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A necessary condition for generic rigidity of

bar-and-joint frameworks in d-space

Hakan Guler∗

and

Bill Jackson
†

Abstract

A graph G = (V,E) is d-sparse if each subset X ⊆ V with |X | ≥ d
induces at most d|X | −

(

d+1

2

)

edges in G. Maxwell showed in 1864 that
a necessary condition for a generic bar-and-joint framework with at least
d+ 1 vertices to be rigid in R

d is that G should have a d-sparse subgraph
with d|X | −

(

d+1

2

)

edges. This necessary condition is also sufficient when
d = 1, 2 but not when d ≥ 3. Cheng and Sitharam strengthened Maxwell’s
condition by showing that every maximal d-sparse subgraph of G should
have d|X | −

(

d+1

2

)

edges when d = 3. We extend their result to all d ≤ 11.

1 Introduction

A d-dimensional (bar-and-joint) framework is a pair (G, p) where G = (V,E)
is a graph and p : V → R

d. It is a long standing open problem to determine
when a given bar-and-joint framework is rigid i.e. every continuous motion of
the points p(v) which preserves the distances ‖p(u)− p(v)‖ for all uv ∈ E must
also preserve the distances ‖p(u) − p(v)‖ for all u, v ∈ V . It is not difficult
to see that a 1-dimensional framework (G, p) is rigid if and only if the graph
G is connected. Abbot [1] showed that the problem of determining rigidity is
NP-hard for all d ≥ 2 but the problem becomes more tractable if we assume
that the framework is generic i.e. there are no algebraic dependencies between
the coordinates of the points p(v), v ∈ V .

Given a graph G = (V,E), we can define a |E| × d|V | matrix, the d-
dimensional rigidity matrix Rd(G), whose entries are linear combinations of
indeterminates representing the coordinates of the points p(v), in such a way
that a generic framework (G, p) with at least d+ 1 vertices is rigid if and only
if the rank rd(G) of Rd(G) is equal to d|V | −

(

d+1
2

)

. This naturally gives rise
to a matroid on E, the d-dimensional rigidity matroid Rd(G) in which a set
of edges F ⊆ E is independent if and only if the corresponding rows of Rd(G)
are linearly independent. We refer the reader to [10] for a precise definition of
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the rigidity matrix, the rigidity matroid, and other information on the topic of
combinatorial rigidity.

Pollaczek-Geiringer [9] and subsequently Laman [6] characterized when a 2-
dimensional generic framework is rigid (see also Lovász and Yemini [7]). Their
characterization is based on the following concept. We say that a graph G =
(V,E) is d-sparse if each X ⊆ V with |X| ≥ d+1 induces at most d|X| −

(

d+1
2

)

edges of G. Maxwell [8] showed that being d-sparse is a necessary condition for
the rows of Rd(G) to be linearly independent. Pollaczek-Geiringer and Laman
showed that that this condition is also sufficient when d = 2 and deduced that
a 2-dimensional generic framework (G, p) is rigid if and only if it has a 2-sparse
subgraph with 2|V |−3 edges. Since every independent set of edges inR2(G) can
be extended to a base of R2(G), Laman’s theorem implies that every maximal
2-sparse subgraph of G has the same number of edges.

It is known that the condition that H is a d-sparse subgraph of G is not
sufficient for the edges of H to be independent in Rd(G) when d ≥ 3. Indeed
it is not even true that all maximal d-sparse subgraphs of G have the same
number of edges when d ≥ 3. On the other hand, Cheng and Sitharam [3] have
shown that the number of edges in any maximal d-sparse subgraph of G does
at least give an upper bound on rd(G) when d = 3. The purpose of this paper
is to prove a result, Theorem 3.3 below, which extends Cheng and Sitharam’s
theorem to all values of d ≤ 11.

2 Sparse subgraphs

Let G = (V,E) be a graph and d ≥ 1 be an integer. For X ⊆ V we use
EG(X) to denote the set, and iG(X) the number, of edges of G joining pairs
of vertices of X. We simplify these to E(X) and i(X) when it is obvious to
which graph we are referring. We may rewrite the condition for G to be d-
sparse as i(X) ≤ d|X| −

(

d+1
2

)

for all X ⊆ V with |X| ≥ d. (Note that if |X| ∈

{d, d + 1} then we have i(X) ≤
(

|X|
2

)

= d|X| −
(

d+1
2

)

and the inequality holds
trivially.) We will use the fact that the function i : 2V → Z is supermodular i.e.
i(X) + i(Y ) ≤ i(X ∪ Y ) + i(X ∩ Y ) for all X,Y ⊆ V .

A subgraph H = (U,F ) of a d-sparse graph G is d-critical if either |U | = 2
and |F | = 1, or |U | ≥ d and |F | = d|X| −

(

d+1
2

)

. The assumption that G is
d-sparse implies that every d-critical subgraph ofG is an induced subgraph. A d-
critical component of G is a d-critical subgraph which is not properly contained
in any other d-critical subgraph of G.

Lemma 2.1 Let G = (V,E) be a d-sparse graph and H1 = (U1, F1),H2 =
(U2, F2) be distinct d-critical components of G. Then |U1 ∩ U2| ≤ d− 1 and, if
equality holds, then iG(U1 ∩ U2) =

(

d−1
2

)

.

Proof: Suppose that |U1 ∩ U2| ≥ d − 1. When |U1 ∩ U2| ≥ d we have
i(U1 ∩ U2) ≤ d|U1 ∩ U2| −

(

d+1
2

)

since G is d-sparse. When |U1 ∩ U2| = d − 1,

we have i(U1 ∩ U2) ≤
(

d−1
2

)

= d|U1 ∩ U2| −
(

d+1
2

)

+ 1 trivially. The maximality
of H1,H2 and the definition of a d-critical component imply that |U1|, |U2| ≥ d,
and d(|U1|+ |U2|) − 2

(

d+1
2

)

= iG(U1) + iG(U2) ≤ iG(U1 ∪ U2) + iG(U1 ∩ U2) ≤

2



d|U1∪U2|−
(

d+1
2

)

−1+d|U1∩U2|−
(

d+1
2

)

+1 = d(|U1|+ |U2|)−2
(

d+1
2

)

. Equality

must hold throughout. In particular we have iG(U1∩U2) = d|U1∩U2|−
(

d+1
2

)

+1.

This implies that |U1 ∩ U2| = d− 1 and iG(U1 ∩ U2) =
(

d−1
2

)

. �

Let k, t be non-negative integers, G = (V,E) be a graph and X be a family
of subsets of V . We say that X is t-thin if every pair of sets in X intersect in at
most t vertices. A k-hinge of X is a set of k vertices which lie in the intersection
of at least two sets in X . A k-hinge U of X is closed in G if G[U ] is a complete
graph. We use Θk(X ) to denote the set of all k-hinges of X . For U ∈ Θk(X ),
let dX (U) denote the number of sets in X which contain U . Note that if G
is t-thin then Θk(X ) = ∅ for all k ≥ t + 1. Note also that Θ0(X ) = {∅} and
dX (∅) = |X |.

Lemma 2.2 Let H = (V,E) be a d-sparse graph, X be a family of subsets
of V such that H[Vi] is d-critical for all Vi ∈ X , and W ∈ Θk(X ) for some
0 ≤ k ≤ d− 1. Suppose that |Vi| ≥ d for all Vi ∈ X with W ⊆ Vi. Then

(d−k)
∑

U∈Θk+1(X )

W⊂U

(dX (U)−1)−
∑

U∈Θk+2(X )

W⊂U

(dX (U)−1) ≤

(

d+ 1− k

2

)

(dX (W )−1) .

Proof: Let dX (W ) = t and let V1, V2, . . . , Vt be the sets in X which contain
W . Let Hi = (Vi, Ei) = H[Vi] for 1 ≤ i ≤ t. Let H ′ =

⋃t
i=1Hi and put

H ′ = (V ′, E′). Then

|V ′| =
t

∑

i=1

|Vi| − k(t− 1)−
∑

U∈Θk+1(X )

W⊂U

(dX (U)− 1) (1)

since, for v ∈ V ′, if v ∈ W then v is counted t times in
∑t

i=1 |Vi|, if v ∈ U \W
for some U ∈ Θk+1 with W ⊂ U then v is counted dX (U) times in

∑t
i=1 |Vi|,

and all other vertices of V ′ are counted exactly once in
∑t

i=1 |Vi|.
Similarly,

|E′| ≥
t

∑

i=1

|Ei|−

(

k

2

)

(t−1)−k
∑

U∈Θk+1(X )

W⊂U

(dX (U)−1)−
∑

U∈Θk+2(X )

W⊂U

(dX (U)−1) (2)

since, for e = xy ∈ E′: if x, y ∈ W then e is counted t times in
∑t

i=1 |Ei| and

there are at most
(

k
2

)

such edges; if x ∈ W and y ∈ U \W for some U ∈ Θk+1

with W ⊂ U then e is counted dX (U) times in
∑t

i=1 |Ei| and for each such y
there are at most k choices for x; if x, y ∈ U \ W for some U ∈ Θk+2 with
W ⊂ U then e is counted dX (U) times in

∑t
i=1 |Ei|, and all other edges of E′

are counted exactly once in
∑t

i=1 |Ei|.

Since H ′ ⊆ H, H ′ is d-sparse Hence |E′| ≤ d|V ′|−
(

d+1
2

)

. We may substitute
equations (1) and (2) into this inequality and use the fact that |Ei| = d|Vi| −
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(

d+1
2

)

for all 1 ≤ i ≤ t to obtain

(d− k)
∑

U∈Θk+1(X )

W⊂U

(dX (U)− 1) −
∑

U∈Θk+2(X )

W⊂U

(dX (U)− 1)

≤

[(

d+ 1

2

)

+

(

k

2

)

− dk

]

(t− 1)

=

(

d+ 1− k

2

)

(t− 1).

�

Lemma 2.3 Let H = (V,E) be a d-sparse graph, X be a family of subsets
of V such that H[Vi] is d-critical and |Vi| ≥ d for all Vi ∈ X . Put ak =
∑

U∈Θk(X )(dX (U)− 1) for 0 ≤ k ≤ d. Then for all 0 ≤ k ≤ d− 2 we have:

(a) (d− k)(k + 1)ak+1 −
(

k+2
2

)

ak+2 ≤
(

d+1−k
2

)

ak;

(b) (d− k)ak+1 − (k + 1)ak+2 ≤
(

d+1
k+2

)

(|X | − 1);

(c) if X is (d− 1)-thin, d(d − k)ak+1 ≤ (k + 2)(d− k − 1)
(

d+1
k+2

)

(|X | − 1).

Proof: Part (a) follows by summing the inequality in Lemma 2.2 over all
W ∈ Θk, and using the facts that

∑

W∈Θk(X )

∑

U∈Θk+1(X )

W⊂U

(dX (U)− 1) = (k + 1)
∑

U∈Θk+1(X )

(dX (U)− 1) = (k + 1)ak+1

and

∑

W∈Θk(X )

∑

U∈Θk+2(X )

W⊂U

(dX (U)−1) =

(

k + 2

2

)

∑

U∈Θk+2(X )

(dX (U)−1) =

(

k + 2

2

)

ak+2 .

We prove (b) by induction on k. When k = 0, (b) follows by putting k = 0
in (a), and using the fact that a0 = |X | − 1. Hence suppose that k ≥ 1. Then
(a) gives

2(d − k)ak+1 − 2(k + 1)ak+2 ≤
(d− k + 1)(d − k)

k + 1
ak − kak+2 . (3)

We may also use (a) to obtain

kak+2 ≥
k(d − k)

k + 2

(

2ak+1 −
d− k + 1

k + 1
ak

)

. (4)

Substituting (4) into (3) and using induction we obtain

(d− k)ak+1 − (k + 1)ak+2 ≤ d−k
k+2 [(d− k + 1)ak − kak+1]

≤ d−k
k+2

(

d+1
k+1

)

(|X | − 1)

=
(

d+1
k+2

)

(|X | − 1) .
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We prove (c) by induction on d− k. When d− k = 2, (c) follows by putting
k = d − 2 in (b) and using the fact that ad = 0 since X is (d− 1)-thin. Hence
suppose that d− k ≥ 3. Then (b) gives

d(d− k)ak+1 ≤ d
(

d+1
k+2

)

(|X | − 1) + d(k + 1)ak+2 .

We may now apply induction to ak+2 to obtain

d(d− k)ak+1 ≤ [d
(

d+1
k+2

)

+ (k+1)(k+3)(d−k−2)
d−k−1

(

d+1
k+3

)

] (|X | − 1)

= (k + 2)(d − k − 1)
(

d+1
k+2

)

(|X | − 1) .

�

Theorem 2.4 Let H = (V,E) be a d-sparse graph, X be a (d− 1)-thin family
of subsets of V such that H[X] is d-critical and |X| ≥ d for all X ∈ X . For
each X ∈ X let θk(X) be the number of k-hinges of X contained in X. Then:

(a) θ1(X) ≤ 2d− 1 for some X ∈ X ;

(b) θ2(X) ≤ (d− 2)(d + 1)− 1 for some X ∈ X ;

(c) θd−1(X) ≤ d for some X ∈ X .

Proof:

We first prove (a). Putting k = 0 in Lemma 2.3(c) we obtain

d
∑

U∈Θ1(X )

(dX (U)− 1) ≤ (d− 1)(d+ 1)(|X | − 1) . (5)

Since dX (U) ≥ 2 for all U ∈ Θ1(X ) we have dX (U) − 1 ≥ dX (U)/2 and hence
(5) gives

∑

U∈Θ1(X )

dX (U) < 2d |X | .

This tells us that the average number of 1-hinges in a set in X is strictly less
than 2d.

We next prove (b). Putting k = 1 in Lemma 2.3(c) we obtain

∑

U∈Θ2(X )

(dX (U)− 1) ≤ (d− 2)(d+ 1)(|X | − 1)/2 . (6)

We can now proceed as in (a).
Finally we prove (c). Putting k = d− 2 in Lemma 2.3(c) gives

2
∑

U∈Θd−1(X )

(dX (U)− 1) ≤ (d+ 1)(|X | − 1) . (7)

We can now proceed as in (a). �

The bounds given in Theorem 2.4 (a), (b) are close to being best possible.
To see this consider the graph H = H1 ∪H2 ∪ . . . ∪Hm where Hi = (Vi, Ei) is

5



d-critical, Hi ∩Hj = Kd−1 for i− j ≡ ±1 mod m and otherwise Hi ∩Hj = ∅.
Then H is d-sparse when m is sufficiently large, X = {V1, V2, . . . , Vm} is (d−1)-
thin and we have θ1(Vi) = 2d− 2 and θ2(Vi) = (d− 1)(d− 2) for all Vi ∈ X . We
do not know whether (c) is close to best possible for large d. It is conceivable
that there always exists a set X ∈ X with θd−1(X) ≤ 2.

3 Main result

In order to prove our main theorem we will need the following result from [4].

Lemma 3.1 Let G = (V,E) be a graph such that E is a non-rigid circuit in
Rd(G). Then |E| ≥ d(d + 9)/2. �

Let G = (V,E) be a graph and X be a family of subsets of V . We say that
X is a cover of G if every set in X contains at least two vertices, and every edge
of G is induced by at least one set in X .

Lemma 3.2 Let G = (V,E) be a graph, H = (V, F ) be a maximal d-sparse
subgraph of G, and H1,H2, . . . ,Hm be the d-critical components of H. Let Xi

be the vertex set of Hi for 1 ≤ i ≤ m. Then X = {X1,X2, . . . ,Xm} is a
(d− 1)-thin cover of G and each (d− 1)-hinge of X is closed in H.

Proof: The definition of a d-critical subgraph implies that each Hi has at least
two vertices and that every edge of H belongs to at least one Hi. Thus X is
a cover of H. To see that X also covers G we choose e = uv ∈ E \ F . The
maximality of H implies that H + e is not d-sparse. Hence {u, v} is contained
in some d-critical subgraph of H. Thus X also covers G. The facts that X is
(d−1)-thin and that each (d−1)-hinge of X is closed follow from Lemma 2.1. �

We refer to the (d − 1)-thin cover of G described in Lemma 3.2 as the H-
critical cover of G. Note that the definition of a d-critical set implies that each
set in the H-critical cover has size two or has size at least d.

Theorem 3.3 Let G = (V,E) be a graph, d ≤ 11 be an integer and H = (V, F )
be a maximal d-sparse subgraph of G. Then rd(G) ≤ |F |.

Proof: We proceed by contradiction. Suppose the theorem is false and choose a
counterexample (G,H) such that |E| is as small as possible. LetH1,H2, . . . ,Hm

be the d-critical components of H where Hi = (Vi, Fi) for 1 ≤ i ≤ m. Then
X0 = {V1, V2, . . . , Vm} is the H-critical cover of G.

Choose a cover X of G such that X ⊆ X0 and |X | is as small as possible.
Note that X0, and hence also X , are (d − 1)-thin. For each Vi ∈ X , let F ∗

i be
the set of all edges uv ∈ Fi such that {u, v} is a 2-hinge of X , and let Ei be the
set of edges of G induced by Vi.

Claim 3.4 If e = uv ∈ E satisfies rd(G) = rd(G− e), then {u, v} is a 2-hinge
of X .

6



Proof: First suppose that e ∈ E \F . Since H is a maximal d-sparse subgraph
of G− e, the minimality of |E| gives rd(G− e) ≤ |F |. Since rd(G) = rd(G− e)
this gives a contradiction.

Thus we can assume that e ∈ F . Let dX (e) be the number of Vi ∈ X such
that e ∈ Fi. Since H − e is a d-sparse subgraph of G − e, we may choose
a maximal d-sparse subgraph H ′ = (V, F ′) of G − e which contains H − e.
Let Vi ∈ X . If e /∈ Fi, then no edge of Ei \ Fi can be in F ′, since Hi is d-
critical. On the other hand, if e ∈ Fi, then at most one edge of Ei \ Fi can
be in F ′, since |Fi − e| = d|Vi| −

(

d+1
2

)

− 1. These observations imply that
|F ′| ≤ |F | − 1 + dX (e). By the minimality of |E| we have rd(G− e) ≤ |F ′|, and
hence rd(G) = rd(G − e) ≤ |F | − 1 + dX (e). Combining this with rd(G) > |F |
gives dX (e) ≥ 2. �

We next show that F ∗
i is dependent in Rd(G) for all Vi ∈ X . Suppose this

is not the case. Then Ei is independent in Rd(G) by Claim 3.4. Thus Ei can
have at most d|Vi| −

(

d+1
2

)

edges. Since Hi is d-critical, this gives Ei = Fi.
The minimality of X implies that Fi 6= F ∗

i and hence we may choose an edge
e ∈ Fi \ F ∗

i . Since Fi = Ei, all edges of G − e which are induced by Vi are
in H − e. Since each Vj ∈ X − Vi induce a d-critical subgraph of H − e, we
conclude that H − e is a maximal d-sparse subgraph of G− e. The minimality
of |E| now gives rd(G − e) ≤ |F − e| = |F | − 1. Since e 6∈ F ∗

i , Claim 3.4 gives
rd(G − e) = rd(G) − 1. Hence rd(G) = rd(G − e) + 1 ≤ |F |. This contradicts
the choice of G and implies that F ∗

i is dependent in Rd(G) for all Vi ∈ X .
By Theorem 2.4(b) we may choose Vi ∈ X such that |F ∗

i | ≤ (d−2)(d+1)−1.
Since F ∗

i is dependent in Rd(G), it contains a circuit of Rd(G). This circuit

cannot be rigid, since H is d-sparse. Lemma 3.1 now gives d2+9d
2 ≤ |F ∗

i | ≤
(d− 2)(d+ 1)− 1 which implies that d ≥ 12. �

We have the following immediate corollary.

Corollary 3.5 Let d ≤ 11 be an integer and G = (V,E) be a graph with
|V | ≥ d+1. If G is generically rigid in R

d then every maximal d-sparse subgraph
of G has d|V | −

(

d+1
2

)

edges. �

4 Closing remarks

1. Given a graph G, let sd(G) be the minimum number of edges in a maximal
d-sparse subgraph of G. Theorem 3.3 tells us that rd(G) ≤ sd(G) when d ≤
11. We can use the following operation to construct graphs for which strict
inequality holds. Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with
V1 ∩V2 = {u, v} and E1 ∩E2 = {uv}, we refer to the graph G = G1 ∪G2 as the
parallel connection of G1 and G2 along the edge uv.

The graph G obtained by taking the parallel connection of two copies of K5

along an edge uv and then deleting uv, is 3-sparse and is not rigid in R
3. Hence

s3(G) = |E(G)| = 18 > 17 = r3(G). On the other hand we may improve the
upper bound on r3(G) in this example by considering the graph H = G + uv.

7



A maximal 3-sparse subgraph of H which contains uv has 17 edges. Thus we
have 17 = r3(G) ≤ r3(H) ≤ s3(H) = 17.

More generally, for any graph G, let s∗d(G) = min{sd(H) : G ⊆ H}. Then
rd(G) ≤ s∗d(G) for all d ≤ 11. The following example shows that strict inequality
can also hold in this inequality. Let G be obtained from K5 by taking parallel
connections with 10 different K5’s along each of the edges of the original K5.
We have r3(G) = 89. On the other hand, s3(G) = 90 (obtained by taking a
maximal 3-sparse subgraph which contains nine of the edges of the original K5).
Furthermore we have s3(H) ≥ r3(H) > r3(G) for all graphs H which properly
contain G. Thus s∗3(G) = 90 > r3(G).

2. For fixed d, we can use network flow algorithms to test whether a graph is
d-sparse in polynomial time, see for example [2]. This means we can greedily
construct a maximal d-sparse subgraph H of a graph G in polynomial time and
hence obtain an upper bound on rd(G) when d ≤ 11 via Theorem 3.3. We do
not know whether sd(G) or s∗d(G) can be determined in polynomial time.

3. We believe that the conclusion of Theorem 3.3 should be valid for all d.
However the graph G given in the example at the end of Section 2 shows that
our proof technique will not give this: G is d-sparse and we have θ2(Vi) =
(d−1)(d−2) for all Vi in the G-critical cover of G. On the other hand, the lower
bound on the number of edges in a non-rigid circuit in Rd(G) given by Lemma

3.1 is d(d+9)
2 , so we cannot use it to deduce that the set of 2-hinges in some G[Vi]

is Rd-independent when d ≥ 15. One way to get round this problem would be
to show that the d-critical components in a d-sparse graph form a cover which
is ‘iteratively independent’ i.e. we can order the vertex sets of these components
as V1, V2, . . . Vm such that the set of 2-hinges of {V1, V2, . . . , Vi} which belong
to Vi is Rd-independent for all 2 ≤ i ≤ m. We refer the reader to [5] for more
information on iteratively independent covers.
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