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SIGNED ANALOGUE OF LINE GRAPHS AND THEIR

SMALLEST EIGENVALUES

ALEXANDER L. GAVRILYUK, AKIHIRO MUNEMASA, YOSHIO SANO,
AND TETSUJI TANIGUCHI

Abstract. In this paper, we show that every connected signed
graph with smallest eigenvalue strictly greater than −2 and large
enough minimum degree is switching equivalent to a complete
graph. This is a signed analogue of a theorem of Hoffman. The
proof is based on what we call Hoffman’s limit theorem which we
formulate for Hermitian matrices, and also the extension of the
concept of Hoffman graph and line graph for the setting of signed
graphs.

1. Introduction

Let G be a simple graph with the vertices-versus-edges incidence
(0, 1)-matrix N . It is well known that the line graph L(G) of G, whose
vertices are the edges of G with two edges being adjacent whenever
they are incident, has adjacency matrix

A(L(G)) = N⊤N − 2I|E(G)|,

and hence its smallest eigenvalue λmin is at least −2. Although this
property is not exclusive, a theorem of Cameron, Goethals, Shult, and
Seidel [4], which is one of the most beautiful results in algebraic graph
theory, classifies connected graphs having λmin ≥ −2. Namely, such a
graph L on at least 37 vertices must be a generalized line graph in the
sense that its adjacency matrix satisfies

A(L) = N⊤N − 2I,

for some (0,±1)-matrix N . (A combinatorial definition of generalized
line graphs can be found in [7].) The proof relies on the classification
of root systems in Euclidean space [4].
Another approach, which sheds light on the structure of graphs with

λmin ≥ −2, was developed by Hoffman [7]. It is based on Ramsey’s
theorem and a special class of vertex-colored graphs, which are called
Hoffman graphs by Woo and Neumaier [16]. Hoffman’s results not only
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show that graphs with λmin ≥ −2 and on sufficiently large number of
vertices are generalized line graphs, but also establish the existence of
some limit points of the smallest eigenvalues of a sequence of graphs G
with increasing minimum degree δ(G).

Theorem 1.1 ([7]). There exists an integer valued function h defined
on the half-open interval (−1−

√
2,−1], such that

(1) for each λ ∈ (−2,−1], if G is a connected graph with λmin(G) ≥
λ and δ(G) ≥ h(λ), then G is a clique and λmin(G) = −1;

(2) for each λ ∈ (−1 −
√
2,−2], if G is a connected graph with

λmin(G) ≥ λ and δ(G) ≥ h(λ), then G is a generalized line
graph and λmin(G) = −2.

This means that the intervals (−2,−1) and (−1−
√
2,−2) are ignor-

able if our concern is the smallest eigenvalues of graphs with sufficiently
large minimum degree. Note that Hoffman [7] stated this theorem in a
slightly weaker manner, but his proof shows that the above statement
is valid (see [16, Theorem 5.5 and Remark 5.6]).
As a tool for the proof of Theorem 1.1, Hoffman showed what we

would call Hoffman’s limit theorem (sometimes attributed to Ostrowski
and Hoffman due to their unpublished work; see [8]). A very terse proof
of this theorem was given by Hoffman in [9, Lemma 2.2] (see also [10,
Theorem 2.14]).
Signed graphs can be thought of as simple graphs whose edges get

labels from the set {+1,−1}. A natural extension of (0, 1)-matrices as-
sociated with graphs to (0,±1)-matrices allows to study the spectra of
signed graphs. The spectral theory of signed graphs has received much
attention recently [1], in particular, Problem 3.17 from [1] suggests to
extend the so-called Hoffman theory, including the above-mentioned
Theorem 1.1, to signed graphs.
In this paper, we first provide a detailed proof of a slightly generalized

version of Hoffman’s limit theorem (see Theorem 3.6), which is then
used to show our main result: an analogue of Part (1) of Theorem 1.1
for signed graphs (see Section 2 for precise definitions).

Theorem 1.2. There exists an integer valued function f defined on
the half-open interval (−2,−1] such that, for each λ ∈ (−2,−1], if a
connected signed graph S satisfies λmin(S) ≥ λ, and δ(S) ≥ f(λ), then
S is switching equivalent to a complete graph (and hence λmin(S) =
−1).

Note that the proof of Theorem 1.1 in [7] uses Ramsey’s theorem,
which produces astronomical estimates for h(λ). In proving Theo-
rem 1.2 in Section 4, we introduce the notion of signed Hoffman graphs,
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and then involve a structural classification of signed graphs with small-
est eigenvalue greater than −2 from [6], which in turn relies on the root
systems. This enables one to obtain close to tight estimates for f(λ).
In Section 5, we consider a signed analogue of generalized line graphs.

It would be interesting to see whether an analogue of Part (2) of The-
orem 1.1 can be shown. Note that Woo and Neumaier [16] went on
further to extend Hoffman’s ideas to graphs with smallest eigenvalue
at least α, where α ≈ −2.4812 is a zero of the cubic polynomial
x3+2x2−2x−2. Finally, Koolen, Yang and Yang [12] recently proved
a version of Theorem 1.1 for simple graphs with smallest eigenvalue at
least −3.

2. Preliminaries

A signed graph S is a triple (V,E+, E−) of a set V of vertices, a set
E+ of 2-subsets of V (called (+)-edges, or positive edges), and a set
E− of 2-subsets of V (called (−)-edges, or negative edges) such that
E+ ∩E− = ∅. A signed graph in which E− = ∅ is called an unsigned

graph or simply, a graph.
Let S be a signed graph. We denote the set of vertices of S by

V (S), the set of (+)-edges of S by E+(S), and the set of (−)-edges
of S by E−(S). By a subgraph S ′ = (V (S ′), E+(S ′), E−(S ′)) of S
we mean a vertex induced signed subgraph, i.e., V (S ′) ⊆ V (S) and
E±(S ′) = {{x, y} ∈ E±(S) | x, y ∈ V (S ′)}. If S ′ is a subgraph of S,
then we say that S contains S ′. The underlying graph U(S) of S is
the unsigned graph (V (S), E+(S) ∪ E−(S)). The minimum degree

δ(S) of S is defined to be the minimum degree of U(S). The signed
graph S is connected if U(S) is connected.
Two signed graphs S and S ′ are said to be isomorphic if there

exists a bijection φ : V (S) → V (S ′) such that {u, v} ∈ E+(S) if and
only if {φ(u), φ(v)} ∈ E+(S ′) and that {u, v} ∈ E−(S) if and only if
{φ(u), φ(v)} ∈ E−(S ′). For a signed graph S, we define its adjacency
matrix A(S) by

(A(S))uv =











1 if {u, v} ∈ E+(S),

−1 if {u, v} ∈ E−(S),

0 otherwise.

The eigenvalues of S are defined to be those of A(S).
A switching at a vertex v is the process of swapping the signs of

each edge incident to v. Two signed graphs S and S ′ are said to be
switching equivalent if there exists a subset W ⊆ V (S) such that S ′

is isomorphic to the graph obtained by switching at each vertex in W .
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Note that switching equivalent signed graphs have the same multiset
of eigenvalues.
Let S be a signed graph with smallest eigenvalue at least −2. A

representation of S is a mapping φ from V (S) to Rn for some positive
integer n such that (φ(u), φ(v)) = ±1 if {u, v} ∈ E±(S) respectively,
and (φ(u), φ(v)) = 2δu,v otherwise, where δu,v is Kronecker’s delta, i.e.,
δu,v = 1 if u = v and δu,v = 0 if u 6= v. Since A(S) + 2I is positive
semidefinite, it is the Gram matrix of a set of vectors x1, . . . ,xm. These
vectors satisfy (xi,xi) = 2 and (xi,xj) = 0,±1 for i 6= j. Sets of vectors
satisfying these conditions determine line systems. We denote by [x]
the line determined by a nonzero vector x, in other words, [x] is the
one-dimensional subspace spanned by x. We say that S is represented
by the line system S if S has a representation φ such that S = {[φ(v)] :
v ∈ V (S)}.
Below we give descriptions of three line systems, An, Dn and E8. Let

e1, . . . , en be an orthonormal basis for Rn.

An = {[ei − ej ] : 1 ≤ i < j ≤ n + 1} (n ≥ 1),

Dn = An−1 ∪ {[ei + ej] : 1 ≤ i < j ≤ n} (n ≥ 4),

E8 = D8 ∪
{

[
1

2

8
∑

i=1

ǫiei] : ǫi ∈ {±1},
8
∏

i=1

ǫi = 1

}

.

These line systems are used in the following classical result of Cameron,
Goethals, Shult, and Seidel.

Theorem 2.1 ([4]). Let G be a connected graph with λmin(G) ≥ −2.
Then G is represented by a subset of either Dn or E8.

Let S be a signed graph represented by a line system S. If S can be
embedded into Z

n for some n, then we say that S is integrally repre-

sented or that S has an integral representation. By Theorem 2.1,
for a signed graph S with λ1(S) ≥ −2, G has an integral representation
if and only if S is represented by a subset of Dn for some n. Let S be
a connected signed graph with λ1(S) ≥ −2. We call S exceptional

if it does not have an integral representation. Clearly there are only
finitely many exceptional signed graphs.
Let S be a signed graph with smallest eigenvalue greater than −2.

Assume that S has an integral representation φ in Rn. This means
that, with m = |V (S)|, there exists an n×m matrix

M =
(

v1 · · · vm

)

,

with entries in Z, such that (vi,vj) = ±1 if {i, j} ∈ E±(S) respectively,
and (vi,vj) = 2δi,j otherwise. We may assume that M has no rows
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consisting only of zeros. Since vi ∈ Zn, vi has two entries equal to ±1,
and all other entries 0. Let H be the graph with vertex set {1, . . . , n},
where vertices i and j are joined by the edge k whenever vk has ±1 in
its ith and jth positions. Note that the graph H may have multiple
edges. A graph without multiple edges is called simple. We call H
the representation graph of S associated with the representation φ.
Note that H has no isolated vertex. If S is connected, then so is H .
Let S be an m-vertex connected signed graph having an integral

representation φ and smallest eigenvalue greater than −2. LetH be the
n-vertex representation graph of S associated with the representation
φ. Then by [6, Lemma 5], we have n ∈ {m,m + 1}. Moreover, if
n = m, then H is a unicyclic graph or a tree with a double edge and if
n = m+ 1, then H is a tree.
For a simple graph H , we denote by L(H) the line graph of H . If u

and v are adjacent vertices in a graph, then we denote the edge {u, v}
by uv for brevity.
Let H be a unicyclic graph whose unique cycle C has at least 4

vertices and let G = L(H). Then for each edge e of G there exists a
unique maximal clique that contains e. For such a graph G, we denote
by CG(e) the unique maximal clique of G containing the edge e. Let
uu′ be an edge of L(C). Define L†(H, uu′) to be the signed graph
(V,E+, E−), where V = V (L(H)),

E− =
{

uv ∈ E(L(H)) | v ∈ CL(H)(uu
′)
}

and E+ = E(L(H))\E−. Observe that, for all edges uu′ and vv′ of
L(C), the graph L†(H, uu′) is switching equivalent to L†(H, vv′).
Let H be a tree with a double edge u and u′, and let H ′ = H−u′ be

the simple tree obtained from H by removing u′. We define L(H) to
be the signed graph obtained from the line graph L(H ′) by attaching
a new vertex u′, and join u′ by (+)-edges to every vertex of a clique
in the neighborhood of u, (−)-edges to every vertex of the other clique
in the neighborhood of u. Note that there are two different ways to
assign signs to edges from u′, but the resulting two signed graphs are
switching equivalent.

Theorem 2.2 ([6, Theorem 6]). Let S be a connected integrally rep-
resented signed graph having smallest eigenvalue greater than −2. Let
H be the representation graph of S for some integral representation.
Then one of the following statements holds:

(i) H is a simple tree, and S is switching equivalent to the line
graph L(H),
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(ii) H is unicyclic with an odd cycle, and S is switching equivalent
to the line graph L(H),

(iii) H is unicyclic with an even cycle C, and S is switching equiv-
alent to L†(H, uu′) where uu′ is an edge of L(C).

(iv) H is a tree with a double edge, and S is switching equivalent
to L(H).

Conversely, if S is a signed graph described by (i)–(iv) above, then S
is integrally represented and has smallest eigenvalue greater than −2.

Corollary 2.3. Let S be a connected integrally represented signed graph
having smallest eigenvalue greater than −2. Then there exists a tree
H such that L(H) is switching equivalent to S with possibly one vertex
removed.

Proof. The assertion is clear if Theorem 2.2(i) holds. For the case (ii) of
Theorem 2.2, let e be an edge of H contained in the unique cycle of H .
Regarding e as a vertex of L(H), we have L(H)− e = L(H − e). Since
S is switching equivalent to L(H), L(H)− e = L(H − e) is switching
equivalent to S with one vertex removed. Since H − e is a tree, the
assertion holds.
For the case (iii) of Theorem 2.2, we proceed in a similar manner.

Since L†(H, uu′)−u has no (−)-edge, we have L†(H, uu′)−u = L(H−
u), which is the line graph of a tree. Since S is switching equivalent
to L†(H, uu′), L(H − u) is switching equivalent to S with one vertex
removed.
Finally, for the case (iv) of Theorem 2.2, letH be a tree with a double

edge u and u′. Then L(H)− u′ = L(H − u′) by construction. Since S
is switching equivalent to L(H), L(H − u′) is switching equivalent to
S with one vertex removed. Since H−u′ is a simple tree, the assertion
holds. �

3. Hoffman’s limit theorem

For z ∈ C and ε > 0, we define

D(z; ε) = {w ∈ C | |w − z| < ε}.
By a polynomial, we mean a polynomial with coefficients in C.

Lemma 3.1. Let (fn(z))n∈N be a sequence of polynomials of bounded
degree. Suppose that this sequence converges to a nonzero polynomial
f(z) coefficient-wise. Then the following statements are equivalent for
ζ ∈ C.

(i) f(ζ) = 0,
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(ii) for every ε > 0, there exists n0(ε) ∈ N such that

(1) ∀n > n0(ε), {z ∈ D(ζ ; ε) | fn(z) = 0} 6= ∅.
Proof. Since {z ∈ C | f(z) = 0} is finite, there exists ε0 > 0 such that

D(ζ, ε0) ∩ {z ∈ C | f(z) = 0} ⊆ {ζ}.
For ε ∈ (0, ε0], define

cε = min{|f(z)| | z ∈ C, |z − ζ | = ε}.
Then cε > 0, and hence there exists m0(ε) ∈ N such that

∀n > m0(ε), max{|fn(z)− f(z)| | z ∈ C, |z − ζ | = ε} < cε.

This implies that, for n > m0(ε), |fn(z) − f(z)| < |f(z)| for z ∈ C,
|z − ζ | = ε. By Rouché’s theorem [13, Theorem 1.3.7], we have, as
multisets,
(2)
∀n > m0(ε), |{z ∈ D(ζ, ε) | f(z) = 0}| = |{z ∈ D(ζ, ε) | fn(z) = 0}|.
(i)⇒(ii). Let ε > 0. Define n0(ε) = m0(min{ε, ε0}), and let n >

n0(ε). Since ζ ∈ {z ∈ D(ζ, ε) | f(z) = 0}, the left-hand side of (2) is
nonzero. Thus {z ∈ D(ζ, ε) | fn(z) = 0} 6= ∅. This proves (1).
(ii)⇒(i). Let ε ∈ (0, ε0]. Then for n > max{m0(ε), n0(ε)}, (1) and

(2) imply
D(ζ ; ε) ∩ {z ∈ C | f(z) = 0} 6= ∅.

Since ε ∈ (0, ε0] was arbitrary, we conclude f(ζ) = 0. �

Lemma 3.2. Let (fn(z))n∈N be a sequence of real-rooted polynomials
of bounded degree. Suppose that this sequence converges to a nonzero
real-rooted polynomial f(z) coefficient-wise, and the limit

δ = lim
n→∞

min{x ∈ R | fn(x) = 0}

exists. Then f(x) has a real root and

δ = min{x ∈ R | f(x) = 0}.
Proof. By Lemma 3.1(ii)⇒(i), we obtain f(δ) = 0. Suppose ζ < δ and
f(ζ) = 0. Then by Lemma 3.1(i)⇒(ii), there exists n0 ∈ N such that

∀n > n0, {x ∈ D(ζ ; (δ − ζ)/2) | fn(x) = 0} 6= ∅.
Since fn(z) are real-rooted, this implies

∀n > n0, ∃x <
ζ + δ

2
, fn(x) = 0.

Thus, we obtain

lim
n→∞

min{x ∈ R | fn(x) = 0} ≤ ζ + δ

2
< δ,
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which contradicts the assumption. �

Lemma 3.3. Let

g(t, z) = h(z)tN +
N−1
∑

i=0

hi(z)t
i ∈ C[t, z]

be a polynomial, where h(z) is a nonzero real-rooted polynomial. Sup-
pose that the sequence (g(t, z))t∈N of polynomials in z satisfies the fol-
lowing conditions:

(i) g(t, z) is real-rooted for all t ∈ N,
(ii) δ = limt→∞min{x ∈ R | g(t, x) = 0} exists.

Then
δ = min{x ∈ R | h(x) = 0}.

Proof. Let

ft(z) =
1

tN
g(t, z) = h(z) +

N−1
∑

i=0

hi(z)t
i−N (t ∈ N).

Then (ft(z))t∈N is a sequence of real-rooted polynomials of bounded
degree, and it converges to h(z) coefficient-wise. The result follows
from Lemma 3.2. �

Lemma 3.4 ([18, Lemma 3.32]). Let

Ã =

[

A B
B∗ D

]

be a Hermitian matrix, and suppose D is positive definite. Then Ã is
positive semidefinite if and only if A−BD−1B∗ is positive semidefinite.

Lemma 3.5. Let s ≥
√
2, and let L ∈ Mm×n(C). Let D ∈ Mn(C) be

a positive definite Hermitian matrix. If ℓ is the largest eigenvalue of
L∗L, then

λmin

([

0 sL
sL∗ (s2 − 1)D

])

> −2ℓ.

Proof. Let λ1 denote the left-hand side. If L = 0, then the inequality
holds trivially, so assume L 6= 0. Then the matrix in question contains
a 2× 2 matrix with negative determinant. Thus λ1 < 0. Let µ1 be the
smallest eigenvalue of D. For λ < 0, Lemma 3.4 implies

[

−λI sL
sL∗ (s2 − 1− λ)D

]

� 0 ⇐⇒ (s2 − 1− λ)D +
s2

λ
L∗L � 0

⇐⇒ 0 � s2L∗L+ λ(s2 − 1− λ)D

⇐⇒ 0 ≥ ℓs2 + λ(s2 − 1− λ)µ1
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⇐⇒ λ2 − (s2 − 1)λ− ℓs2

µ1
≥ 0.

Thus

λ1 = max{λ ∈ R | λ < 0,

[

−λI sL
sL∗ (s2 − 1− λ)I

]

� 0}

= max{λ ∈ R | λ < 0, λ2 − (s2 − 1)λ− ℓs2

µ1
≥ 0}

=
s2 − 1−

√

(s2 − 1)2 + 4ℓs2/µ1

2

= − 2ℓs2

s2 − 1 +
√

(s2 − 1)2 + 4ℓs2/µ1

> − 2ℓs2

s2 − 1 +
√

(s2 − 1)2

= − ℓs2

s2 − 1
≥ −2ℓ,

since s2 ≥ 2. �

Theorem 3.6. Let A ∈ Mm(C) and D ∈ Mn(C) be Hermitian matri-
ces, L ∈ Mm×n(C). Assume D is positive definite. For t ∈ N, denote
by 1t the row vector of dimension t all of whose entries are 1, and
define

(3) At =

[

A L⊗ 1t

L∗ ⊗ 1⊤
t D ⊗ (Jt − It)

]

.

Then

lim
t→∞

λmin(At) = λmin(A− LD−1L∗).

Proof. Clearly, At is a principal submatrix of At+1. Thus

λmin(At) ≥ λmin(At+1).

Next we show that the sequence (λmin(At))t∈N is bounded from below.
Indeed, let

(4) g(t, z) = det

[

A− zI tL
L∗ (t− 1)D − zI

]

∈ C[t, z].

Since

g(t, z) = det

([

A
√
tL√

tL∗ (t− 1)D

]

− zI

)

,
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the univariate polynomial g(t, z) in z is real-rooted for all t ∈ N. For
t ≥ 2, we have

min{λ ∈ R | g(t, λ) = 0} = λmin

([

A
√
tL√

tL∗ (t− 1)D

])

≥ λmin(A) + λmin

([

0
√
tL√

tL∗ (t− 1)D

])

> λmin(A)− 2ℓ (by Lemma 3.5),(5)

where ℓ denotes the largest eigenvalue of L∗L. Let µ1 be the smallest
eigenvalue of D. By the assumption, we have µ1 > 0. Using the block
decomposition (3) (see [3, Sect. 2.3]), we obtain

λmin(At) = min

{

Spec

[

A tL
L∗ (t− 1)D

]

∪ Spec

[

A 0
0 D ⊗ (Jt − It)

]}

= min
{

min{λ ∈ R | g(t, λ) = 0}, λmin(A),−µ1
}

(by (4))

≥ min{λmin(A)− 2ℓ,−µ1} (by (5)).

Now, we have shown that the limit

δ = lim
t→∞

min{λ ∈ R | g(t, λ) = 0}

exists. Since

g(t, λ) = tn det

[

A− λI L
L∗ (1− 1

t
)D − λ

t
I

]

= det

[

A− λI L
L∗ D

]

tn +

n−1
∑

i=0

hi(z)t
i

for some polynomials hi(z), Lemma 3.3 implies

δ = min{λ ∈ R | det
[

A− λI L
L∗ D

]

= 0}

= min{λ ∈ R | det(A− λI − LD−1L∗) = 0}
= λmin(A− LD−1L∗).

�

Corollary 3.7 ([9, Lemma 2.2]). Let G be a simple graph with m
vertices, and let A be the adjacency matrix of G. Let L be an m × n
matrix with entries in {1,−1, 0}. For t ∈ N, define At by (3), where
D = In. Then

lim
t→∞

λmin(At) = λmin(A− LL∗).
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4. Proof of Theorem 1.2

Definition 4.1. AHoffman signed graph is a pair h = (H, µ) where
H = (V,E+, E−) is a signed graph with vertex set V and a labeling
map µ : V → {f, s}, satisfying the following conditions:

(i) every vertex with label f is adjacent to at least one vertex with
label s;

(ii) vertices with label f are pairwise non-adjacent.

We call a vertex with label s a slim vertex, and a vertex with label
f a fat vertex. We denote by Vs = Vs(h) (resp. Vf(h)) the set of
slim (resp. fat) vertices of h. If E− = ∅, then we call h an unsigned

Hoffman graph, or simply, a Hoffman graph.

For a Hoffman signed graph h, let A be its adjacency matrix,

(6) A =

[

As C
CT O

]

in a labeling in which the fat vertices come last. The signed graph with
adjacency matrix As is called the slim subgraph of h. Eigenvalues of
h are the eigenvalues of the real symmetric matrix B(h) = As−CCT . It
is easy to see that, if two Hoffman signed graph are switching equivalent
as signed graphs, then they have the same set of eigenvalues as Hoffman
signed graphs. Let λmin(h) denote the smallest eigenvalue of h.
For a Hoffman signed graph h and a positive integer t, we denote by

G(h, t) the signed graph obtained by replacing every fat vertex of h by
Kt consisting of (+)-edges.

Theorem 4.2. Let h = (H, µ) be a Hoffman signed graph. Then

lim
t→∞

λmin(G(h, t)) = λmin(h).

Proof. If the adjacency matrix of h is given by (6), then the adjacency
matrix of G(h, t) is (3), where D = I. Thus, the result is immediate
from Theorem 3.6. �

Following [16], let h1, h2, h3, h4 denote the (unsigned) Hoffman graph
defined in Fig. 1. Then λmin(h1) = −1, and λmin(hi) = −2 for i = 2, 3, 4.
For the remainder of this section, we fix a real number λ with −2 <

λ < −1. By Theorem 4.2, there exist n0 ∈ N such that

(7) λ > λmin(G(hi, n0)) (i = 2, 3, 4).

Lemma 4.3. Let S be a signed graph. If λmin(S) ≥ λ and S is switch-
ing equivalent to an unsigned graph G, then

G 6⊃ G(hi, n0) (i = 2, 3, 4).(8)
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h1 h2 h3 h4

Figure 1. The Hoffman graphs hi (i = 1, 2, 3, 4)

Proof. Since λmin(S) = λmin(G), the assertion is immediate from (7).
�

Lemma 4.4. Let S be a signed graph. If λ ≤ λmin(S) < −1 and S
is switching equivalent to the line graph L(H) of some connected graph
H, then δ(S) < 2n0.

Proof. Let G = L(H). Since λmin(S) < −1, S is not switching equiv-
alent to a complete graph. This implies that G is not complete, and
hence H is not a claw. Since H is not a claw, there exists an edge
x = {u, v} ∈ E(H) with degH(u), degH(v) > 1.
Suppose, to the contrary, that δ(S) ≥ 2n0. Then δ(G) ≥ 2n0, and

therefore degH(u) + degH(v) ≥ 2n0 + 2. If min{degH(u), degH(v)} ≥
n0+1, then NG(x) consists of two connected components each of which
contains Kn0

. This contradicts (8). Thus, we may assume without loss
of generality that degH(v) < n0 + 1. Then degH(u) > n0 + 1. Since
degH(v) > 1, there exists a vertex w ∈ NH(v) \ {u}. Let y denote
the edge {v, w}. Since degG(y) ≥ 2n0, we have degH(w) > n0 + 1.
This implies that the subgraph of G induced by {x, y}∪NG(x)∪NG(y)
contains G(h2, n0), contradicting (8). �

Proof of Theorem 1.2. Since there are only finitely many exceptional
graphs, there exists a positive integer d0 such that every exceptional
graph has minimum degree bounded by d0.
Recall that we have fixed λ ∈ (−2,−1). We define the value f(λ) of

the function f : (−2,−1) → R by

f(λ) = max{2n0, d0}+ 1.

Let S be a connected signed graph with λmin(S) ≥ λ and δ(S) ≥ f(λ).
Since δ(S) > d0, we see that S is not exceptional. This means that S is
integrally represented. By Corollary 2.3, there exists a tree H such that
L(H) is switching equivalent to S or S with one vertex removed. In
the former case, Lemma 4.4 implies that λmin(S) = −1, and hence S is
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switching equivalent to a complete graph. Suppose L(H) is switching
equivalent to S − u for some vertex u of S. Since λmin(S − u) ≥
λmin(S) ≥ λ and δ(S − u) ≥ δ(S) − 1 ≥ 2n0, Lemma 4.4 implies
that λmin(S − u) = −1, and hence S − u is switching equivalent to a
complete graph. Since δ(S) > d0, the vertex u has degree greater than
n1. If S is not switching equivalent to a complete graph, then there
exists a non-neighbor u′ of u in S. Then the subgraph induced on the
common neighbors of u, u′ together with u, u′ themselves has smallest
eigenvalue less than λ by (7). This implies λmin(S) < λ, contrary to
the assumption. Therefore, S is switching equivalent to a complete
graph. �

Lemma 4.5. Let S be an odd cycle with an odd number of (−)-edges.
Then S has smallest eigenvalue −2.

Proof. The signed graph S is switching equivalent to an odd cycle in
which all edges are (−)-edges. Since this is the negative of a 2-regular
graph, it has smallest eigenvalue −2. �

Lemma 4.6. Let S be a signed graph whose underlying graph U(S)
is complete. If λmin(S) ≥ −

√
2, then S is switching equivalent to a

complete graph.

Proof. After switching, we may assume that there exists a vertex x of
S such that all edges incident with x are positive. Since a triangle with
one negative edge has smallest eigenvalue −2 while λmin(S) ≥ −

√
2,

it follows that S cannot contain such a triangle. This implies that
all edges of S not containing x are positive. Therefore, S itself is a
complete graph. �

Proposition 4.7. Let S be a connected signed graph with smallest
eigenvalue greater than −

√
2. Then S is switching equivalent to a com-

plete graph.

Proof. If the underlying graph of S is not complete, then S contains a
signed 2-path, which has smallest eigenvalue −

√
2. This contradiction

shows that the underlying graph of S must be complete. The result
then follows from Lemma 4.6. �

As a consequence of Proposition 4.7, the values of the function f
in Theorem 1.2 on the interval (−

√
2,−1) can be arbitrary, since the

conclusion of Theorem 1.2 holds for λ ∈ (−
√
2,−1) without any as-

sumption on the minimum degree δ(S).
A natural question is to determine the smallest possible value of

f(−
√
2) so that δ(S) ≥ f(−

√
2) and λmin(S) ≥ −

√
2 implies that S is
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switching equivalent to a complete graph. In addition to the 2-path,
there is another signed graph with smallest eigenvalue −

√
2, namely, a

4-cycle with one (−)-edge. It has adjacency matrix

A =









0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 1 0









,

and we have A2 = 2I. Its underlying graph is regular of valency 2. So
we must take f(−

√
2) > 2 to exclude this graph. In fact, f(−

√
2) = 3

does give the correct conclusion.

Proposition 4.8. If S is a connected signed graph with λmin(S) ≥ −
√
2

and δ(S) ≥ 3, then S is switching equivalent to a complete graph (and
hence λmin(S) = −1).

Proof. We note first that it suffices to show that the underlying graph
U(S) of S is complete, by Lemma 4.6. Since S has minimum degree
at least 3, S must contain a cycle (since otherwise S is a tree, having
a leaf, meaning minimum degree is 1).
Suppose first S contains a triangle. If U(S) is a triangle, then U(S)

is a complete graph, so we are done by the first paragraph. Otherwise,
S has at least 4 vertices, so U(S) must contain a triangle with one
pendant edge attached, or K1,1,2. By Lemma 4.5, S can be switched
to contain one of the two graphs with all positive edges. The former
has smallest eigenvalue ≈ −1.48, the latter ≈ −1.56, both are strictly
less than −

√
2. This is a contradiction. Thus S has no triangle, so S

contains a cycle of length at least 4. S cannot contain a cycle of length
at least 4 with all edges positive. So S contains a cycle of length at
least 4 with odd number of negative edges. If the length is odd, then
we get a contradiction by Lemma 4.5. So the length is even. If the
length is at least 6, then it contains a path with 5 vertices. A path
with 5 vertices has smallest eigenvalue −

√
3 < −

√
2, a contradiction.

So the only possible cycle is a 4-cycle with one negative edge. Since
δ(S) ≥ 3, S strictly contains a 4-cycle with one negative edge. As S
cannot contain a triangle with one pendant edge attached, or K1,1,2,

we see that S contains K1,3 with smallest eigenvalue −
√
3 < −

√
2, a

contradiction. �

In the original setting of Hoffman’s Theorem 1.1, a much easier ar-
gument than the above shows that we may define h(−

√
2) = 2.
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5. A signed analogue of generalized line graphs

Definition 5.1. Given a signed graph S = (V,E+, E−), the line

signed graph L(S) is the signed graph with vertex set E+ ∪E−, and
two distinct vertices are joined by a signed edge if they are incident
and the sign is the product of their signs.

The definition of line signed graph can be best understood in terms
of signed incidence matrix. The signed incidence matrix B of a
signed graph S = (V,E+, E−) is the matrix whose rows and columns
are indexed by V and E+∪E− respectively, such that its (i, e)-entry is
equal to the sign of e if i ∈ e, and otherwise 0. The adjacency matrix
of L(S) is then given by B⊤B − 2I. Note that for an unsigned graph
S, L(S) is nothing but the ordinary signed graph of the graph S.
Line signed graphs (or sometimes called signed line graphs) have been

considered in [2, 5], but our definition is different from those introduced
there. We list some properties of L(S) together with comments per-
taining to the corresponding properties of line graphs defined in [2, 5].
Note that, we denote by −S the negative of a signed graph S, which
is obtained by exchanging E+ and E− in S.

(i) If S is an unsigned graph, that is, E− = ∅, then L(S) coincides
with the ordinary line graph. This is not true in [2, 5]. Indeed,
L(S) is the line graph of −S in the sense of [2], while it is the
negative of the line graph of −S in the sense of [5].

(ii) The line signed graph L(S) has smallest eigenvalue at least −2.
This is true in [2] but not in [5].

(iii) The line signed graph L(S) is uniquely determined by S. This
is not true in [2, 5], where the signed line graphs depends on
the choice of an orientation, and defined only up to switching
equivalence.

(iv) If S and S ′ are switching equivalent, so are L(S) and L(S ′).
This is true in [2, 5].

To see the property (ii), recall that the adjacency matrix of L(S) is
given by B⊤B−2I, where B is the signed incidence matrix of S. Since
B⊤B is positive semidefinite, (ii) holds.
The property (iv) follows from a stronger claim that L(S) is switching

equivalent to the line graph of the underlying graph U(S) of S. To
see this, observe that every cycle in L(S) contains an even number of
(−)-edges, and then invoke [17, Prop. 3.2]. This stronger statement
indicates that spectral consideration on line signed graphs in our sense
reduces to that of line (unsigned) graphs. However, such a reduction
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will not occur in the generalization to follow (see Definition 5.3 and
comments after that).
Given a signed graph S = (V (S), E+(S), E−(S)), for convenience,

we denote by σ(e) the sign of an edge e ∈ E+(S)∪E−(S). We can con-
struct a Hoffman signed graph h = (H, µ), whereH = (V (H), E+(H), E−(H))
is a signed graph, as follows. Define

V (H) = V (S) ∪ E+(S) ∪ E−(S),

Eǫ(H) = {{i, e} | i ∈ V (S), e ∈ Eǫ(S), i ∈ e}
∪ {{e, e′} | e, e′ ∈ E+(S) ∪ E−(S), |e ∩ e′| = 1, σ(e)σ(e′) = ǫ},

where ǫ = ±1, and µ : V (H) → {f, s} by

µ(x) =

{

f if x ∈ V (S),

s otherwise.

Then the slim subgraph of H coincides with the line signed graph of S
defined in Definition 5.1. Note that every slim vertex of H has exactly
two fat neighbors, joined by edges of the same sign. In other words,
H is obtained by gluing Hoffman graphs h2 (see Figure 1) and h−−

2

(see Figure 2) appropriately. The adjacency of two slim vertices occurs
exactly when they have a fat neighbor in common, and the sign of the
edge connecting them is also determined by the sign of edges connecting
them to fat neighbors. This observation motivates the definitions to
follow.
Let h = (H, µ) be a Hoffman signed graph, where H = (V,E+, E−).

For a slim vertex x of h, the representing vector of x is the vector
ϕ(x) indexed by the set of fat vertices, defined by

ϕ(x)z =











1 if {x, z} ∈ E+,

−1 if {x, z} ∈ E−,

0 otherwise.

If the Hoffman signed graph h = (H, µ) is obtained from a signed graph
S as above, then for two distinct slim vertices x and y of H , the sign of
the edge {x, y} is the inner product (ϕ(x), ϕ(y)). We will axiomatize
this to define decompositions of Hoffman signed graph. Note that this
concept has already been considered by Woo and Neumaier [16] for
unsigned Hoffman graphs.
For a vertex x of h we define Nf (x) = Nf

h (x) (resp. N
s(x) = N s

h (x))
the set of fat (resp. slim) neighbors of x in h. The set of all neighbors
of x is denoted by N(x) = Nh(x), that is N(x) = Nf (x) ∪N s(x). In a



SIGNED ANALOGUE OF LINE GRAPHS 17

similar fashion, for vertices x and y we define Nf (x, y) = Nf
h (x, y) to

be the set of common fat neighbors of x and y.
A decomposition of a Hoffman signed graph h is a family {hi}ni=1

of non-empty induced Hoffman subgraphs of h satisfying the following
conditions:

(i) V (h) =
⋃n

i=1 V (hi);
(ii) V s(hi) ∩ V s(hj) = ∅ if i 6= j;

(iii) For each x ∈ V s(hi), Nf
h (x) ⊆ V f (hi)

(iv) If x ∈ V s(hi), y ∈ V s(hj), and i 6= j, the inner product
(ϕ(x), ϕ(y)) is 1,−1, 0, according as {x, y} is a (+)-edge, (−)-
edge, or non-edge.

A Hoffman signed graph h is said to be decomposable if h has a
decomposition {hi}ni=1 with n ≥ 2, and h is said to be indecomposable

if h is not decomposable.

Definition 5.2. Two Hoffman signed graphs h and h′ are switching

equivalent if h′ can be obtained from h by switching with respect to
a subset of slim vertices of h.

For example, h2 is switching equivalent to h−−
2 , but not to h−2 .

Definition 5.3. Let H be a family of switching classes of Hoffman
signed graphs. An H-line signed graph is an induced Hoffman sub-
graph of a Hoffman signed graph which has a decomposition {hi}ni=1

such that the switching class of hi belongs to H for all i = 1, . . . , n.

It is clear from the definition that the line signed graphs are precisely
the slim subgraphs of a Hoffman signed graph which admits a decom-
position all of whose components are isomorphic to h2 or h−−

2 . Since
h−−
2 is switching equivalent to h2, this means that every line signed

graph is an H-line signed graph, where H is the singleton set consist-
ing of the switching class of h2. This is precisely the stronger claim
mentioned in the proof of the property (iv) of line signed graphs.
We note that, however, some H-line signed graph are not switching

equivalent to an unsigned graph for some other family H. For, let h

be the Hoffman graph with one fat vertex having two slim neighbors
connected by a (−)-edge, where the edges connecting the fat vertex
and slim vertices are (+)-edges. Let H = {[h1], [h]} (see Fig. 1 for
the definition of h1). Then the slim graph of an H-line signed graph
obtained by identifying the fat vertices of h1 and h is the triangle with
only one (−)-edge. Thus, it is not switching equivalent to an unsigned
graph.
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Figure 2. The Hoffman signed graphs h−2 , h
−−
2

Proposition 5.4. Let H consist of three switching classes [h2], [h
−
2 ], [h3].

Then every H-line signed graph is switching equivalent to an {[h2], [h−2 ]}-
line signed graph.

Proof. Suppose that a signed Hoffman graph h is an H-line signed
graph. If a decomposition of h contains a summand hi which is switch-
ing equivalent to h3, then we may apply switching with respect to one
or both of slim vertices of hi to make hi isomorphic to h3. Having done
this, we can add a new common fat neighbor to the two slim vertices
of hi, where one of the edge connecting a slim vertex to the new fat
neighbor is a (−)-edge, the other is a (+)-edge. Doing this process for
each summand isomorphic to h3, we can convert h3 to the sum of h2
and h−2 . �

The conclusion of Proposition 5.4 cannot be changed to claim the
switching equivalence to an {[h2], [h3]}-line signed graph, or to an {[h−2 ], [h3]}-
line signed graph. Indeed, a triangle consisting of three (−)-edges is
an {[h−2 ]}-line singed graph which is not switching equivalent to an
{[h2], [h3]}-line signed graph, and a pentagon consisting of five (+)-
edges is an {[h2]}-line singed graph which is not switching equivalent
to an {[h−2 ], [h3]}-line signed graph.
The meaning of Proposition 5.4 for unsigned slim graphs is as follows.

If G is an unsigned slim graph which is an {[h2], [h−2 ], [h3]}-line signed
graph, then it is an {[h2], [h3]}-line graph, and hence a generalized line
graph by [16, Example 2.1]. Generalized line graphs are also known [4]
as graphs represented by the root system

D∞ = {±ei ± ej | 1 ≤ i < j < ∞}.

This fact becomes transparent by Proposition 5.4 since clearly, {[h2], [h−2 ]}-
line signed graphs are precisely the graphs represented by D∞, in terms
of representing vectors. Such a representation shows that every slim
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{[h2], [h−2 ]}-line signed graph has smallest eigenvalue at least −2. Alter-
natively, this is a consequence of the following proposition which gen-
eralizes the more general fact about decomposition of Hoffman signed
graphs.

Proposition 5.5. Suppose a Hoffman signed graph h has a decompo-
sition {hi}ni=1. Let

A =

[

As C
CT O

]

and Ai =

[

A
(i)
s Ci

CT
i O

]

be the adjacency matrices of h and hi in a labeling in which the fat

vertices come last. Then As−CCT is the direct sum of matrices A
(i)
s −

CiC
T
i for i = 1, . . . , n. In particular,

λmin(h) = min{λmin(h
i) | 1 ≤ i ≤ n}.

Proof. Let x ∈ V s(hi), y ∈ V s(hj). Suppose i 6= j. Then by the
condition (iv) of decomposition, the (x, y)-entry of As coincides with
the inner product (ϕ(x), ϕ(y)) which is the (x, y)-entry of CCT . Thus
the (x, y)-entry of As−CCT is 0, which is the same as the corresponding
entry of the diagonal join.
Suppose i = j. Since hi is an induced subgraph of h, the submatrix

of As corresponding to the V s(hi) is exactly A
(i)
s . By the condition

(iii) of decomposition, ϕ(x) has support contained in V f(hi). Thus,
the inner product (ϕ(x), ϕ(y)) coincides with the (x, y)-entry of CiC

T
i .

Therefore, the (x, y)-entry of As−CCT is the same as the corresponding

entry of A
(i)
s − CiC

T
i . �
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