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Abstract

An extension of an induced path P in a graph G is an induced path P ′ such that deleting
the endpoints of P ′ results in P . An induced path in a graph is said to be avoidable if each
of its extensions is contained in an induced cycle. In 2019, Beisegel, Chudovsky, Gurvich,
Milanič, and Servatius conjectured that every graph that contains an induced k-vertex path
also contains an avoidable induced path of the same length, and proved the result for k = 2.
The case k = 1 was known much earlier, due to a work of Ohtsuki, Cheung, and Fujisawa in
1976. The conjecture was proved for all k in 2020 by Bonamy, Defrain, Hatzel, and Thiebaut.
In the present paper, using a similar approach, we strengthen their result from a reconfiguration
point of view. Namely, we show that in every graph, each induced path can be transformed to
an avoidable one by a sequence of shifts, where two induced k-vertex paths are shifts of each
other if their union is an induced path with k + 1 vertices. We also obtain analogous results for
not necessarily induced paths and for walks. In contrast, the statement cannot be extended to
trails or to isometric paths.

Keywords: walk, trail, path, induced path, isometric path, closed walk, cycle, avoidable
walk, shifting, reconfiguration

MSC codes (2020): 05C38 (primary), 05C12, 05C05, 05C76 (secondary)

1 Introduction

All graphs considered in this paper will be finite, undirected, and may have loops and multiple
edges, unless stated otherwise (in which case the graph will be referred to as a simple graph). We
consider five types of walks in graphs: general walks, trails, paths, induced paths, and isometric
paths. We follow the terminology used in [11]. Given a non-negative integer `, a v0, v`-walk of length
` in a graph G is a sequence (v0, e1, v1, . . . , e`, v`), where v0, . . . , v` ∈ V (G), e1, . . . , e` ∈ E(G), and
for all i ∈ {1, . . . , `} edge ei has endpoints vi−1 and vi. If v0 = v`, the walk is said to be closed. A
walk in which all edges (resp. vertices) are distinct is a trail (resp. a path) in G.

A subgraph H of a graph G is an induced subgraph of G if the set of edges of H is exactly the
set of edges of G having both endpoints in V (H). The distance between two vertices u and v in
a graph G is denoted by dG(u, v) and defined as the length of a shortest u, v-path in G (or ∞ if
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there is no u, v-path in G). A subgraph H of G is said to be isometric in G if dH(u, v) = dG(u, v)
for every two vertices u, v ∈ V (H).

Note that a path P in a graph G can be viewed as a subgraph of G (with a pair of mutually
inverse paths yielding the same subgraph). In particular, we say that a path in G is induced
if the corresponding subgraph is induced in G, and isometric if the corresponding subgraph is
isometric in G. For a positive integer k we denote by Pk the graph corresponding to a k-vertex
path (without a host graph G), that is, the graph with k vertices v1, . . . , vk and ` = k − 1 edges
{{vi, vi+1} | i ∈ {1, . . . , `}}.

1.1 Five types of walks

We consider the following five types of walks:

t wlk trl pth ind iso

walk of type t walk trail path induced path isometric path

For a graph G and t ∈ {wlk, trl, pth, ind, iso}, a t-walk in G is a walk in G of type t. We
denote the set of all t-walks in G by Wt(G). Note that

Wwlk(G) ⊇ Wtrl(G) ⊇ Wpth(G) ⊇ Wind(G) ⊇ Wiso(G).

Moreover, for k ∈ {0, 1}, equalities hold if we restrict ourselves to walks of length k. (Note however
that for k = 1 the graph should not contain loops.)

Definition 1 (Extension of a t-walk). Let t ∈ {wlk, trl, pth, ind, iso} and let W,W ′ be
two t-walks in a graph G. Let W = (v1, e1, v2, . . . , ek−1, vk) for some vertices v1, . . . , vk ∈
V (G) and edges e1, . . . , ek−1 ∈ E(G). We say that W ′ is a t-extension of W if W ′ =
(v0, e0, v1, e1, . . . , ek−1, vk, ek, vk+1) for some vertices v0, vk+1 ∈ V (G) and edges e0, ek ∈ E(G).

A vertex v in a graph G is said to be simplicial if its neighborhood forms a clique. Note that
v ∈ V (G) is simplicial if and only if the corresponding one-vertex induced path (v) ∈ Wind(G) has
no ind-extension. Among other things, this concept is generalized in the following definition.

Definition 2 (Simplicial, closable, and avoidable t-walk). Let t ∈ {wlk, trl, pth, ind, iso} and let
W a be a t-walk in a graph G. We say that W is:

• t-simplicial if it has no t-extension,

• t-closable if it is a subwalk of a closed t-walk in G,

• t-avoidable in G if every t-extension of W is t-closable.

In particular, every t-simplicial t-walk is t-avoidable.

Definition 3 (Shift of a t-walk). Let t ∈ {wlk, trl, pth, ind, iso} and W be a t-walk in G having at
least one edge. Let W = (v0, e1, v1, . . . , ek, vk) for some k ≥ 1, vertices v0, . . . , vk ∈ V (G), and edges
e1, . . . , ek ∈ E(G). We say that t-walks W ′ = (v0, e1, v1, . . . , vk−1) and W ′′ = (v1, . . . , vk−1, ek, vk)
are t-shifts of each other in G.
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Furthermore, given two t-walks W and W ′ in G, we say that W can be t-shifted in G to W ′ if
there exists a sequence of t-walks W = W0,W1, . . . ,Wp = W ′ in G such that for all j ∈ {1, . . . , p}
we have Wj ∈ Wt(G) and Wj is a t-shift of Wj−1 in G. Note that p = 0 is allowed (in which case

W = W ′). We write W
t−⇀↽−
G

W ′ if W can be t-shifted to W ′ in G. Note that for every graph G, the

relation
t−⇀↽−
G

is an equivalence relation on the set Wt(G). Whenever for some graph G the type t of

walks under consideration is clear from context, we just write −⇀↽−
G

and talk about “shifts” instead of

“t-shifts”, about “extensions of an induced path” instead of “ind-extensions of an ind-walk”, etc.

1.2 Main results

Our main result is given by the following theorem.

Theorem 4. Every walk, path, or induced path in a graph can be shifted to an avoidable one.

We prove Theorem 4 in parts. The statement for walks follows from Observation 14 in Section 6.
The statements for induced paths and paths are Theorems 8 and 12 in Sections 4 and 5, respectively.

Corollary 5. For every non-negative integer ` every graph:

wlk either contains no walk of length `, or contains an avoidable walk of length `;

pth either contains no path of length `, or contains an avoidable path of length `;

ind either contains no induced path of length `, or contains an avoidable induced path of length `.

Note that every graph with at least one edge contains walks of all non-negative lengths.
On the other hand, we show that statements of Theorem 4 and Corollary 5 do not extend to

the cases of trails and of isometric paths.

1.3 Related work

The most important case in Corollary 5 is the case of induced paths. The corresponding statement
was conjectured (and proved for ` = 1) by Beisegel et al. in [2]. We also refer to [2] for motivation
and more details. For ` = 0 the result is much older; it follows from a work of Ohtsuki et al. [9],
see also [10]. Chvátal et al. [6] proved the conjecture for graphs not containing induced cycles of
length at least ` + 4 (in which case any avoidable induced path of length ` is simplicial). Bonamy
et al. [4] recently proved the conjecture in general. Using a similar approach we strengthen their
result further in Theorem 4 (the case of induced paths).

Our results can be stated in terms of combinatorial reconfiguration. We consider a reachability
problem in which the states are walks of a fixed type and length in a graph, the transformations
are corresponding shifts, and the target set consists of avoidable walks of the same type and length.
Several other results on reconfiguration of paths are known in the literature. For example, Demaine
et al. [7] proved that the reachability problem for shifting paths (“Given two paths in a graph, can
one be transformed into the other one by a sequence of shifts?”) is PSPACE-complete. For shortest
u, v-paths where each transformation consists in changing a single vertex, the same result was
obtained by Bonsma [5].
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1.4 Preliminary definitions and notation

Given a vertex v ∈ V (G) we use standard notations; N(v) and N [v] stand for its open and closed
neighborhood, respectively, and G − v denotes the graph obtained from G by removing a vertex
v. The order of a graph G is the number of vertices in G. We denote the graph obtained from G
by contracting an edge uv ∈ E(G) by G/uv. After such a contraction, it will sometimes be useful
to label the newly obtained vertex. We do this by writing G/uv→u′ , where u′ is the new vertex
corresponding to the contracted edge uv in G.

Given two graphs G and H, their Cartesian product G�H is the graph with vertex set V (G)×
V (H), where two vertices (u, u′) and (v, v′) are adjacent if and only if either (i) u = v and u′ is
adjacent to v′ in H, or (ii) u′ = v′ and u is adjacent to v in G.

1.5 Structure of the paper

In Section 2, we give examples of graphs containing trails of various lengths that do not contain
any avoidable trails of the same length. Similar examples for isometric paths are constructed in
Section 3. In Section 4 we derive our most important result, stating that every induced path in a
graph can be shifted to an avoidable one. The analogous result for paths is proved in two different
ways in Section 5. For completeness, we also include the corresponding easy observations about
walks in Section 6. We conclude with some open problems in Section 7.

2 Trails

In this section we will show that Theorem 4 does not extend to the case of trails. We construct
several counterexamples for various lengths ` of a trail.

For ` = 0 consider the graph G consisting of two vertices u and v joined by an edge, and having
a loop at each of u and v. Then, every trail of length 0 has a unique extension in G (up to reversing
the extension) and this extension is not closable. Thus no trail of length 0 is avoidable in G.

Now consider an odd integer ` ≥ 1 and let G` be the graph consisting of two vertices and ` + 2
parallel edges between them. Then, up to isomorphism there exists a unique trail of length ` in G.
Furthermore, this trail has a unique extension in G and this extension cannot be closed.

For ` = 2 consider the graph G = K4. It is easily seen that up to isomorphism there exists a
unique trail of length ` in G. Furthermore, this trail has exactly three extensions (see Fig. 1), two
of which (those depicted in Fig. 1(b,c)) cannot be closed.

(a) (b) (c)

Figure 1: Thick lines: edges of the trail; wavy lines: edges of an extension; ordinary lines: the
remaining edges of the graph

To get further examples in the class of simple graphs, consider a positive integer j, let ` = 4j−1,
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and let G be the complete bipartite graph K2,2j+1. Then again, up to isomorphism there exists a
unique trail of length ` in G and its unique extension in G cannot be closed.

3 Isometric paths

This case is not covered by our main theorem (Theorem 4), as the following result shows.

Theorem 6. For every non-negative integer `, there exists a graph G` that contains an isometric
path of length ` but contains no avoidable isometric path of length `.

Proof. For ` = 0, let G0 = W6 be the wheel on 7 vertices, that is, the graph obtained from the cycle
C6 by adding a universal vertex (see Figure 2(a)). We claim that every vertex of G0 is an isometric
path of length 0 that is not avoidable. Indeed, since every vertex extends to an isometric path of
length 2, it is enough to show that no isometric path of length 2 in G0 is closable. However, this
follows from the fact that G0 contains a unique induced cycle of length greater than 3, namely the
C6, which is not isometric.

(a) the wheel W6 (b) the grid P3�P3

Figure 2: The cases ` = 0 and ` = 1

For ` = 1 we give two examples: a small specific example and a similar one that is the smallest
member of an infinite family of examples for all ` ≥ 1. The first one is the graph G1

∼= P3�P3 (see
Figure 2(b)). In this case every edge of G1 is an isometric path of length 1 that is not avoidable.
Indeed, since every edge extends to an isometric path of length 3 (see Fig. 3), it is enough to show
that no isometric path of length 3 in G1 is closable. However, this follows from the fact that G1

contains a unique induced cycle of length greater than 4. This cycle is of length 8 and is not
isometric.

For ` ≥ 1, let G` be any graph of the form Pn�Cn where n is an odd integer greater then 2`+4.
We denote vertices of each factor by numbers from [n], so every vertex of G` is of the form (i, j) for

Figure 3: Isometric extensions of edges in G1
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(a) x = 1 (b) x > 1

Figure 4: Two relevant cases for constructing
path Q in the case when the vertices of P
agree in the first coordinate, with common
value x.

a = max

(x,y)∈V (C)
x

v0

vi+1

vi+2

v1

vi−1

vi

Figure 5: Situation in the proof of Claim 2.

i, j ∈ [n]. We start by characterizing sufficiently short isometric paths in G`. The following claim
is implicit in [8, Chapter 12].

Claim 1. Let P = (v0, . . . , vk) with k ≤ ` + 2 be a path in G`. Then P is isometric in G` if and
only if for both coordinates the following implication holds: if two vertices of P have the same
value of the coordinate, then so does every vertex between them.

Proof. Suppose that P is isometric in G`. Take two vertices of P with the same value of some
coordinate. Then there exists a unique shortest path between them in G`, since k ≤ ` + 2 < n/2.
So all edges of this path should belong to P .

For the opposite direction, let u and v be two vertices in P , and let Q be the u, v-path contained
in P . We want to show that Q is a shortest u, v-path in G`. Let X and Y denote the sets of values
taken by the first and second coordinates of vertices in Q, respectively. Since max{|X|, |Y |} ≤ `+3
and n ≥ 2` + 5, the subgraph G′ of G` induced by X × Y is isometric in G`. Furthermore, if P
satisfies the condition from the claim, then the same condition holds for Q. This implies that both
coordinates are monotone along Q, so Q is a shortest u, v-path in G′. It follows that Q is also a
shortest u, v-path in G`.

To complete the proof we show that every isometric path of length ` in G` has an extension that
is not closable. Claim 1 implies that each isometric path P of length ` has an isometric extension
Q that is not constant in the first coordinate (see Fig. 4). Such a path Q can only be contained in
isometric cycles of length at least 2` + 4 > 4. We complete the proof by the following claim.

Claim 2. The only isometric cycles in G` are the cycles of length n that are constant in the first
coordinate and the cycles of length 4.

Proof. It is easily seen that mentioned cycles are isometric.
For the converse direction, consider an isometric cycle C in G` that is not constant in the first

coordinate. We will show that C is of length 4. Let a ∈ [n] be the maximal value that appears as
the first coordinate of some vertex in C. Let b ∈ [n] be the minimal value such that {(a−1, b), (a, b)}
is an edge of C. We may assume w.l.o.g. that vertices v0, v1, . . . of C appear in cyclic order so that
v0 = (a− 1, b) and v1 = (a, b).
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See Fig. 5. Let vi = (a, c) be the vertex of C having first coordinate a such that i is maximized.
Then, vi+1 = (a − 1, c) by the maximality of a and i. Note also that i > 1 and hence c > b. By
Claim 1, v1, . . . , vi are the only vertices in C that maximize the first coordinate. Cycle C contains a
shortest v1, vi-path in G`. Since n is odd, such a path is unique. Similarly, the shortest v0, vi+1-path
in G` is contained in C, hence vi+2 = (a− 1, c− 1). Furthermore, vi−1 = (a, c− 1), which implies
that {vi−1, vi+2} is an edge of G`, hence it is also an edge of C since C is isometric. Therefore
vi+2 = v0 and C is of length 4.

This concludes the proof of Theorem 6.

Remark 7. We leave it to the careful reader to explain why our main construction works only for
` ≥ 1 and for odd n, but not for the case ` = 0 or for the case when n is even, and also why one
could not replace Pn�Cn by Pn�Pn or Cn�Cn.

4 Induced paths

The main result of this section is the following theorem, which settles the case of induced paths
from Theorem 4.

Theorem 8. Every induced path in a graph G can be shifted to an avoidable one.

We prove Theorem 8 by adapting the approach used by Bonamy et al. [4] to prove that for every
positive integer k, every graph that contains an induced Pk also contains an avoidable induced Pk

(case ind of Corollary 5).
We first fix some notation. We denote a path or a cycle simply by a sequence of vertices, e.g.,

P = p1 . . . pk. Correspondingly, for such a path P and a vertex x not on P we will denote by xP the
sequence xp1 . . . pk (which will typically be a path) and by Px the sequence p1 . . . pkx. Thus, if P ′

is an extension of P , then there exist two vertices x and y not on P such that xPy is an extension
of P . We often use the fact that for an induced subgraph G′ of a graph G and two induced paths
Q1 and Q2 in G′, we have Q1 −⇀↽−

G
Q2 whenever Q1 −⇀↽−

G′
Q2.

We adapt the approach of [4] to shifting. For a graph G and a positive integer k, we say that:

• property HB(G, k) holds if every induced path Pk in G can be shifted to an avoidable induced
path;

• for a vertex v ∈ V (G), property HR(G, k, v) holds if every induced path Pk in G−N [v] can
be shifted in G−N [v] to an avoidable induced path in G;

• property HR(G, k) holds if for every v ∈ V (G) we have HR(G, k, v).

Lemma 9. HR(G, k) implies HB(G, k).

Proof. Assume HR(G, k) and let Q = q1 . . . qk be an induced Pk in G. If Q is simplicial, then we
are done, so assume that xQy is an extension of Q and define Q′ := q2 . . . qky. It is clear that
Q −⇀↽−

G
Q′. Furthermore, by HR(G, k, x) the path Q′ can be shifted in G −N [x] to a path Q∗ that

is avoidable in G. But then Q −⇀↽−
G

Q′ −−−−−⇀↽−−−−−
G−N [x]

Q∗, and hence Q −⇀↽−
G

Q∗. Since Q was arbitrary, this

shows HB(G, k).
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We need the following result, which is implicit in the proof of [4, Lemma 15].

Lemma 10. Let G be a graph, let uv ∈ E(G), let G′ := G/uv→u′ and let P be an induced path in
G′ −N [u′]. Then P is avoidable in G whenever it is avoidable in G′.

For the sake of completeness we include the proof.

Proof. Since G′ − N [u′] = G − N [{u, v}], the path P is an induced path in G. Suppose that P
is avoidable in G′ and consider an extension xPy of P in G. Since P is contained in G′ − N [u′],
vertices x and y are distinct from u and v. Therefore, xPy is an induced path in G′ − u′. Since P
is avoidable in G′, there exists an induced cycle C in G′ containing xPy. If C does not contain u′,
then C is also induced in G. Otherwise, replacing u′ in C with either u, v, uv, or vu as appropriate,
we obtain an induced cycle in G containing xPy. This shows that P is avoidable in G.

Lemma 11. For any graph G and positive integer k, property HR(G, k) holds.

Proof. Fix k and let G be a graph of minimal order for which HR(G, k) does not hold. In particular,
let u be a vertex in G such that HR(G, k, u) does not hold. Then, there exists an induced path Q
in G−N [u] that cannot be shifted in G−N [u] to any avoidable path in G.

Since G − N [u] is of smaller order than G, property HR(G − N [u], k) holds. By Lemma 9,
property HB(G−N [u], k) holds as well. Therefore, there exists a path Q′ = q1 . . . qk such that Q′

is avoidable in G − N [u] and Q −−−−−⇀↽−−−−−
G−N [u]

Q′. The choice of Q implies that Q′ is not avoidable in

G, thus Q′ has an extension xQ′y that is not closable in G. Note that precisely one of x, y is a
member of N(u), as otherwise the extension xQ′y would be closable in G. We may assume w.l.o.g.
that x is a common neighbor of u and q1.

Set G′ := G/ux→u′ . Observe that Q′′ := q2 . . . qky does not contain u, x, or any neighbor in
G of u or x. Therefore, Q′′ is a path in G′ − N [u′]. Again, the minimality of G implies property
HR(G′, k), in particular, also HR(G′, k, u′) holds. Hence, Q′′ can be shifted in G′ − N [u′] to an
induced path Q∗ that is avoidable in G′. So we have Q −−−−−⇀↽−−−−−

G−N [u]
Q′ −−−−−⇀↽−−−−−

G−N [u]
Q′′ −−−−−−⇀↽−−−−−−

G′−N [u′]
Q∗, where

the relations follow from the definitions of Q′, Q′′, and Q∗, respectively. Since G′ − N [u′] is an
induced subgraph of G − N [u], we have Q −−−−−⇀↽−−−−−

G−N [u]
Q∗. The choice of Q implies that Q∗ is not

avoidable in G, which contradicts Lemma 10.

Proof of Theorem 8. Immediate from Lemmas 9 and 11.

The proof of Theorem 8 is constructive. It gives an algorithm for computing a sequence of shifts
transforming a given induced path in a graph G to an avoidable one, see Procedures 1 and 2. We
do not know if the algorithm runs in polynomial time.

5 Paths

The main result of this section is the following theorem, which settles the case of paths from
Theorem 4.

Theorem 12. Every path in a graph G can be shifted to an avoidable one.

8



Procedure 1 Shifting(G,P )

Input: a graph G and an induced path P = p1p2 . . . pk in G
Output: a sequence S of paths shifting P to an avoidable induced path in G
1: if there exists an extension xPy of P then
2: Q← ypk . . . p1x
3: return P,RefinedShifting(G,Q)
4: else
5: return P

Procedure 2 RefinedShifting(G,P )

Input: a graph G and an induced path P = p1 . . . pk+2 in G
Output: a sequence S of paths in G−N [pk+2] shifting p1 . . . pk to an avoidable induced path in G
1: P ′ ← p1 . . . pk
2: S ← the one-element sequence containing path P ′

3: if there exists an extension xP ′y in G−N [pk+2] then
4: S ← S,RefinedShifting(G−N [pk+2], xP

′y)

5: Q← the end path of S
6: if Q has an extension xQy in G such that y is the unique neighbor of pk+2 in {x, y} then
7: let Q = q1 . . . qk such that y is adjacent to qk
8: Q′ ← xq1 . . . qk
9: G′ ← G/pk+2y→y′

10: S′ ← RefinedShifting(G′, Q′y′)
11: return S, S′

12: else
13: return S

We offer two proofs. The first proof will rely on several observations about line graphs. Recall
that the line graph of a graph G is the graph G′ with V (G′) = E(G) such that two distinct edges
e and f of G form a pair of adjacent vertices in G′ if and only if e and f share an endpoint in G.

Lemma 13. Let G be a graph and let G′ be its line graph. Then the following statements hold.

(a) Let P be a path of length ` ≥ 1 in G and let P ′ be the sequence of edges of P along the path.
Then P ′ is an induced path of length `− 1 in G′.

(b) Let C ′ be an induced cycle of length at least four in G′. Then, the sequence of vertices of C ′

along the cycle yields a sequence of edges of G that forms a cycle C in G.

(c) Let P ′ be an induced path in G′ and let ` be the length of P ′. Then, the sequence of vertices
of P ′ along the path yields a sequence of edges of G that forms a path P of length `+ 1 in G.

(d) For every ind-avoidable induced path P ′ in G′, the corresponding path P in G (as in (c)) is
a pth-avoidable path in G.

(e) For every two induced paths P ′ and Q′ in G′ that are ind-shifts of each other in G′, the
corresponding paths P and Q in G (as in (c)) are pth-shifts of each other in G.

9



For the sake of completeness we include a proof, which is lengthy but straightforward.

Proof. (a). Let e1, . . . , e` be the edges of P in order. Since P is a path in G, these edges are pairwise
distinct. Furthermore, for all i, j ∈ {1, . . . , `} with i < j, edges ei and ej share an endpoint in G
if and only if j = i + 1; thus, ei and ej are adjacent as vertices of G′ if and only if j = i + 1. We
conclude that P ′ is an induced path of length `− 1 in G′.

(b). Let ` ≥ 4 be the length of C ′ and let e1, . . . , e` be a cyclic order of vertices of C ′. Then
e1, . . . , e` are pairwise distinct edges of G, with two sharing an endpoint in G if and only if they
appear consecutively in the cyclic order. In particular, since ` ≥ 4, no three of these edges share
a common endpoint. Thus, if for all i ∈ {1, . . . , `} we denote by vi the common endpoint in G of
ei and ei+1 (indices modulo `), then vertices v1, . . . , v` are pairwise distinct, and ei = {vi−1, vi} for
all i ∈ {1, . . . , `} (with v0 = v`). In particular, C = (v1, e1, v2, . . . , v`, e`, v1) is a cycle in G formed
by the edges of C ′.

(c). The proof is very similar to (but simpler than) that of item (b).
(d). Let e1, . . . , e`+1 be the vertices of P ′ in order. By (c), the sequence of edges e1, . . . , e`+1

forms a path P of length ` + 1 in G. Suppose that P ′ is an ind-avoidable induced path in G′. To
show that P is a pth-avoidable path in G, we verify that every pth-extension of P is pth-closable.
Let Q be an arbitrary pth-extension of P in G. Then there exist two edges e0 and e`+2 in G such
that Q is a path of length `+3, with edges e0, e1, . . . , e`+1, e`+2 in order. By part (a) of the lemma,
this sequence of edges is a sequence of vertices in G′ forming an induced path Q′ of length ` + 2 in
G′. Note that Q′ is an ind-extension of the induced path P ′ in G′. Since P ′ is an ind-avoidable
induced path in G, every ind-extension of P ′ is ind-closable. In particular, Q′ is contained in an
induced cycle C ′ in G′. Since Q′ is an induced path contained in C ′, the length of C ′ is at least
(` + 2) + 2 ≥ 4. Thus, by part (b) of the lemma, the sequence of vertices of C ′ along the cycle
yields a sequence of edges of G that forms a cycle C in G. Furthermore, Q is contained in C and
hence pth-closable. Thus, every pth-extension of P is closable and P is indeed a pth-avoidable
path in G.

(e). Let ` be the common length of the paths P ′ and Q′. Then P and Q are both of length
` + 1. The paths P ′ and Q′ are ind-shifts of each other in G′, and hence, considering paths as
subgraphs, the union of P ′ and Q′ is an induced path R′ of length ` + 1 in G′. Let R be the path
in G corresponding to R′ (as in item (c) of the lemma). Then R is a path of length `+ 2 in G that
is the union of paths P and Q. This shows that P and Q are pth-shifts of each other in G.

First proof of Theorem 12. The first proof is based on a reduction to Theorem 8. Let P be a path
in G and let ` be the length of P . Suppose that ` = 0. Then P corresponds to a vertex v ∈ V (G).
Let U be the connected component of G containing v. If U contains only v then clearly P is
avoidable in G. Otherwise, let u be a vertex in U such that U − u is connected. (Such a vertex
exists, for example, take a leaf of a spanning tree in U .) Then u is an avoidable path in G such

that P
pth−−⇀↽−−
G

u .

Suppose now that ` ≥ 1 and let G′ be the line graph of G. Let P ′ be the sequence of edges of
P . By item (a) of Lemma 13, P ′ is an induced path of length ` − 1 in G′. By Theorem 8 there

exists an induced path Q′ that is avoidable in G′ and such that P ′
ind−−⇀↽−−
G′

Q′. By items (c) and (d)

of Lemma 13, the sequence of vertices of Q′ in G′ corresponds to a sequence of edges in G forming

a path Q that is avoidable in G. Furthermore, since P ′
ind−−⇀↽−−
G′

Q′, we conclude using item (e) of
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Lemma 13 that P
pth−−⇀↽−−
G

Q.

In the second proof, all our arguments on paths will only depend on the corresponding sequences
of vertices, even in the case of graphs with blue edges. Thus, we use notation introduced in Section 4
and represent each path simply as a sequence of vertices.

Second proof of Theorem 12. The second proof works directly on G and is based on properties of
depth-first search (DFS) trees. Let P be a path in G and let ` be the length of P . Consider a
DFS traversal of G starting in P and let T be the corresponding DFS tree. Let Q be a longest
root-to-leaf path in T such that P is a subpath of Q. We shift P along Q all the way to the last
vertex of Q, obtaining this way a path P ′ = v′0v

′
1 . . . v

′
`, where v′` is a leaf in T . Let Q′ be a longest

root-to-leaf path in the subtree of T rooted at v′0. We now define a path P ′′ = v′′0v
′′
1 . . . v

′′
` depending

on the length of Q. If the length of Q is at least 2` we set P ′′ = P ′ (see Fig. 6a). Otherwise we
shift P ′ to the subpath P ′′ of Q′ such that v′′` is a leaf in T (see Fig. 6b).

P

P
′
= P

′′

root

v
′

0
= v

′′

0

v
′

ℓ
= v

′′

ℓ

≤ ℓ

P

P
′

P
′′

root

v
′

0

v
′′

0

v
′

ℓ

v
′′

ℓ

≤ ℓ

(a) (b)

Figure 6: The two cases from the second proof, depending on the length of Q

Note that the length of each path from v′′0 to a leaf of the subtree of T rooted at v′0 is at most
`, since Q′ is a longest root-to-leaf path in this subtree.

If P ′′ is avoidable in G, we are done. Otherwise, P ′′ has an extension

xP ′′y = xv′′0v
′′
1 . . . v

′′
` y

that is not closable. Since T is a DFS tree in G, all neighbors of v′′` in G are ancestors of v′′` in T .
In particular, this implies that y is an ancestor of v′′` and hence also an ancestor of v′′0 . Note that
y is a vertex of the path Q′′ = r . . . v′0 . . . v

′′
0 , where r is the root of T (see Fig. 7 for the case when

the length of Q is less than 2`).
Since xP ′′y is not closable, we infer that x is not an ancestor of v′′0 in T . Thus, x is a child of

v′′0 in T . Let Q′′′ = v′′0x . . . w be a path in T such that w is a leaf in T . We now shift P ′′ following
Q′′′ from v′′0 to the last vertex of Q′′′, obtaining this way a path P ′′′, the last vertex of which is
w. Note that, by choice of P ′′, vertex v′′0 belongs to the path P ′′′ (see Fig. 7). Thus, if w has a
neighbor in G that is a proper ancestor of v′′0 in T , then xP ′y would be a closable extension of P ′′,
which is not possible. We conclude that all neighbors of w in G are also vertices of P ′′′. Hence, P ′′′
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P ′′′

P ′′

root

v′
0

v′′
0

y

xv′
ℓ

v′′
ℓ

w

Figure 7: A hypothetical non-closable extension of P ′′

is a simplicial path in G. Since P
pth−−⇀↽−−
G

P ′, P ′
pth−−⇀↽−−
G

P ′′, and P ′′
pth−−⇀↽−−
G

P ′′′, we have P
pth−−⇀↽−−
G

P ′′′. Thus,

P can always be shifted to an avoidable path in G.

The second proof of Theorem 12 gives a polynomial-time algorithm for computing a sequence
of shifts transforming a given path in a graph G to an avoidable one, see Procedure 3.

Procedure 3 PathShifting(G,P )

Input: a graph G, a path P in G
Output: a sequence S of paths shifting P to an avoidable path in G
1: `← Length(P )
2: T ← DFS(G,P ) . DFS tree w.r.t. an ordering starting from P
3: Q← Longest(T, P ) . A longest root-to-leaf path in T starting with P .
4: S ← ShiftAlong(Q,P ) . The sequence of shifts along the path Q
5: P ′ ← S[−1] . The last path in the sequence
6: v′0 ← P ′[1] . The first vertex in the path
7: Q′ ← Longest(T, v′0) . A longest root-to-leaf path in the subtree of T rooted at v′0
8: if Length(Q′) ≤ ` then
9: P ′′ ← P ′

10: else
11: R′ ← Reverse(P ′), Q′

12: S ← S,ShiftAlong(R′,Reverse(P ′))
13: P ′′ ← S[−1] . The last path in the sequence

14: if there exists an extension xP ′′y of P ′′ which is not closable then
15: v′′0 ← P ′′[1]
16: Q′′′ ← Longest(T, v′′0x) . A longest path to the leaf starting with the edge v′′0x
17: R′′ ← Reverse(P ′′), Q′′′

18: return S,ShiftAlong(R′′,Reverse(P ′′))
19: else
20: return S
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6 Walks

For this case we provide two simple observations. The first one already suffices to prove the first
claim of Theorem 4 and the case wlk of Corollary 5.

Observation 14. Every walk in a graph is avoidable.

Proof. Indeed, any extension W ′ of a walk W is a subwalk of the closed walk obtained by traversing
W ′ first in one direction and then in the opposite one.

Furthermore, if the graph is connected, then any walk can be shifted to any walk of the same
length.

Observation 15. Let W and W ′ be two walks of the same length ` in a connected graph G. Then,
W can be shifted to W ′.

Proof. Let W ∗ be the concatenation of walks W , W ′′, and W ′, where W ′′ is an arbitrary walk in
G from the last vertex of W to the first vertex of W ′. Clearly W ∗ is also a walk in G, and its
subwalks of length ` form a sequence of walks that shows that W can be shifted to W ′.

7 Open problems

We conclude with the following open problems:

1. The proof of Theorem 8 is constructive and produces a sequence S of paths shifting a given in-
duced path P in a graph G to an avoidable induced path. Similarly, our proofs of Theorem 12
do the same for the case of not necessarily induced paths. For the latter case, we believe that
with an appropriate compact representation of the output and a suitable implementation of
Procedure 3 one can achieve linear running time. On the other hand, about the induced case
we know much less. Given a graph G and an induced path P in G, is there a polynomial
upper bound on the minimum length of a sequence of shifts transforming P to an avoidable
induced path and, if so, can a sequence of polynomial length be computed efficiently? In
particular, does the algorithm given by the proof of Theorem 8 (Procedures 1 and 2) run in
polynomial time?

2. For a positive integer k, what are the graphs that have an avoidable trail of length k whenever
they have a trail of length k? What are the graphs for which the above property holds for
all k?

For a positive integer k, what are the graphs in which every trail of length k can be shifted
to an avoidable one? What are the graphs in which every trail can be shifted to an avoidable
one?

What is the time complexity of recognizing graphs with above properties?

The above questions are also open for isometric paths.

3. In paper [7] the problem of determining whether there exists a sequence of shifts from a
given path to another one is proved PSPACE-complete, while the computational complexity
status of analogous problems for trails, induced paths, and isometric paths remains open.
The corresponding problem for walks is trivial.
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4. Let us say that an induced path P in a graph G is strongly avoidable if there exists a component
C of G −N [P ] such that every extension of P can be closed to an induced cycle using only
vertices of C. It follows from [3, Theorem 5.1] (see also [1]) that every graph G has a strongly
avoidable P1. For k > 1, which graphs have strongly avoidable induced paths Pk?
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