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Abstract

An antimagic labeling of a directed graph D with n vertices and m arcs is a bi-
jection from the set of arcs of D to the integers {1, · · · ,m} such that all n oriented
vertex sums are pairwise distinct, where an oriented vertex sum is the sum of labels
of all arcs entering that vertex minus the sum of labels of all arcs leaving it. A graph
G has an antimagic orientation if it has an orientation which admits an antimagic la-
beling. Hefetz, Mütze, and Schwartz conjectured that every connected graph admits
an antimagic orientation. In this paper, we show that every bipartite graph without
both isolated and degree 2 vertices admits an antimagic orientation and every graph G
with δ(G) ≥ 33 admits an antimagic orientation. Our proof relies on a newly developed
structural property of bipartite graphs, which might be of independent interest.

Keywords: Labeling; Antimagic labeling; Antimagic orientation; Matching

1 Introduction

All graphs considered are simple and finite unless otherwise stated. For two integers p, q,
[p, q] := {p, p+1 . . . , q} if q ≥ p, and [p, q] := ∅ if q < p. A labeling of a graph G withm edges
is a bijection from E(G) to a set S of m integers, and the vertex sum at a vertex v ∈ V (G)
is the sum of labels on the edges incident to v. A labeling is antimagic if S = [1,m] and all
the vertex sums are distinct. A graph is antimagic if it has an antimagic labeling.

Hartsfield and Ringel [7] introduced antimagic labelings in 1990 and conjectured that ev-
ery connected graph other than K2 is antimagic. There have been some significant progress
towards this conjecture. Let G be a graph with n vertices other than K2. In 2004, Alon,
Kaplan, Lev, Roditty, and Yuster [1] showed that there exists a constant c such that if
G has minimum degree at least c · log n, then G is antimagic. They also proved that G
is antimagic when the maximum degree of G is at least n − 2, and they proved that all
complete multipartite graphs (other than K2) are antimagic. The latter result of Alon et
al. was improved by Yilma [18] in 2013.

Apart from the results above on dense graphs, the antimagic labeling conjecture has
been also verified for regular graphs. Started with Cranston [4] showing that every bipartite
regular graph is antimagic, regular graphs of odd degree [5], and finally all regular graphs [2,
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3] were shown to be antimatic sequentially. For more results on the antimagic labeling
conjecture for other classes of graphs, see [6, 8, 10, 11].

Hefetz, Mütze, and Schwartz [9] introduced the variation of antimagic labelings, i.e.,
antimagic labelings on directed graphs. An antimagic labeling of a directed graph with m
arcs is a bijection from the set of arcs to the integers {1, ...,m} such that any two oriented
vertex sums are pairwise distinct, where an oriented vertex sum is the sum of labels of
all arcs entering that vertex minus the sum of labels of all arcs leaving it. A digraph is
called antimagic if it admits an antimagic labeling. For an undirected graph G, if it has
an orientation such that the orientation is antimagic, then we say G admits an antimagic
orientation. Hefetz, Mütze, and Schwartz in the same paper posted the following problems.

Question 1 ([9]). Is every connected directed graph with at least 4 vertices antimagic?

Conjecture 2 ([9]). Every connected graph admits an antimagic orientation.

Hefetz, Mütze, and Schwartz [9] showed that every orientation of a dense graph is
antimagic and almost all regular graphs have an antimagic orientation. Particulary, they
showed that every orientation of stars (other than K1,2), wheels, and complete graphs (other
than K3) is antimagic. Conjecture 2 has been also verified for regular graphs [9, 12, 14, 16],
biregular bipartite graphs with minimum degree at least two [13], Halin graphs [19], graphs
with large maximum degree [17], and graphs with large independence number [15]. In this
paper, by supporting Conjecture 2, we obtain the results below.

Theorem 3. Every bipartite graph with no vertex of degree 0 or 2 admits an antimagic
orientation.

Theorem 4. Every graph G with δ(G) ≥ 33 admits an antimagic orientation.

The remainder of this paper is organized as follows. We introduce several preliminary
results in Section 2. In Section 3, we prove Theorem 3, and in Section 4, we prove Theorem 4.

2 Notation and Preliminary Lemmas

Let G be a graph. We use e(G) for |E(G)|. For S ⊆ V (G), G[S] is the subgraph of G
induced by S. For two disjoint subsets S, T ⊆ V (G), we denote by EG(S, T ) the set of
edges in G with one endvertex in S and the other in T , and let eG(S, T ) = |EG(S, T )|. If G
is bipartite with partite sets X and Y , we denote G by G[X,Y ] to emphasis the bipartitions.
Given an orientation D of G, a labeling σ on A(D) that is the set of arcs of D, and a vertex
v ∈ V (D), we use s[D,σ](v) to denote the oriented sum at v in D, which is the sum of labels
of all arcs entering v minus the sum of labels of all arcs leaving it in the digraph D.

For a matching M of G, we use V (M) to denote the set of vertices saturated by M .
For a vertex x ∈ V (M), M(x) is the vertex that is matched to x in M . For each subset
X ⊆ V (M), if X is an independent set in M , then M(X) is the set of of vertices that are
matched to vertices from X in M . By this definition, |X| = |M(X)| and X and M(X) are
disjoint. An M -augmenting path is a path whose edges are alternating between edges in
M and edges not in M and with both endpoints being not saturated by M .

A trail is an alternating sequence of vertices and edges v0e1v1 . . . etvt such that vi−1 and
vi are the endvertices of ei, for each i ∈ [1, t], and the edges are all distinct (but there might
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be repetitions among the vertices). A trail is closed if v0 = vt, and is open otherwise. An
Euler tour of G is a closed trail in G that contains all the edges of G. We will need the
following classic result of Euler in proving a lemma later on.

Theorem 5 (Euler, 1736). A mutigraph G has an Euler tour if and only if G has at most
one nontrivial component and every vertex of G has an even degree.

Lemma 6 ( [11]). Let t, n be integers with t ≥ 1 and n ≥ 2, and let n = r1 + . . . + rt
be a partition of n, where ri is an integer that is at least 2 for each i ∈ [1, t]. Then the
set {1, . . . , n} can be partitioned into pairwise disjoint subsets R1, . . . , Rt such that for each
i ∈ [1, t], |Ri| = ri and

∑

r∈Ri
r ≡ 0 (mod n+ 1) if n is even, and

∑

r∈Ri
r ≡ 0 (mod n) if

n is odd.

The following result was proved in [15] without the furthermore part. However, the
furthermore part is easy to obtain by following the same proof of Lemma 2.2 in [15] by just
letting vertices in T to be not the endvertices of the edge-disjoint trails that decompose
E(G), which can be definitely guaranteed by the conditions imposed on T . So we omit the
proof.

Lemma 7. Let p,m be integers with with p ≥ 0,m ≥ 1, and let G be a graph with m edges.
Then there exist an orientation D of G and a bijections σ : A(D) → {p + 1, . . . , p + m}
such that for each v ∈ V (G),

−(p+m) +
⌊dG(v)− 1

2

⌋

≤ s[D,σ](v) ≤
⌊dG(v)− 1

2

⌋

+ (p+m).

Furthermore, for T ⊆ V (G) and each v ∈ T , if dG(v) is even and NG(v) ∩ (V (G) \ T ) 6= ∅,

then we can choose σ so that s[D,σ](v) =
dG(v)

2 .

Lemma 8. Let p,m be integers with p ≥ 0 and m ≥ 1, and let G[S, T ] be a bipartite graph
with m edges such that every vertex from T has an even degree in G (so m is even). If
m ≡ 0 (mod 4), let δm = p +m; and if m ≡ 2 (mod 4), let δm = p +m + 1. Then there
exist an orientation D of G and a bijection σ : A(D) → {p+1, . . . , p+m− 1} ∪ {δm} such
that

s[D,σ](v) = −dG(v) for each v ∈ T , and

⌊dG(v)− 1

2

⌋

− δm ≤ s[D,σ](v) ≤
⌊dG(v)− 1

2

⌋

+ δm for each v ∈ S.

Proof. Suppose G has in total 2ℓ vertices of odd degree for some integer ℓ ≥ 0. We obtain
a new graph G∗ by pairing up these vertices into ℓ pairs, and for each pair, adding an edge
joining the two vertices. Note that G∗ = G if ℓ = 0.

Each component of G∗ has an Euler tour by Theorem 5. By deleting all the edges in
E(G∗) \E(G), we partition all edges of G into ℓ trails T1, T2, . . . , Tℓ (each Ti is either open
or closed). For each i ∈ [1, ℓ], let

Ti = xti−1+1eti−1+1yti−1+1fti−1+1xti−1+2 . . . yti−1fti−1xti ,
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where t0 = 0. Note that tm− 1 = m/2 and |E(Ti)| = 2(ti− 1− ti−1). Since for every v ∈ T ,
dG(v) is even, we can further assume that in each Ti, for each j ∈ [ti−1 + 1, ti],

xj ∈ S and yj ∈ T.

Also by the construction of Ti’s, each vertex from S is the endvertex of at most one open
trail.

For each j ∈ [1,m/2 − 1], we direct each edge ej from xj to yj, and direct each edge fj
from yj to xj+1. Denote by D this orientation of G.

If m ≡ 0 (mod 4), for each i ∈ [1,m/4], let

σ(e2i−1) = 4i− 3, σ(f2i−1) = 4i− 1;

σ(e2i) = 4i− 2, σ(f2i) = 4i.

If m ≡ 2 (mod 4), let

σ(e2i−1) = 4i− 3, σ(f2i−1) = 4i− 1 for each i ∈ [1,
m+ 2

4
];

σ(e2i) = 4i− 2, σ(f2i) = 4i for each i ∈ [1,
m− 2

4
].

By the definition of σ above, for each j ∈ [1,m/2], ej , fj contributes −2 to the vertex sum
at yj that is shared by ej and fj. Since for each vertex y ∈ T , the edges incident to y in G

are partitioned into dG(y)
2 pairs of edges in the form of ej , fj, it holds s[D,σ](y) = −dG(y).

For each j ∈ [1,m/2− 1], fj, ej+1 contributes 1 to the vertex sum at xj+1 that is shared
by fj and ej+1. For each vertex x ∈ S, the edges incident to x in G are partitioned into

at least ⌊dG(x)−1
2 ⌋ pairs of edges in the form of fj, ej+1. If dG(x) is odd, then x is the

endvertex of exactly one open trails in {T1, T2, . . . , Tℓ}. Thus, the edge incident to x not
counted in the pairs fj, ej+1 has a label in [−δm, δm]. If dG(x) is even, then x can be the
endvertices of at most one closed trails in {T1, T2, . . . , Tℓ}. Thus, the two edges incident
to x not counted in the pairs fj, ej+1 have a label in [−δm, δm]: one is negative and the
other is positive, which add up to a value in [−δm, δm]. Hence, for each x ∈ S, it holds

⌊dG(x)−1
2 ⌋ − δm ≤ s[D,σ](x) ≤ ⌊dG(x)−1

2 ⌋+ δm. This finishes the proof of Lemma 8.

The following result on bipartite graphs is heavily used in our proofs, which might be
of independent interest to other applications also.

Lemma 9. If G is a bipartite graph, then V (G) has a partition S ∪ T that satisfies the
following conditions:

(a) G has a matching M with M ⊆ EG(S, T ) and M saturates S;

(b) T is an independent set in G.

Proof. It suffices to prove the statement only for every component of G. Thus we may
assume that G is connected. Let [X,Y ] be a bipartition of G. Assume, without loss of
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generality, that |X| ≤ |Y |. Let M be a matching of G that saturates the largest number of
vertices from X. We will find a desired partition S ∪ T of V (G) based on X and Y .

If X \V (M) = ∅, then we are done by letting S = X and T = Y . Thus, X \V (M) 6= ∅.
Let

X1 = X ∩ V (M), X0 = X \X1,

Y1 = Y ∩ V (M), Y0 = Y \ Y1.

Since |X ∩ V (M)| = |Y ∩ V (M)| and |Y | ≥ |X|, X0 6= ∅ implies Y0 6= ∅. By the maximality
of M , it holds

EG(X0, Y0) = ∅. (1)

Let

B0 = NG(X0), A0 = M(B0), C0 = NG(Y0), D0 = M(C0).

Clearly, B0, C0 6= ∅ as G is connected. For each integer i with i ≥ 1, define

Bi = NG(Ai−1) \
i−1
⋃

j=0

Bj, Ai = M(Bi).

Let
B = ∪∞

i=0Bi, A = ∪∞

i=0Ai.

By the definition, Bi ∩Bj = ∅ and Ai ∩Aj = ∅ for every pair of i, j with i, j ≥ 0 and i 6= j.
Since |Ai| = |Bi| for each i with i ≥ 0, it holds

|A| = |B|. (2)

Let
Xr = X1 \A, Yr = Y1 \B.

By the definition of A,
EG(A,Yr) = ∅. (3)

Let
S = B ∪Xr, T = A ∪ Yr ∪X0 ∪ Y0.

It is left to show that S ∪ T is a desired partition of V (G). Since |A| = |B| by (2),
|S| = |X1|. Furthermore, by the definitions of A and B, A = M(B), and consequently
Xr = M(Yr). Thus, M is still a matching in G that saturates S and has size |S|, and
M ⊆ EG(S, T ). We only show that T is an independent in G. As each of A,Yr, X0 and Y0

is an independent set in G, (1) and (3), respectively, implies that A ∪ Yr and X0 ∪ Y0 are
independent sets in G. Since EG(X0, A) = ∅ and EG(X0, Yr) = ∅ by NG(X0) = B0 ⊆ B,
A ∪ Yr ∪X0 is an independent set in G. Since EG(Y0, Yr) = ∅ and EG(Y0,X0) = ∅ by (1),
we are only left to show that EG(Y0, A) = ∅.

It suffices to only show that D0 ⊆ Yr. Since D0 ⊆ Yr implies that C0 ⊆ Xr by the
definitions of the sets A and B, and C0 ⊆ Xr implies that C0 ∩ A = ∅, which yields
EG(Y0, A) = ∅.
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To show D0 ⊆ Yr, we just show that for each i with i ≥ 0, EG(Ai,D0) = ∅. Assume to
the contrary and let k be the smallest index such that EG(Ak,D0) 6= ∅. Let d0 ∈ D0 and
ak ∈ Ak such that d0ak ∈ E(G), bk = M(ak), ak−1 ∈ Ak−1 such that ak−1bk ∈ E(G). In
general, for each i = k − 1, k − 2, . . . , 1, let

bi = M(ai), ai−1 ∈ Ai−1 such that ai−1bi ∈ E(G).

Furthermore, let b0 = M(a0) and x0 ∈ X0 such that b0x0 ∈ E(G), and c0 = M(d0) and
y0 ∈ Y0 such that c0y0 ∈ E(G).

Note that for i, j ∈ [0, k] with i 6= j, ai 6= aj and bi 6= bj , as Ai∩Aj = ∅ and Bi∩Bj = ∅.
Furthermore, by the minimality of k, ai 6= d0 and bi 6= d0. Thus

P := y0c0d0akbkak−1bk−1 . . . b1a0b0x0

is an M -augmenting path, and M ′ := (M \ E(P )) ∪ (E(P ) \M) is a matching in G such
that |V (M ′) ∩X| > |V (M) ∩X|, showing a contradiction to the choice of M . Therefore,
EG(Ai,D0) = ∅ for each i with i ≥ 0. This completes the proof.

3 Proof of Theorem 3

Let S ∪ T be a partition of V (G) satisfying the requirements in Lemma 9. Let

n1 = |S|, n2 = |T |, S = {x1, x2, . . . , xn1}, T = {y1, y2, . . . , yn2}.

Assume, without loss of generality, that

M = {x1y1, x2y2, . . . , xn1yn1}.

. For each i ∈ [n1 + 1, n2], let ei be an edge incident to yi in G, and let

M∗ = M ∪ {en1+1, . . . , en2}.

In other words, each vertex from T is incident to one and exactly one edge from M∗.
Furthermore, let

H = G− E(G[S]) −M∗, m1 = |E(G[S])|, m2 = e(H).

Clearly, m1 + m2 + |M∗| = m1 + m2 + n2 = m := e(G). Let T1 = {y ∈ Y : dG(y) = 1}
and t1 = |T1|. Assume, without loss of generality, that T1 = {yn2−t1+1, yn2−t1+2, . . . , yn2}.
Clearly, dH(yi) = 0 for each i ∈ [n2− t+1, n2]. We consider two cases below regarding how
large n2 is.

Case 1: n2 ≤ m2.

This case basically follows the same idea as in the Proof of Theorem 1.5 in [15], but we
repeat the process for self-completeness.

We give an orientation D of G and a labeling σ of A(D) through four parts below.
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(1) Orient and label H: direct each edge from T to S. For each i ∈ [1, n2− t1], let Ai be the
set of all edges incident to yi in H. Clearly, |A1|+ |A2|+ . . .+ |An2−t1 | = m2. Since G
has no vertex of degree 2 or isolated vertex, |Ai| ≥ 2. By applying Lemma 6 to m2 with
t = n2 − t1 and ri = |Ai| for each i ∈ [1, t], the set {1, 2, . . . ,m2} can be partitioned
into R1, R2, . . . , Rn2−t1 such that for each i ∈ [1, n2 − t1], |Ri| = |Ai| and

∑

r∈Ri
r ≡ 0

(mod m2) if m2 is even, and
∑

r∈Ri
r ≡ 0 (mod m2) if m2 is odd. Label edges in Ai by

integers in Ri in an arbitrary way as long as distinct edges receive distinct labels.

(2) Orient and label G[S]: applying Lemma 7 to get the orientation and labeling with
p = m2 and m = m1;

(3) Orient and label M∗ \ M = {en1+1, . . . , en2}: direct each edge from T to S, and for
each i ∈ [n1 + 1, n2], assign m1 +m2 + (i− n1) to ei.

Let D∗ be the union of the digraphs obtained through the three parts above, and σ∗ be
the labeling on A(D∗) consists of the three labelings above. Assume that the sums at
vertices from S = {x1, . . . , xn1} satisfy

s[D∗,σ∗](x1) ≤ s[D∗,σ∗](x2) ≤ . . . ≤ s[D∗,σ∗](xn1).

(4) Orient and label M : direct each edge from T to S, and for each i ∈ [1, n1], assign
m1 +m2 + n2 − n1 + i to xiyi.

Let D and σ be the resulting orientation and labeling, respectively. It is clear that σ is
injective. We show that σ is an antimagic labeling of D. By Step 4, we have

s[D,σ](x1) < s[D,σ](x2) < . . . < s[D,σ](xn1).

Furthermore, for each i ∈ [1, n1], by Step 2, s[D∗,σ∗](xi) ≥ ⌊
dG[S](xi)−1

2 ⌋ −m1 −m2, by
Steps 3 and 4, we know s[D,σ](xi) ≥ s[D∗,σ∗](xi) +m1 +m2 + n2 − n1 + i > 0. For each
vertex yi ∈ T , i ∈ [1, n2], all the edges incident to yi are oriented towards S. Thus,
s[D,σ](yi) < 0.

Thus, for each x ∈ S and each y ∈ T , s[D,σ](x) > s[D,σ](y). Therefore, it is left to only
show that all vertices from T have distinct sums under σ in D.

By Steps 1, 3 and 4, for each i ∈ [1, n2] and for some integr ai ≥ 0, we have

|s[D,σ](yi)| =

{

aim2 +m1 +m2 + σi, if m2 is odd,

ai(m2 + 1) +m1 +m2 + σi, if m2 is even,

where σi ∈ [1, n2] are all distinct. Since n2 ≤ m2, for any two distinct i, j ∈ [1, n2],

s[D,σ](yi)− s[D,σ](yj) 6≡

{

0 (mod m2), if m2 is odd,

0 (mod m2 + 1), if m2 is even.

Consequently, s[D,σ](yi) 6= s[D,σ](yj).

7



The proof for Case 1 is complete.

Case 2: n2 ≥ m2 + 1.

In this case, we develop a result similar to Lemma 6 but using nonconsecutive integers
not necessarily starting at 1.

For each i ∈ [1, n2 − t1], let Ai be the set of all edges incident to yi in H. Clearly,
|A1| + |A2| + . . . + |An2−t1 | = m2. Since G has no vertex of degree 2 or isolated vertex,
|Ai| ≥ 2. Let m2 = 3k + 2ℓ, for some integers k, ℓ ≥ 0, where k is the number of sets Ai’s
with an odd cardinality. We may assume that k + ℓ ≥ 1. Otherwise, we follow the same
proof as in Case 1, and the vertex sums at vertices from T will naturally be all distinct
since all these vertices have degree 1 in G.

Subcase 2.1: k = 0.

In this case, all |Ai|’s are even. We give an orientation D of G and a labeling σ of A(D)
through four parts below.

(1) Orient and label G[S]: applying Lemma 7 to get the orientation and labeling with p = 0
and m = m1;

(2) Orient and label H: direct each edge from T to S. For each i, partition all edges in
Ai into |Ai|/2 many 2-element subsets. Thus, we have in total m2/2 many 2-element
subsets B1, B2, . . . , Bm2/2 of edges. For each Bi, i ∈ [1,m2/2], we assign

m1 + n2 + i,m− (i− 1)

to the two edges from it. By the way above of assigning labels to edges in Ai’s, i ∈
[1, n2 − t1], the sum of labels assigned to edges from each Ai is

ai(m+m1 + n2 + 1) for some integer ai ≥ 1. (4)

(3) Orient and label M∗ \ M = {en1+1, . . . , en2}: direct each edge from T to S, and for
each i ∈ [n1 + 1, n2], assign m1 + (i− n1) to ei.

Let D∗ be the union of the digraphs obtained through the three parts above, and σ∗ be
the labeling on A(D∗) consists of the three labelings above. Assume that the sums at
vertices from S = {x1, . . . , xn1} satisfy

s[D∗,σ∗](x1) ≤ s[D∗,σ∗](x2) ≤ . . . ≤ s[D∗,σ∗](xn1).

(4) Orient and label M : direct each edge from T to S, and for each i ∈ [1, n1], assign
m1 + n2 − n1 + i to xiyi.

Let D and σ be the resulting orientation and labeling, respectively. It is clear that σ is
injective. We show that σ is an antimagic labeling of D. By Step 4, we have that

s[D,σ](x1) < s[D,σ](x2) < . . . < s[D,σ](xn1).
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Furthermore, for each i ∈ [1, n1], by Lemma 7 and Step 1, s[D∗,σ∗](xi) ≥ ⌊
dG[S](xi)−1

2 ⌋ −
m1, we know s[D,σ](xi) ≥ s[D∗,σ∗](xi) +m1 + n2 − n1 + i ≥ 0. For each vertex yi ∈ T ,
i ∈ [1, n2], all the edges incident to yi are oriented towards S. Thus, s[D,σ](yi) < 0.

Thus, for each x ∈ S and each y ∈ T , s[D,σ](x) > s[D,σ](y). Therefore, it is left to only
show that all vertices from T have distinct sums under σ in D.

By Steps 2, 3 and 4, for each i ∈ [1, n2], we have

|s[D,σ](yi)| = ai(m1 + n1 +m+ 1) +m1 + σi for some integer ai ≥ 1,

where σi ∈ [1, n2] are all distinct. Since n2 < m1 + n1 + m + 1, for any two distinct
i, j ∈ [1, n2],

s[D,σ](yi)− s[D,σ](yj) 6≡ 0 (mod m1 + n1 +m+ 1)

Consequently, s[D,σ](yi) 6= s[D,σ](yj).

The proof for Subcase 2.1 is complete.

Subcase 2.2: k ≥ 1.

Recall that m2 = 3k + 2ℓ and n2 ≥ m2 + 1. Thus m ≥ n2 + m2 ≥ 6k + 4ℓ + 1, and
m − 2k − ℓ + 2 = m2 + n2 +m1 − 2k − ℓ + 2 > m1 + 3k + ℓ. We assume, without loss of
generality, that |A1|, . . . , |Ak| are odd, and |Ak+1|, . . . , |An2−t1 | are all even.

We will use the labels from the set A = [1, k] ∪ [m1 + k + 1,m1 + 2k] ∪ [m1 + 3k +
1,m1 + 3k + ℓ] ∪ [m− 2k − ℓ+ 2,m− 2k + 1] ∪ {m− 2k + 2,m− 2k + 4, . . . ,m− 2,m} for
edges from Ai’s. For each i ∈ [1, k], edges in Ai can be partitioned into one 3-subset, and
(|Ai|−3)/2 many 2-subsets. For each i ∈ [k+1, n2− t1], edges in Ai can be partitioned into
|Ai|/2 many 2-subsets. Let B1, B2, . . . , Bk be the k 3-sets and C1, . . . , Cℓ be the ℓ 2-sets
obtained by partition edges from each Ai’s. For each i ∈ [1, k], we assign edges in each Bi

the following three numbers:

i, m1 + k + i, m− 2i+ 2.

For each i ∈ [1, ℓ], we assign edges in each Ci the following two numbers:

m1 + 3k + i, m− 2k + 2− i.

By the way above of assigning labels to edges in Ai’s, i ∈ [1, n2 − t1], the sum of labels
assigned to edges from each Ai is

ai(m+m1 + k + 2) for some integer ai ≥ 1. (5)

We give an orientation D of G and a labeling σ of A(D) through four parts below.

(1) Orient and label G[S]: applying Lemma 7 to get the orientation and labeling with p = k
and m = m1;

(2) Orient and label H: direct each edge from T to S. Assign labels in the set A to the
edges in

⋃n2−t1
i=1 Ai as described previously.

Note that the set of unused labels is

B = [m1+2k+1,m1+3k]∪[m1+3k+ℓ+1,m−2k−ℓ+1]∪{m−2k+3,m−2k+5, . . . ,m−1},

and |B| = k +m−m1 − 5k − 2ℓ+ 1 + k − 1 = m2 + n2 − 3k − 2ℓ = n2.
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(3) Orient and label M∗ \M = {en1+1, . . . , en2}: direct each edge from T to S, and assign
the first n2 − n1 smallest numbers from B to edges in M∗ \M such that distinct edges
receive distinct labels.

Let D∗ be the union of the digraphs obtained through the three parts above, and σ∗ be
the labeling on A(D∗) consists of the three labelings above. Assume that the sums at
vertices from S = {x1, . . . , xn1} satisfy

s[D∗,σ∗](x1) ≤ s[D∗,σ∗](x2) ≤ . . . ≤ s[D∗,σ∗](xn1).

(4) Orient and label M : direct each edge from T to S, and assign the remaining n2− (n2−
n1) = n1 numbers from B to edges in M such that xiyi is assigned with the i-th smallest
number.

Let D and σ be the resulting orientation and labeling, respectively. It is clear that σ is
injective. We show that σ is an antimagic labeling of D. By Step 4, we have

s[D,σ](x1) < s[D,σ](x2) < . . . < s[D,σ](xn1).

Furthermore, for each i ∈ [1, n1], by Lemma 7 and Step 1, s[D∗,σ∗](xi) ≥ ⌊
dG[S](xi)−1

2 ⌋ −
m1 − k, we know s[D,σ](xi) ≥ s[D∗,σ∗](xi) +m1 + 2k + 1 ≥ 0. For each vertex yi ∈ T ,
i ∈ [1, n2], all the edges incident to yi are oriented towards S. Thus, s[D,σ](yi) < 0.

Thus for each x ∈ S and each y ∈ T , s[D,σ](x) > s[D,σ](y). Therefore, it is left to only
show that all vertices from T have distinct sums under σ in D.

By Steps 2, 3, 4 and (5), for each i ∈ [1, n2], we have

|s[D,σ](yi)| ≥ ai(m+m1 + k + 2) + σi for some integer ai ≥ 0,

where σi ∈ B are all distinct. Since σi ≤ m− 1 < m+m1 + k+ 2, for any two distinct
i, j ∈ [1, n2],

s[D,σ](yi)− s[D,σ](yj) 6≡ 0 (mod m+m1 + k + 2)

Consequently, s[D,σ](yi) 6= s[D,σ](yj).

The proof for Subcase 2.2 is complete.

4 Proof of Theorem 4

Let L be a spanning bipartite subgraph of G with the maximum number of edges. Since
|E(L)| is maximum among all spanning bipartite subgraphs of G,

dL(v) ≥
dG(v)

2
for every v ∈ V (G).

By Lemma 9, we let S ∪ T be a partition of V (L) = V (G), M ⊆ EL(S, T ) be a matching
that saturates S and has size |S|, and let L∗ = L−E(L[S]) be the spanning bipartite graph
of L between S and T .
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Let

n2 = |S|, n1 = |T |, S = {x1, x2, . . . , xn2}, T = {y1, y2, . . . , yn1}.

Assume, without loss of generality, that

M = {x1y1, x2y2, . . . , xn1yn2}.

For each i ∈ [n2 + 1, n1], let ei be an edge incident to yi in L∗, and let

M∗ = M ∪ {en2+1, . . . , en1}.

In other words, each vertex from T is incident to one and exactly one edge in M∗. Further-
more, let

H = L∗ −M∗, G1 = G− E(H)−M∗.

Note that for every vertex y ∈ T ,

dH(v) = dL(v)− 1 ≥
dG(v)

2
− 1, (6)

and E(G1) = E(G) \ (E(H) ∪ M∗) = E(G[S]) ∪ E(G[T ]) ∪
(

EG(S, T ) \ EL∗(S, T )
)

. We
now modify G1 to get a new graph by adding some edges from H such that in the new
graph the degree of every vertex from T is divisible by 4 and that every vertex from T has a
neighbor from S. Specifically, for each v ∈ T , if dG1(v) ≡ c (mod 4), where c = 0, 1, 2, 3, we
take exactly 4− c edges incident to v in H and add these 4− c edges into G1. Call G2 the
resulting in graph from G1, and H ′ the resulting in graph from H. From the construction,
for each v ∈ T ,

dG2(v) ≡ 0 (mod 4), dH′(v) ≥ dH(v) + c− 4, (7)

where c ∈ {0, 1, 2, 3} satisfies dG1(v) ≡ c (mod 4).
We then split the bipartite graph H ′ into two spanning subgraphs H1 and H2 of H ′.

For each v ∈ T , we let A(v) be a set of
dG2

(v)

2 edges incident to v in H ′. Now let

V (H2) = V (H ′), E(H2) =
⋃

v∈T

A(v), H1 = H ′ − E(H2).

From the construction and (7), for each v ∈ T ,

dH2(v) =
dG2(v)

2
≡ 0 (mod 2), dH1(v) ≥ dH(v) + c− 4−

dG2(v)

2
, (8)

where c ∈ {0, 1, 2, 3} satisfies dG1(v) ≡ c (mod 4). By (6), we have

dH1(v) ≥ dH(v) + c− 4−
dG2(v)

2

≥ ⌈
dG(v)

2
⌉ − 1 + c− 4−

dG2(v)

2

≥ ⌈
dG(v)

2
⌉ − 1 + c− 4−

1

2

(

⌊
dG(v)

2
⌋+ 4− c

)

≥
dG(v)

4
− 7, (9)
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which is at least 2, since δ(G) ≥ 33.
Let

m1 = e(H1), m2 = e(G2), m3 = e(H2).

Note that m1 +m2 +m3 + |M∗| = m := e(G). We will now give an orientation D of G and
a labeling σ of A(D) through five parts below.

(1) Orient and label H1: direct each edge from T to S. For each i ∈ [1, n1], let Ai be the
set of all edges incident to yi in H1. Clearly, |A1| + |A2| + . . . + |An1 | = m1. By (9),
|Ai| ≥ 2. By Lemma 6 applied to m1 with t = n1 and ri = |Ai| for each i ∈ [1, t], the
set {1, 2, . . . ,m1} can be partitioned into R1, R2, . . . , Rn1 such that for each i ∈ [1, n1],
|Ri| = |Ai| and

∑

r∈Ri
r ≡ 0 (mod m1 +1) if m1 is even, and

∑

r∈Ri
r ≡ 0 (mod m1) if

m1 is odd. Label edges in Ai by integers in Ri in an arbitrary way as long as distinct
edges receive distinct labels.

(2) Orient and label G2: Note that for each y ∈ T , dG2(y) is even and NG2(y) ∩ S 6= ∅ by
the construction of G2. Thus, we apply Lemma 7 to get the orientation and labeling of
G2 with p = m1 and m = m2 with the furthermore requirement for vertices in T . Let
D2 be the orientation of G2 and σ2 be the labeling. We have

−(m1 +m2) + ⌊
dG2(x)− 1

2
⌋ ≤ s[D2,σ2](x) ≤ ⌊

dG2(x)− 1

2
⌋+ (m1 +m2) for x ∈ S,

s[D2,σ2](y) =
dG2(y)

2
for y ∈ T . (10)

(3) Orient and label H2: applying Lemma 8 to get the orientation and labeling of H2 with
p = m1+m2 and m = m3. Let D3 be the orientation of H2 and σ3 be the labeling. We
have

⌊
dH2(x)− 1

2
⌋ − δm ≤ s[D3,σ3](x) ≤ ⌊

dH2(x)− 1

2
⌋+ δm for each x ∈ S,

s[D3,σ3](y) = −dH2(y) for each y ∈ T , (11)

where δm = m1 +m2 +m3 if m3 ≡ 0 (mod 4), and δm = m1 +m2 +m3 + 1 if m3 ≡ 2
(mod 4).

(4) Orient and label M∗ \M = {en2+1, . . . , en1}: direct each edge from T to S. If m3 ≡ 0
(mod 4), for each i ∈ [n2+1, n1], assign m1+m2+m3+(i−n2) to ei. Ifm3 ≡ 2 (mod 4),
assign m1+m2+m3 to en2+1, and for each i ∈ [n2+2, n1], assign m1+m2+m3+(i−n2)
to ei.

Let D∗ be the union of the digraphs obtained through the four parts above, and σ∗ be
the labeling on A(D∗) consists of the four labelings above. Assume that the sums at
vertices from S = {x1, . . . , xn2} satisfy

s[D∗,σ∗](x1) ≤ s[D∗,σ∗](x2) ≤ . . . ≤ s[D∗,σ∗](xn2).
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(5) Orient and label M : direct each edge from T to S. If n1 ≥ n2 + 1 or m3 ≡ 0 (mod 4),
for each i ∈ [1, n2], assign m1 +m2 +m3 + n1 − n2 + i to xiyi. If n1 = n2 and m3 ≡ 2
(mod 4), assign m1+m2+m3 to x1y1, and for each i ∈ [2, n2], assign m1+m2+m3+ i
to xiyi.

Let D and σ be the resulting orientation and labeling, respectively. It is clear that σ is
injective. We show that σ is an antimagic labeling of D.

By Step 5, we have

s[D,σ](x1) < s[D,σ](x2) < . . . < s[D,σ](xn2).

Furthermore, for each i ∈ [1, n2], by (10) and (11), s[D∗,σ∗](xi) ≥ ⌈
dG2

(xi)−1

2 ⌉ −m1 −m2 +

⌈
dH2

(xi)−1

2 ⌉−m1−m2−m3−1, we know s[D,σ](xi) ≥ s[D∗,σ∗](xi)+m1+m2+m3 ≥ −m1−
m2−1. For each vertex yi ∈ T , i ∈ [1, n1], for all the edges incident to yi that are contained
in G2 ∪H2, the partial sum at yi of the labels assigned to these edges is zero by (8), (10)
and (11). All other edges incident to yi that are contained in H1∪M∗ are oriented towards
S. Thus, s[D,σ](yi) < 0. Furthermore, by Steps 1, 4 and 5, s[D,σ](yi) ≤ −m1 −m2−m3− 3.

Thus, for each x ∈ S and each y ∈ T , s[D,σ](x) > s[D,σ](y). Therefore, it is left to only
show that all vertices from T have distinct sums under σ in D.

By Steps 1, 4, 5, and (10) and (11), for each i ∈ [1, n1] and some integer ai ≥ 1, we have

|s[D,σ](yi)| =

{

dG2
(yi)

2 − dH2(yi) + aim1 +m1 +m2 +m3 + σi, if m1 is odd,
dG2

(yi)

2 − dH2(yi) + ai(m1 + 1) +m1 +m2 +m3 + σi, if m1 is even,

where σi ∈ [1, n1] are all distinct, and
dG2

(yi)

2 − dH2(yi) = 0. Since m1 ≥ 2n1 > n1 by (9),
for any two distinct i, j ∈ [1, n1],

s[D,σ](yi)− s[D,σ](yj) 6≡

{

0 (mod m1), if m1 is odd,

0 (mod m1 + 1), if m1 is even.

Consequently, s[D,σ](yi) 6= s[D,σ](yj).
The proof is now complete.
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