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Abstract. It is known that there are precisely three transitive permutation groups of degree
6 that admit an invariant partition with three parts of size 2 such that the kernel of the ac-
tion on the parts has order 4; these groups are called A4(6), S4(6d) and S4(6c). For each
L ∈ {A4(6), S4(6d), S4(6c)}, we construct an infinite family of finite connected 6-valent graphs
{Γn}n∈N and arc-transitive groups Gn ≤ Aut(Γn) such that the permutation group induced by
the action of the vertex-stabiliser (Gn)v on the neighbourhood of a vertex v is permutation iso-
morphic to L, and such that |(Gn)v| is exponential in |V(Γn)|. These three groups were the only
transitive permutation groups of degree at most 7 for which the existence of such a family was
undecided. In the process, we construct an infinite family of cubic 2-arc-transitive graphs such
that the dimension of the 1-eigenspace over the field of order 2 of the adjacency matrix of the
graph grows linearly with the order of the graph.

1. Introduction

All the graphs in this paper are finite, connected, simple and undirected. An arc of a graph Γ
is an ordered pair of adjacent vertices. The set of vertices of Γ is denoted by V(Γ) and the set
of arcs by A(Γ). The automorphism group Aut(Γ) of Γ is the group of all permutations of V(Γ)
preserving A(Γ). We say that Γ is G-arc-transitive if G is a subgroup of Aut(Γ) acting transitively
on A(Γ).

One of the central questions in the study of G-arc-transitive graphs is to find good upper bounds
on the order of an arc-stabiliser Guv under certain hypotheses. This problem was first considered
in Tutte’s celebrated work [27], where it was proved that, in the 3-valent case, |Guv| ≤ 16.

Bounding the order of the arc-stabiliser plays a crucial role in many problems, such as when
constructing complete lists of graphs of a prescribed symmetry type [3, 4, 6, 17, 20] (which have
numerous applications themselves), proving asymptotic results regarding the number of graphs
of a particular type [21, 22], obtaining classification results see [5, 7, 13, 31], or various other
problems in algebraic graph theory and elsewhere [2, 14, 24, 26].

When bounding |Guv| in a family of G-arc-transitive graphs by a constant is not possible, it is
still worthwhile to bound it by a suitable function of the order of the graph. If such a function
(even if not constant) grows slowly enough, many of the above mentioned applications are still
possible. For example, it was proved in [19] that there exists a sublinear function f(n) such that for
every connected G-arc-transitive 4-valent graph Γ, not belonging to a well-understood exceptional
family, the inequality |Guv| ≤ f(|V(Γ)|) holds. This fact was then used both to construct a
complete list of all 4-valent arc-transitive graphs on at most 640 vertices (and also a complete
list of all 3-valent vertex-transitive graphs on at most 1280 vertices [17, 23]) as well as prove an
interesting asymptotic result pertaining to the number of such graphs up to a given order [22].

The problem of bounding |Guv| in a family of G-arc-transitive graphs is typically considered in
terms of the local action, which we now introduce. Let Γ be a connected finite G-arc-transitive

graph and let G
Γ(v)
v denote the permutation group induced by the action of the vertex-stabiliser

Gv on the neighbourhood Γ(v) of a vertex v. Since G is transitive on A(Γ) and V(Γ), the group

G
Γ(v)
v is transitive and (up to permutation isomorphism) independent of the choice of v. If L is

1

ar
X

iv
:1

80
7.

04
81

0v
2 

 [
m

at
h.

C
O

] 
 9

 J
ul

 2
02

0
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a permutation group which is permutationally equivalent to G
Γ(v)
v , we say that the pair (Γ, G) is

locally-L, or that (Γ, G) has local action L.
A transitive group L is called graph-restrictive [28] if there exists a constant cL such that, for

every locally-L pair (Γ, G) and (u, v) ∈ A(Γ), we have |Guv| ≤ cL. Tutte’s result [27] can then be
rephrased as saying that transitive groups of degree 3 are graph-restrictive (with corresponding
constant 16), while the famous Weiss conjecture [30] claims that every primitive permutation
group is graph-restrictive; see [16] for a survey of results on graph-restrictiveness and [2, 9, 10, 25]
for more recent results.

Given a transitive group L that is not graph-restrictive, one is naturally led to wonder about
the existence of a “tame” function fL : N→ N such that, for every locally-L pair (Γ, G), we have

(1) |Guv| ≤ fL(|V(Γ)|).
It is an easy exercise to show that, for every L, there is an exponential function fL satisfying (1);
see [18, Theorem 5], for example. On the other hand, if there exists an exponential function gL
and an infinite family of locally-L pairs {(Γn, Gn)}n∈N such that |(Gn)uv| ≥ gL(|V(Γn)|), then a
function fL satisfying (1) cannot grow slower than every exponential function; in this case, we
say that L is of exponential type. In a similar way, one can define other types. For example if in
(1) fL can be chosen to be constant, then L is of constant type (and L is then graph-restrictive).
Similarly, if L is not of constant type but (1) is satisfied with fL(n) = nα , for some α > 0, then
L is of polynomial type. Finally, if L is not of constant, polynomial or exponential type, then L is
of subexponential type. Determining the type of transitive groups was the central topic of [18].

While one can show that there exist permutation groups of constant type (that is, graph-
restrictive groups), of polynomial type [29], and of exponential type, the existence of permutation
groups of subexponential type is still an open problem [18, Question 4]. The smallest undecided
cases are three permutation groups of degree six, which can be characterised as follows.

Up to permutation equivalence, there are 16 transitive groups of degree 6 (see [8]). Of these,
exactly three admit an invariant partition with three parts of size two such that the kernel of the
action on the parts has order 4. Using the terminology from [8], these are:

• A4(6), TransitiveGroup(6,4), Alt(4) acting on the cosets of 〈(1 2)(3 4)〉,
• S4(6d), TransitiveGroup(6,7), Sym(4) acting on the cosets of 〈(1 2), (3 4)〉,
• S4(6c), TransitiveGroup(6,8), Sym(4) acting on the cosets of 〈(1 2 3 4)〉.

For the groups A4(6), S4(6d) and S4(6c), the authors of [18] were unable to determine whether
these groups were of subexponential or exponential type. The main result of this paper is to solve
this problem by proving the following theorem.

Theorem 1.1. Each of the permutation groups A4(6), S4(6d) and S4(6c) is of exponential type.

In particular, the question of existence of permutation groups of subexponential type is still
open. Moreover, since the type of all transitive permutation groups of degree at most 7 was
determined in [18] with the exception of the groups A4(6), S4(6d) and S4(6c), the next unresolved
case occurs in degree 8, where there are four groups of unknown type, with IDs (8,24), (8,32),
(8,39) and (8,40) in the database of transitive groups in Magma.

We prove Theorem 1.1 by explicitly constructing a family of pairs (Γn, Gn) with the appropriate
local action and |(Gn)uv| exponential in |V(Γn)|. In our construction, the graph Γn is defined
as the lexicographic product of a 3-valent arc-transitive graph Λn with an edgeless graph on
two vertices. The graphs Λn are chosen so that for L ∈ {A4(6), S4(6d), S4(6c)} one can find a
subgroup Gn ≤ Aut(Γn) such that (Γn, Gn) is locally-L and moreover, such that |(Gn)uv| grows
exponentially with |V(Γn)|.

The key property of the graphs Λn that allows us to do this is, perhaps surprisingly, that they
have large 1-eigenspace over F2. (Recall that the eigenspace of a graph is the eigenspace of its
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adjacency matrix.) To be more precise, we require that the dimension of the 1-eigenspace of the
graphs Λn grows linearly with |V(Λn)|. We thus obtain the following result along the way.

Theorem 1.2. There exists an infinite family of connected 3-valent 2-arc-transitive graphs {Λn}n∈N
such that the 1-eigenspace of Λn over F2 has dimension at least |V(Λn)|/72.

We would like to point out that the existence of the family {Λn}n∈N was strongly suggested by
the census of cubic arc-transitive graphs [4].

We should also mention that the approach that we use in the proof of Theorem 1.1 is similar to
the one used in [18], where the 0-eigenspaces of cubic 2-arc-transitive graphs were used instead of
the 1-eigenspaces. It was shown in [15] that the 0-eigenspace in a 2-arc-transitive cubic graph can
have arbitrary large dimension, it is still an open question whether there exists an infinite family
of such graphs such that the dimension is linear in the order of the graph. In Section 2 we define
the graphs Λn and prove Theorem 1.2. Section 3 is devoted to the proof of Theorem 1.1.

2. The Möbius–Kantor graph and some of its arc-transitive covers

In this section we construct a family of cubic 2-arc-transitive graphs Λn as covers of the Möbius-
Kantor graph and show that they have a large 1-eigenspace over F2.

Consider the group

R = 〈a, b, c, z | 1 = a2 = b2 = c2 = z2 = [a, z] = [b, z] = [c, z], [a, b] = [b, c] = [a, c] = z〉.
It not hard to see that R is a group of order 16. The Cayley graph M = Cay(R, {a, b, c}) is a
connected 3-valent vertex-transitive graph called the Möbius–Kantor graph. (See Figure 1, where
a-edges are dotted, b-edges are black, and c-edges are gray. Arrows and edge labels can be ignored
for now.) It is obvious from the given presentation of R that any permutation of {a, b, c} induces
an automorphism of R. It follows that M admits a group of automorphisms B isomorphic to
RoSym(3). (In fact, B is the full automorphism group ofM, but we will not use this fact.) Note
that B is 2-arc-regular and contains an arc-regular subgroup A of the form Ro Z3.
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Figure 1. Möbius–Kantor graph
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We will now define the graphs Λn as covering graphs over M. But first we need to introduce
a few notions from the theory of covering graphs. Here we only give a very brief account of the
subject and refer the reader to [12] for more comprehensive treatment.

Let Γ be a connected graph and N a group. Assign to each arc (u, v) of Γ a voltage ζ(u, v) ∈ N
such that ζ(v, u) = (ζ(u, v))−1. Let Cov(Γ; ζ) be the derived covering graph with vertex set
V(Γ)×N and adjacency relation defined by (u, a) ∼ (v, a ζ(u, v)), where u ∼ v in Γ. For a fixed
vertex v ∈ V(Γ), the set {v}×N is called the fibre above v. If ζ maps every arc of some spanning
tree of Γ to the trivial element of N , then we say that ζ is normalised; in this case Cov(Γ; ζ) is
connected if and only if the image of ζ generates N . If C = v0v1 . . . vnv0 is a closed walk of Γ,
then we let ζ(C) = ζ(vnv0)ζ(vn−1vn) · · · ζ(v0v1).

An automorphism of g̃ ∈ Aut(Cov(Γ; ζ)) which preserves the partition of the vertices into fibres
clearly induces an automorphism g of Γ; in this case, we say that g̃ projects to g and that g
lifts to g̃. If every automorphism of a group G ≤ Aut(Γ) lifts, then the set G̃ of lifts of all the
elements of G forms a group, called the lift of G. It is well known that in this case the group G
is vertex-transitive (or edge-transitive or s-arc-transitive) if and only if G̃ is vertex-transitive (or
edge-transitive or s-arc-transitive, respectively).

We are now ready to define the graphs Λn. Let n be a positive integer and let N = Z4
n =

〈e1, e2, e3, e4〉. Let ζn : A(M)→ N be the voltage assignment given in Figure 1 (where unlabelled
arcs get trivial voltage). Let Λn be the derived covering graph with respect to ζn.

Note that since ζn is normalised and the image of ζn generates N , the graph Λn is connected.
In the case when n is prime, ζn was described in [11] and corresponds to the subspace LR(i,−i) ≤
Hom(M;Zn) generated by the vectors 〈c1, c2, c3, c4〉 described in [11, page 2168], or equivalently
in the case where n ≡ 1 (mod 4), by the vectors b1, b2, b3, b4 [11, page 2165].

In the case of n being prime, it was proved in [11] that B lifts along the covering projection
Λn → M, and the argument there generalises easily to an arbitrary positive integer n. This
can also be proved using the following direct approach: In view of [12, Proposition 5.1], an
automorphism g ∈ Aut(M) lifts along the covering projection Λn → M if and only if there

exists an automorphism g# ∈ Aut(N) such that ζn(C)g
#

= ζn(Cg) for every closed walk C, or
equivalently, for every generator C of a fixed generating set of the cycle space of M. Recall that
a generating set of the cycle space can be constructed by choosing a spanning tree T and then,
for every edge uv not in T , taking the cycle whose only arc not in T is (u, v). In our case, we have
chosen the spanning tree which consists of all the a-edges (the dotted edges) and all the edges
of the inner 8-cycle except the edge {ac, abcz} (see Figure 1), and then found an appropriate
automorphism g# for every generator g of B. For example, if g is the automorphism mapping
the vertices of M according to the rule v 7→ v · z (which in Figure 1 corresponds to the reflection
through the central point of the figure), then the corresponding g# maps every x ∈ N to its
inverse x−1. This calculation was done with the help of Magma [1].

Let B̃ ≤ Aut(Λn) denote the lift of B and let Ã be the lift of A. Note that B̃ is 2-arc-regular

on Λn, and Ã is 1-arc-regular. In particular, |B̃| = 2|Ã| = 6 · 16n4.

3. Proof of Theorem 1.2

Let n ≥ 3 be a positive integer and let Λ = Λn. Further, let FV(Λ)
2 denote the F2-vector space

of all functions from V(Λ) to F2. An element x ∈ FV(Λ)
2 is a 1-eigenvector for Λ if and only if∑

u∈Γ(v) x(u) = x(v) for every v ∈ V(Γ).

Our first goal is to exhibit a 1-eigenvector for Λn whose support (the number of vertices mapped
to 1) is bounded (that is, does not grow with n). Finding such an eigenvector proved to be a
surprisingly difficult task, which we could not have performed without the considerable help of a
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computer. Let S1 ⊆ V(Λ) = V(M)× Z4
n be defined as follows:

S1 ={(id, 1, 0, 1, 1), (id, 1, 1, 1, 1), (id, 1, 1, 2, 1), (id, 1, 2, 2, 1), (a, 0, 0, 1, 2), (a, 0, 1, 2, 2), (a, 1, 1, 1, 1),

(a, 1, 2, 2, 1), (ab, 0, 0, 1, 2), (ab, 1, 1, 1, 1), (ab, 1, 1, 1, 2), (ab, 1, 1, 2, 2), (ab, 1, 2, 2, 2), (ab, 2, 1, 1, 1),

(abc, 0, 1, 1, 2), (abc, 1, 1, 1, 1), (abc, 1, 2, 2, 2), (abc, 2, 2, 2, 1), (abcz, 0, 0, 1, 2), (abcz, 1, 0, 1, 1),

(abcz, 1, 1, 2, 2), (abcz, 2, 1, 2, 1), (abz, 0, 1, 2, 2), (abz, 1, 0, 1, 1), (abz, 1, 1, 1, 1), (abz, 1, 1, 2, 1),

(abz, 1, 1, 2, 2), (abz, 2, 2, 2, 1), (ac, 0, 0, 1, 2), (ac, 1, 1, 1, 1), (ac, 1, 1, 2, 2), (ac, 2, 2, 2, 1),

(acz, 0, 0, 1, 2), (acz, 1, 1, 1, 1), (acz, 1, 1, 2, 2), (acz, 2, 2, 2, 1), (az, 1, 0, 1, 2), (az, 1, 1, 2, 2),

(az, 2, 1, 1, 1), (az, 2, 2, 2, 1), (b, 0, 0, 1, 2), (b, 0, 1, 1, 2), (b, 1, 0, 1, 2), (b, 1, 1, 1, 2), (bc, 0, 1, 1, 2),

(bc, 1, 1, 1, 1), (bc, 1, 1, 1, 2), (bc, 2, 1, 1, 1), (bcz, 0, 1, 2, 2), (bcz, 1, 1, 2, 1), (bcz, 1, 1, 2, 2),

(bcz, 2, 1, 2, 1), (bz, 1, 1, 2, 1), (bz, 1, 2, 2, 1), (bz, 2, 1, 2, 1), (bz, 2, 2, 2, 1), (c, 1, 0, 1, 1), (c, 1, 0, 1, 2),

(c, 1, 1, 1, 1), (c, 1, 1, 2, 2), (c, 2, 1, 1, 1), (c, 2, 1, 2, 1), (cz, 0, 1, 1, 2), (cz, 0, 1, 2, 2), (cz, 1, 1, 1, 1),

(cz, 1, 1, 2, 2), (cz, 1, 2, 2, 1), (cz, 1, 2, 2, 2), (z, 1, 0, 1, 2), (z, 1, 1, 1, 2), (z, 1, 1, 2, 2), (z, 1, 2, 2, 2)}.

As alluded to earlier, S1 was found with the help of a computer. We do not have a “natural”
description of this set or of another set with the desired properties. See Figure 2 for a drawing
of the induced subgraph of Λ on S1 ∪ Λ(S1). Vertices are colored black if they are in S1, white
otherwise. Dashed edges belong to fibres over edges of M with trivial voltage. Gray and black
solid edges are in fibres over b-edges and c-edges with non-trivial voltages, respectively.

One can check (using Figure 2 or by computer) that every element of S1 has an odd number
of neighbours in S1. (In Figure 2, this is equivalent to every black vertex having an odd number
of black neighbours.) Similarly, one can check that every vertex not in S1 has an even number
of neighbours in S1. (Vertices that do not appear in Figure 2 have no black neighbours. This
is thus equivalent to the fact that, in Figure 2, every white vertex has an even number of black
neighbours.) In Section 5, we provide magma code that checks this claim.

Let x1 ∈ FV(Λ)
2 satisfying x1(v) = 1 ⇔ v ∈ S1. It follows from the paragraph above that

x1 is a 1-eigenvector for Λ. Let {x1, . . . , xk} be a linearly independent set of 1-eigenvectors for

Λ, and let Si be the support of xi. Suppose that there exists v ∈ V (Λ) \ (
⋃k
i=1 Si). Since Λ

is vertex-transitive, there exists gk+1 ∈ Aut(Λ) such that v ∈ S
gk+1

1 . Let xk+1 = x
gk+1

1 . Since
gk+1 ∈ Aut(Λ), xk+1 is an 1-eigenvector for Λ. Moreover, xk+1 has support S

gk+1

1 which contains
v. Since {x1, . . . , xk} is linearly independent, so is {x1, . . . , xk, xk+1}.

Starting with {x1} and repeatedly applying the procedure described in the previous paragraph,

we obtain a linearly independent set of 1-eigenvectors {x1, . . . , xt} such that V(Λ) =
⋃t
i=1 Supp(xi)

and, for each i = 1, . . . , t, xi = xgi1 for some gi ∈ Aut(Λ). It follows that |Supp(xi)| = 72, |V(Λ)| ≤∑t
i=1 |Supp(xi)| = 72t and thus {x1, . . . , xt} is a linearly independent set of 1-eigenvectors for Λ

of size at least |V(Λ)|/72. This concludes the proof of Theorem 1.2.

4. Proof of Theorem 1.1

Let n ≥ 1, let Λ = Λn and let Γ be the lexicographic product Λ[K2]. In other words, V(Γ) =
V(Λ) × F2 with (u, x) adjacent to (v, y) in Γ if and only if u is adjacent to v in Λ. Since Λ is a
connected 3-valent graph, Γ is a connected 6-valent graph.

Note that Aut(Λ) has a natural action as a group of automorphisms of Γ (by acting on the

first coordinate of vertices of Γ while fixing the second coordinate). Similarly, FV(Λ)
2 also has a

natural action as a group of automorphisms of Γ (given by (v, a)x = (v, a + x(v)), for x ∈ FV(Λ)
2

and (v, a) ∈ V(Λ)× F2).
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(a, 1, 1, 1, 1)

(id, 1, 1, 1, 1)

(b, 1, 1, 1, 2)

(bcz, 1, 1, 2, 2)

(abcz, 1, 1, 2, 2)

(ac, 1, 1, 2, 2)

(az, 1, 1, 2, 2)

(z, 1, 1, 2, 2)

(bz, 1, 1, 2, 1)

(bc, 1, 1, 1, 1)

(abc, 1, 1, 1, 1)

(acz, 1, 1, 1, 1)

(abz, 1, 1, 1, 1)

(c, 2, 1, 1, 1)

(ab, 1, 1, 1, 2)

(cz, 1, 2, 2, 2)

(abz, 1, 1, 2, 2)

(c, 1, 1, 2, 2)

(ab, 1, 1, 2, 2)

(cz, 0, 1, 2, 2)

(abz, 1, 1, 2, 1)

(c, 1, 0, 1, 1)

(ab, 1, 1, 1, 1)

(cz, 1, 1, 1, 1)

(bz, 1, 1, 1, 1)

(abcz, 1, 1, 1, 1)

(bc, 2, 2, 1, 1)

(ac, 2, 1, 1, 1)

(abc, 1, 1, 1, 2)

(az, 1, 1, 1, 2)

(acz, 1, 2, 2, 2)

(z, 2, 2, 2, 2)

(a, 1, 1, 2, 2)

(bz, 1, 1, 2, 2)

(id, 0, 1, 2, 2)

(bc, 1, 2, 2, 2)

(b, 1, 1, 2, 2)

(abc, 1, 1, 2, 2)

(bcz, 0, 0, 2, 2)

(acz, 0, 1, 2, 2)

(abcz, 1, 1, 2, 1)

(a, 1, 1, 2, 1)

(ac, 1, 0, 1, 1)

(az, 1, 1, 1, 1)

(b, 1, 1, 1, 1)

(id, 0, 0, 1, 1)

(z, 2, 1, 1, 1)

(bcz, 1, 0, 1, 1)

(z, 1, 1, 1, 2)

(bz, 2, 2, 2, 1)

(bc, 1, 1, 1, 2)

(abc, 1, 2, 2, 2)

(acz, 1, 1, 2, 2)

(a, 0, 1, 2, 2)

(id, 1, 1, 2, 1)

(b, 0, 0, 1, 2)

(bcz, 1, 1, 2, 1)

(abcz, 1, 0, 1, 1)

(ac, 1, 1, 1, 1)

(az, 2, 1, 1, 1)

(cz, 0, 1, 1, 2)

(abz, 2, 2, 2, 1)

(c, 1, 0, 1, 2)

(ab, 1, 2, 2, 2)

(cz, 1, 1, 2, 2)

(abz, 0, 1, 2, 2)

(c, 2, 1, 2, 1)

(ab, 0, 0, 1, 2)

(cz, 1, 2, 2, 1)

(abz, 1, 0, 1, 1)

(c, 1, 1, 1, 1)

(ab, 2, 1, 1, 1)

(ab, 0, 1, 1, 2)

(cz, 2, 2, 2, 1)

(abz, 0, 0, 1, 2)

(c, 2, 2, 2, 1)

(ab, 1, 0, 1, 2)

(cz, 0, 2, 2, 2)

(abz, 2, 1, 2, 1)

(c, 0, 0, 1, 2)

(ab, 2, 2, 2, 1)

(cz, 0, 0, 1, 2)

(abz, 1, 2, 2, 1)

(c, 2, 0, 1, 1)

(abc, 0, 1, 1, 2)

(acz, 2, 2, 2, 1)

(a, 0, 0, 1, 2)

(id, 1, 2, 2, 1)

(b, 1, 0, 1, 2)

(bcz, 0, 1, 2, 2)

(abcz, 2, 1, 2, 1)

(ac, 0, 0, 1, 2)

(az, 2, 2, 2, 1)

(z, 1, 0, 1, 2)

(bz, 1, 2, 2, 1)

(bc, 2, 1, 1, 1)

(acz, 0, 1, 1, 2)

(bcz, 0, 0, 1, 2)

(a, 2, 2, 2, 1)

(abcz, 2, 2, 2, 1)

(id, 0, 0, 1, 2)

(ac, 1, 0, 1, 2)

(b, 1, 2, 2, 2)

(az, 1, 2, 2, 2)

(bcz, 1, 0, 2, 2)

(z, 2, 1, 2, 2)

(abcz, 0, 1, 2, 2)

(bz, 0, 1, 2, 2)

(ac, 2, 1, 2, 1)

(bc, 2, 2, 2, 1)

(az, 0, 0, 1, 2)

(abc, 0, 0, 1, 2)

(z, 2, 2, 2, 1)

(acz, 1, 2, 2, 1)

(bz, 1, 0, 1, 1)

(a, 1, 0, 1, 1)

(bc, 1, 2, 1, 1)

(id, 0, 1, 1, 1)

(abc, 2, 1, 1, 1)

(b, 2, 1, 1, 1)

(bc, 0, 1, 1, 2)

(abc, 2, 2, 2, 1)

(acz, 0, 0, 1, 2)

(a, 1, 2, 2, 1)

(b, 0, 1, 1, 2)

(id, 1, 0, 1, 1)

(bcz, 2, 1, 2, 1)

(abcz, 0, 0, 1, 2)

(ac, 2, 2, 2, 1)

(az, 1, 0, 1, 2)

(z, 1, 2, 2, 2)

(bz, 2, 1, 2, 1)

Figure 2. Λ[S1 ∪ Λ(S1)].
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Let E1 be the 1-eigenspace for Λ over F2. Note that E1 ≤ FV(Λ)
2 and thus E1 ≤ Aut(Γ). It is

not difficult to see that in fact E1 E Aut(Γ). Let m = |V(Γ)| = 2|V(Λ)| = 32n4. As we saw in

Section 3, we have |E1| ≥ 2|V(Λ)|/72 = 2m/144. Recall from Section 2 that Λ admits a 2-arc-regular

group of automorphism B̃, as well as a 1-arc-regular subgroup Ã ≤ B̃.
First, let G1 = 〈E1, Ã〉 = E1 o Ã ≤ Aut(Γ). Recall that |Ã| = 3 · 16n4 = 3m/2 and thus

|G1| = |E1||Ã| ≥ 3m·2m/144−1. In particular, a vertex-stabiliser inG1 has order at least 3·2m/144−1.
Since the dimension of E1 is more than one and Λ is connected, E1 must contain an element x
such that x(v) = 0 and x(u) = 1 for some (u, v) ∈ A(Λ). It easily follows that Γ is G1-arc-

transitive. The stabiliser of the vertex (v, 0) in G1 is (E1)v o Ãv, where (E1)v is the subspace
(of codimension 1) of E1 consisting of vectors x with x(v) = 0. The local action at (v, 0) is

L := ((E1)v o Ãv)
Γ(v,0) = (E1)

Γ(v,0)
v o Ã

Γ(v,0)
v . Clearly, L has blocks of size 2, and the kernel

of the action on these blocks is (E1)
Γ(v,0)
v , while the induced action on the blocks is isomorphic

to Ã
Γ(v,0)
v

∼= Z3. Now, we saw earlier that (E1)
Γ(v,0)
v is non-trivial. From the definition of the

1-eigenspace, it follows that (E1)
Γ(v,0)
v must have order 4. As remarked in the introduction, if a

transitive group of degree 6 admits an invariant partition with three parts of size 2 such that the
kernel of the action on the parts has order 4, then it must be one of three listed in the introduction.
By order considerations, we then see that L must be A4(6).

Next, let G2 = 〈E1, B̃〉 = E1o B̃ ≤ Aut(Γ). We can repeat the argument in the last paragraph,

with the significant differences being that a vertex-stabiliser in G2 has order at least 3 · 2m/144,

L = (E1)
Γ(v,0)
v oB̃Γ(v,0)

v and that the action on the blocks of size 2 is isomorphic to B̃
Γ(v,0)
v

∼= Sym(3)

and thus |L| = 24. Let Λ(v) = {v1, v2, v3}. Since B̃ acts transitively on the 2-arcs of Λ, there

exists α ∈ B̃(v,v3) interchanging v1 and v2. The element of L induced by α is the permutation

((v1, 0) (v2, 0))((v1, 1), (v2, 1)). Further, since (E1)
Γ(v,0)
v is non-trivial, there exists x ∈ (E1)v such

that x(v1) = x(v2) = 1 and x(v3) = 0. The element of L induced by x is the permutation
((v1, 0) (v1, 1))((v2, 0), (v2, 1)). It is now easy to see that L(v3,0) is isomorphic to the Klein group.
Again, using the remark in the introduction, we see that L = S4(6d). It thus remains to deal with
S4(6c). Before we can do this, we need the following.

Lemma 4.1. There exists σ ∈ FV(Λ)
2 with the following properties:

• For all b ∈ B̃, we have σbσ ∈ E1.
• There exists an arc (v, w) of Λ, such that σ(v) = 0, σ(w) = 1, and σ(u) = 0 for all

neighbours u of v other than w.

Proof. First, consider the analogous claim where Λ is replaced by the complete graph K4 and B̃

is replaced by Aut(K4). Clearly, the analogous claim holds: simply consider σK4 ∈ FV(K4)
2 such

that σK4(v) is 1 for a unique vertex v of K4, and 0 for the others.
Next, note that there is a regular covering projection ℘ : Q3 → K4 (where Q3 denotes the

graph of the 3-cube), and that Aut(K4) lifts to Aut(Q3) along this projection. We now define

σQ3 ∈ FV(Q3)
2 using this projection in the most natural way: σQ3(v) = σK4(℘(v)). One can check

that σQ3 is 1 on a pair of antipodal vertices of Q3, and 0 elsewhere. One can also check that σQ3

satisfies an analog of the claim, with Λ replaced by Q3 and B̃ replaced by Aut(Q3). This can be
checked by brute force but, more importantly, it immediately follows from the definition of σQ3

together with the fact that the analogous claim holds for K4.
This last remark allows us to repeat this procedure: there is a natural covering projection

M → Q3 such that Aut(Q3) lifts to B and we can use this to define σM as earlier. Again, σM
satisfies an analog of the claim, with Λ replaced by M and B̃ replaced by B. Finally, we repeat
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this procedure one last time, using the covering projection Λn →M, along which B lifts to B̃, to
obtain σ = σΛn defined in the natural way. �

Let σ, v and w be as in the claim and let τ ∈ B̃\Ã such that τ fixes v but not w. (Such an element

exists since B̃ is 2-arc-regular while Ã is 1-arc-regular.) LetG3 = 〈G1, τσ〉 = 〈E1, Ã, τσ〉 ≤ Aut(Γ).
We first show that G1 is normal in G3. It suffices to show that στ normalises G1. Note that E1

is centralised by σ and normalised by τ . Since Ã is normal in B̃, it is normalised by τ . It thus
remains only to show that Ãσ ≤ G1. Let a ∈ Ã. By definition of σ, we have a−1σaσ = σaσ ∈ E1

and thus aσ = σaσ ∈ aE1 ⊆ G1, as required. This shows that G1 is normal in G3. Note that
(τσ)2 = τ2στσ ∈ ÃE1 ⊆ G1. It follows that |G3 : G1| ≤ 2.

Note that τσ fixes (v, 0). In fact, it is easy to see that τσ fixes a neighbour of (v, 0) (and
thus in fact at least two neighbours). On the other hand, it acts as a 4-cycle on the remaining
4 neighbours of (v, 0). By the remark in the introduction, it follows that the local action of G3

must be S4(6c) and thus |G3| = 2|G1| = |G2|. This concludes the proof of Theorem 1.1.
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5. Appendix: magma code that checks that x1 is a 1-eigenvector for Λ

/* The function Delta(n) defines the graph denoted by \Delta_n in the paper.

The labels of the vertices differ from those in the paper:

The first coordinate, which is an element of the group R in the paper,

is an element of Z_8xZ_2 in the code. The correspondence is as follows:

(0,0) <-> a

(1,0) <-> ac

(2,0) <-> abc

(3,0) <-> abz

(4,0) <-> az

(5,0) <-> acz

(6,0) <-> abcz

(7,0) <-> ab

(0,1) <-> id

(1,1) <-> c

(2,1) <-> bc

(3,1) <-> bz

(4,1) <-> z

(5,1) <-> cz

(6,1) <-> bcz

(7,1) <-> b */

Delta:=function(n)

V:={<i,j,x,y,z,w>:i in [0..7], j in [0..1], x in [0..n-1],
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y in [0..n-1],z in [0..n-1],w in [0..n-1]};

E:={{<i,0,x,y,z,w>,<i,1,x,y,z,w>}:i in [0..7], x in [0..n-1],

y in [0..n-1],z in [0..n-1],w in [0..n-1]};

E:=E join {{<0,1,x,y,z,w>,<1,1,(x+1) mod n,y,z,w>}:x in [0..n-1],

y in [0..n-1],z in [0..n-1],w in [0..n-1]};

E:=E join {{<1,1,x,y,z,w>,<2,1,(x) mod n,(y+1) mod n,z,w>}:x in [0..n-1],

y in [0..n-1],z in [0..n-1],w in [0..n-1]};

E:=E join {{<2,1,x,y,z,w>,<3,1,(x) mod n,y,(z+1) mod n,w>}:x in [0..n-1],

y in [0..n-1],z in [0..n-1],w in [0..n-1]};

E:=E join {{<3,1,x,y,z,w>,<4,1,(x) mod n,y,z,(w+1) mod n>}:x in [0..n-1],

y in [0..n-1],z in [0..n-1],w in [0..n-1]};

E:=E join {{<4,1,x,y,z,w>,<5,1,(x-1) mod n,y,z,w>}:x in [0..n-1],

y in [0..n-1],z in [0..n-1],w in [0..n-1]};

E:=E join {{<5,1,x,y,z,w>,<6,1,(x) mod n,(y-1) mod n,z,w>}:x in [0..n-1],

y in [0..n-1],z in [0..n-1],w in [0..n-1]};

E:=E join {{<6,1,x,y,z,w>,<7,1,(x) mod n,y,(z-1) mod n,w>}:x in [0..n-1],

y in [0..n-1],z in [0..n-1],w in [0..n-1]};

E:=E join {{<7,1,x,y,z,w>,<0,1,(x) mod n,y,z,(w-1) mod n>}:x in [0..n-1],

y in [0..n-1],z in [0..n-1],w in [0..n-1]};

E:=E join {{<i,0,x,y,z,w>,<(i+3) mod 8,0,x,y,z,w>}:i in [0..7], x in [0..n-1],

y in [0..n-1],z in [0..n-1],w in [0..n-1]};

X:=Graph<V|E>;

return(X);

end function;

/* The function IsEigenvector(F,X) has as input a graph X and a set of vertices F.

It tests whether the support vector of F is a 1-eigenvector of X over GF(2). */

IsEigenvector:=function(F,X)

A,V,E:=AutomorphismGroup(X);

n:=Degree(A);

Z2:=IntegerRing(2);

A2:=Matrix(Z2,AdjacencyMatrix(X));

AI:=A2+IdentityMatrix(Z2,n);

ZeroVector:=AI[1]+AI[1];

sum:=ZeroVector;

for s in F do

sum:=sum + AI[Position(V,s)];

end for;

result:=sum eq ZeroVector;

return(result);

end function;

/* The set S1 corresponds to the set S_1 defined in the paper.

The only difference is with the labelling of vertices, as in the first comment above. */

S1:={<0, 0, 0, 0, 1, 2 >,<0, 0, 0, 1, 2, 2 >,<0, 0, 1, 1, 1, 1 >,

<0, 0, 1, 2, 2, 1 >,<0, 1, 1, 0, 1, 1 >,<0, 1, 1, 1, 1, 1 >,

<0, 1, 1, 1, 2, 1 >,<0, 1, 1, 2, 2, 1 >,<1, 0, 0, 0, 1, 2 >,
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<1, 0, 1, 1, 1, 1 >,<1, 0, 1, 1, 2, 2 >,<1, 0, 2, 2, 2, 1 >,

<1, 1, 1, 0, 1, 1 >,<1, 1, 1, 0, 1, 2 >,<1, 1, 1, 1, 1, 1 >,

<1, 1, 1, 1, 2, 2 >,<1, 1, 2, 1, 1, 1 >,<1, 1, 2, 1, 2, 1 >,

<2, 0, 0, 1, 1, 2 >,<2, 0, 1, 1, 1, 1 >,<2, 0, 1, 2, 2, 2 >,

<2, 0, 2, 2, 2, 1 >,<2, 1, 0, 1, 1, 2 >,<2, 1, 1, 1, 1, 1 >,

<2, 1, 1, 1, 1, 2 >,<2, 1, 2, 1, 1, 1 >,<3, 0, 0, 1, 2, 2 >,

<3, 0, 1, 0, 1, 1 >,<3, 0, 1, 1, 1, 1 >,<3, 0, 1, 1, 2, 1 >,

<3, 0, 1, 1, 2, 2 >,<3, 0, 2, 2, 2, 1 >,<3, 1, 1, 1, 2, 1 >,

<3, 1, 1, 2, 2, 1 >,<3, 1, 2, 1, 2, 1 >,<3, 1, 2, 2, 2, 1 >,

<4, 0, 1, 0, 1, 2 >,<4, 0, 1, 1, 2, 2 >,<4, 0, 2, 1, 1, 1 >,

<4, 0, 2, 2, 2, 1 >,<4, 1, 1, 0, 1, 2 >,<4, 1, 1, 1, 1, 2 >,

<4, 1, 1, 1, 2, 2 >,<4, 1, 1, 2, 2, 2 >,<5, 0, 0, 0, 1, 2 >,

<5, 0, 1, 1, 1, 1 >,<5, 0, 1, 1, 2, 2 >,<5, 0, 2, 2, 2, 1 >,

<5, 1, 0, 1, 1, 2 >,<5, 1, 0, 1, 2, 2 >,<5, 1, 1, 1, 1, 1 >,

<5, 1, 1, 1, 2, 2 >,<5, 1, 1, 2, 2, 1 >,<5, 1, 1, 2, 2, 2 >,

<6, 0, 0, 0, 1, 2 >,<6, 0, 1, 0, 1, 1 >,<6, 0, 1, 1, 2, 2 >,

<6, 0, 2, 1, 2, 1 >,<6, 1, 0, 1, 2, 2 >,<6, 1, 1, 1, 2, 1 >,

<6, 1, 1, 1, 2, 2 >,<6, 1, 2, 1, 2, 1 >,<7, 0, 0, 0, 1, 2 >,

<7, 0, 1, 1, 1, 1 >,<7, 0, 1, 1, 1, 2 >,<7, 0, 1, 1, 2, 2 >,

<7, 0, 1, 2, 2, 2 >,<7, 0, 2, 1, 1, 1 >,<7, 1, 0, 0, 1, 2 >,

<7, 1, 0, 1, 1, 2 >,<7, 1, 1, 0, 1, 2 >,<7, 1, 1, 1, 1, 2 >};

/* We test if S1 is a 1-eigenvector for the graph Delta(4). */

IsEigenvector(S1,Delta(4));
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