved:

Theorem 3. If k is a positive integer and G is a connected k-regular graph which is not a

complete graph of odd order, then G has an INPF.

In addition, [1] showed that every hamiltonian graph which is not a complete graph of odd

order admits an INPF. Also, if G is a cubic bipartite graph of order n > 6, then G has an INPF

with size at most n/3.

The path cover number µ(G) of G is defined to be the minimum number of vertex disjoint

paths required to cover the vertices of G. Reed [12] proved that µ(G) 6 dn
9
e for any cubic

graph of order n. Also, Reed [12] conjectured that if G is a 2-connected cubic graph, then

µ(G) 6 d n
10
e. This conjecture was recently proved by Yu [13].

Magnant and Martin [10] investigated the path cover number of regular graphs. They

proposed the following interesting conjecture:

Conjecture 4. Let G be a k-regular graph of order n. Then µ(G) 6 n
k+1

.

They proved their conjecture for k 6 5. Kawarabayashi et al. [8], proved that every 2-

connected cubic graph of order at least 6 has a path factor in which the order of each path is

at least 6, and hence it has a path cover using only copies of P3 and P4. A subgraph H of a

graph G is spanning if H has the same vertex set as G. The minimum leaf number ml(G) of
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a connected graph G is the minimum number of leaves among the spanning trees of G. In [5]

it was shown that µ(G) + 1 6 ml(G) 6 2µ(G). It was conjectured that if G is a 2-connected

cubic graph of order n, then ml(G) 6 d n
10
e.

The structure of this paper is as follows. In the next section we define terms and notation

and prove some basic lemmas about the effect of simple graph operations on the induced path

number. In §3 we study IPFs in a certain class of subcubic graphs that arise when we use

induction to find IPFs for cubic graphs. In §4 we prove our main result, Theorem 1, drawing

on the results in earlier sections. Finally, in §5 we study asymptotics for ρ(G) where G is a

k-regular graph of order n, with k fixed and n→∞.

2 Preliminaries

Throughout our paper the following notation and terminology will be used. When we need to

specify the vertices in Pn we will write it as [v1, v2, . . . , vn], meaning that the edges in the path

are v1v2, v2v3, . . . , vn−1vn. Similarly, we use (v1, v2, . . . , vn) for a cycle of length n, with edges

v1v2, v2v3, . . . , vn−1vn, vnv1. We denote the vertex set and the edge set of a graph G by V (G)

and E(G), respectively. For a graph G and sets E ⊆ E(G) and V ⊆ V (G), we denote by G−E
the graph obtained from G by deleting the edges in E and denote by G−V the graph obtained

from G by deleting the vertices in V and all the edges incident on them. The degree of a vertex

v in G will be denoted degG(v). The set of neighbours of v in G will be denoted NG(v). A

connected graph G is said to be k-connected if it remains connected whenever fewer than k

vertices are removed. Similarly, G is k-edge-connected if it remains connected whenever fewer

than k edges are removed. A bridge in a connected graph is an edge whose removal disconnects

the graph. A graph is called k-regular if each vertex has degree k. A cubic graph is a 3-regular

graph and a subcubic graph is a graph with maximum degree at most 3. A k-factor of a graph

is a spanning k-regular subgraph of G. So a 2-factor of G is a disjoint union of cycles of G

which covers all vertices of G. A graph is hamiltonian if it has a 2-factor consisting of a single

cycle. For distinct positive integers a and b, an {a, b}-graph is a graph in which the degree

of each vertex is a or b. The {2, 3}-graphs will play a major role in our proof of Theorem 1.

In particular, we will need K−4 , the graph obtained by removing one edge from the complete

graph K4. A block of a graph is a maximal 2-connected subgraph. Throughout the paper when

we refer to a block we mean a block of order at least 3. Note that because we will only be

concerned with subcubic graphs, their blocks will be vertex disjoint.

While an IPF is formally defined to be a set of paths, an IPF of a graph G can also be

completely specified by giving the set of edges of G that are in its paths (vertices incident with

no edges in the set are trivial paths). Throughout the paper we will use set operations to build

IPFs from IPFs of subgraphs, as well as to remove or add edges. Whenever we do so, the IPFs

should be considered to be sets of edges rather than sets of paths. For any IPF P , we use

#(P) to mean the number of paths in P . When calculating #(P), it is useful to bear in mind

that the number of paths in an IPF P of a graph G is always equal to the order of G minus

the number of edges in P . In particular, there is some dependence on G, which will often be

implicit.

We start with a lemma showing the effect of two basic operations on graphs.

Lemma 5.

(i) If G′ is obtained by subdividing an edge of G then ρ(G′) > ρ(G).
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(ii) If G is obtained from disjoint graphs A and B by identifying a vertex of A with a vertex

of B, then ρ(G) > ρ(A) + ρ(B)− 1.

Proof. To show (i), suppose that edge uv of G is subdivided by a new vertex w, thereby

forming G′. Let P ′ be an IPF for G′. If a path in P ′ includes both edges uw and vw then

replacing those edges with the edge uv gives an IPF P for G with #(P) = #(P ′). If a path in

P ′ includes exactly one of the edges uw and vw then w is the end of the path, so removing the

edge incident with w gives an IPF P for G with #(P) = #(P ′). Lastly, if P ′ includes neither

of the edges uw and vw then [w] is a trivial path in P ′. Remove [w] from P ′ to get a set of

paths in G. If each of these #(P ′)− 1 paths is induced, we are done. The only way one of the

paths can be not induced is if it includes both u and v. In that case, deleting one of the edges

on the path between u and v creates an IPF of G with #(P ′) paths in it. In all cases, we have

succeeded in finding an IPF of G that has at most #(P ′) paths.

We next turn to (ii). Suppose u ∈ V (A) and v ∈ V (B) and that G is formed by identifying u

with v (for clarity, we will call the merged vertex w). Let P be an IPF for G with #(P) = ρ(G).

Then P induces IPFs PA and PB for A and B respectively. The path in P that contains w

contributes one path to PA and one path to PB. However, every other path in P is wholly

within A or within B. It follows that #(P) = #(PA) + #(PB)− 1 > ρ(A) + ρ(B)− 1, and we

are done.

We remark that in both parts of Lemma 5 equality often holds but strict inequality is

possible. For (i), take edges e1, e2, e3 that form a 1-factor in K6. Let G = K6 − {e1, e2} and

form G′ by subdividing e3. Then ρ(G) = 2 but ρ(G′) = 3. For (ii), take A = [a1, a2, a3] and

B = [b1, b2, b3] and merge a2 with b2 to form G. In this case, ρ(A) = ρ(B) = 1 but ρ(G) = 3.

We now introduce the notion of a well-behaved IPF. This definition is designed for a sub-

sequent application where we will need to ensure that an IPF of a subcubic graph H is also an

IPF of a cubic graph G that is formed by adding certain edges to H.

Definition 6. Let G be a subcubic graph, let S = {x ∈ V (G) : degG(x) 6 2}, and let P be an

IPF of G. We say that P is well-behaved (in G) if, for each path P of P , we have that either

(i) V (P ) ∩ S is a subset of the vertices of a single block of G; or

(ii) P contains a subpath [x, x′, y′, y], where V (P ) ∩ S = {x, y} and x′y′ is a bridge of G.

If the above definition holds with S replaced by {x ∈ V (G) : degG(x) 6 2} \ R for some set of

vertices R, then we say that P is well-behaved except on R.

When we say that an IPF is well behaved except on some set R, this does not imply anything

about whether the IPF is or is not well-behaved in the graph overall. The remainder of this

section will be devoted to proving the following lemma, which describes several surgeries that

we will perform on IPFs.

Lemma 7. Let G and G′ be subcubic graphs.

(i) Suppose G′ is obtained from G by taking a triangle in G on vertex set {a, b, c} such that

degG(a) = degG(b) = 3 and degG(c) = 2, subdividing ab with a new vertex d, and adding

the edge cd. If G′ has an IPF P ′, then there is an IPF P of G such that #(P) 6 #(P ′)
and a path of P ends at c. Furthermore, P ⊆ (P ′ \{bc})∪{ac} and, if P ′ is well behaved,
then P is well-behaved except on {c}.
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(ii) Suppose G′ is obtained from G by deleting an edge ab in G such that degG(a) = degG(b) =

2, and then adding new vertices {c, d} and edges {ac, ad, bc, bd, cd}. If G′ has an IPF P ′,
then there is an IPF P of G such that #(P) 6 #(P ′) and two distinct paths of P end at

a and b. Furthermore, P ⊆ P ′ and, if P ′ is well behaved, then P is well-behaved except

on {a, b}.
(iii) Suppose G′ is obtained from G by deleting a degree 2 vertex c in G such that NG(c) = {a, b}

and ab /∈ E(G), and then adding the edge ab. If G′ has an IPF P ′, then there is an IPF P
of G such that #(P) 6 #(P ′) + 1 and a path of P ends at c. Furthermore, P ⊆ P ′∪{ac}
and, if P ′ is well behaved, then P is well-behaved except on {c}.

If hypothesis (i) holds in Lemma 7, then we say that G′ is obtained from G by augmenting

the triangle on vertex set {a, b, c}. If hypothesis (ii) holds, then we say that G′ is obtained from

G by pasting a K−4 over ab. If hypothesis (iii) holds, then we say that G′ is obtained from G

by suppressing the vertex c.

In order to prove Lemma 7, we will require a definition and a further lemma. Both of these

are used only in the proof of Lemma 7.

Definition 8. Let G be a subcubic graph, let P be an IPF of G, and let (a, b, c, d) be a

quadruple of vertices of G that induce a K−4 subgraph that does not contain the edge ab. We

say that P is standardised for (a, b, c, d) if c is an endpoint of a path in P that includes the

edge ac, and d is an endpoint of a path in P that includes the edge bd (note that the two paths

must be distinct).

Lemma 9. Let G be a subcubic graph and let (a, b, c, d) be vertices of G that induce a K−4
subgraph that does not contain the edge ab. If there is an IPF P of G then there is an IPF P∗ of
G such that #(P∗) 6 #(P) and P∗ is standardised for (a, b, c, d). Moreover, P∗ ⊆ P ∪{ac, bd}
and if P is well-behaved then so is P∗.

Proof. Suppose that P is not standardised for (a, b, c, d). Let H be the subgraph induced by

{a, b, c, d}. First suppose that either a and b are in distinct paths in P or they are both in a

path that also includes c or d. Either way, P∗ = (P \ E(H)) ∪ {ac, bd} is an IPF of G with

#(P∗) 6 #(P).

Otherwise a and b are both in a path that includes neither c nor d and hence there is a

vertex e in G− V (H) that is adjacent to b in G. Then P∗ =
(
P \ (E(H) ∪ {be})

)
∪ {ac, bd} is

an IPF of G with #(P∗) 6 #(P).

In each case, note that P∗ is standardised for (a, b, c, d) and P∗ ⊆ P ∪ {ac, bd}. It remains

to justify the claim that P∗ inherits the well-behaved property from P . This follows from the

observation that every path P in P∗ has a subpath P ′ that includes all vertices of P that have

degree 2 in G, and is such that P ′ is itself a subpath of a path in P .

We are now ready to prove Lemma 7. It will be useful to note that by Menger’s theorem

and the definition of a block, two distinct vertices are in the same block in a graph G if and

only if there is a cycle in G containing both of them.

Proof of Lemma 7. Let G and G′ be graphs such that the hypothesis of (i), (ii) or (iii) holds.

We will say we are in case (i), (ii) or (iii) accordingly. Let P ′ be an IPF of G′. In cases (i)

and (ii), let P∗ be an IPF of G′ such that #(P∗) 6 #(P ′), P∗ is standardised for (a, b, c, d),

P∗ ⊆ P ′ ∪{ac, bd}, and P∗ is well-behaved if P ′ is. Such a P∗ exists by Lemma 9. In case (iii),

let P∗ = P ′.
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In case (i), let P = P∗\{bd}. Because P∗ is standardised for (a, b, c, d), it contains ac and bd

but not ad, bc or cd. Thus, #(P) = #(P∗), a path of P ends at c, and P ⊆ (P ′\{bc})∪{ac}. In

case (ii), let P = P∗ \{ac, bd}. Similarly, because P∗ is standardised for (a, b, c, d), P∗ contains

ac and bd but not ad, bc or cd. Thus, #(P) = #(P∗), two distinct paths of P end at a and b,

and P ⊆ P ′. In case (iii), let

P =

{
P∗ if ab /∈ P∗
(P∗ \ {ab}) ∪ {ac} if ab ∈ P∗

So a (possibly trivial) path of P ends at c, and P ⊆ P ′ ∪ {ac}. Also, P and P∗ have the same

number of edges, but G has one more vertex than G′, so it follows that #(P) = #(P∗) + 1.

Now further suppose that P ′ is well-behaved and let R = {c} in cases (i) and (iii) and

R = {a, b} in case (ii). It remains to show that P is well-behaved except on R. Recall that P∗
is well-behaved because P ′ is. Let S = {x ∈ V (G) : degG(x) 6 2} \ R and note that S is a

subset of S ′ = {x ∈ V (G′) : degG′(x) 6 2}. Let P be a path in P and let x and y be distinct

vertices in V (P ) ∩ S. We will complete the proof by showing that either x and y are in the

same block in G or P has a subpath [x, x′, y′, y] where V (P ) ∩ S = {x, y} and x′y′ is a bridge

in G. Given that x, y ∈ V (P ) ∩ S, it follows in each case from our definition of P that x and

y were in the same path P ∗ in P∗. Thus, because P∗ was well-behaved and x, y ∈ S ′, either x

and y were in the same block in G′ or P ∗ has a subpath [x, x′, y′, y] where V (P ∗) ∩ S = {x, y}
and x′y′ is a bridge in G′. If the former holds, then x and y are in the same block in G (in

each case the existence of a cycle in G′ containing x and y implies the existence of a cycle in

G containing x and y). So suppose the latter holds. In cases (i) and (ii), by our definition of

P , either P = P ∗ or P is obtained from P ∗ by removing an edge in {ac, bd}. Furthermore,

[x, x′, y′, y] must be a subpath of P because x, y ∈ S and x′y′ is a bridge in G′. In case (iii),

either P is a subpath of P ∗ (possibly with P = P ∗) or P is obtained from a subpath of P ∗ by

adding the edge ac. Furthermore, [x, x′, y′, y] must be a subpath of P because if ab were an

edge in [x, x′, y′, y] we would have the contradiction that x and y were in different paths in P .

In each case, the fact that x′y′ is a bridge in G′ implies it is a bridge in G. This establishes

that P is well-behaved except on R.

3 Induced path factors of {2,3}-graphs

A triangle ring is a graph formed by taking an n-cycle (x1, . . . , xn) and adding the chords

{xnx2, x3x5, x6x8, . . . , xn−3xn−1} for some integer n > 6 such that n ≡ 0 (mod 3).

Further we say a graph is bad if it can be obtained from a triangle ring by choosing some

(possibly empty) set S of its edges such that no edge in S is in a triangle, and for each edge

e ∈ S proceeding as follows: subdivide e with a vertex xe, add a vertex disjoint copy of any

hamiltonian {2, 3}-graph He of order 5, and add an edge between xe and a degree 2 vertex of

He.

Note that every bad graph has order divisible by 3. We refer to the largest block of a bad

graph as its hub. The hub of a bad graph has order at least 6 and each of its other blocks has

order 5. A fact that will prove useful throughout this section is that a graph cannot be bad if

it contains a vertex of degree 2 that is in a block of order at least 6 but is not in a triangle.

The main result of this section is the following.
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Theorem 10. Let G be a connected {2, 3}-graph of order n > 7 containing a 2-factor whose

cycles each have length at least 5. Then ρ(G) 6 n/3 if G is a bad graph and ρ(G) 6 (n− 1)/3

otherwise.

The example in Figure 1 shows that the condition about the existence of the 2-factor cannot

be dropped from Theorem 10. Also, note that no cubic graph is bad and hence Theorem 10

establishes that any cubic graph G on at least 7 vertices with an appropriate 2-factor has

ρ(G) 6 (n− 1)/3.

Our strategy for building an IPF of a cubic graph G will be to identify a 2-factor F in G,

and to discard some (but not all) of the edges that join distinct cycles in F so that each cycle

in F induces a block. We then stitch together IPFs of these blocks. To be efficient we need to

allow some paths to include vertices from more than one block. When this happens the edges

that we initially discarded could potentially cause our paths to not be induced in G. However,

by demanding that the constituent IPFs are well-behaved, we will be able to circumvent this

concern.

Theorem 10 will follow with only a little work from Lemma 11 below. Most of our effort

in this section will be devoted to proving Lemma 11. The proof proceeds by induction on the

number of blocks in G, but we will first require a number of preliminary results.

Lemma 11. Let G be a connected {2, 3}-graph of order n > 6 such that each block of G is a

hamiltonian graph of order at least 5 and the vertex sets of these blocks partition V (G). Then

G has a well-behaved IPF with at most (n− 1)/3 paths if n > 7 and G is not a bad graph, and

G has a well-behaved IPF with at most n/3 paths otherwise.

We begin with three lemmas on IPFs of small hamiltonian {2, 3}-graphs.

Lemma 12. Let C be a hamiltonian {2, 3}-graph of order 5. For any vertex x of degree 2 in

C, there is an IPF of C with two paths such that one path ends at x and every other vertex of

this path has degree 3 in C.

Proof. Let C ′ be a hamilton cycle in C. For our first path, we take a shortest path from x

around C ′ that includes one vertex of each chord of C ′. The second path also follows C ′, and

joins the vertices not appearing in the first path.

Lemma 13. Let C be a hamiltonian {2, 3}-graph of order 6. Then C has an IPF with two

paths. Furthermore, for any vertex x of degree 2 in C, there is an IPF of C with two paths

such that one path ends at x and any other vertices on this path have degree 3 in C with the

possible exception of the vertex adjacent to x in the path.

Proof. If C is cubic, then it is easy to find an IPF with two paths in each of the two possible

cases for C. If C has a vertex of degree 2, then we use exactly the same strategy articulated in

the proof of Lemma 12.

Lemma 14. Let C be a hamiltonian {2, 3}-graph of order 7. Let p = 3 if C is obtained from a

triangle ring of order 6 by subdividing an edge that is not in a triangle, and let p = 2 otherwise.

For any vertex x of degree 2 in C, there is an IPF of C with p paths such that one path ends

at x.
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Proof. Let (x, x1, x2, . . . , x6) be a hamilton cycle in C. If {x1x3, x4x6, x2x5} ⊆ E(C), then

we may use
{

[x, x1, x2, x5], [x3, x4, x6]
}

as our IPF. Otherwise, if {x1x3, x4x6} ⊆ E(C), then

p = 3 and we may use
{

[x, x1], [x2, x3, x4], [x5, x6]
}

as our IPF. If only one of the edges x1x3
and x4x6 is in E(C), then by symmetry we may assume it is x1x3. In that case, we may take{

[x, x1, x2], [x3, x4, x5, x6]
}

as our IPF. Finally, if {x1x3, x4x6} ∩ E(C) = ∅, then we may use{
[x, x1, x2, x3], [x4, x5, x6]

}
as our IPF.

From Lemmas 12, 13 and 14, we can easily prove the following result concerning small

{2, 3}-graphs with two blocks.

Lemma 15. Let G be a {2, 3}-graph of order n 6 12 consisting of two hamiltonian blocks, each

of order at least 5, with a bridge between them. Then either G has a well-behaved IPF with

three paths or G is a bad graph of order 12 with a well-behaved IPF consisting of 4 paths.

Proof. Let the two hamiltonian blocks of G be G1 and G2. Let ni = |V (Gi)| for i ∈ {1, 2},
and assume n1 > n2 without loss of generality. Then (n1, n2) ∈ {(5, 5), (6, 5), (7, 5), (6, 6)}. Let

x1x2 be the bridge in G where xi ∈ V (Gi) for i ∈ {1, 2}. For i ∈ {1, 2} use Lemma 12, 13 or 14

as appropriate to create an IPF Pi of Gi with one path ending at xi. Then P = P1∪P2∪{x1x2}
is an IPF of G. If #(P1) = 3 then G is a bad graph, (n1, n2) = (7, 5) and #(P) = 4. In all

other cases, #(P) = 3. If n2 = 5, then Lemma 12 ensures that each path in P obeys (i) in

the definition of well-behaved. If (n1, n2) = (6, 6), then Lemma 13 ensures that each path in P
obeys either (i) or (ii) in the definition of well-behaved.

We now prove a more general result for hamiltonian {2, 3}-graphs. Note that triangle rings

are the only bad hamiltonian graphs.

Lemma 16. A hamiltonian {2, 3}-graph G of order n > 6 has ρ(G) 6 (n− 1)/3 if n > 7 and

G is not a bad graph, and has ρ(G) 6 n/3 otherwise.

Proof. If n = 6, the result follows from Lemma 13, so assume n > 7. Let F be a hamilton

cycle in G. If G = F the result follows easily, so assume F is a proper subgraph of G. We can

label F as (x1, . . . , xn) such that xnxk is a shortest chord of F in G where k ∈ {2, . . . , bn/2c}.
If k = 2, we can further assume that x1 is not adjacent in G to any vertex in {x3, . . . , xb(n+1)/2c}
(if this is not satisfied, reassign the labels x2, . . . , xn in the opposite orientation around F ). If

k = 3, we can further assume that x1x4 /∈ E(G). (If x1x4 ∈ E(G) but x2x5 /∈ E(G), then rotate

the labels by one position around F . If {x1x4, x2x5} ⊆ E(G) then, noting x3x6 /∈ E(G), rotate

the labels by two positions.)

For k > 2, we now construct an IPF P of G using a greedy algorithm. We add paths one

at a time, at each stage taking a path [xi, xi+1, . . . , xj] such that i is the smallest element of

{1, . . . , n} for which xi is not already in a path, and j is the largest element of {i, . . . , n} such

that [xi, xi+1, . . . , xj] is induced in G. We will establish the following:

(i) the first path added to P has at least 4 vertices and it has exactly 4 if and only if

xax5 ∈ E(G) for some a ∈ {1, 2, 3};
(ii) if #(P) > 3, then the final path added to P has at least 2 vertices;

(iii) other than the first and last paths added, each path [xi, xi+1 . . . , xj] in P has at least 3

vertices and has exactly 3 if and only if xi+1xi+3 ∈ E(G).

The properties of our labelling (x1, . . . , xn) ensure that (i) holds (recall in particular that xnxk is

a shortest chord of F ). That (iii) is satisfied follows from the fact that, by our greedy algorithm,
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for each path [xi, . . . , xj] in P , there is a chord from xi to a vertex in the path added just prior

to [xi, . . . , xj]. Similarly, because xnxk ∈ E(G) and xk is in the first path added to P , there is

not a path [xi, xi+1, . . . , xn−1] in P for any i ∈ {2, . . . , xn−1} and (ii) follows.

From (i), (ii) and (iii) we see immediately that #(P) 6 n/3. If #(P) 6 (n− 1)/3 or if G is

a triangle ring, then the proof is complete, so assume that #(P) = n/3 and G is not a triangle

ring. In this remaining case we give an alternative construction for an IPF P ′′ of G that satisfies

the conditions of the lemma. Because #(P) = n/3 and n > 7, it must be that #(P) > 3 and

that the first path added to P has exactly 4 vertices, the final path has exactly 2 vertices and

each other path has exactly 3 vertices. So, by (iii), {x6x8, x9x11 . . . , xn−3xn−1} ⊆ E(G). Thus

k = 2 because xnxk is a shortest chord of F in G. Then, from (i) and the properties of our

labelling (x1, . . . , xn), we have that xnx2, x3x5 ∈ E(G). This establishes that a triangle ring is

a subgraph of G (note that the labelling given in the definition of triangle ring matches our

labelling of G). By assumption G is not a triangle ring and so there must be an edge xaxb in

E(G) where a, b ∈ {1, 4, 7, . . . , n− 2}.
If n = 9 then without loss of generality a = 1, b = 4 and we may take P ′′ = {[x8, x9, x1, x4],

[x2, x3, x5, x6, x7]} as our IPF. Henceforth we may assume that n > 12. Note that P ′ =

E(F ) \ {xixi+1 : i ∈ {1, 4, 7, . . . , n− 2}} is an IPF of G with #(P ′) = n/3. Let P ′′ be obtained

from P ′ by removing the edges {xa−1xa, xb−1xb} and adding the edges {xa−1xa+1, xb−1xb+1, xaxb}
where we consider subscripts modulo n. As n > 9, it can be seen that P ′′ is an IPF of G with

#(P ′′) = #(P ′)− 1 = (n− 3)/3. This completes the proof.

We require two more lemmas before we can complete our proof of Lemma 11. Both concern

the structure of a putative minimal counterexample. Note that by Lemma 16 we know such a

counterexample has at least two blocks, and hence contains a bridge.

Lemma 17. Let G be a counterexample to Lemma 11 with the minimum number of blocks. Let

x1x2 be a bridge in G and let G1 and G2 be the components of G− {x1x2}. Then either

(i) |V (G1)| = 5 or |V (G2)| = 5; or

(ii) for each i ∈ {1, 2}, either |V (Gi)| = 6 or Gi is a bad graph.

Proof. Let ni = |V (Gi)| for i ∈ {1, 2}, and suppose for a contradiction that neither (i) nor (ii)

holds. Then, without loss of generality, n1 > 7, G1 is not a bad graph, and n2 > 6. By induction

there is a well-behaved IPF P1 of G1 with #(P1) 6 (n1−1)/3 and a well-behaved IPF P2 of G2

with #(P2) 6 n2/3. Then P = P1∪P2 is a well-behaved IPF of G with #(P) 6 (n1+n2−1)/3,

contradicting our assumption that G is a counterexample to Lemma 11.

Lemma 18. Let G be a counterexample to Lemma 11 with the minimum number of blocks. Let

x1x2 be a bridge in G and let G1 and G2 be the components of G− {x1x2}. Then either G1 or

G2 is a block of order 5.

Proof. Let ni = |V (Gi)| for i ∈ {1, 2}, and suppose for a contradiction that n1, n2 > 6. Say

x1 ∈ G1 and x2 ∈ G2. By Lemma 17, for i ∈ {1, 2}, either ni = 6 or Gi is a bad graph and

ni > 9. Lemma 15 eliminates the possibility that n1 = n2 = 6. So we may assume without loss

of generality that n1 6= 6 and hence G1 is a bad graph and n1 > 9.

Suppose that one of x1 or x2 is in a block C of order 5. If n2 = 6, then G2 is a block of

order 6 and hence it must be x1 that is in C. Also, we may suppose without loss of generality

that it is x1 that is in C if G2 is a bad graph and n2 > 9. Let yz be the bridge of G such that

y is in C and z is in the hub H1 of G1. Let G′1 and G′2 be the components of G− {yz} where
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V (H1) ⊆ V (G′1). Observe that H1 is a block of G1, |V (H1)| > 7, degG′
1
(z) = 2 and z is not in

a triangle in H1. Thus, |V (G′1)| > 7 and G′1 is not bad. Clearly |V (G′2)| > n2 + 5 > 11. Thus

yz violates Lemma 17.

From the argument above we may assume that x1 is in the hub H1 of G1 and hence x1 is

in a triangle in H1. Furthermore, if n2 6= 6 then x2 is in a triangle in the hub of G2. Because

x1 is in a triangle in H1, H1 − {x1} is hamiltonian, so by induction there is a well-behaved

IPF P1 of G1 − {x1} with #(P1) 6 (n1 − 3)/3 (recall n1 ≡ 0 (mod 3)). If n2 6= 6, there is a

well-behaved IPF P2 of G2 − {x2} with #(P2) 6 (n2 − 3)/3 by a similar argument. If n2 = 6,

use Lemma 13 to take an IPF P2 of G2 with two paths, one of which ends at x2. In either case,

P = P1 ∪ P2 ∪ {x1x2} is a well-behaved IPF of G. If n2 6= 6, #(P) = #(P1) + #(P2) + 1 6
(n1+n2−3)/3. If n2 = 6, #(P) = #(P1)+2 6 (n1+n2−3)/3. This contradicts our assumption

that G is a counterexample to Lemma 11.

Proof of Lemma 11. Suppose for a contradiction that G is a counterexample to Lemma 11

with the minimum number of blocks, and let n = |V (G)|. Lemma 16 establishes that Lemma 11

holds when G is hamiltonian, so G has at least two blocks. Thus, if n 6 12, G must have exactly

two blocks and Lemma 15 establishes that Lemma 11 holds. So we may further assume that

n > 13.

It follows from Lemma 18 and the hypotheses of Lemma 11 that G consists of a number

t > 1 of hamiltonian blocks L1, . . . , Lt of order 5, one other hamiltonian block C of order at

least 5, and bridges x1y1, . . . , xtyt where x1, . . . , xt ∈ V (C) and yi ∈ V (Li) for i ∈ {1, . . . , t}.
The proof splits into four cases according to the placement of the vertices x1, . . . , xt in C.

In each case we will construct an IPF P of G that contradicts our assumption that G is a

counterexample to Lemma 11.

Case 1. Suppose that there are i, j ∈ {1, . . . , t} such that xixj ∈ E(C). Then n > 15.

Without loss of generality, i = 1 and j = 2. Let G0 = G − (V (L1) ∪ V (L2)). Let G′0 be the

{2, 3}-graph of order n−8 > 7 obtained from G0 by pasting a K−4 over x1x2, and note that the

block C ′0 of G′0 with x1, x2 ∈ V (C ′0) is hamiltonian. So, by induction, there is a well-behaved

IPF P ′0 of G′0 with #(P ′0) 6 (n− 8)/3. By applying Lemma 7(ii) to P ′0 we obtain an IPF P0 of

G0 with #(P0) 6 (n− 8)/3 that has paths ending at x1 and x2 and is well-behaved except on

{x1, x2}. Use Lemma 12 to take IPFs P1 and P2 of L1 and L2, each with two paths, where one

path of P1 ends at y1 and one path of P2 ends at y2. Then P = P0 ∪ P1 ∪ P2 ∪ {x1y1, x2y2} is

a well-behaved IPF of G with #(P) = #(P0) + 2 6 (n− 2)/3.

Case 2. Suppose that we are not in Case 1 and that |V (C)| = 5. Then t = 2, because

n > 13 implies t > 2 and we would necessarily be in Case 1 if t > 3. So n = 15. Without

loss of generality, let (x1, u, x2, v, w) be a hamilton cycle in C. Use Lemma 12 to take IPFs P1

and P2 of L1 and L2, each with two paths, where one path of P1 ends at y1 and one path of

P2 ends at y2. Then P = P1 ∪ P2 ∪ {x1y1, x2y2, ux1, ux2, vw} is a well-behaved IPF of G with

#(P) = 4.

Case 3. Suppose that we are not in Case 1 or 2 and that x1 is in a triangle of C. Because

we are not in Case 1 or 2, |V (C)| > 6. Let G0 = G − (V (L1) ∪ {x1}), and note |V (G0)| =

n − 6 > 7. Note that the block C0 of G0 with vertex set V (C) \ {x1} has |V (C0)| > 5 and

is hamiltonian because x1 is in a triangle of C. Also, G0 is not bad because C0 contains two

degree 2 vertices that are not in triangles. So by induction there is a well-behaved IPF P0 of

G0 with #(P0) 6 (n − 7)/3 paths. Use Lemma 12 to take an IPF P1 of L1 with two paths

such that one path ends at y1. Then P = P0 ∪ P1 ∪ {x1y1} is a well-behaved IPF of G and
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#(P) = #(P0) + 2 6 (n− 1)/3.

Case 4. Suppose that we are not in Case 1, 2 or 3. Then |V (C)| > 6 and x1 is not in a

triangle in C. Let G0 = G− V (L1), and let G′0 be the graph obtained from G0 by suppressing

vertex x1. Note that |V (G′0)| = n−6 > 7 and that the block C ′0 of G′0 with vertex set V (C)\{x1}
has |V (C ′0)| > 5 and is hamiltonian (since hamiltonicity is preserved by suppressing a vertex of

degree 2). So, by induction, G′0 has a well-behaved IPF P ′0 with #(P ′0) 6 (n− 6− δ)/3 paths,

where δ = 0 if G′0 is bad and δ = 1 otherwise. By applying Lemma 7(iii) to P ′0 we obtain an

IPF P0 of G0 with #(P0) 6 #(P ′0)+1 6 (n−3− δ)/3 that has a path ending at x1 and is well-

behaved except on {x1}. Use Lemma 12 to take an IPF P1 of L1 with two paths such that one

path ends at y1. Then P = P0∪P1∪{x1y1} is an IPF of G with #(P) = #(P0)+1 6 (n−δ)/3.

If G is bad or G′0 is not bad then we are done. So we may assume that G′0 is bad and G is not

bad.

As G′0 is bad, it must have a hub and that can only be C ′0, since every other block of G′0
has order 5. So C ′0 is obtained from a triangle ring by subdividing some set of edges not in

triangles. Note that G is obtained from G′0 by subdividing some edge uv with the vertex x1
and adding L1 and the bridge x1y1. So uv is in a triangle in C ′0, since otherwise G is bad or

we are in the situation handled by Case 1. Each triangle in C ′0 has two edges in the unique

hamilton cycle in C ′0 and one edge not in it. We consider two cases according to which kind of

edge uv is.

If uv is not in the hamilton cycle in C ′0, then C−{x1} has order at least 6 and is hamiltonian.

Also, G− (V (L1) ∪ {x1}) has n− 6 > 7 vertices and is not bad, so by induction it has a well-

behaved IPF P2 with #(P2) 6 (n− 7)/3. Now P2 ∪P1 ∪ {x1y1} is a well-behaved IPF with at

most 2 + (n− 7)/3 = (n− 1)/3 paths, as required.

If uv is in the hamilton cycle in C ′0, we can suppose without loss of generality that degG′
0
(u) =

3 and degG′
0
(v) = 2. Then C−{x1, v} has order at least 5 and is hamiltonian. Also, G−(V (L1)∪

{x1, v}) has n − 7 > 6 vertices, so by induction it has a well-behaved IPF P2 with #(P2) 6
(n−7)/3. Now P2∪P1∪{vx1, x1y1} is a well-behaved IPF with at most 2+(n−7)/3 = (n−1)/3

paths, as required.

Proof of Theorem 10. If G satisfies the hypotheses of Lemma 11, then we can apply it to

complete the proof, so assume otherwise. Of all the 2-factors of G whose cycles each have length

at least 5, let F be one with the minimum number of cycles. Our first goal will be to obtain a

graph G∗ from G by deleting edges between cycles of F such that G∗ satisfies the hypotheses

of Lemma 11 and is not a bad graph.

Let S be the set of edges of G that are incident with vertices in two distinct cycles of F

and let S ′ be a maximal subset of S such that G− S ′ is connected. For each cycle A of F the

graph G−S ′ has a hamiltonian block with vertex set V (A). Note that S ′ is nonempty because

G does not satisfy the hypotheses of Lemma 11. If G− S ′ is not a bad graph, let S∗ = S ′ and

G∗ = G − S∗. Otherwise G − S ′ is bad and we proceed as follows. Choose an arbitrary edge

uv ∈ S ′ and note that without loss of generality u is in a block L of order 5 in G − S ′ and

either v is in a different block of order 5 in G−S ′ or v is in a triangle in the hub of G−S ′. Let

S∗ = (S ′ \ {uv}) ∪ {wx} where wx is the unique bridge in G− S ′ with w in the hub of G− S ′
and x ∈ V (L). Let G∗ = G − S∗ and note that G∗ is not a bad graph because, in G∗, w is a

vertex of degree 2 that is in a block of order at least 6 but not in a triangle.

By Lemma 11, there is a well-behaved IPF P of G∗ with at most (n− 1)/3 paths. We will

show that P is also an IPF of G and so complete the proof. Suppose otherwise that there is
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an edge yz ∈ S∗ such that y and z are both vertices in the same path of P . Note that, in G∗,

y and z are vertices of degree 2 and are in different blocks. Hence, since P is well-behaved in

G∗, it must be that G∗ contains a bridge y′z′ such that yy′, zz′ ∈ E(G∗). Since y and z are

vertices of degree 2 in G∗, yy′ ∈ E(F1) and zz′ ∈ E(F2) for different cycles F1 and F2 of F .

However, then the 2-factor obtained from F by replacing F1 and F2 with a single cycle with

edge set (E(F1) ∪ E(F2) ∪ {yz, y′z′}) \ {yy′, zz′} contradicts our choice of F .

4 Induced path factors of cubic graphs

In the previous section we saw that Theorem 1 holds for any cubic graph containing a 2-factor

whose cycles all have length at least 5. Jackson and Yoshimoto [7] showed that any 3-connected

cubic graph on at least 6 vertices has such a 2-factor. In this section we establish Theorem 1

via contradiction by showing that a minimal counterexample to it must be 3-connected. Recall

that for any subcubic graph the connectivity and edge-connectivity are equal.

Lemma 19. A counterexample to Theorem 1 of minimum order is 2-connected.

Proof. Aiming for a contradiction, suppose that G is a counterexample to Theorem 1 of

minimum order and that x1x2 is a bridge in G. For i ∈ {1, 2}, let Gi be the component of

G−{x1x2} containing xi and let ni = |V (Gi)|. Then |V (G)| = n1 +n2 and, because G is cubic,

ni is odd and at least 5 for i ∈ {1, 2}.
Let i ∈ {1, 2}. We claim that Gi has an IPF Pi such that #(Pi) 6 (ni + 1)/3 and one

path ends at xi. If ni ∈ {5, 7}, then it is not hard to see that Gi is hamiltonian (note that Gi

can be obtained from a cubic graph of order ni − 1 by subdividing an edge) and so our claim

follows by Lemma 12 or Lemma 14. So we may assume that ni > 9. Let G′i be the cubic graph

obtained from Gi by suppressing xi if it is not in a triangle in Gi and augmenting the triangle

of Gi containing xi otherwise. Let t = 1 if xi is in a triangle in Gi and let t = 0 otherwise.

Then |V (G′i)| = ni − 1 + 2t and hence 8 6 |V (G′i)| 6 n1 + n2 − 4. So, by induction, there is an

IPF P ′i of G′i with #(P ′i) 6 (ni − 2 + 2t)/3. Thus our claim holds by applying Lemma 7(i) to

P ′i if t = 1 and Lemma 7(iii) to P ′i if t = 0.

Then P = P1∪P2∪{x1x2} is an IPF of G and #(P) = #(P1)+#(P2)−1 6 (n1+n2−1)/3.

This contradicts our assumption that G is a counterexample to Theorem 1.

Next we dispose of a particular configuration that would otherwise cause us problems later.

Lemma 20. A counterexample to Theorem 1 of minimum order does not contain a copy G1 of

K−4 such that the two vertices of degree 2 in G− V (G1) are nonadjacent in G.

Proof. Aiming for a contradiction, suppose that G is a counterexample to Theorem 1 of

minimum order that contains a copy G1 of K−4 such that the two vertices of degree 2 in

G−V (G1) are nonadjacent in G. Let n = |V (G)|. By Lemmas 16 and 19, G is nonhamiltonian

and bridgeless (note that a cubic graph cannot be bad). So n > 14, since the only bridgeless

nonhamiltonian cubic graphs with 12 or fewer vertices are the Petersen graph and the Tietze

graph (see Figure 2) and neither of these contains a copy of K−4 .

Let G0 = G − V (G1). Let x0x1 and y0y1 be the two edges of G such that x0, y0 ∈ V (G0)

and x1, y1 ∈ V (G1), and note that x0y0 /∈ E(G) by assumption. Let G′0 be the graph obtained

from G0 by suppressing x0 if it is not in a triangle in G0 and augmenting the triangle of G0

containing x0 otherwise. In turn, let G′′0 be the cubic graph obtained from G′0 by suppressing
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Figure 2: The Petersen graph and the Tietze graph

y0 if it is not in a triangle in G′0 and augmenting the triangle of G′0 containing y0 otherwise.

Let t′ (respectively t′′) be 1 if x0 (respectively y0) is in a triangle in G0 and 0 otherwise. Let

t = t′+ t′′ and note that |V (G′′0)| = n−6+2t and hence 8 6 |V (G′′0)| 6 n−2. So, by induction,

there is an IPF P ′′0 of G′′0 with #(P ′′0 ) 6 (n − 7 + 2t)/3. By applying Lemma 7 to P ′′0 (part

(i) if t′′ = 1 and part (iii) if t′′ = 0) with c chosen to be y0, we can obtain an IPF P ′0 of G′0
such that a path, P ′ say, of P ′0 ends at y0 and #(P ′0) 6 #(P ′′0 ) + 1 − t′′. Let u and v be the

neighbours of x0 in G′0 where, without loss of generality, either u is not in P ′ or both u and v

are in P ′ and the subpath of P ′ from y0 to v does not include u. Next we apply Lemma 7 to

P ′0 (part (i) if t′ = 1 and part (iii) if t′ = 0) with c chosen to be x0 and a chosen to be u. This

produces an IPF P0 of G0 such that a path of P0 ends at x0, P0 ⊆ (P ′0 \ {x0v}) ∪ {x0u} (note

that x0v /∈ E(G′0) if t′ = 0), and

#(P0) 6 #(P ′0) + 1− t′ 6 #(P ′′0 ) + 2− t 6 (n− 1− t)/3 6 (n− 1)/3.

Furthermore, the fact that P0 ⊆ (P ′0\{x0v})∪{x0u} implies there is a path P of P0 such that P

ends at y0, E(P ) ⊆ E(P ′)∪{x0u} and P does not contain the edge x0v. Hence {x0, v} * V (P )

and, given our choice of u and v, we have x0 /∈ V (P ). So distinct paths of P0 end at x0 and y0.

Let P1 be an IPF of G1 with two paths such that one ends at x1 and the other ends at y1.

Then P = P0∪P1∪{x0x1, y0y1} is an IPF of G with #(P) = #(P0) 6 (n−1)/3, contradicting

our assumption that G is a counterexample to Theorem 1.

We are now ready to prove the connectivity result we want.

Lemma 21. A counterexample to Theorem 1 of minimum order is 3-connected.

Proof. Aiming for a contradiction, suppose that G is a counterexample to Theorem 1 of

minimum order and that G is not 3-connected. By Lemma 19, G is bridgeless. However, by

assumption, there are two edges e and f whose removal disconnects G. Note that e and f are

independent since G is cubic and bridgeless. Thus G is the union of graphs G1, G2 and H (see

Figure 3) where

• V (G1) ∩ V (G2) = ∅;

• there are vertices x1, y1, x2, y2 such that, for i ∈ {1, 2}, V (Gi) ∩ V (H) = {xi, yi} and

xiyi /∈ E(Gi);

• for some positive integer s, H is the vertex disjoint union of two paths [x1 = u0, . . . , us =

x2] and [y1 = v0, . . . , vs = y2] and a (possibly empty) matching with edge set {uivi : 1 6
i 6 s− 1};

To find this decomposition, we initially take the two paths that define H to be the edges e

and f , but then extend these paths in both directions until their respective endpoints are not
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G1 G2

x1 = u0

y1 = v0

u1

v1

u2

v2

us−2

vs−2

us−1

vs−1

us = x2

vs = y2

Figure 3: Structure of a bridgeless graph when the removal of 2 edges disconnects it.

adjacent. For i ∈ {1, 2}, let ni = |V (Gi)| and note that because G is cubic ni > 4 and ni is

even. Note that |V (G)| = n1 + n2 + 2s− 2.

Let i ∈ {1, 2}. We claim that we can find an IPF Pi of Gi such that #(Pi) 6 (ni + 2)/3

and either #(Pi) 6 (ni − 1)/3 or two distinct paths of Pi end at xi and yi. If ni ∈ {4, 6}, then

Gi must be K−4 or one of the three graphs that can be formed by removing an edge from a

cubic graph on 6 vertices. In each case it is easy to find an IPF of Gi with two paths where

one ends at xi and the other ends at yi. If ni > 8, then by induction Gi + {xiyi} has an IPF

P ′ with #(P ′) 6 (ni − 1)/3. We can see that P = P ′ \ {xiyi} is an IPF of Gi that satisfies the

condition of our claim by considering two cases according to whether xiyi ∈ P ′.
If, for i ∈ {1, 2}, we have that two distinct paths of Pi end at xi and yi, then P =

P1 ∪ P2 ∪ E([u0, . . . , us]) ∪ E([v0, . . . , vs]) is an IPF of G with #(P) = #(P1) + #(P2) − 2 6
(n1 + n2 − 2)/3 and G is not a counterexample to Theorem 1. So we may assume without loss

of generality that it is not the case that two distinct paths of P1 end at x1 and y1 and hence

that #(P1) 6 (n1 − 1)/3.

If s ∈ {1, 2} and #(P2) 6 (n2 − 1)/3, then

P =

{
P1 ∪ P2 if s = 1

P1 ∪ P2 ∪ {u1v1} if s = 2

is an IPF of G with #(P) = #(P1) + #(P2) + s − 1 6 (n1 + n2 + 3s − 5)/3 and G is not a

counterexample to Theorem 1.

So we may further assume that either two distinct paths of P2 end at x2 and y2 or #(P2) 6
(n2 − 1)/3 and s > 3. In the former case, let P∗2 = P2. In the latter case let P∗2 be obtained

from P2 by, for z ∈ {x2, y2}, if two edges of P2 are incident with z, deleting one of them. In

either case P∗2 is an IPF of G2 such that two distinct paths of P2 end at x2 and y2 and it can

be checked that #(P∗2 ) 6 (n2 + 2s)/3.

Let G′′1 be the cubic graph of order n1 + 4 obtained from G1 by adding the vertices {u1, v1}
and edges {u0u1, v0v1, u1v1}, and then pasting a copy C of K−4 over u1v1. By Lemma 20, we

can assume that s > 2 if n2 = 4 and so G′′1 has fewer vertices than G. So, by induction G′′1, has

an IPF P ′′1 with #(P ′′1 ) 6 (n1 + 3)/3 paths. By applying Lemma 7(ii) to P ′′1 we can obtain an

IPF P∗1 of the subgraph of G induced by V (G1) ∪ {u1, v1} such that #(P∗1 ) 6 (n1 + 3)/3 and

two distinct paths of P1 end at u1 and v1.

Then P = P∗1 ∪ P∗2 ∪ E([u1, . . . , us]) ∪ E([v1, . . . , vs]) is an IPF P of G with

#(P) 6 #(P∗1 ) + #(P∗2 )− 2 = (n1 + n2 + 2s− 3)/3.
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This contradicts our assumption that G is a counterexample to Theorem 1.

Proof of Theorem 1. Let G be a counterexample to Theorem 1 of minimal order n. By

Lemma 21, G is 3-connected. So, by the theorem of Jackson and Yoshimoto [7], G has a 2-

factor whose cycles all have length at least 5. Theorem 10 then implies that ρ(G) 6 (n− 1)/3

because G is cubic and so cannot be bad. Hence G is not a counterexample to Theorem 1 after

all, and this completes the proof of the theorem.

5 Induced path factors of regular graphs

In this section, for a fixed integer k > 2, we consider asymptotics for ρ(G) for k-regular graphs

G of order n → ∞. For each n, define Mn to be the maximum, over all connected k-regular

graphs G on n vertices, of ρ(G). (If no such graphs exist then we do not consider such n in

what follows.) Define

ck = lim sup
n→∞

Mn

n

ck = lim inf
n→∞

Mn

n

ck = lim
n→∞

Mn

n
.

Our aim for this section is to find bounds for ck. However, first we must show that it is well

defined.

Lemma 22. For each integer k > 2, ck exists.

Proof. First we consider the case when k is even. The case k = 2 is trivial since c2 = c2 =

c2 = 0 because every connected 2-regular graph has an IPF with 2 paths. So we may assume

that k > 4.

Fix ε > 0. As k is constant, the definition of ck implies that for some suitably large n1 there

exists a k-regular graph G of order n1 such that ρ(G) > (ck − ε)(n1 + k + 4) + 1.

By the Erdős-Gallai Theorem [4] there exist graphs F1 and F2 of respective orders k+2 and

k+3, with one vertex of degree k−2 and all other vertices of degree k. By subdividing an edge

of G with a new vertex that we then identify with the vertex of degree k − 2 in F1, we create

a k-regular graph G1 with a = n1 + k + 2 vertices. We use F2 in a similar fashion to create a

k-regular graph G2 with a + 1 vertices. By Lemma 5, ρ(Gi) > ρ(G) > (ck − ε)(a + 2) + 1 for

i ∈ {1, 2}.
Now, for any sufficiently large n, we make a k-regular graph G′ of order n as follows. Let c

be the least positive integer satisfying (k − 2)c ≡ (k − 2)n+ 2 (mod ka− 2a+ 2) and let

b =
(k − 2)(n− c) + 2

ka− 2a+ 2
− c.

Note that gcd(k − 2, ka − 2a + 2) = gcd(k − 2, 2) = 2 which divides (k − 2)n + 2 so c exists.

Also, our choice of c ensures that b is an integer, and b > 0 because n is large. We start with b

copies of G1 and c copies of G2 and progressively glue these components together to form G′.

Each gluing step takes k/2 existing components, subdivides one edge in each component with a

new vertex and identifies these new vertices. The number of gluing steps is (b+c−1)/(k/2−1)
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since each step reduces the number of components by k/2 − 1. The number of vertices in the

resulting graph G′ is

ba+ c(a+ 1) +
b+ c− 1

k/2− 1
= (b+ c)(a+ 2/(k − 2)) + c− 2/(k − 2) = n. (1)

Also, we started with b+ c components and glued them together, so by Lemma 5,

ρ(G′) > bρ(G1) + cρ(G2)− (b+ c) > (ck − ε)(b+ c)(a+ 2) > (ck − ε)n

where the last inequality follows from (1). As n was an arbitrary large integer, it follows that

ck > ck − ε. But ε was an arbitrary positive quantity, so we must have ck = ck, from which it

follows that the limit ck exists.

It remains to consider the case when k is odd. It works similarly, but is complicated by the

fact that k-regular graphs only exist for even orders. For some large even integer a, we make

G1 and G2 of orders a and a + 2 with ρ(Gi) > (ck − ε)(a + 4) + 1 for i ∈ {1, 2}. Our gluing

steps each involve k − 1 components. Two new adjacent vertices are introduced and (k − 1)/2

components are glued on each of these two vertices. This reduces the number of components

by k − 2, so we want b, c to be solutions to

ba+ c(a+ 2) + 2
b+ c− 1

k − 2
= n.

We can take c to be the least positive solution to 2(k − 2)c ≡ (k − 2)n+ 2 (mod ka− 2a+ 2)

and let

b =
(k − 2)(n− 2c) + 2

ka− 2a+ 2
− c.

Note that gcd(2(k− 2), ka− 2a+ 2) = 2 which divides (k− 2)n+ 2 so c exists. The remainder

of the argument mimics the case for even k.

As mentioned in the proof of Lemma 22, c2 = 0. For larger k it seems to be a difficult

problem to find the exact value of ck, so instead we look for bounds. Of course, c3 6 1/3 by

Theorem 1. We will show that 1/3 < ck 6 1/2 for all k > 3 and that ck → 1/2 as k → ∞.

Note that ck 6 1/2 for all k, by Theorem 3.

In trees all paths are induced. In several of our subsequent results we use constructions

based on perfect (k − 1)-ary trees. The root of a (k − 1)-ary tree has degree k − 1, while all

other vertices have degree k or degree 1 (in the latter case the vertex is a leaf). A (k − 1)-ary

tree is perfect if all its leaves are at the same distance from the root. In that case the distance

from the root to a leaf is called the height. We refer to the distance of a vertex from the root

as its depth. The unique neighbour of a vertex that has smaller depth than it is its parent; its

other neighbours have greater depth than it and are its children.

Our constructions will also often create graphs that contain blocks that are copies of a

complete graph Km with one edge subdivided. An IPF of such a block has at least dm/2e
paths, by Lemma 5.

Lemma 23. Let k > 3 and let T be a perfect (k − 1)-ary tree of height h. Then ρ(T ) =
1
k

(
(k − 1)h+1 + (−1)h

)
.

Proof. Consider a minimal IPF for T . We first argue that without loss of generality, no path

ends at a non-leaf vertex. Suppose this is not true for a particular IPF. Locate the vertex v of
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least depth at which a path ends. Since k > 3 there is some child w of v which is not in the

path that ends at v. We add the edge vw. By the minimality of our IPF, it must include edges

wx and wx′ where x and x′ are children of w. Remove the edge wx. In this way we create

another minimal IPF, and we have reduced the number of paths that end at the depth of v.

So by repeating this process we can move all ends of paths to the leaves.

Let a(h) be the minimum number of disjoint paths needed to cover a perfect (k − 1)-ary

tree of height h. By the above, we assume that all paths end at leaves. So by removing the

vertices on the path through the root, we obtain the recurrence

a(h) = 1 + (k − 3)a(h− 1) + 2(k − 2)
h−2∑
i=0

a(i),

with initial condition a(0) = 1. We now show that a(h) = 1
k

(
(k − 1)h+1 + (−1)h

)
by induction

on h. The formula works for h = 0. Assuming that it works up to h− 1, we find that

a(h) = 1 +
1

k
(k − 3)

(
(k − 1)h + (−1)h−1

)
+

2

k
(k − 2)

h−2∑
i=0

(
(k − 1)i+1 + (−1)i

)
=

1

k

(
k + (k − 3)

(
(k − 1)h + (−1)h−1

)
+ 2

(
(k − 1)h − (k − 1)

)
+ (2k − 4)χh

)
=

1

k

(
k + (k − 1)h+1 + (−1)h−1(k − 3)− 2k + 2 + (2k − 4)χh

)
=

1

k

(
(k − 1)h+1 + (−1)h

)
,

where χh = 0 if h is odd and χh = 1 if h is even. The result follows.

We are now ready to give lower bounds on ck for general k. We treat the cases of odd and

even k separately. For each case, we will construct a family of graphs that are k-regular except

that the root vertex has degree less than k. It is a simple matter to obtain a k-regular graph by

adding a fixed gadget to the root. Doing so changes the induced path number by O(1), which

will be insignificant for our asymptotics. Hence, for simplicity, we omit details of the gadgets

and pretend that the graphs we build are in fact k-regular.

Theorem 24. We have c3 > 5/18. For odd k > 3 we have

ck >
1

2
− 3k − 4

k2(k − 1)
=

1

2
−O(k−2).

Proof. Start with a perfect (k − 1)-ary tree T of height h. We are primarily interested in the

behaviour of our construction as h becomes large. On each leaf vertex `, glue (k− 1)/2 blocks,

each of which is a copy of Kk+1 with one edge subdivided (the vertex on the subdivided edge

is merged with `). The resulting graph G is k-regular (except the root), with

n =
(k − 1)h+1

k − 2
+O(1/k) +

1

2
(k − 1)h(k − 1)(k + 1) (2)

vertices.

Consider an IPF P for G and suppose for the moment that k > 3. If P includes the edge

from a leaf ` of T to its parent, remove this edge from P and replace it with another edge as
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follows. Choose a block B which is glued onto `, but which contains no neighbour of ` in P .

The neighbours u and v of ` in B must both be ends of paths in P . If they are on different

paths in P then we simply add the edge `u and we are done. Otherwise, P includes a path

[u,w, v]. But B − {`, u, v, w} is a Kk−2, and k − 2 is odd. Hence P includes a trivial path, say

[x]. We replace [u, v, w] and [x] by [`, u, x] and [v, w]. In this way, we have not changed the

total number of paths in our IPF, but have removed the edge from ` to its parent. We repeat

this process for all leaves `.

Now the blocks glued on ` need 1
4
(k − 1)(k + 1) − 1 paths to cover them (the −1 is from

the path that includes `). Applying Lemma 23 to all layers of T except the last, the number

of paths needed to cover G is

(k − 1)h
(
(k2 − 1)/4− 1 + 1/k

)
+O(1/k).

Combined with (2), and taking h→∞, we find that

ck >
1
4
(k2 − 1)− 1 + 1/k

k−1
k−2 + 1

2
(k − 1)(k + 1)

=
1

2
− 3k − 4

k2(k − 1)
.

Finally, consider the case when k = 3. Here we apply Lemma 23 to the whole initial tree T .

Then, Lemma 5 tells us the effect of gluing a subdivided K4 onto each of the (k − 1)h leaves.

The conclusion is that ρ(G) > 1
k
(k− 1)h+1 +O(1/k) + (k− 1)h. Combined with (2), and taking

h→∞, we find that

c3 >
1
k
(k − 1) + 1

k−1
k−2 + 1

2
(k − 1)(k + 1)

=
2(2k − 1)(k − 2)

k2(k − 1)2
=

5

18

as claimed.

Theorem 25. We have c4 > 3/7. For even k > 4 we have

ck >
1

2
− 1

2k − 2
=

1

2
−O(k−1).

Proof. Fix an even k > 4. Start with an h-cycle C and on each vertex glue (k − 2)/2 blocks,

each of which is a Kk+1 with one edge subdivided. This produces a k-regular graph G with

n = h+ h(k+ 1)(k− 2)/2 vertices. Since ρ(C) = 2 and ρ(Kk+1) = (k+ 2)/2, Lemma 5 implies

that ρ(G) > 2 + h(k − 2)k/4. Taking h→∞ gives

ck >
(k − 2)k/4

1 + (k + 1)(k − 2)/2
=

1

2
− 1

2k − 2

as claimed.

While the above argument works for k = 4, we now provide a separate construction which

gives a stronger result in this case. Take a perfect 2-tree T of height h and add an edge between

each pair of vertices that are children of the same parent. Now, for each vertex ` that was a leaf

of T , add a copy of K5 with a subdivided edge (the vertex on the subdivided edge is identified

with `). The result is a graph with 2h+1− 1 + 2h5 vertices that is 4-regular except for the root.

Suppose we have an IPF for this graph. Consider the two children v and w of a non-leaf

vertex u in T . If our IPF includes the edge vw then there must be a path that ends at u (since
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the neighbours of u, other than v and w, are adjacent). Thus we can remove the edge vw and

add the edge uv to get an IPF with the same number of paths. Repeating this process we

obtain an IPF in which no path includes both children of a vertex in T and hence no path

includes vertices from two distinct subdivided copies of K5. There are 2h subdivided copies of

K5, and each requires 3 paths to cover it. Thus the graph needs at least 2h3 paths in any IPF.

Taking h→∞, it follows that c4 > 3/(2 + 5) = 3/7, as claimed.

Despite trying several alternative constructions, we were unable to find one for even k which

gave an error term matching the one that we obtained for odd k in Theorem 24. Nevertheless,

we do not believe there is a great intrinsic difference between the two cases.

Conjecture 26. We have ck = 1/2−O(k−2) as k →∞.
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