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At least half of the leapfrog fullerene graphs have

exponentially many Hamilton cycles

Frantǐsek Kardoš∗ Martina Mockovčiaková†

October 10, 2019

Abstract

A fullerene graph is a 3-connected cubic planar graph with pentagonal

and hexagonal faces. The leapfrog transformation of a planar graph pro-

duces the trucation of the dual of the given graph. A fullerene graph is

leapfrog if it can be obtained from another fullerene graph by the leapfrog

transformation. We prove that leapfrog fullerene graphs on n = 12k − 6

vertices have at least 2k Hamilton cycles.

1 Introduction

Tait conjectured that every 3-connected cubic planar graph is hamiltonian. Had
his conjecture been true, it would have implied the Four Colour Theorem. This
conjecture was disproved by Tutte in 1946. Tutte also proved (1956) that every
4-connected planar graph is hamiltonian [7].

However, every known non-hamiltonian 3-connected cubic planar graph con-
tains a face of size at least seven. Barnette conjectured in 1969 (and Goodey
stated it in an informal way as well), that all 3-connected cubic planar graphs
with faces of size at most 6 are hamiltonian.

In 1975 Goodey proved that all 3-connected cubic planar graphs with faces
of size 4 and 6 are hamiltonian[2], and in 1977 he proved that it holds also for
such graphs with faces of size 3 and 6 [3]. All 3-connected cubic planar graphs
with faces of size at most 6 have recently been proved to be hamiltonian by
Kardos [4], confirming Barnette-Goodey conjecture.

A fullerene graph is a 3-connected cubic planar graph with pentagonal and
hexagonal faces. Fullerene graphs are of a standalone interest since they are
used to modelize all-carbon molecules of spherical shape – carbon atoms are
represented by the vertices and bonds between adjacent atoms are represented
by the edges of the graph.

A fullerene is called a leapfrog fullerene, if it can be constructed from other
fullerene graph G by so-called leapfrog transformation – the truncation of the
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dual of G. We will use the notation H = L(G) whenever H is a leapfrog of G.
If this is the case, then there are three types of faces in H : pentagonal faces
of H correspond to pentagonal faces of G, some hexagonal faces correspond to
hexagonal faces of G, and the remaining hexagonal faces of H correspond to
vertices of G. The set of the faces of the first two types (those that correspond
to the faces of G) is independent: their facial cycles form a 2-factor of H . It is
straightforward to see that |V (L(G))| = 3|V (G)|.

Marušič [5] proved that every leapfrog fullerene graph obtained from a
fullerene graph with an odd number of faces is hamiltonian.

Both Marušič’s and Kardoš’s proofs rely on the correspondence between
Hamilton cycles in a cubic planar graph and stable-tree decompositions in a
suitably defined residual graph.

A stable-tree decomposition of a graph is a partition of its vertex set into
two sets, say W and B, such that W is a stable set and B induces a tree. We
call the vertices in W white and those in B black. If H = L(G), then every
stable-tree decomposition of G corresponds to a Hamilton cycle in H , see Figure
1 for illustration.

To prove Marušič’s result, it suffices therefore to observe that for fullerene
graphs with an odd number of faces the existence of a stable-tree decomposition
is guaranteed by

Theorem 1 (Payan and Sakarovitch, 1975 [6]) Let G be a cubic graph on
n = 4k − 2 vertices (k ≥ 1). If G is cyclically 4-edge-connected, then H has a
stable-tree decomposition.

and

Theorem 2 (Došlić, 2003 [1]) Let G be a fullerene graph. Then G is cycli-
cally 5-edge-connected.

In this paper we prove

Theorem 3 Let H be a leapfrog fullerene graph of a fullerene graph G on n =
4k − 2 vertices. Then H has at least 2k Hamilton cycles.

2 Preliminaries

In this section we introduce some technical notions used in the proof of Theorem
3.

An improper stable-tree decomposition of a cubic planar graph G is a par-
tition of the vertex set of G into two sets, say W and B, such that W is a
stable set, B induces a forest with exactly three components, and there exists
a hexagonal face of G incident to one vertex of each component of G[B].

In this context, a hexagonal face of G incident to one vertex of each of the
three components of G[B] will be called a graceful hexagon. A vertex in W
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Figure 1: An example of a fullerene graph G and the fullerene graph H ob-
tained from G by leapfrog transformation (top, left to right). A stable-tree
decomposition of G and the corresponding Hamilton cycle in H (bottom, left
to right).
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adjacent to one vertex of each of the three components of G[B] will be called a
graceful vertex.

A generalized stable-tree decomposition of a cubic planar graph G is either a
(proper) stable-tree decomposition of G or an improper stable-tree decomposi-
tion of G.

Lemma 1 Let (W,B) be an improper stable-tree decomposition of a fullerene
graph G, let f be a graceful hexagon in G. Then either there exists another
graceful hexagon in G distinct from f , or there exists a graceful vertex in G.

Proof. Let B1, B2, B3 be the three components of G[B]. Let F1 be the set
of faces of G incident to a vertex of B1 and at least one vertex of at least one
out of B2 and B3. Clearly f ∈ F1.

If there is another face f ′ in F1 incident to a vertex both in B2 and B3, the
three vertices from the three different components have to be separated by white
vertices on the facial cycle of f ′. Since in G the maximum face size is 6, there
is exactly one vertex from each component, and so f ′ is a graceful hexagon.

Suppose now that there are no graceful hexagons other that f in G. Tracing
the faces in F1 in a cyclic order around the component B1 one can find two
adjacent faces, say f2 and f3, incident each to a vertex of B2 and B3, respec-
tivement. Then the edge they share has at least one black vertex, say v1, which
has to be from B1, and a white vertex, say v, which has three black neighbors,
say v1, v2, and v3, with vi incident to fi for i = 2, 3. It is easy to see that
vi ∈ Bi for i = 2, 3, otherwise there could not be any graceful hexagons in G. �

Lemma 2 Let (W,B) be a proper stable-tree decomposition of a cubic graph G
on n vertices. Then n = 4k − 2 for some k ∈ N, moreover, |W | = k.

Proof. Let b = |B| and w = |W |. Since the black vertices induce a tree, the
number of edges joining two black vertices is b− 1. Since the white vertices are
stable, the number of edges joining a black and a white vertex is 3w. Since the
graph is cubic, the overall number of edges is 3n/2. Therefore,

b− 1 + 3w =
3(b+ w)

2
3w − 2 = b

and so n = b+ w = 4w − 2; it suffices to set k = w. �

Lemma 3 Let (W,B) be an improper stable-tree decomposition of a cubic graph
G on n vertices. Then n = 4k − 2 for some k ∈ N, moreover, |W | = k + 1.

Proof. Let b = |B| and w = |W |. Since the black vertices induce three
distinct trees, the number of edges joining two black vertices is b− 3. Since the
white vertices are stable, the number of edges joining a black and a white vertex
is 3w. Since the graph is cubic, the overall number of edges is 3n/2. Therefore,

b− 3 + 3w =
3(b+ w)

2
3w − 6 = b
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and so n = b+ w = 4w − 6 = 4(w − 1)− 2; it suffices to set k = w − 1. �

Let G be a 2-connected graph. An ear decomposition of G is a partition
(E0, E1, . . . , Et) of the set of edges of G such that:

• E0 is a cycle;

• Ek is a path edge-disjoint from Gk−1 := ∪k−1
i=0 Ei with two distinct end-

vertices both in Gk−1.

A vertex contained in Ei but not in Gk−1 is an internal vertex of the ear Ei.
It is known (add citation Whitney) that every 2-connected graph admits an

ear-decomposition.
Let G be a 3-connected planar graph. Denote G∗ the dual graph of G. A

dual search order is an ordering (f0, f1, . . . , fs) of faces of G such that fk is
adjacent to at least one from f0, . . . , fk−1. Typically, a BFS, DFS or LexBFS
of G∗ provides a dual search order.

A facial ear decomposition of G is an ear decomposition of G corresponding
to a dual search order: E0 is the facial cycle of f0; for each face fk, the differ-
ence between G[f0, . . . , fk−1] and G[f0, . . . , fk−1, fk] is an edge-disjoint union
(possibly empty) of ears with the endvertices in the former.

An ear decomposition of a 3-connected planar graph is nice if it is a facial
ear decomposition of G such that

• f0 is a hexagon (and hence E0 is a 6-cycle)

• each Ej (j ≥ 1) is a path on at most 4 edges.

Lemma 4 Let G be a fullerene graph. Then there exists a nice ear decomposi-
tion of G.

Proof. It suffices to consider a LexBFS of G∗ with the first vertex corre-
sponding to a hexagon and the second to a pentagon. Then each new vertex is
adjacent to at least two vertices already visited, so the corresponding ear(s) is
(are) composed of at most four edges. �

3 Results

We are now ready to prove the main theorem. In order to proof the existence of
exponentially many Hamilton cycles in a leapfrog fullerene graph, we find expo-
nentially many generalized stable-tree decompositions in the original/underlying
fullerene graph, using the following invariant: Every time a white vertex (a ver-
tex in the stable set) is to be introduced, we can do it in two different ways; in
total, there is a linear number of white vertices in any generalized stable-tree
decomposition.

Proof of Theorem 3. We will introduce a procedure that produces a set of
generalized stable-tree decompositions of G. Every proper stable-tree decom-
position of G will then correspond to a distinct Hamilton cycle of H , every
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improper stable-tree decomposition of G will correspond to two distinct Hamil-
ton cycles of H .

Let (E0, E1, . . . , Et) be a nice ear decomposition of G.
LetGj→ := G[∪t

i=jV (Ei)] be the graph induced on the set of internal vertices

of ears starting form the j-th ear. Clearly Gj→ is an empty graph for j > t and
G0→ = G, since every vertex of G is an internal vertex of exactly one ear.

In the next paragraphs we define inductively how to decide for vertices of G
whether they are black or white. We decide about the color of internal vertices
of the ears in the descending order, in such a way that after each step, the set
of the colored vertices is equal to Gj→ for some j.

Let (W,B) be a decomposition of Gj→. A black vertex v of Gj→ is called a
contact vertex if it is adjacent to a vertex in G \Gj→.

We prove that for each j there exists a set Dj of decompositions (W j
i , B

j
i )

of Gj→ with the following properties:

(i) W j
i is a stable set in Gj→ as well as in G,

(ii) Bj
i induces a forest in Gj→, moreover, every component of Gj→[Bj

i ] con-
tains a contact vertex.

In other words, we keep the property that every black component is a tree
attached to at least one vertex of some non-colored ear.

In order to enumerate D1, we introduce a parent-child relation between the
decompositions in Dj+1 and Dj , which is defined together with the decomposi-
tions themselves by induction in the following way:

For j > t, we define Dj := {(∅, ∅)}, we call this decomposition trivial.
(Initialisation) Let jmax be the largest j such that Ej has at least two edges

(at least one internal verex). We color all the internal vertices of Ej black, i.e.
we set Djmax

= {(∅, int(Ejmax
))}, where int(Ejmax

) is the set of internal vertices
of Ejmax

. Clearly, the black vertices induce a forest (a path), while the set of
white vertices is stable. We call this decomposition root decomposition, it is the
only non-trivial decomposition without a parent.

(Propagation) Let Ej be an ear. We distinguish cases according to the
number of edges of Ej (number of internal vertices of Ej).

CASE 0: If the ear Ej only has one edge, then it has no internal vertices,
thus Gj→ = Gj+1→ and so we set Dj := Dj+1; we do not distinguish between
the two sets of decompositions.

CASE 1: Let Ej be an ear with two edges and one internal vertex v. Then
v has exactly one neighbor in Gj+1→, say u. We set

Dj = {(W,B ∪ {v})|(W,B) ∈ Dj+1}.

Informally, for every decomposition from Dj+1, we color the vertex v black. Let
us check that Dj satisfies (i) and (ii). Clearly, W remains a stable set. If u
is white then v becomes a new component in the forest induced on the black
vertices in Gj→; if u is black then v is added to an existing component as a new
leaf. In both cases v is a contact vertex of the component it is contained in; all
other black components keep their contact vertices.
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We say that the decomposition (W,B ∪{v}) ∈ Dj of G
j→ is (the only) child

of (W,B) ∈ Dj+1. It is easy to see that the parent-child relation between Dj+1

and Dj is a bijection.
CASE 2: Let Ej be an ear with three edges and two internal vertices v1 and

v2. Each of the vertices v1 and v2 has exactly one neighbor in Gj+1→, say u1

and u2, respectively. For every decomposition in Dj+1 the vertices u1 and u2

are already colored.
Let (W,B) be a decomposition of Gj+1→. We consider subcases with respect

to the color of u1 and u2.
If both u1 and u2 are white, then we color v1 and v2 both black, introducing

a new black component having two vertices, both being contact vertices.
If one of u1 and u2, say u1, is white and the other one, say u2, is black, then

we color v1 and v2 both black, adding a path on two edges to an existing black
component of B. Both v1 and v2 are contact vertices of this component.

It remains to consider the case when both u1 and u2 are black. If they
belong to two different black components, then, similarly to the previous cases,
we color v1 and v2 black, merging two black components into one with v1 and
v2 as contact vertices. Up to this point we always color the two new vertices
black, and so we define a unique child in Dj for a given decomposition from
Dj+1.

The last case (and the only interesting one) is when u1 and u2 belong to the
same black component. This is the first case when for a decomposition from
Dj+1 we define two children in Dj : We color v1 and v2 black and white (one
vertex per color), in both possible ways. Since one of them is white, we do not
create a cycle in the component containing them, and since the other one is
black, the component still contains at least one contact vertex.

CASE 3: Let Ej be an ear with four edges and three internal vertices v1, v2,
and v3. Each of them has exactly one neighbor in Gj+1→, say u1, u2, and u3,
respectively.

If each ui is either white or belongs to a distinct black component, we color
all of v1, v2, v3 black, eventually merging some existing black components into
a new black component having v1 and v3 as contact vertices. No new white
vertex is created, and a unique child is defined.

If exactly two among ui, i = 1, 2, 3, belong to the same black component
and the third one is either white or contained in another black component, then
we color the former two with black and white (two possibilities) and the third
one black. It is easy to check that we obtain a decomposition satisfying both
conditions (i) and (ii). There is always one new white vertex, and two children
are defined, see the first row of Figure 2 for illustration.

The last remaining case is when all the three uis belong to the same black
component, say C. Since C is a tree, for each pair ui, ui′ , 1 ≤ i < i′ ≤ 3 there is
a unique path from ui to ui′ in C; the three paths have to have one (and only
one) vertex in common, say x. We introduce two children decompositions: In
the first, we color v1 and v3 black, and v2 white. In the second, we color all v1,
v2, v3 black and we recolor x from black to white. Observe that in both cases,
u1, u2, and u3 belong to the same black component, having v1 and v3 as contact
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vertices.

u1
v1

u2

v2
u3

v3

−→
u1

v1

u2

v2
u3

v3

∨
u1

v1

u2

v2
u3

v3

u1
v1

u2

v2
u3

v3

x

−→

u1
v1

u2

v2
u3

v3

x

∨

u1
v1

u2

v2
u3

v3

x

Figure 2: If an ear with three internal vertices is incident to two different com-
ponents of the black forest, there are two choices of the position of a new white
vertex (top line). If an ear with three internal vertices is incident to a single
black component thrice, a second solution can be found by recoloring a black
vertex to white.

So far, for each j ≥ 1 and for each decomposition in Dj+1 we have defined
either a single child or two children in Dj , by coloring up to three new vertices,
and eventually recoloring one vertex already colored. We need to check that
it is not possible to obtain the same decomposition in Dj from two distinct
decompositions in Dj+1 in two different ways.

We introduce a series of claims, each of them being either a direct conse-
quence of the definititions of the decompositions above, or a corollary of the
previous claims.

Claim 1 For every j ≥ 2 and for every decomposition D in Dj, D has either
one child, with the same number of white vertices, or it has two children, both
with one more white vertex.

Claim 2 Whenever two black vertices start to belong to the same black compo-
nent, they continue to belong to the same black component unless (at least) one
of them is recolored white.

Claim 3 At the moment when an uncolored vertex becomes white, it has at least
two black neighbors belonging to the same black component. Moreover, at any
time, a white vertex has at least two black neighbors belonging to the same black
component.

Claim 4 Every non-root decomposition has exactly one parent.

Indeed, for all the cases but the last subcase of CASE 3 the parent decom-
position can be restored by simply uncoloring the vertices of the last ear. If

8



a decomposition created in the last subcase of CASE 3 by recoloring x white
and coloring v1, v2, and v3 black had another parent, then it only could be the
decomposition obtained by uncoloring v1, v2, and v3 without changing the color
of x; in that decomposition the three black neighbors of x would belong to three
different black components, a contradiction with Claim 3.

To complete the proof of the main theorem, it suffices to define how each
of the decompositions in D1 extends to E0. Recall that E0 is a 6-cycle. Let
V (E0) = {v1, . . . , v6} in a cyclic order, let ui be the neighbor of vi outside E0,
i = 1, . . . , 6.

Let (W1, B1) be a decomposition of G1→. Let w0 be the number of white
vertices adjacent to vertices of E0. Let c be the number of components of the
forest B1. Let w1 = |W1|, let b1 = |B1|.

Claim 5 w0 + c ∈ {1, 3, 5}. Moreover, w1 = k − 7−(w0+c)
2 .

Proof. We have w0 + c ≤ 6 since each black component of W1 has a black
contact vertex.

The number of edges joining two black vertices in B1 is equal to b1 − c.
The number of edges joining a black vertex in B1 and a white vertex in W1 is
equal to 3w1 − w0. On the other hand, the total number of vertices of G1→,
b1 + w1 = n− 6 = 4k − 8, and the overall number of edges of G1→ is

b1 − c+ 3w1 − w0 = |E(G)| − 12 =
3

2
|V (G)| − 12 =

3

2
(4k − 2)− 12 = 6k − 15.

By eliminating b1 we get 2w1 −w0 − c = 2k− 7, so c+w0 is odd and the claim
is now verified. �

If w0+c = 5, then there is exactly one pair of black vertices ui1 , ui2 belonging
to the same component; every other ui is either a white vertex or belongs to
a distinct component. We color vi1 and vi2 black and white, in both possible
ways; we color all other non-colored vertices black. It is easy to check that two
different proper stable-tree decompositions of G are obtained this way.

If w0 + c = 1, then w0 = 0 and c = 1 since every black component has at
least one black contact vertex. It means that all the vertices u1, . . . , u6 are black
and they belong to the same black component. We define eight different proper
stable-tree decompositions of G in the following way:

First, we color v1, v3, v5 black and v2, v4, v6 white. This gives the first de-
composition. Then, we choose one of the three white vertices vi and recolor it
black (there are three possible choices), and search in the black tree B1 for the
vertex x which is the intersection of the paths joining ui−1, ui, and ui+1 (indices
modulo 6); we recolor x white. This gives three other decompositions.

It follows from Claim 3 that the four decompositions are distinct from each
other.

Next, we find four other decompositions in the same way, starting with
v1, v3, v5 white and v2, v4, v6 black.
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−→ ∨

∨ ∨

Figure 3: If all the six vertices of the hexagon E0 (depicted here as the outer
face) are adjacent to black vertices belonging to the same component, we can
first choose one of the two options how to them alternatively black and white,
and then for every white vertex we can exchange it for a black internal vertex.

The last case to consider is w0 + c = 3. If we consider the numbers of uis
contained in black components (a white ui being treated as a distinct (empty)
component), there are three subcases: (4, 1, 1), (3, 2, 1), (2, 2, 2).

Let there be a component containing four of uis. We can proceed in an
analogous way as in the previous case in order to find six distinct decompositions,
whereas we only need four.

Let the black components contain 3, 2, and 1 of the uis. We can treat the
one having 3 in the same way as an ear with three internal vertices adjacent
to the same component, and the one having 2 in the same way as an ear with
two internal vertices adjacent to the same component. Combining these partial
resolutions gives four distinct decompositions, as needed.

The last case to consider is (2, 2, 2). It implies w0 = 0, there are exactly three
black components, each with two contact vertices. There are two subcases. Up
to symmetry, thanks to planarity, in the same component are either u1 with u2,
u3 with u4, and u5 with u6, or u1 with u4, u2 with u3, and u5 with u6.

In both subcases, we color v1, v3, v5 black and v2, v4, v6 white or vice versa
– we introduce three white vertices and get two generalized stable-tree decom-
positions, each of them at the end will give two Hamilton cycles in the leapfrog
fullerene graph H .

To conclude, we have defined a rooted binary tree of depth k, in which leaves
at depth k correspond to proper stable-tree decompositions of G and leaves at
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depth k − 1 correspond to improper stable-tree decompositions of G. �

4 Concluding remarks

The method introduced in the paper can be used to find exponentially many
Hamilton cycles in broader classes of cubic planar graphs – it suffices that a
graph admits a nice ear decomposition and it satisfies the parity condition.

For leapfrog fullerene graphs on n = 12k vertices the same method can be
used to find exponentially many Hamilton paths.

The real interesting open question is whether all fullerene graphs have ex-
ponentially many Hamilton cycles.

On the other hand, there are infinite series of 3-connected cubic planar
graphs with faces of size at most six which only have a constant number of
Hamilton cycles: Since the ∆-Y -operation (replacement of a vertex by a tri-
angle) conserves the number of Hamilton cycles, it suffices to consider graphs
obtained from K4 (the tetrahedron) by applying this operation repeatedly.
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