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Abstract

In his paper “Kings in Bipartite Hypertournaments” (Graphs & Com-
binatorics 35, 2019), Petrovic stated two conjectures on 4-kings in mul-
tipartite hypertournaments. We prove one of these conjectures and give
counterexamples for the other.

1 Introduction

Given two integers n and k, n ≥ k > 1, a k-hypertournament T on n vertices
is a pair (V,A), where V is a set of vertices, |V | = n and A is a set of k-tuples
of vertices, called arcs, so that for any k-subset S of V , A contains exactly
one of the k! tuples whose entries belong to S. For an arc x1x2 . . . xk, we
say that xi precedes xj if i < j. A 2-hypertournament is merely an (ordinary)
tournament. Hypertournaments have been studied in a large number of papers,
see e.g. [1, 2, 3, 4, 5, 8, 9, 11, 12].

Recently, Petrovic [10] introduced multipartite hypertournaments in a sim-
ilar way. Let n and k be integers such that n > k ≥ 2. Let V be a set of n
vertices and V = V1 ⊎ V2 ⊎ · · · ⊎ Vp be a partition of V into p ≥ 2 non-empty
subsets. A p-partite k-hypertournament (or, multipartite hypertournament) H

can be obtained from a k-hypertournament T on vertex set V by deleting all
arcs x1x2 . . . xk such that {x1, x2, . . . , xk} ⊆ Vi for some i ∈ [p]. We call Vi’s
partite sets of H. The set of arcs of H = (V,A) will be denoted by A(H), i.e.,
A(H) = A. A p-partite 2-hypertournament is a p-partite tournament.

For u ∈ Vi, w ∈ Vj with i 6= j, AH(u,w) is the set of arcs of H which contain
u and w and where u precedes w. We will write xey if e ∈ AH(x, y). We let
AH(x, y) = ∅ if either x and y belong to the same partite set of H. A path in H

is an alternating sequence P = x1a1x2a2 . . . xq−1aq−1xq of distinct vertices xi
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and distinct arcs aj such that xjajxj+1 for every j ∈ [q − 1]. We will call P an
(x1, xq)-path of length q − 1.

Let q ≥ 1 be a natural number. A vertex x of H is a q-king if for every
y ∈ V , H has an (x, y)-path of length at most q. Generalizing a well-known
theorem of Landau that every tournament has a 2-king (see e.g. [6]), Brcanov
et al. [4] showed that every hypertournament has a 2-king. A vertex v of H is a
transmitter if for every vertex u from a different partite set than v, AH(u, v) = ∅.

Note that for every u ∈ Vi, w ∈ Vj (i 6= j), we have |AH(u,w)|+|AH(w, u)| =
(

n−2

k−2

)

. A majority multipartite tournamentM(H) of H has the same partite sets
as H and for every u ∈ Vi and w ∈ Vj with i 6= j, uw ∈ M(H) if |AH(u,w)| >
1

2

(

n−2

k−2

)

. If |AH(u,w)| = 1

2

(

n−2

k−2

)

then we can choose either uw or wu for M(H).
For a graph G = (V,E) and U ⊆ V , let NG(U) = {v ∈ V \ U : uv ∈ E, u ∈

U}.
Gutin [7] and independently Petrovic and Thomassen [11] proved the follow-

ing:

Theorem 1. [7, 11] Every multipartite tournament with at most one transmit-
ter contains a 4-king.

Petrovic [10] proved that the same result holds for bipartite k-hypertournaments:

Theorem 2. [10] Every bipartite k-hypertournaments (k ≥ 2) with at most one
transmitter contains a 4-king.

In the same paper he conjectured the following:

Conjecture 3. [10] Every multipartite k-hypertournament (k ≥ 2) with at most
one transmitter contains a 4-king.

In this short paper, we will solve this conjecture in the affirmative.
The next conjecture of Petrovic [10] is motivated by the fact that Petro-

vic and Thomassen [11] proved that the assertion of the conjecture holds for
bipartite tournaments.

Theorem 4. [11] Every bipartite tournament B without transmitters has at
least two 4-kings in each partite set of B.

Conjecture 5. [10] Every bipartite k-hypertournament B (k ≥ 2) without
transmitters has at least two 4-kings in each partite set of B.

In this paper, we will first show a couterexample to Conjecture 5 and then
exhibit a wide family of bipartite hypertournaments for which the conclusion of
the conjecture holds.

The paper is organized as follows. In the next section, we prove a lemma
(Lemma 7) which we call the Majority Lemma, and which is used to show the
positive above-mentioned results. In Section 3, we provide the counterexample
and positive results. The terminology not introduced in this paper can be found
in [6].
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2 The Majority Lemma

The Majority Lemma, Lemma 7, is the main technical result of this paper. To
prove Lemma 7, we will use the following simple lemma.

Lemma 6. Let G be a bipartite graph with partite sets U and W and let every
vertex in U have degree at least p ≥ 1 and every vertex in W have degree at
most p, except for one vertex which has degree at most 2p − 1. Then G has a
matching saturating U.

Proof. By Hall’s theorem, if for every S ⊆ U , |S| ≤ |NG(S)| then G has a
matching saturating U. Suppose that there is a subset S of U such that |S| ≥
|NG(S)| + 1. Let e be the number of edges in the subgraph of G induced by
S ∪NG(S) and observe that

p|S| ≤ e ≤ (|N(S)| − 1)p+ (2p− 1) ≤ (|S| − 2)p+ (2p− 1) = |S|p− 1,

a contradiction.

Proposition 14 proved in the next section shows that Lemma 7 cannot be
extended to n = 4 and p = 2.

Lemma 7. Let H be a p-partite k-hypertournament with p ≥ 2. Let n ≥ 5 and
n > k ≥ 3. If a majority p-partite tournament M(H) has an (x, y)-path P of
length at most 4, then H has such a path of length at most 4.

Proof. It suffices to prove this lemma for the case when P is of length 4 as the
other cases are simpler and similar. Thus, assume that P = x1x2x3x4x5. By
definition of a path, for every i ∈ [4], xi and xi+1 belong to different partite sets
of H. Now consider the following cases covering all possibilities.

Case 1: n ≥ 9 and 3 ≤ k < n or n ≥ 7 and 4 ≤ k < n− 1. Observe that if
for every i ∈ {1, 2, 3, 4},

|AH(xi, xi+1)| > 3 (1)

then we can choose distinct arcs ai ∈ AH(xi, xi+1) such that x1a1x2a2x3a3x4a4x5

is the required path in H . In particular, inequalities (1) will hold if 1

2

(

n−2

k−2

)

> 3.
If n ≥ 9 and 3 ≤ k < n, we have

1

2

(

n− 2

k − 2

)

≥
n− 2

2
> 3

and hence inequalities (1) hold. If n ≥ 7 and 4 ≤ k < n− 1, we have

1

2

(

n− 2

k − 2

)

≥
(n− 2)(n− 3)

4
> 3.

Case 2: k = 3 and 5 ≤ n ≤ 8. Then

|AH(xi, xi+1)| ≥
1

2

(

n− 2

k − 2

)

≥
1

2

(

3

1

)

=
3

2
(2)
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for i = 1, 2, 3, 4.Consider a bipartite graphG with partite sets Z = {z1, z2, z3, z4}
and A(H). We have an edge ziaj if aj ∈ AH(xi, xi+1). By (2), each vertex in Z

has degree at least two. Since k = 3, vertices zi and zj in G have no common
neighbor unless |i− j| = 1. Thus, every vertex of G in A(H) has degree at most
2. Thus, by Lemma 6, G has a matching saturating Z. In other words, there
are distinct a1, a2, a3, a4 ∈ A(H) such that x1a1x2a2x3a3x4a4x5 is a path in H.

Case 3: k = 4 and 5 ≤ n ≤ 6. Consider the bipartite graph G constructed
as in the previous case. Using the computations analogous to those in (2), we
see that the minimum degree of a vertex in Z is at least 3 when n = 6 and at
least 2 when n = 5. Since k = 4, there is no common neighbor of all vertices in
Z. Thus, every vertex of G in A(H) has degree at most 3. Now consider two
subcases.

Subcase 1: n = 6. Since every vertex of G in A(H) has degree at most 3 and
every vertex of G in Z has degree at least 3, by Lemma 6, G has a matching
saturating Z and we are done as in Case 2.

Subcase 2: n = 5. Recall that the minimum degree of a vertex in Z is at least
2. Suppose that there are two vertices of G in A(H) of degree 3. This means
that

NG(zi) ∩NG(zi+1) ∩NG(zi+2) 6= ∅ (3)

for i = 1 or 2. Indeed, since k = 4, NG(z1) ∩NG(zj) ∩NG(z4) = ∅ when either
j = 2 or 3. Without loss of generality, we assume that (3) holds when i = 1 and
let e1 ∈ NG(z1) ∩NG(z2) ∩NG(z3). Thus, e1 = x1x2x3x4.

If x1 and x4 are in different partite sets of H , then x1e1x4. Since e1 does not
contain x5, we can choose an arc e2 of H which is different from e1 such that
x4e2x5. Then x1e1x4e2x5 is a path in H . Now we assume that x1 and x4 are in
the same partite set of H. Then there is an arc e1 of H such that x1e1x3. Since
the degree of z3 in G is at least 2, we can choose an arc e2 of H which is different
from e1 such that x3e2x4. We can also choose an arc e3 of H which is different
from e1 and e2 such that x4e3x5. Indeed, e3 6= e1 since e1 does not contain x5

and e3 6= e2 since the degree of z4 in G is at least 2. Then x1e1x3e2x4e3x5 is
a path in H . Thus, we may assume that every vertex of G in A(H) has degree
at most 2, except for one vertex which has degree at most 3. Then we can use
Lemma 6 and thus we are done as above.

Case 4: k ∈ {5, 6, 7} and n = k+1. Consider the bipartite graphG constructed
as in Case 2.

Subcase 1: k ∈ {6, 7}. Using the computations analogous to those in (2), we
see that the minimum degree of a vertex in Z is at least 3. If there is a vertex
with degree 4 in A(H), then it means {x1, x2, x3, x4, x5} is a subset of a vertex
set of an arc e1 and the relative order is x1, x2, x3, x4, x5. If x1 and x5 are in
different partite sets, then x1e1x5 is a path in H . Otherwise x1 and x4 are in
different partite sets, so x1e1x4. There is an arc e2 different from e1 such that
x4e2x5 (since the degree of z4 is at least 3). Now x1e1x4e2x5 is a path in H.

Thus, we assume each vertex in A(H) has degree at most 3, and we are done
by Lemma 6.
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Subcase 2: k = 5. Suppose that the lemma does not hold in this case. Using
the computations analogous to those in (2), we see that the minimum degree of
a vertex in Z is at least 2. To obtain a contradiction, it suffices to show that
G has at most one vertex of degree at least 3 in A(H). Suppose that G has at
least two vertices of degree at least 3 in A(H). This means that (3) holds for
i = 1 or 2. Since H can have only one arc with vertex set {x1, x2, x3, x4, x5},
we have

3
∑

j=2

|NG(z1) ∩NG(zj) ∩NG(z4)| ≤ 1 (4)

Without loss of generality, we assume that (3) holds when i = 1 and let e1 ∈
NG(z1) ∩NG(z2) ∩NG(z3). If we restrict e1 to the vertices {x1, x2, x3, x4}, we
obtain e′3 = x1x2x3x4.

If x1 and x4 are in the different partite sets, then x1e1x4. Since the degree
of z4 in G is at least 2, we can choose an arc e2 of H which is different from e1
such that x4e2x5. Then x1e1x4e2x5 is a path in H , a contradiction. Now we
assume x1 and x4 are in the same partite set. Then x1e1x3. Since the degree
of z3 in G is at least 2, we can choose an arc e2 of H which is different from e1
such that x3e2x4. Since the degree of z4 in G is at least 2, we can choose an arc
e3 of H such that x4e3x5 and e3 6= e2. Suppose e3 = e1. Then e1 = x1x2x3x4x5

and x1e1x5, a contradiction. Thus, e3 6= e1 and x1e1x3e2x4e3x5 is a path in H ,
a contradiction.

3 Main Results

In Section 3.1, using the Majority Lemma and other results, we solve Conjecture
3 in affirmative. In Section 3.2, we describe a family of couterexamples to Con-
jecture 5 and prove a sufficient condition of when the statement of Conjecture
5 holds.

3.1 Results on Conjecture 3

Lemma 8. Let H = (V,A) be a multipartite k-hypertournament with at most
one transmitter and let M(H) be a majority multipartite tournament of H. Let
n ≥ 5 and n > k ≥ 3. If M(H) has at least one transmitter, then H has a
2-king.

Proof. Let V1 be the partite vertex set containing all transmitters of M(H). Let
v be the transmitter of H, if H has a transmitter, and an arbitrary transmitter
of M(H), otherwise. Clearly, v ∈ V1. Observe that for every u ∈ V \V1, there is
an arc a ∈ AH(v, u) implying that vau. Note that for every w ∈ V1 \ {v}, there
are a vertex u ∈ V \ V1 and an arc e of H such that uew. As in Lemma 7, it
is easy to see that |AH(v, u)| ≥ 2. Thus, there is an arc a ∈ AH(v, u) distinct
from e implying that vauew is a path.
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Lemma 9. Let H = (V,A) be a multipartite k-hypertournament and let n ≥ 5
and n > k ≥ 3. If H has at most one transmitter then H has a 4-king.

Proof. Let M(H) be a majority multipartite tournament of H . If M(H) has
no transmitters, then by Theorem 1, M(H) has a 4-king x. By Lemma 7, x is
a 4-king of H. If M(H) has transmitters, then we apply Lemma 8.

Lemma 10. Let H = (V,A) be a p-partite k-hypertournament with k = 3,
n = 4 and p ≥ 2. If H has at most one transmitter then H has a 4-king.

Proof. By Theorem 2, this lemma holds for p = 2 and so we may assume that
p ≥ 3. It is well known that every k-hypertournament with more than k vertices
has a Hamilton path [8]. Observe that for p = 4 the first vertex of a Hamilton
path in H is a 3-king. Now we may assume that p = 3. Let V = V1 ∪ V2 ∪ V3

be a partition of vertices of H . Without loss of generality, we may assume that
V1 = {x1, x2}, V2 = {x3} and V3 = {x4}.

First assume that H has the unique transmitter v. If v = x3 or v = x4, then
v is a 1-king of H . Thus, we assume without loss of generality that v = x1.

Since v is a transmitter, va1x3 and va2x4 for some arcs a1 and a2 of H. Since
x2 is not a transmitter, there is an arc e1 such that ye1x2, where y ∈ V2 ∪ V3.
By the definition of a transmitter, v precedes y in every arc containing v and
y. Consequently, there is an arc e2 different from e1 such that ve2y. Hence
ve2ye1x2 is a path from v to x2. So v is a 2-king.

Now assume that T has no transmitter. Consider the arc e1 containing x1,
x3, and x4. If x1 is in the first position of e1, since x2 is not a transmitter, there
is an arc e2 different from e1 such that x3e2x2 or x4e2x2. Hence x1e1x3e2x2 or
x1e1x4e2x2 is a path from x1 to x2, implying that x1 is a 2-king. Without loss
of generality, we now assume that x3 is in the first position of e1. Since x2 is
not a transmitter, there is an arc e2, where x3 or x4 preceds x2. Hence x3 is a
2-king.

Lemmas 9 and 10 imply the following result solving Conjecture 3 in affirma-
tive.

Theorem 11. Every multipartite hypertournament with at most one transmitter
has a 4-king.

3.2 Results on Conjecture 5

The next result describes a family of counterexamples to Conjecture 5.

Proposition 12. For every k ≥ 3, there is a bipartite k-hypertournament B

without transmitters which has at most one 4-king in each of its partite sets.

Proof. Let U and W be partite sets of B. Choose a vertex u in U and a vertex
w in W. Let every arc of B with both u and w have both of them in the first and
second position such that in at least one such arc u is the first and in at least one
such arc w is the first. Let every arc of B containing u but not w have u in the

6



x1 x2

x3 x4

Figure 1: M(H)

first position and let every arc of B containing w but not u have w in the first
position. Clearly, B has no transmitters, but no vertex v in (U ∪W ) \ {u,w}
can be a 4-king as there is no path from v to either u or w.

The next result is a sufficient condition of when the conclusion of Conjecture
5 holds. It follows directly from Theorem 4 and the Majority Lemma.

Theorem 13. Let B be a bipartite hypertournament with partite sets U and W

and with at least 5 vertices. If a majority bipartite tournament M(B) has no
transmitters, then B has at least two 4-kings in each U and W.

Our final result shows that the Majority Lemma cannot be extended to n = 4
and p = 2. The proof provides another counterexample to Conjecture 5.

Proposition 14. For k = 3 and n = 4, there is a bipartite hypertournament H
with partite sets U and W such that (i) |U | = |W | = 2, (ii) a majority bipartite
tournament M(H) has no transmitters, (iii) M(H) has an (x, y)-path of length
3, but H has no (x, y)-path, (iv) H has only one 4-king in U.

Proof. Let H be a bipartite hypertournament with partite sets U = {x1, x3}
and W = {x2, x4}, arc set {a1, a2, a3, a4} where

a1 = x4x1x2, a2 = x2x3x4, a3 = x3x2x1, a4 = x4x3x1.

Let the arcs of M(H) be x4x1, x1x2, x2x3, x3x4 (see Fig. 1). Clearly, (i) and
(ii) hold and x1x2x3x4 is an (x1, x4)-path in M(H).

Now consider H. Suppose that H has an (x1, x4)-path P. Since AB(x1, x4) =
∅, P = x1b1x2b2x3b3x4 for some distinct arcs b1, b2, b3 of H. By inspection of the
arcs of H , we conclude that b1 = a1, b2 = a2, b3 = a2, which is impossible since
b1, b2, b3 must be distinct. So H has no (x1, x4)-path and (iii) holds. Observe
that x3 is a 4-king of H since x3a3x2, x3a2x4 and x3a2x4a1x1 is an (x3,x1)-path
of length 2. Moreover, x1 cannot be a 4-king by the discussion in (iii), so (iv)
holds.
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