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Abstract

In his paper “Kings in Bipartite Hypertournaments” (Graphs & Com-
binatorics 35, 2019), Petrovic stated two conjectures on 4-kings in mul-
tipartite hypertournaments. We prove one of these conjectures and give
counterexamples for the other.

1 Introduction

Given two integers n and k, n > k > 1, a k-hypertournament T" on n vertices
is a pair (V, A), where V is a set of vertices, |V| =n and A is a set of k-tuples
of vertices, called arcs, so that for any k-subset S of V, A contains exactly
one of the k! tuples whose entries belong to S. For an arc x1xs...x5, we
say that x; precedes x; if i < j. A 2-hypertournament is merely an (ordinary)
tournament. Hypertournaments have been studied in a large number of papers,
see e.g. [1, 2 (3, [ (5, 18, 9} 1T} 12].

Recently, Petrovic [I0] introduced multipartite hypertournaments in a sim-
ilar way. Let m and k be integers such that n > k > 2. Let V be a set of n
vertices and V = Vi W Vo W --- WV, be a partition of V into p > 2 non-empty
subsets. A p-partite k-hypertournament (or, multipartite hypertournament) H
can be obtained from a k-hypertournament 7" on vertex set V by deleting all
arcs r1xs...x such that {x1,2s,..., 21} C V; for some i € [p]. We call V;’s
partite sets of H. The set of arcs of H = (V, A) will be denoted by A(H), i.e.,
A(H) = A. A p-partite 2-hypertournament is a p-partite tournament.

For u € V;,w € V; with i # j, A (u,w) is the set of arcs of H which contain
u and w and where u precedes w. We will write zey if e € Ay (z,y). We let
Ap(z,y) = 0 if either z and y belong to the same partite set of H. A path in H
is an alternating sequence P = x1a12202 ... Tq—104—14 of distinct vertices z;
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and distinct arcs a; such that zja;jx;41 for every j € [¢ — 1]. We will call P an
(w1, z4)-path of length ¢ — 1.

Let ¢ > 1 be a natural number. A vertex x of H is a g-king if for every
y € V, H has an (z,y)-path of length at most ¢. Generalizing a well-known
theorem of Landau that every tournament has a 2-king (see e.g. [6]), Brcanov
et al. [4] showed that every hypertournament has a 2-king. A vertex v of H is a
transmitter if for every vertex u from a different partite set than v, Ay (u,v) = 0.

Note that for every u € V;,w € V; (i # j), we have |[Ag (u, w)|+|Ang (w,u)| =
(Z:S) A majority multipartite tournament M (H) of H has the same partite sets
as H and for every u € V; and w € V; with ¢ # j, ww € M(H) if |Ag (u,w)| >
L(02). I [Ap (u, w)| = 3(772) then we can choose either uw or wu for M (H).

For a graph G = (V,E) and U CV,let Nog(U)={v e V\U: w e E,u e
U}.
Gutin [7] and independently Petrovic and Thomassen [I1] proved the follow-
ing:

Theorem 1. [7, [11] Every multipartite tournament with at most one transmit-
ter contains a 4-king.

Petrovic [10] proved that the same result holds for bipartite k-hypertournaments:

Theorem 2. [10] Every bipartite k-hypertournaments (k > 2) with at most one
transmitter contains a 4-king.

In the same paper he conjectured the following:

Conjecture 3. [10] Every multipartite k-hypertournament (k > 2) with at most
one transmitter contains a 4-king.

In this short paper, we will solve this conjecture in the affirmative.

The next conjecture of Petrovic [I0] is motivated by the fact that Petro-
vic and Thomassen [I1] proved that the assertion of the conjecture holds for
bipartite tournaments.

Theorem 4. [T1] Every bipartite tournament B without transmitters has at
least two 4-kings in each partite set of B.

Conjecture 5. [10] Every bipartite k-hypertournament B (k > 2) without
transmitters has at least two 4-kings in each partite set of B.

In this paper, we will first show a couterexample to Conjecture [l and then
exhibit a wide family of bipartite hypertournaments for which the conclusion of
the conjecture holds.

The paper is organized as follows. In the next section, we prove a lemma
(Lemma [7) which we call the Majority Lemma, and which is used to show the
positive above-mentioned results. In Section Bl we provide the counterexample
and positive results. The terminology not introduced in this paper can be found
in [6].



2 The Majority Lemma

The Majority Lemma, Lemma [7 is the main technical result of this paper. To
prove Lemma [7, we will use the following simple lemma.

Lemma 6. Let G be a bipartite graph with partite sets U and W and let every
verter in U have degree at least p > 1 and every vertex in W have degree at
most p, except for one vertex which has degree at most 2p — 1. Then G has a
matching saturating U.

Proof. By Hall’s theorem, if for every S C U, |S| < |Ng(S)| then G has a
matching saturating U. Suppose that there is a subset S of U such that |S| >
[Nc(S)| + 1. Let e be the number of edges in the subgraph of G induced by
S U Ng(S) and observe that

pIS|<e<(INS)I-Dp+(2p—-1)<(IS|-2)p+(2p—-1)=|Sp -1,
a contradiction. O

Proposition [[4] proved in the next section shows that Lemma [T cannot be
extended to n =4 and p = 2.

Lemma 7. Let H be a p-partite k-hypertournament with p > 2. Let n > 5 and
n >k > 3. If a majority p-partite tournament M(H) has an (x,y)-path P of
length at most 4, then H has such a path of length at most 4.

Proof. 1t suffices to prove this lemma for the case when P is of length 4 as the
other cases are simpler and similar. Thus, assume that P = z1xox3z425. By
definition of a path, for every i € [4], x; and z;41 belong to different partite sets
of H. Now consider the following cases covering all possibilities.

Casel: n>9and 3<k<norn>7and 4<k<n-—1. Observe that if
for every i € {1,2,3,4},
|[Aw (s, Tip1)| > 3 (1)
then we can choose distinct arcs a; € Ay (2, x;41) such that z1a1x2a223032404T5
is the required path in H. In particular, inequalities () will hold if %(z:g) > 3.
If n>9 and 3 < k < n, we have

1 n—2 SN 2 >3
2\k—-2) = 2
and hence inequalities () hold. If n > 7 and 4 < k < n — 1, we have

{(7)- e

> 3.

Case 2: k=3 and 5 <n <8. Then

1/n—-2 1/3 3
|AH(xzaxz+l)| =9 (k— 2) =9 (1) 92 (2)



fori = 1,2, 3, 4. Consider a bipartite graph G with partite sets Z = {z1, 22, 23, 24}
and A(H). We have an edge z;a; if a; € Ag(z;, zi+1). By (@), each vertex in Z
has degree at least two. Since k = 3, vertices z; and z; in G have no common
neighbor unless |i — j| = 1. Thus, every vertex of G in A(H) has degree at most
2. Thus, by Lemma 6l G has a matching saturating Z. In other words, there
are distinct aq, as,as,as € A(H) such that x1a1z2a2z3a3240475 is a path in H.
Case 3: k=4 and 5 < n < 6. Consider the bipartite graph G constructed
as in the previous case. Using the computations analogous to those in (2], we
see that the minimum degree of a vertex in Z is at least 3 when n = 6 and at
least 2 when n = 5. Since k = 4, there is no common neighbor of all vertices in
Z. Thus, every vertex of G in A(H) has degree at most 3. Now consider two
subcases.

Subcase 1: n = 6. Since every vertex of G in A(H) has degree at most 3 and
every vertex of G in Z has degree at least 3, by Lemma [6] G has a matching
saturating Z and we are done as in Case 2.

Subcase 2: n = 5. Recall that the minimum degree of a vertex in Z is at least
2. Suppose that there are two vertices of G in A(H) of degree 3. This means
that

Ne(z) N Ng(zig1) N Ng(zig2) # 0 (3)

for i =1 or 2. Indeed, since k = 4, Ng(2z1) N Na(z;) N Ng(z4) = 0 when either
j =2 or 3. Without loss of generality, we assume that (@) holds when ¢ = 1 and
let e; € Ng(21) N Ng(22) N Ng(z3). Thus, e1 = x1222324.

If 21 and x4 are in different partite sets of H, then x1e1x4. Since e; does not
contain x5, we can choose an arc e of H which is different from e; such that
x4eors. Then xiejxqe0x5 is a path in H. Now we assume that z; and x4 are in
the same partite set of H. Then there is an arc e; of H such that xziejx3. Since
the degree of z3 in G is at least 2, we can choose an arc eg of H which is different
from eq such that xzesxs. We can also choose an arc es of H which is different
from e; and ey such that zseszs. Indeed, e3 # e; since e; does not contain s
and ez # es since the degree of z4 in G is at least 2. Then ziejzzeszqesrs is
a path in H. Thus, we may assume that every vertex of G in A(H) has degree
at most 2, except for one vertex which has degree at most 3. Then we can use
Lemma [6] and thus we are done as above.

Case 4: k € {5,6,7} and n = k+1. Consider the bipartite graph G constructed
as in Case 2.

Subcase 1: k € {6,7}. Using the computations analogous to those in (2, we
see that the minimum degree of a vertex in Z is at least 3. If there is a vertex
with degree 4 in A(H), then it means {x1, x3, 23,24, T5} is a subset of a vertex
set of an arc e; and the relative order is x1,zs, 3,24, x5. If 1 and x5 are in
different partite sets, then xje1x5 is a path in H. Otherwise 1 and z4 are in
different partite sets, so x1ejx4. There is an arc e, different from e; such that
xgeaws (since the degree of zy4 is at least 3). Now xjejxqesxs is a path in H.
Thus, we assume each vertex in A(H) has degree at most 3, and we are done
by Lemma



Subcase 2: k = 5. Suppose that the lemma does not hold in this case. Using
the computations analogous to those in (2]), we see that the minimum degree of
a vertex in Z is at least 2. To obtain a contradiction, it suffices to show that
G has at most one vertex of degree at least 3 in A(H). Suppose that G has at
least two vertices of degree at least 3 in A(H). This means that (3] holds for
i =1 or 2. Since H can have only one arc with vertex set {z1, o, x5, 24,25},

we have
3

> INg(21) N Nea(z) N Ne(z4)] < 1 (4)

=2

Without loss of generality, we assume that (B holds when ¢ = 1 and let e; €
Ng(z1) N Ng(z2) N Ng(z3). If we restrict e; to the vertices {x1,x2, x3, 24}, we
obtain e = x1Tow314.

If 1 and x4 are in the different partite sets, then x1e1x4. Since the degree
of z4 in G is at least 2, we can choose an arc es of H which is different from ey
such that z4esxs. Then xiejx4esx5 is a path in H, a contradiction. Now we
assume x; and x4 are in the same partite set. Then xje;x3. Since the degree
of z3 in G is at least 2, we can choose an arc es of H which is different from e;
such that zgesz4. Since the degree of z4 in G is at least 2, we can choose an arc
e3 of H such that x4esxs and ez # es. Suppose e3 = e1. Then ey = z1T2T3T4T5
and x1e1x5, a contradiction. Thus, e # e; and z1e1x3esz4€375 is a path in H,
a contradiction. O

3 Main Results

In Section 3.1l using the Majority Lemma and other results, we solve Conjecture
in affirmative. In Section [B.2] we describe a family of couterexamples to Con-
jecture [o] and prove a sufficient condition of when the statement of Conjecture
holds.

3.1 Results on Conjecture [3

Lemma 8. Let H = (V, A) be a multipartite k-hypertournament with at most
one transmitter and let M (H) be a majority multipartite tournament of H. Let
n>5andn >k > 3. If M(H) has at least one transmitter, then H has a
2-king.

Proof. Let Vi be the partite vertex set containing all transmitters of M (H). Let
v be the transmitter of H, if H has a transmitter, and an arbitrary transmitter
of M(H), otherwise. Clearly, v € V4. Observe that for every u € V'\ V1, there is
an arc a € Ay (v,u) implying that vau. Note that for every w € Vi \ {v}, there
are a vertex u € V' \ V4 and an arc e of H such that uew. As in Lemma [7] it
is easy to see that |Apg(v,u)| > 2. Thus, there is an arc a € Ag(v,u) distinct
from e implying that vauew is a path. O



Lemma 9. Let H = (V, A) be a multipartite k-hypertournament and let n > 5
andn >k > 3. If H has at most one transmitter then H has a 4-king.

Proof. Let M(H) be a majority multipartite tournament of H. If M(H) has
no transmitters, then by Theorem [ M (H) has a 4-king z. By Lemma [7] z is
a 4-king of H. If M (H) has transmitters, then we apply Lemma [§ O

Lemma 10. Let H = (V, A) be a p-partite k-hypertournament with k = 3,
n=4 and p > 2. If H has at most one transmitter then H has a 4-king.

Proof. By Theorem [2 this lemma holds for p = 2 and so we may assume that
p > 3. It is well known that every k-hypertournament with more than k vertices
has a Hamilton path [8]. Observe that for p = 4 the first vertex of a Hamilton
path in H is a 3-king. Now we may assume that p =3. Let V. =V, U Vo U V3
be a partition of vertices of H. Without loss of generality, we may assume that
Vi = {x1, 22}, Vo = {z3} and V5 = {x4}.

First assume that H has the unique transmitter v. If v = x3 or v = x4, then
v is a 1-king of H. Thus, we assume without loss of generality that v = 1.
Since v is a transmitter, vairs and vasxy for some arcs a; and as of H. Since
Z2 is not a transmitter, there is an arc e; such that yejzs, where y € V5 U V3.
By the definition of a transmitter, v precedes y in every arc containing v and
y. Consequently, there is an arc e different from e; such that vesy. Hence
vesye1 o is a path from v to xo. So v is a 2-king.

Now assume that 7" has no transmitter. Consider the arc e; containing 1,
x3, and x4. If 1 is in the first position of e;, since x5 is not a transmitter, there
is an arc ey different from e; such that xzzesxs or z4esxs. Hence xq1e1x3esxs or
T1€1T4€2%2 is a path from x; to xo, implying that z; is a 2-king. Without loss
of generality, we now assume that x3 is in the first position of e;. Since zo is
not a transmitter, there is an arc ey, where x3 or x4 preceds zs. Hence x3 is a
2-king. O

Lemmas [ and [[0 imply the following result solving Conjecture [3in affirma-
tive.

Theorem 11. Every multipartite hypertournament with at most one transmitter
has a 4-king.
3.2 Results on Conjecture

The next result describes a family of counterexamples to Conjecture

Proposition 12. For every k > 3, there is a bipartite k-hypertournament B
without transmitters which has at most one 4-king in each of its partite sets.

Proof. Let U and W be partite sets of B. Choose a vertex v in U and a vertex
w in W. Let every arc of B with both v and w have both of them in the first and
second position such that in at least one such arc w is the first and in at least one
such arc w is the first. Let every arc of B containing u but not w have u in the
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Figure 1: M (H)

first position and let every arc of B containing w but not u have w in the first
position. Clearly, B has no transmitters, but no vertex v in (U U W) \ {u,w}
can be a 4-king as there is no path from v to either u or w. O

The next result is a sufficient condition of when the conclusion of Conjecture
holds. It follows directly from Theorem ] and the Majority Lemma.

Theorem 13. Let B be a bipartite hypertournament with partite sets U and W
and with at least 5 vertices. If a majority bipartite tournament M(B) has no
transmitters, then B has at least two 4-kings in each U and W.

Our final result shows that the Majority Lemma cannot be extended ton = 4
and p = 2. The proof provides another counterexample to Conjecture

Proposition 14. For k = 3 and n = 4, there is a bipartite hypertournament H
with partite sets U and W such that (i) [U| = |W| =2, (i) a majority bipartite
tournament M (H) has no transmitters, (iii) M(H) has an (z,y)-path of length
3, but H has no (x,y)-path, (iv) H has only one 4-king in U.

Proof. Let H be a bipartite hypertournament with partite sets U = {1, 23}
and W = {x3, 24}, arc set {a1, az, a3, as} where

a1 = L4122, 02 = T2T3T4,03 = T3T2T1,04 = T4T3T]-

Let the arcs of M(H) be x421, 2122, T2x3, x3x4 (see Fig. [). Clearly, (i) and
(ii) hold and x12zox324 is an (21, z4)-path in M (H).

Now consider H. Suppose that H has an (21, 4)-path P. Since Ag(z1,24) =
(0, P = x1b1xobox3b3x4 for some distinct arcs by, be, bs of H. By inspection of the
arcs of H, we conclude that by = ay,bs = ag, bs = as, which is impossible since
b1, ba, bg must be distinct. So H has no (x1,z4)-path and (iii) holds. Observe
that x3 is a 4-king of H since x3zagxz, rgazrys and x3azzx4a121 is an (zg x1)-path
of length 2. Moreover, 21 cannot be a 4-king by the discussion in (iii), so (iv)
holds.
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