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Abstract

In 1979, Nishizeki and Baybars showed that every planar graph with minimum
degree 3 has a matching of size n

3+c (where the constant c depends on the connectivity),
and even better bounds hold for planar graphs with minimum degree 4 and 5. In this
paper, we investigate similar matching-bounds for 1-planar graphs, i.e., graphs that
can be drawn such that every edge has at most one crossing. We show that every 1-
planar graph with minimum degree 3 has a matching of size at least 1

7n+ 12
7 , and this

is tight for some graphs. We provide similar bounds for 1-planar graphs with minimum
degree 4 and 5, while the case of minimum degree 6 and 7 remains open.

1 Introduction

Matchings are one of the oldest and best-studied problems in graph theory, see for example
the extensive reviews of matching theory in [9, 2]. We focus here on matchings in graph
classes that are restricted to have special drawings. In particular, a graph is called planar if
it can be drawn without crossing in the plane (detailed definitions are below). Nishizeki and
Baybars [10] argued that every simple planar graph with n ≥ X vertices has a matching of
size at least Y n + Z, where X, Y, Z depend on the minimum degree δ and the connectivity
κ of the graph (they explore all possibilities of δ and κ). Their bounds are tight in the sense
that some planar graph that satisfies the restrictions has no bigger matching.

The goal of this paper is to develop similar results for simple 1-planar graphs, i.e., graphs
that can be drawn in the plane with at most one crossing per edge. These graphs have been
of high interest to the graph theory community ever since Ringel introduced them in 1965
[11]; we refer the reader to an extensive annotated bibliography [8] for many results. To our
knowledge, no previous matching-bounds were known for 1-planar graphs of given minimum
degree. We prove here the following:

Theorem 1. Any n-vertex simple 1-planar graph with minimum degree δ has a matching
M of the following size:
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1. |M | ≥ n+12
7

if δ = 3 and n ≥ 7.

2. |M | ≥ n+4
3

if δ = 4 and n ≥ 20.

3. |M | ≥ 2n+3
5

if δ = 5 and n ≥ 21.

All of our bounds are tight in the sense that there are arbitrarily large simple 1-planar
graphs of the required minimum degree for which no matching can be larger. We also provide
some simple 1-planar graphs with minimum degree 6 and 7 with upper bounds on the size of
their matchings, though proving that these can always be achieved remains open. No simple
1-planar graph can have minimum degree 8 or higher.

Our proofs follow similar ideas as the proofs in Nishizeki and Baybars, but need some
new results that do not immediately transfer from planar to 1-planar graphs. In particular,
at the heart of the proofs in [10] lies the idea that a planar bipartite graph has at most
2n− 4 edges. It is known that every 1-planar bipartite graph has at most 3n− 6 edges, but
inserting this into the proof from [10] would give no non-trivial matching-bounds for δ ≤ 5.
We therefore need to develop different techniques to analyze how big an independent set in a
1-planar graph can be, given bounds on the minimum degree; this result may be interesting
in its own right.

Preliminaries Let G = (V,E) be a graph with n vertices and m edges; to avoid trivialities
assume n ≥ 4 throughout. We also assume familiarity with basic terms in graph theory; see
e.g. [5] for details. A matching of G is a set of edges for which the endpoints are all distinct.
An independent set of G is a set of vertices without edges between them. We assume that
the input graph G is simple, i.e., has neither a loop nor a multiple edge. It will sometimes be
convenient to add multiple edges, but only under restrictions specified below. G is connected
if any two vertices are connected via a path. The connectivity of G is the maximum number
κ such that removing any κ − 1 vertices leaves a connected graph. A component of G is a
maximal connected subgraph; we call it a singleton if it has only one vertex. A bipartite
graph is a graph G = (V,E) where the vertices can be partitioned into sides V = S ∪T such
that each side is an independent set.

Nearly all papers that give lower bounds on matching-sizes (see e.g. [10, 6]) use the
Tutte-Berge-Formula [1].

Theorem 2 (Tutte-Berge). The size of a maximum matching M equals the minimum, over
all vertex-sets S, of 1

2
(n − (odd(G \ S) − |S|)). Here, odd(G \ S) denotes the number of

components of odd cardinality in the graph G \ S.

To prove a lower bound on a matching, one uses the following reformulation of the non-
trivial direction of Theorem 2.

Corollary 1. If G = (V,E) is a graph such that odd(G\S)−|S| ≤ cn−d for all vertex-sets
S ⊂ V and some constants c, d, then G has a matching of size at least 1−c

2
n+ d

2
.
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Planar and 1-planar graphs A drawing Γ of a graph G assigns points in R2 to vertices
and curves in R2 to edges. In what follows, we usually identify the element of G (i.e., vertex
or edge) with the geometric element in Γ (i.e., point or curve) that corresponds to it. All
drawings are assumed to be good (see e.g. [12] for a detailed discussion), which means among
others that no two vertices coincide, no edge intersects itself or a non-incident vertex, and any
two edges intersect in at most one point and where they either end or fully cross. (For graphs
that are not simple, multi-edges are permitted to meet twice, once at each end.) Whenever a
drawing is fixed, we think of the edges incident to a vertex v as cyclically ordered according
to the order in which they end at v.

A drawing is called k-planar if every edge has at most k crossings; in this paper all draw-
ings are 1-planar and sometimes we restrict the attention to 0-planar (“planar”) drawings.
A graph is called planar [1-planar] if it has a planar [1-planar] drawing.

For the following definitions fix a planar drawing Γ. The faces of Γ are the connected
pieces of R2\Γ, and described by giving the collection of circuits that form its boundary. A
bigon is a face whose boundary is a single cycle consisting of two copies of the same edge.
Our input graph is assumed to be simple, but we will sometimes add edges for counting
arguments, and then allow multi-edges, but never bigons. We never allow loops. Any graph
with a planar bigon-free drawing has at most 3n− 6 edges, and at most 2n− 4 edges if it is
bipartite.

For the following definitions fix a 1-planar drawing Γ. We call an edge crossed if it contains
a crossing and uncrossed otherwise. The planarization ΓP of Γ is the planar drawing obtained
by replacing every crossing with a dummy-vertex of degree 4. The regions of Γ are the faces
of its planarization ΓP , the corners of a region of Γ are the vertices of the corresponding face
of ΓP ; corners are vertices or crossings of Γ.

A bigon of Γ is a bigon of ΓP . Any bigon-free loop-free 1-planar graph has at most 4n−8
edges, and at most 3n− 6 edges if it is bipartite. We need a slightly more detailed bound.

Observation 1. Let G be a bipartite graph with a 1-planar bigon-free drawing that has m×
crossed and m− uncrossed edges. Then 1

2
m× +m− ≤ 2n− 4.

Proof. The crossed edges come in pairs, and if we remove one edge from each pair then
we obtain a planar bipartite bigon-free drawing. This has at most 2n − 4 edges, and so
1
2
m× +m− ≤ 2n− 4.

2 1-planar graphs without large matchings

In this section, we create some 1-planar graphs that have large minimum degree and for
which the maximum matching is small.

Lemma 1. For any N , there exists a simple 1-planar graph with minimum degree 3 and
n ≥ N vertices for which any matching has size at most n+12

7
.

Proof. Consider the graph in Fig. 1(a), which has been built as follows. Start with an
arbitrary planar graph H on s vertices, where s ≥ max{3, N+12

7
}, such that all faces of H are
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(a) (b) (c) (d)

Figure 1: Graphs that do not have large matchings. Graph H is bold, vertices in S are
black. (a) Minimum degree 3. (b and c) Minimum degree 4. (d) Minimum degree 5.

triangles. Into each face {u, v, w} of H, insert three more vertices that are all adjacent to
all of u, v, w. Obviously the resulting graph G has minimum degree 3, and the figure shows
that G is 1-planar. Also, H has 2s− 4 faces, hence G has n = s+ 3(2s− 4) = 7s− 12 ≥ N
vertices. Setting S to be the s vertices of H, we observe that every vertex in G \ S becomes
a singleton component. So

odd(G \ S)− |S| = 3(2s− 4)− s = 5s− 12 =
5n− 24

7
.

By Theorem 2 therefore any matching has size at most n+12
7

.

Lemma 2. For any N , there exists a simple 1-planar graph with minimum degree 4 and
n ≥ N vertices for which any matching has size at most n+4

3
.

Proof. Consider the graph in Fig. 1(b), which has been built as follows. Start with a planar
graph H on s vertices, where s ≥ max{4, N+4

3
}, such that all faces of H are simple cycles of

length 4. Into each face {u, v, w, x} of H, insert two more vertices that are all adjacent to all
of u, v, w, x. Obviously the resulting graph G has minimum degree 4 and the figure shows
that G is 1-planar. Also, H has s − 2 faces, hence G has n = s + 2(s − 2) = 3s − 4 ≥ N
vertices. Setting S to be the s vertices of H, we observe that every vertex in G \ S becomes
a singleton component. So

odd(G \ S)− |S| = 2(s− 2)− s = s− 4 =
n− 8

3
.

By Theorem 2 therefore any matching has size at most n+4
3

.

We note here that the same lower bound can be achieved with a much simpler construction
that combines (n− 2)/3 copies of the complete graph K5 at an edge (see Fig. 1(c)), but the
connectivity of the resulting graph is not as high.
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Lemma 3. For any N , there exists a simple 1-planar graph with minimum degree 5 and
n ≥ N vertices for which any matching has size at most 2n+3

5
.

Proof. Consider the graph in Fig. 1(d), which has been built as follows. Let n ≥ N be
such that n ≡ 1 mod 5. Create one vertex vs, and split the remaining vertices into (n− 1)/5
groups of five vertices each. For each group {v1, . . . , v5}, inserted edges to turn {s, v1, . . . , v5}
into a complete graph K6. Obviously the resulting graph G has minimum degree 5, and the
figure shows that G is 1-planar.

Setting S to be the single vertex vs, we observe that each of the (n−1)/5 groups become
an odd component of G \ S. Hence

odd(G \ S)− |S| = (n− 1)/5− 1 =
n− 6

5
.

By Theorem 2 therefore any matching has size at most 2n+3
5

.

3 Lower bounds on the matching-size

In this section, we prove Theorem 1 by proving bounds on odd(G \ S) − |S| for a 1-planar
graph G and an arbitrary vertex-set S under assumptions on the minimum degree.

We first briefly review the technique by Nishizeki and Baybars [10] to prove matchings
bounds in a planar graph G of minimum degree 3. Let a vertex-set S be given. By Corollary 1
it suffices to show that odd(G\S)−|S| ≤ n+8

3
. To this end, delete any edge that connects two

vertices in S, and delete any component of G \ S that has even cardinality; note that both
do not increase odd(G\S) and can only decrease n. Also delete any odd component of G\S
that contains at least 3 vertices; this decreases odd(G \S) by one and n by at least 3 and so
does not make the bound worse. We end with a planar bipartite graph G′ where one side is
S and the other side T has one vertex for each singleton component of G \ S. Furthermore,
no edges incident to a vertex in T was deleted, so deg(t) ≥ 3 for all t ∈ T . Since G′ has
n(G′) = |S| + |T | vertices, it has at most 2(|S|+|T |) − 4 edges and at least 3|T | edges, so
|T | ≤ 2|S|−4. Therefore 3 (odd(G′ \ S)− |S|) = 3|T |−3|S| ≤ 2|T |−4|S|+n(G′) ≤ n(G′)−8
whence the matching-bound follows.

3.1 Independent sets in 1-planar graphs

The crucial ingredient for the proof by Nishizeki and Baybars is the bound |T | ≤ 2|S| − 4 in
a planar bipartite graph (S ∪ T,E) where all vertices in T have minimum degree 3. In this
section, we aim to show similar bounds for 1-planar graphs. This requires entirely different
techniques than the simple edge-counting argument that sufficed for planar graphs. We
phrase it as a slightly more general statement about independent sets in 1-planar graphs.
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Lemma 4. Let G be simple 1-planar graph. Let T be a non-empty independent set in G
where deg(t) ≥ 3 for all t ∈ T . Let Td be the vertices in T that have degree d. Then

2|T3|+
∑
d≥4

(3d− 6)|Td| ≤ 12|V \ T | − 24.1

We will at the same time prove another result that is related (but neither result implies
the other); this will be used in a future paper [4]. Define the crossing-weighted degree of a
vertex v ∈ V to be the degree plus the number of incident uncrossed edges. Thus, uncrossed
edges count doubly.

Lemma 5. Let G be a simple graph with a 1-planar drawing Γ. Let T be a non-empty
independent set in G where deg(t) ≥ 3 for all t ∈ T . Let Wd be the vertices in T that have
crossing-weighted degree d. Then

2|W3|+ 2|W4|+
∑
d≥5

(3d− 12)|Wd| ≤ 12|V \ T | − 24.

Proof. (of both Lemma 4 and 5) Fix a 1-planar drawing Γ of G if not given yet. We use a
charging scheme, where we assign some charges (units of weight) to edges in G (as well as
some additions that we make to G), redistribute those to the vertices in T , and then count
the number of charges in two ways to obtain the bound.

Step 0: Make G bipartite. Let S be the vertices that are not in T , and note that |S| ≥ 3
since T is non-empty and vertices in it have degree 3 or more. Delete all edges within S
so that G becomes bipartite; this does not affect degrees in T , can only increase crossing-
weighted degrees in T by making some edges uncrossed, and so it suffices to prove the bound
for the resulting graph.

Step 1: Add more edges. Now add any edge to Γ that can be added without crossing
while remaining bipartite. This can only increase degrees of vertices in T and so improve
the bound. We are allowed to add multiple edges, as long as they do not form a bigon, see
edge (A, d) in Fig. 2.

We claim that in Γ′ no vertex t ∈ T has three consecutive crossed edges e1, e2, e3 (in
the cyclic order of edges defined by Γ′). Assume there were three such consecutive edges in
Γ, and let (t′, s′) (with t′ ∈ T and s ∈ S) be the edge that crosses e2, say at c. (For an
illustration, consider vertex t = d in Fig. 2, which has three consecutive crossed edges to
E, A and C in Γ; hence (t′, s′) = (c, B).) We can add an uncrossed edge e′ = (s′, t) by tracing
along c; this edge would end before or after e2 in the clockwise order at t. Adding e′ does
not create a bigon, since on one side of e′ the region contains c and on the other side the
region contains the crossing in e1 or e3. So we added this edge when creating Γ′ from Γ, and
no three consecutive crossed edges in Γ remain consecutive in Γ′.

1This bound is not tight, and in fact 2|T3|+
∑

d≥4(3d+3dd/3e− 12)|Td| ≤ 12|V \T |− 24 could be shown
with much the same proof.
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Figure 2: A drawing Γ of a bipartite 1-planar graph with minimum degree 3; vertices of T
are white. Edges in Γ′ \ Γ are dashed, the unique vertex in S∆ is a triangle and edges in E∆

are dotted.

Step 2: Add vertices and edges. As a next step, we possibly augment Γ′ further with
vertices S∆. Assume there exists a region R in Γ′ incident to at least three vertices in T .
Add a new vertex z to S∆ and connect it to exactly three vertices of T on R via uncrossed
edges within R. This splits R into three regions, each with fewer vertices of T , so we can
repeat until no such regions remain. See the new vertex incident to d, f, g in Fig. 2. Let E∆

be the added edges; we have |E∆| = 3|S∆|. Also observe that edges in E∆ are uncrossed and
that the resulting drawing Γ∆ is again bipartite.

Step 3: Assigning charges. We assign charges as follows: Let E− be the uncrossed edges
of Γ′; each of those receives 6 charges. Let E× be the crossed edges of Γ′; each of those
receives 3 charges. Finally the (uncrossed) edges E∆ of Γ∆−Γ′ receive 2 charges each. Using
Observation 1 hence

#charges = 6|E−|+ 3|E×|+ 2|E∆| = 6(|E−|+ |E∆|) + 3|E×| − 4|E∆|
≤ 12|S|+ 12|S∆|+ 12|T | − 24− 12|S∆|
= 12|S|+ 12|T | − 24. (1)

Step 4: Charges at a vertex. For t ∈ T , let c(t) be the total charges of incident edges of
t. We lower-bound c(t) as follows:

• Assume first that t has at least two incident uncrossed edges in Γ′. It obtains 12 charges
from these two edges, and at least 3(deg(t) − 2) further charges from the remaining
edges that it had in G. Hence c(t) ≥ 12 + 3(deg(t)− 2) = 3 deg(t) + 6 ≥ 15.

• Now assume that t has at most one uncrossed incident edge in Γ′. We aim to show
that c(t) ≥ 14. By deg(t) ≥ 3, and since no three crossed edges are consecutive, vertex

7



t has at least one uncrossed edge, so it has exactly one, call it e1. This implies that t
has only three incident edges in Γ′, else the edges other than e1 would contain three
consecutive crossed edges. So this case can occur only if t ∈ T3 and it has exactly one
uncrossed edge e1 =: (t, s1) and two crossed edges (t, s2) and (t, s3). See vertex t = f

in Fig. 2, where {s2, s3} = {B, F}.
Let (s′, t′) be the edge that crosses (t, s2) in Γ, with s′ ∈ S and t′ ∈ T . Then (as above)
an edge (s′, t) could be drawn without crossing and could have been added to Γ′. Since
the only uncrossed edge at t is e1 therefore s′ = s1. Similarly one argues that (t, s3)
is crossed by edge (s1, t

′′) for some t′′ ∈ T . (In Fig. 2 we have {t′, t′′} = {d, g}.) If we
had t′ = t′′ then there would be two copies of edge (s1, t

′), and both would be crossed.
Since G is simple and no crossed edges were added for Γ′, this is impossible and t′ 6= t′′.

Observe that hence t, t′, t′′ all belong to the same region R between the two crossings in
(t, s2) and (t, s3). Therefore we added a vertex z of S∆ inside R and made it adjacent
to t. Edge (t, z) has two charges, and in total we have c(t) ≥ 6 + 3 + 3 + 2 = 14.

• (The following is relevant only for Lemma 5.) Assume t ∈ W d. Then t receives
6 charges for every uncrossed edge that was incident in Γ, and 3 charges for every
crossed edge that was incident in Γ (and possibly some more from edges added in
later steps). Since uncrossed edges count twice for the crossing-weighted degree, hence
c(v) ≥ 3d.

To prove Lemma 4, use c(t) ≥ 14 for all t, c(t) ≥ 18 for t ∈ T4 and c(t) ≥ 21 for t ∈ Td
with d ≥ 5 since a vertex in Td has degree at least d in Γ′. Therefore

#charges =
∑
t∈T

c(t) ≥ 14|T3|+ 18|T4|+ 21
∑
d≥5

|Td|. (2)

To prove Lemma 5, observe that again c(t) ≥ 14 for all t and c(t) ≥ 3d for t ∈ Wd. Therefore

#charges =
∑
t∈T

c(t) ≥ 14|W3|+ 14|W4|+
∑
d≥5

3d |Wd|. (3)

Combining this with (1) and subtracting 12|T | = 12
∑

d≥3 |Td| = 12
∑

d≥3 |Wd| from both
sides gives the results.

3.2 Matching-bounds

Now we use Lemma 4 to obtain the desired matching-bounds. For minimum degree 3 and 4
we proceed almost exactly as done by Nishizeki and Baybars [10]: preprocess the graph to
remove some edges and components that can do no harm, and then use the upper bound on
the resulting independent set in a 1-planar graph.

Lemma 6. Let G be a simple 1-planar graph with minimum degree δ ≥ 3. Then for any
vertex set S with |S| ≥ 2, we have

8



• odd(G \ S)− |S| ≤ 5
7
n− 24

7
if δ ≥ 3, and

• odd(G \ S)− |S| ≤ 1
3
n− 8

3
if δ ≥ 4.

Proof. Set c3 = 5
7
, d3 = 24

7
, c4 = 1

3
and d4 = 8

3
; the goal is to show odd(G\S)−|S| ≤ cδn−dδ.

We first preprocess G by removing any component of G \S that has even size. This does
not affect |S| or odd(G \ S), or degrees of vertices in V \ S that remain, and it can only
decrease n. So it suffices to prove the bound for the remaining graph.

Next remove all odd components of G \ S that have three or more vertices, and let G′

be the resulting graph. If k components are removed, then hence n(G′) ≤ n − 3k. We will
show below that odd(G′ \ S) ≤ cδn(G′)− dδ, and therefore (by cδ ≥ 1

3
)

odd(G \ S) = odd(G′ \ S) + k ≤ cδn(G′)− dδ + cδ3k ≤ cδn− dδ.

It remains to show the claim for G′. Let T = V (G′) \ S, and notice that these are exactly
the singleton components of G \ S since all other components were removed. In particular
they form an independent set in G′. Let Td be the vertices in T that have degree d in G′.

If |T | = 0 then G′ \ S is empty, so n(G′) = |S| ≥ 2 and

odd(G′ \ S)− |S| = −|S| ≤ −2 = 2cδ − dδ ≤ cδn− dδ

as desired. If T is non-empty, then apply Lemma 4 to G′, and also observe that n(G′) =
|S| + |T |. If δ = 3, then 2|T | =

∑
d≥3 2|Td| ≤ 2|T3| + 6|T4| + 9

∑
d≥5 |Td| ≤ 12|S| − 24 by

Lemma 4. Therefore

7odd(G′ \ S)− 7|S| = 7|T | − 7|S| = 2|T | − 12|S|+ 5n(G′) ≤ 5n(G′)− 24.

If δ = 4, then T3 is empty and 6|T | =
∑

d≥4 6|Td| ≤ 12|S| − 24 by Lemma 4. Therefore

9odd(G′ \ S)− 9|S| = 9|T | − 9|S| = 6|T | − 12|S|+ 3n(G′) ≤ 3n(G′)− 24.

The desired bound follows by dividing suitably.

With this we can obtain the first two matching bounds.

Proof. (of Theorem 1(a) and (b)) Let G be a 1-planar graph with minimum degree δ ∈ {3, 4}.
Fix an arbitrary vertex set S. If |S| ≥ 2 then Lemma 6 gives odd(G\S)−|S| ≤ 5

7
n− 24

7
and

odd(G \S)− |S| ≤ 1
3
n− 8

3
, respectively, and Corollary 1 gives the result. So we only have to

bound odd(G \S)−|S| for small S. Let X be the smallest odd integer with X ≥ δ+ 1−|S|,
and note that any odd component of G \ S must have at least X vertices by simplicity and

the minimum degree requirement. So odd(G \ S) ≤ n−|S|
X

. Now distinguish cases.

• If |S| = 0 then X = 5 and odd(G \ S) − |S| ≤ n
5
. This is at most 5

7
n − 24

7
for n ≥ 7

and at most 1
3
n− 8

3
for n ≥ 20.

• If |S| = 1 and δ = 3 then X = 3 and odd(G \ S)− |S| ≤ n−1
3
− 1 ≤ 5

7
n− 24

7
by n ≥ 6.
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• If |S| = 1 and δ = 4 then X = 5 and odd(G \ S)− |S| ≤ n−1
5
− 1 ≤ 1

3
n− 8

3
by n ≥ 11.

For graphs with minimum degree 5 we have to keep more odd components of G.

Lemma 7. Let G be a 1-planar simple graph with minimum degree 5. Then for any vertex
set S with |S| ≥ 1, we have odd(G \ S)− |S| ≤ 1

5
n− 6

5
.

Proof. As in the proof of Lemma 6 we can remove components of G \ S that have even size
without affecting the bound. Let G′ be the graph obtained from G by removing all odd
components of G \ S that have five or more vertices. If k components are removed, then
hence n(G′) ≤ n− 5k. We will show below that odd(G′ \ S) ≤ 1

5
n(G′)− 6

5
, and therefore

odd(G \ S) = odd(G′ \ S) + k ≤ 1

5
n(G′)− 6

5
+

1

5
5k ≤ 1

5
n− 6

5
.

It remains to show the claim for G′. If odd(G′ \ S) = 0, then by n(G′) = |S| ≥ 1 and
odd(G′ \ S)− |S| ≤ −1 = 1

5
− 6

5
≤ 1

5
n(G′)− 6

5
and we are done. So assume odd(G′ \ S) > 0.

In contrast to the proof of Lemma 6, G′ \ S is not necessarily an independent set, because
components of size 3 may have edges within them. In contrast to the approach taken by
Nishizeki and Baybars [10], we cannot contract such components into a vertex, because
1-planarity may not be preserved under contraction. So we need a different approach.

For i = 1, 3, let Ci be the components of G′ \S that have size i. Use V (Ci) for the vertices
of components in Ci, hence |V (C1)| = |C1| while |V (C3)| = 3|C3|. Let H be the 1-planar graph
obtained by deleting all edges within V (C3); this makes V (C3)∪V (C1) an independent set in
H. Any vertex v ∈ V (C3) has at least five neighbours in G and at most two neighbours in
its odd component, so degH(v) ≥ 3. All vertices in V (C1) have degree at least 5 in H. Let
Td for d ≥ 3 be the vertices of degree d in V (C3) ∪ V (C1), then any vertex in T3 ∪ T4 must
belong to V (C3). Applying Lemma 4 to H, therefore

12|S| − 24 ≥ 2|T3|+ 6|T4|+ 9
∑
d≥5

|Td| ≥ 2|V (C3)|+ 9|V (C1)|.

Since n(G′) = |V (C1)|+ |V (C3)|+ |S|, this implies

21 (odd(G′ \ S)− |S|) = 21|C1|+ 21|C3| − 21|S|
= 21|V (C1)|+ 7|V (C3)| − 21|S|
= 18|V (C1)|+ 4|V (C3)| − 24|S|+ 3n(G′)

≤ (24|S| − 48)− 24|S|+ 3n(G′) = 3n(G′)− 48

which gives odd(G′ \ S)− |S| ≤ 1
7
n(G′)− 16

7
≤ 1

5
n(G′)− 6

5
.

Proof. (of Theorem 1(c)) Let G be a 1-planar graph with minimum degree 5. Fix an arbitrary
vertex set S. If |S| ≥ 1 then the previous lemma gives odd(G \S)−|S| ≤ 1

5
n− 6

5
. If |S| = 0,

then every odd component of G \S = G must contain at least 7 vertices since the minimum
degree is 5; hence odd(G \ S)− |S| ≤ n

7
≤ 1

5
n− 6

5
by n ≥ 21. Either way the bound follows

from Corollary 1.
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4 Other classes of 1-planar graphs

In this section, we construct some other 1-planar graphs that do not have large matchings,
and offer some conjectures.

4.1 Non-simple 1-planar graphs

Our matching bounds were proved for simple 1-planar graphs. Obviously no non-trivial
matching bounds can exist if we permit bigons, because then K2,n (with edges repeated as
needed to achieve any desired minimum degree) has no matching with more than 2 edges.

In fact, even excluding bigons is not enough to ensure a matching of linear size. The
1-planar drawing in Fig. 3(a) has no bigon and the graph has minimum degree 3, yet it has
no matching of size exceeding 2 since removing the two black vertices leaves behind n − 2
singleton components.

The story is different for minimum degree δ ≥ 4 or if no two copies of an edge are both
crossed. Inspecting the proof of Lemma 4, we see that simplicity is used in two places: we
need that no bigons exist to use Observation 1, and we need to exclude the possibility that
t′ = t′′ in the second case of Step 4, where we bound c(t) ≥ 14 if t has only one incident
uncrossed edge. This case is never needed if deg(t) ≥ 4, and only uses that no two crossed
edges (s1, t

′) exist otherwise. So Theorem 1 holds for any 1-planar graph with a bigon-free
drawing and additionally the minimum degree is at least 4 and/or there are no multiple
crossed copies of an edge.

4.2 1-planar graphs of higher minimum degree

For planar graphs, matching-bounds are interesting only for δ = 3, 4, 5, because for δ = 2
there are no linear bounds (consider K2,n), and for δ ≥ 6 there exists no planar bigon-free
graph of minimum degree δ. In contrast to this, there are simple 1-planar graphs of minimum
degree 6 or 7, while no simple 1-planar graph can have minimum degree δ ≥ 8 since it has
at most 4n − 8 edges [13]. Naturally one wonders what matching bounds can be obtained
for δ = 6, 7.

Lemma 8. For any N , there exists a simple 1-planar graph with minimum degree 6 and
n ≥ N vertices for which any matching has size at most 3

7
n+ 4

7
.

Proof. Consider the graph in Fig. 3(b), which has been built as follows. Let n ≥ N be such
that n ≡ 1 mod 7. Create one vertex vs, and split the remaining vertices into (n−1)/7 groups
of seven vertices each. For each group {v1, . . . , v7}, inserted edges to turn {vs, v1, . . . , v7}
into a cube plus a crossing within each face of the cube. Obviously the resulting graph G
has minimum degree 6, and the figure shows that G is 1-planar.

Setting S to be the single vertex vs, we observe that each of the (n−1)/7 groups become
an odd component of G \ S. Hence

odd(G \ S)− |S| = (n− 1)/7− 1 =
n− 8

7
.
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Therefore any matching has size at most 3n+4
7

.

(a) (b) (c)

Figure 3: Other 1-planar graphs without large matchings. (a) A bigon-free 1-planar graph
with minimum degree 3 and maximum matching size 2. (b) A 1-planar graph with minimum
degree 6. (c) A 1-planar graph with minimum degree 7.

We suspect that this is tight.

Conjecture 1. Any 1-planar graph with minimum degree 6 and n ≥ N vertices has a
matching of size at least 3

7
n+O(1).

One may wonder why the proof of Lemma 7 cannot be generalized to minimum degree
6. The problem are components of size 5 in G \ S. If we remove these to obtain G′, then we
remove 5k vertices for k odd components and cannot hope for an upper bound better than
n
5

+ O(1) for odd(G \ S)− |S|. If we keep components of size 5 in G′, then each vertex t of
a component C of size 5 could have four neighbours in C, hence only two neighbours in S,
and Lemma 4 cannot be used.

For minimum degree 7, we similarly have a graph without a perfect matching, but only
conjectures as to whether this is tight.

Lemma 9. For any N , there exists a simple 1-planar graph with minimum degree 7 and
n ≥ N vertices for which any matching has size at most 11

23
n+ 12

23
.

Proof. Let n ≥ N be such that n ≡ 1 mod 23. Create one vertex vs, and split the remaining
vertices into (n − 1)/23 groups of 23 vertices each. For each group, insert edges to turn
these 23 vertices, plus vertex vs, into one a simple 1-planar graph of minimum degree 7, see
Fig. 3(c). Setting S to be the single vertex vs, we observe that each of the (n− 1)/23 groups
become an odd component of G \ S. Hence

odd(G \ S)− |S| = n− 1

23
− 1 =

n− 24

23
.

Therefore any matching has size at most 11n+12
23

.

The above example is best in the sense that any 1-planar simple graph with minimum
degree 7 has at least 24 vertices [3]. However, exploiting this to show that the bound in
Lemma 9 is tight remains an open problem.
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5 Open problems

We leave some gaps in our analysis; in particular one wonders what matching-bounds are
tight for simple 1-planar graphs of minimum degree 6 or 7. Also, there are many other
related graph classes that could be studied. What, for example, is the size of matchings in
2-planar graphs of minimum degree δ?

1-planar graphs of higher connectivity are also worth exploring. For δ = 3, 4, our con-
structed graphs have connectivity δ, which is the best one can hope for. But for δ ≥ 5
our constructed graphs have a cutvertex. Are there better matching-bounds for 5-connected
1-planar graphs with minimum degree 5? In contrast to planar graphs, 5-connected 1-
planar graphs do not necessarily have a Hamiltonian path, and therefore not necessarily a
near-perfect matching of size d(n − 1)/2e [7]. Do all 6-connected 1-planar graphs have a
near-perfect matching? How about all 7-connected ones?
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