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Abstract

Let Γ denote a finite, connected, simple graph. For an edge e of Γ let n(e) denote
the number of girth-cycles containing e. For a vertex v of Γ let {e1, e2, . . . , ek} be
the set of edges incident to v orderd such that n(e1) ≤ n(e2) ≤ · · · ≤ n(ek). Then
(n(e1), n(e2), . . . , n(ek)) is called the signature of v. The graph Γ is said to be
girth-regular, if all of its vertices have the same signature.

Let Γ be a girth-regular graph with girth g = 2d and signature (a1, a2, . . . , ak) .
It is known that in this case we have ak ≤ (k − 1)d. In this paper we show that if
ak = (k − 1)d − ε for some non-negative integer ε < k − 1, then ε = 0.

1 Introduction
Extremal graph theory is among the early and fast-growing branches of graph theory.
It was highly influenced by Erdős and Turán [18]. In a typical question of this area
we fix a graph parameter (for example, in case of Turán type problems, the number of
vertices), assume some property of the (simple) graphs considered (in the example, that it
does not contain subgraphs H1, H2, . . .) and ask for the extremal values of another graph
parameter (in the example the number of edges). Our results belong to this branch of
graph theory. Without going into detail about such problems in general, we just refer
to a book by Bollobás [3] and a recent survey paper by Füredi and Simonovits [7]. The
problems motivating our results are about cages (and the degree/diameter problem), see
the dynamic surveys [5] and [16]. In this case the fixed parameter is the valency (degree)
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of a vertex, so only regular graphs are considered, the graph property is that the girth
(length of the smallest cycle) is at least g, and the parameter we are interested in is the
minimum number of vertices. This problem was probably posed first by Kárteszi [10],
with some additional property (namely, Hamiltonicity). The case of even girth is also
related to finite geometries.

Recently a new type of regularity was defined and investigated by Jajcay, Kiss and
Miklavič [9]. It is about the number of cycles of length g (the girth) containing a given
edge. A weakening of edge-girth regularity was introduced by Potočnik and Vidali [17].
Assuming some weaker regularity condition (see below in more detail) they proved an
upper bound on the number of cycles of length g containing an edge. We extend their
results in the spirit of stability theorems. When we have an upper bound on a graph
parameter, it is natural to ask what happens if it is somewhat smaller than the upper
bound. In many cases there is a gap, meaning that if the parameter is smaller than the
upper bound, then it is actually considerably smaller. We prove such a result. In case
of a general stability result, we can go even further and prove that whenever the value
of the parameter is close to the upper bound then the graph can be obtained from the
extremal one by “small local modifications”, that is by adding/deleting a small number of
edges/vertices, see [18].

2 Definitions and basic properties
In this section we collect basic notation and terminology. We also give some simple,
important properties of girth-regular graphs.

Let Γ denote a finite, connected, simple graph with vertex set V = V (Γ) and edge
set E = E(Γ). Let d denote the minimal path-length distance function of Γ and let
D = max{ d(v, w) | v, w ∈ V } denote the diameter of Γ. For v ∈ V and an integer i
we let Γi(v) = {w ∈ V | d(v, w) = i}. We abbreviate Γ(v) = Γ1(v) and observe that
Γi(v) = ∅ whenever i < 0 or i > D. For an edge uv of Γ, let Di

j(u, v) = Γi(u) ∩ Γj(v).
We say that Γ is regular with valency k (k ∈ Z), whenever |Γ(v)| = k for every v ∈ V .

The girth g of Γ is the length of a shortest cycle in Γ. If C is a cycle of Γ of girth length g,
then we refer to C as a girth-cycle of Γ. The following definition was introduced in [17].

Definition 2.1. Let Γ be a k-regular graph. For an edge e of Γ let n(e) denote the number
of girth-cycles containing e. For a vertex v of Γ let {e1, e2, . . . , ek} be the set of edges
incident to v orderd such that n(e1) ≤ n(e2) ≤ · · · ≤ n(ek). Then (n(e1), n(e2), . . . , n(ek))
is called the signature of v. The graph G is said to be girth-regular, if all of its vertices
have the same signature.

As mentioned in the introduction, girth regularity generalizes edge-girth regularity
introduced in [9]. For an edge-girth regular graph a1 = a2 = . . . = ak. The following
central question about girth-regular graphs was proposed in [17]:

Question 2.2. Given integers k and g, for which k-tuples σ = (a1, a2, . . . , ak) ∈ Zk does
a girth-regular graph of girth g and signature σ exist?
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Although the above question seems to be very difficult in its full generality, an upper
bound on the entries ai of the signature in terms of the valence k and the girth g was
given in [17, Theorem 1.2]:

Proposition 2.3. Let Γ be a girth-regular graph with girth g and signature (a1, a2, . . . , ak).
Then ak ≤ (k − 1)d, where d = bg/2c.

In this paper we push the above result a bit further in the case when g is even.
Namely, we study girth-regular graphs with girth g = 2d and signature (a1, a2, . . . , ak),
where ak ≤ (k − 1)d − ε for some small values of ε. The following theorem is the main
result of this paper.

Theorem 2.4. Let Γ be a girth-regular graph with girth g = 2d and signature (a1, a2, . . . , ak),
such that ak = (k − 1)d − ε for some non-negative integer ε < k − 1. Then ε = 0 and
Γ is the incidence graph of a finite generalized d-gon of order (k − 1, k − 1). (Hence
d ∈ {2, 3, 4, 6, 8}.)

The following straightforward observation will be used through the rest of the paper
frequently without explicitly referring to it (see also [17, Subsection 2.2]).

Proposition 2.5. Let Γ be a graph with girth 2d, d ≥ 2. Let uv be an edge of Γ and let
Di
j = Di

j(u, v). Then the following hold.

(i) If x, y are vertices of Γ with d(x, y) ≤ d − 1, then there is a unique path of length
d(x, y) between x and y.

(ii) Di
i = ∅ for 1 ≤ i ≤ d− 1.

(iii) For 1 ≤ i ≤ d−1 and for z ∈ Di
i+1 (resp. z ∈ Di+1

i ), we have that |Γ(z)∩Di−1
i | = 1

(resp. |Γ(z) ∩Di
i−1| = 1) .

(iv) If Γ is regular with valency k, then for 0 ≤ i ≤ d − 2 and for z ∈ Di
i+1 (resp.

z ∈ Di+1
i ), we have that |Γ(z) ∩Di+1

i+2| = k − 1 (resp. |Γ(z) ∩Di+2
i+1| = k − 1) .

(v) If Γ is regular with valency k, then for 0 ≤ i ≤ d− 1 we have that

|Di
i+1| = |Di+1

i | = (k − 1)i.

(vi) If Γ is regular with valency k and n(uv) = (k − 1)d − ε, then there are exactly
(k − 1)d − ε edges between Dd−1

d and Dd
d−1.

Keeping in mind Proposition 2.5, the proof of the following lemma is straightforward.

Lemma 2.6. Let Γ be a k-regular graph with girth g = 2d, and let u1u2 and v1v2 be two
edges of Γ. Without loss of generality we may assume that d(u1, v1) = min{d(ui, vj) : 1 ≤
i, j ≤ 2}. Suppose that there are 0 ≤ αu forbidden edges through u2, αv forbidden edges
through v2, and that αu ≤ αv. Let m = d(u1, v1) + 1, and let c denote the maximum
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Figure 1: A regular graph with valency k and girth 2d, where n(uv) = (k − 1)d − ε. The
numbers near the bubble representing the set Di

j represent the number of neighbours,
that each vertex of Di

j has in the neighbouring bubble.

number of girth-cycles containing both u1u2 and v1v2, but not containing any forbidden
edge. Then

c ≤


(k − 1− αu)(k − 1− αv)(k − 1)d−m−2, if m ≤ d− 2,
k − 1− αv, if m = d− 1,
1, if m = d,
0, if m ≥ d+ 1.

Observe that cycles are the only girth-regular graphs for k = 2 and their signature is
(1, 1), so in the rest of this paper we assume k ≥ 3 and we will use the following notation.

Notation 2.7. Let Γ be a girth-regular graph with valency k ≥ 3, girth g = 2d and
signature (a1, a2, . . . , ak). Suppose that ak = (k − 1)d − ε for some ε < k − 1. Let uv be
an edge with n(uv) = ak, and let Di

j = Di
j(u, v). Note that Di

i = ∅ for 1 ≤ i ≤ d− 1 and
that there are no edges between Di−1

i and Di
i−1 for 1 ≤ i ≤ d− 1.

If ε ≥ 1 then we let E denote the 2ε edges of Γ, that have one endpoint in Dd−1
d ∪Dd

d−1,
and the other endpoint in Dd

d+1∪Dd+1
d ∪Dd

d. Note that ε of these edges have one endpoint
in Dd−1

d , while the other ε of these edges have endpoint in Dd
d−1. For every r ∈ Dd

d−1

(b ∈ Dd−1
d , respectively) we let h(r) = k− 1− |Γ(r)∩Dd−1

d | (h(b) = k− 1− |Γ(b)∩Dd
d−1|,

respectively). Let {r1, r2, . . . , rm} ⊆ Dd
d−1 be the set of vertices of Dd

d−1, for which the value
of the function h is positive. Choose the indices in such a way that h(ri) ≤ h(rj) for i < j.
Similarly, let {b1, b2, . . . , bn} ⊆ Dd−1

d be the set of vertices of Dd−1
d , for which the value

of the function h is positive. Again, choose the indices in such a way that h(bi) ≤ h(bj)
for i < j. We may assume without loss of generality that γ = h(rm) ≤ h(bn) = β. Let
µ = h(r1) and ν = h(b1).

With reference to Notation 2.7, observe that by definition we have

∑
r∈Dd

d−1

h(r) =
m∑
i=1

h(ri) =
∑

b∈Dd−1
d

h(b) =
n∑
i=1

h(bi) = ε. (1)
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There is at most one missing edge between any pair of vertices r ∈ Dd
d−1 and b ∈ Dd−1

d ,
hence m ≥ β and n ≥ γ. These observations obviously imply the following inequalities:

µβ ≤ µm ≤ ε, νγ ≤ νn ≤ ε. (2)

Observe also that it follows from the above comments that

µ2 ≤ µγ ≤ µβ ≤ µm ≤ ε,

implying that µ ≤
√
ε.

First, we give a lower bound on a1 using the vertex u.

Lemma 2.8. With reference to Notation 2.7 we have that

a1 ≥ (k − 1)d−2 max{(k − 1− β)(k − 1)− ε, (k − 1− γ)(k − 1)− ε}. (3)

Proof. We prove that a1 ≥ (k − 1)d−2
(
(k − 1 − β)(k − 1) − ε

)
. The proof of a1 ≥

(k − 1)d−2
(
(k − 1− γ)(k − 1)− ε

)
is similar.

Recall that n(uv) = ak and that Di
j = Di

j(u, v). Let b 6= v be a neighbour of u such
that n(ub) = a1. Pick b′ ∈ Dd−1

d ∩Γd−2(b) and r′ ∈ Dd
d−1 ∩Γ(b′) and observe that for each

r̃ ∈ (Γ(r′) ∩ (Dd−1
d ∪Dd−1

d−2) \ {b′}, there is a unique girth-cycle containing the arc ub and
the 2-arc b′r′r̃. Abbreviate A = Dd−1

d ∩ Γd−2(b) and B(b′) = Dd
d−1 ∩ Γ(b′), where b′ ∈ A.

Note that |A| = (k − 1)d−2, and so, by (1), we have

a1 = n(ub) ≥
∑
b′∈A

∑
r′∈B(b′)

(k − 1− h(r′))

=
∑
b′∈A

∑
r′∈B(b′)

(k − 1)−
∑
b′∈A

∑
r′∈B(b′)

h(r′)

≥ (k − 1)
∑
b′∈A

(k − 1− h(b′))−
∑
b′∈A

ε

≥ (k − 1)
∑
b′∈A

(k − 1− β)− (k − 1)d−2ε

= (k − 1)(k − 1)d−2(k − 1− β)− (k − 1)d−2ε

= (k − 1)d−2
(
(k − 1)(k − 1− β)− ε

)
.

(4)

3 The case g = 4

In this section we consider the case g = 4.

Lemma 3.1. With reference to Notation 2.7, assume that g = 4 and ε ≥ 1. Then n ≥ 2
and m ≥ 2.
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Proof. We prove that n ≥ 2. The proof that m ≥ 2 is similar. Suppose on the contrary
that n = 1. Note that in this case β = ε, γ = 1, m = ε and h(ri) = 1 for 1 ≤ i ≤ m. Let
w be a unique vertex, such that r1w ∈ E . Let t = |Γ(w) ∩D2

1| and note that t ≤ ε. Note
that girth-cycles containing edge r1w are exactly cycles of the form (w, r1, x, y, w), where
x ∈ {v} ∪ (D1

2 \ {b1}) and y ∈ (Γ(w) ∩D2
1) \ {r1}. Therefore, n(r1w) = (k − 1)(t− 1) ≤

(k − 1)(ε− 1). Therefore, since γ = 1, we have by Lemma 2.8 that

(k − 2)(k − 1)− ε ≤ a1 ≤ n(r1w) ≤ (k − 1)(ε− 1).

It follows that (k − 1)2 ≤ kε, and so

k − 2 +
1

k
≤ ε < k − 1,

contradicting the fact that ε is an integer.
We now give an upper bound for a1.

Lemma 3.2. With reference to Notation 2.7, assume that g = 4 and ε ≥ 1. Let α =
h(bn−1). Then

a1 ≤ ε+ (ε− β)(k − 1)− (α− 1)(ε− α− β + 1). (5)

Proof. Let {w1, . . . , wα} = Γ(bn−1) \ ({u} ∪D2
1). We estimate n(bn−1w1). To do this we

split the girth-cycles (w1, bn−1, x, y, w1) into two types, depending on vertex x. We say
that the girth-cycle is of type 1 if x ∈ {w2, . . . , wα}, and of type 2 if x ∈ {u} ∪ D2

1. By
Lemma 2.6 there are at most (α−1)(k−1) girth-cycles of type 1. To estimate the number
of girth-cycles of type 2, we further split these girth-cycles into two subfamilies, depending
on vertex y. Let us say that the girth-cycle (w1, bn−1, x, y, w1) with x ∈ {u}∪D2

1 is of type
2a if y ∈ D1

2, and of type 2b if y 6∈ D1
2. If the girth-cycle is of type 2b, then x ∈ D2

1 and xy
is one of the edges from E . There are ε of such edges, and for each of these edges there is,
by Lemma 2.6, at most one girth-cycle, containing also the edge w1bn−1. Therefore, there
are at most ε girth-cycles of type 2b. To estimate the number of girth-cycles of type 2a,
observe that bn−1 has k−α neighbours in {u}∪D2

1, and that w1 has at most ε−α−β+ 1
neighbours in D1

2 \ {bn−1}. This shows that the number of girth-cycles of type 2a is at
most (k − α)(ε− α− β + 1). Therefore,

a1 ≤ n(bn−1w1) ≤ (α− 1)(k − 1) + ε+ (k − α)(ε− α− β + 1)

= ε+ (ε− β)(k − 1)− (α− 1)(ε− α− β + 1).

Lemma 3.3. With reference to Notation 2.7, assume that g = 4 and ε ≥ 1. Then ε = k−2
and β = γ.

Proof. By Lemmas 2.8 and 3.2 we get that

((k − 1)− γ)(k − 1)− ε ≤ ε+ (ε− β)(k − 1)− (α− 1)(ε− α− β + 1),

that is,
(k − 1)2 + (β − γ)(k − 1) ≤ (k + 1)ε− (α− 1)(ε− α− β + 1). (6)
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Taking into account that γ ≤ β, that α ≥ 1 and that α + β ≤ ε, inequality (6) implies
that

(k − 1)2 ≤ (k + 1)ε− α + 1 ≤ (k + 1)ε,

and so ε > k − 3. As ε < k − 1, we have that ε = k − 2 as claimed. Now if β − γ ≥ 1,
then inequality (6) (together with ε = k − 2) implies that

(α− 1)(k − α− β − 1) ≤ −2 < 0,

forcing that k−α−β− 1 ≤ −1. But this implies k ≤ α+β ≤ ε = k− 2, a contradiction.
Therefore, β = γ as claimed.

Lemma 3.4. With reference to Notation 2.7, assume that g = 4 and ε ≥ 1. Then the
following hold.

(i) ν = µ = 1;

(ii) h(bi) = h(rj) = 1 for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m− 1;

(iii) n = m.

Proof. (i) We prove that ν = 1. The proof that µ = 1 is similar. Suppose to the contrary
that ν ≥ 2 and consider vertex b1. Let {w1, . . . , wν} = Γ(b1)\ ({u}∪D2

1). Without loss of
generality we could assume that |Γ(w1)∩{b2, . . . , bn−1}| is minimal among w1, w2, . . . , wν .
As in the proof of Lemma 3.2 split the girth-cycles containing the edge b1w1 into three
families: girth-cycles of type 1, of type 2a and of type 2b. A similar argument as in the
proof of Lemma 3.2 shows that there are at most (ν − 1)(k − 1) girth-cycles of type 1,
and at most ε = k − 2 girth-cycles of type 2b.

To estimate the number of girth-cycles of type 2a, observe first that b1 has k − ν
neighbours in {u} ∪D2

1. Let us now estimate the number of neigbours of w1 in D1
2 \ {b1}.

Observe that there are at most ε − ν − β edges between the sets {b2, . . . , bn−1} and
{w1, . . . , wν}. As ν ≥ 2, vertex w1 is not an endpoint of at least half of these edges. This
shows that w1 has at most (ε− ν− β)/2 + 1 neighbours in D1

2 \ {b1} (recall that w1 could
be adjacent also with bn), and so the number of girth-cycles of type 2a is at most

(k − ν)(
ε− ν − β

2
+ 1) = (k − ν)

(
k − 2− ν − β

2
+ 1

)
.

Therefore, as ν + β ≤ ε = k − 2 and ν ≥ 2, we have

a1 ≤ n(b1w1) ≤ (ν − 1)(k − 1) + (k − ν)

(
k − 2− ν − β

2
+ 1

)
+ k − 2

≤ ν(k − 1)− ν + β

2
(k − 2) +

k2 − 2k − 2

2
.

(7)

Combining inequalities (3) and (7) we obtain

(k − 1)2 − β(k − 1)− (k − 2) ≤ ν(k − 1)− ν + β

2
(k − 2) +

k2 − 2k − 2

2
,
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which is equivalent to k2 − 4k + 8 ≤ (µ + β)k. By (2), we have that 2β ≤ νβ ≤ k − 2,
and so ν + β ≤ (k− 2)/β + β ≤ 2 + (k− 2)/2. Combining this with the above inequality
we get that

k2 − 4k + 8 ≤
(

2 +
k − 2

2

)
k,

and so k ≤ 8. On the other hand, by (2), we have that 4 ≤ νβ ≤ ε = k − 2, and so
k ≥ 6. Furthermore, observe that νβ ≤ k − 2 together with (1) nad Lemma 3.3 imply
that ν = β = γ = 2 and k ∈ {6, 8}. We now analyze these cases separately.
Case 1: k = 8. Lemma 2.8 gives us a1 ≥ 29, while (7) gives us a1 ≤ 25, a contradiction.
Case 2: k = 6. Let D1

2 = {b1, b2, b3, b4, b5}, such that h(b1) = h(b2) = 2 and h(b3) =
h(b4) = h(b5) = 0. Note that, by Lemma 3.2, we have that a1 ≤ 13. Observe that
n(uv) = n(ub3) = n(ub4) = n(ub5) = 21 = a6, and so every vertex x of Γ has at least four
neighbours y with n(xy) = 21. Furthermore, we could assume without loss of generality
that a1 = n(ub1).

We will now show that µ = 2. Recall first that γ = 2 and so h(r) ≤ 2 for every r ∈ D2
1.

Suppose to the contrary that µ = 1, which implies that there are vertices r1, r2, r3 ∈ D2
1

with h(r1) = h(r2) = 1 and h(r3) = 2, while for any other vertex r ∈ D2
1 we have h(r) = 0.

Observe that n(vr3) ≤ 17 < 21. As v has at least four neighbours y with n(vy) = 21,
we have n(vr) = 21 for at least one r ∈ {r1, r2}. Pick such r and let w be the unique
neighbour of r, which is not contained in {v} ∪ D1

2. Observe that r is adjacent with
b3, b4, b5 and exactly one of b1, b2, say with b1. Let us now count girth-cycles (v, r, x, y, v).
If x ∈ {b3, b4, b5}, then there are 5 such cycles, while if x = b1, there are 3 such cycles. In
addition, there are at most 2 such cycles in case x = w: possibly one with y = r3 and one
with y = r′, where {r′} = {r1, r2} \ {r}. This gives us at most 20 girth-cycles containing
vr, contradicting n(vr) = 21. This shows that µ = 2.

It follows that there are three vertices r, r′, r′′ ∈ D2
1 with h(r) = h(r′) = h(r′′) = 0,

and so b1 is adjacent with each of these three vertices. But this implies that there are at
least 5 + 5 + 5 girth-cycles containing edge ub1, contradicting n(ub1) = a1 ≤ 13.
(ii) We prove that h(bi) = 1 for 1 ≤ i ≤ n−1. The proof that h(rj) = 1 for 1 ≤ j ≤ m−1
is similar. Note that to prove that h(bi) = 1 for 1 ≤ i ≤ n− 1 it is enough to prove that
h(bn−1) = 1. Suppose on the contrary that h(bn−1) ≥ 2. Recall that ν = h(b1) = 1 by (i)
above. Let w1 be the only neighbour of b1, which is not contained in {u} ∪D2

1. Consider
the girth-cycles through b1w1. As in (i) above we split these cycles into three families:
cycles of type 1, cycles of type 2a and cycles of type 2b. There are at most ε = k − 2
girth-cycles of type 2b, and as ν = 1, there are no girth-cycles of type 1.

To estimate the number of girth-cycles of type 2a, observe first that b1 has k − 1
neighbours in {u} ∪D2

1, while w1 has at most

ε− 1− (h(bn−1)− 1)− (β − 1) = k − 1− β − h(bn−1) ≤ k − 3− β

neighbours in D1
2 \ {b1}. It follows that there are at most

k − 2 + (k − 1)(k − 3− β)

girth-cycles containing b1w1. Therefore a1 ≤ n(b1w1) ≤ k − 2 + (k − 1)(k − 3 − β),
contradicting Lemma 2.8.
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(iii) This follows from (ii) above, Equation (1) and Lemma 3.3.

Lemma 3.5. With reference to Notation 2.7, assume that g = 4 and ε ≥ 1. Then β = 1.

Proof. Recall that ε = k − 2 and that h(bi) = h(ri) = 1 for 1 ≤ i ≤ n − 1. It follows
that n − 1 + β = k − 2. Pick b ∈ D1

2 with h(b) = 0. It is easy to see that n(ub) =
(k − 1)2 − k + 2 = k2 − 3k + 3, and so for at least k − n = β + 1 neighbours b of u we
have that n(ub) = ak = k2 − 3k + 3. As Γ is girth-regular, it follows that also bn must
have at least β + 1 neighbours x with n(bnx) = ak. In the rest of the proof we estimate
n(bnx) for various neighbours x of bn. We omit the details and leave them to a reader.

It is straightforward to see that for x = u we have

n(bnu) ≤ (n− 1) + (k − β − 1)(k − 1) = k2 − k − 1− βk,

and so n(bnu) < ak if β ≥ 2. Assume now that bn is adjacent with r ∈ D2
1 with h(r) = 0.

Similarly as above we find that

n(bnr) ≤ (n− 1) + (k − β − 1)(k − 1),

and so n(bnr) < ak if β ≥ 2. If bn is adjacent with rj (1 ≤ i ≤ n− 1), then

n(bnrj) ≤ β + (n− 1) + (n− 1) + (k − β − 1)(k − 2) = k2 − k − 2 + β − βk,

and so again n(bnrj) < ak if β ≥ 2. Assume finally that bn is adjacent with rn. Then we
have

n(bnrn) ≤ β2 + (n− 1) + (n− 1) + (k − β − 1)(k − β − 1) = k2 − 3 + 2β(β − k).

If β ≥ 2, then β(k − β) ≥ 2(k − 2), and so n(bnrn) ≤ k2 − 3 − 4(k − 2) < ak as k ≥ 3.
Therefore, if β ≥ 2, then bn has at most β neighbours x with n(bnx) = ak, contradicting
the fact that Γ is girth-regular. This shows that β = 1.

Theorem 3.6. With reference to Notation 2.7, assume that g = 4. Then ε = 0 and Γ is
the complete bipartite graph Kk,k.

Proof. Suppose on the contrary that ε ≥ 1. Recall that ε = k − 2 and β = γ = 1 by
Lemma 3.3 and Lemma 3.5. Therefore, there is exactly one vertex r ∈ D2

1 with h(r) = 0,
and there is exactly one vertex rj (1 ≤ j ≤ n = k − 2), such that b1 is not adjacent with
rj. Without loss of generality we could assume that j = 1. Consider now vertex b1 and
let w1 be the unique neighbour of b1, which is not contained in {u} ∪D2

1. Similarly as in
the proof of Lemma 3.2 we split the girth-cycles (w1, b1, x, y, w1) containing the edge b1w1

into two families. To do this first note that x ∈ {u} ∪ D2
1. We say that the girth-cycle

(w1, b1, x, y, w1) is of type 2a if y ∈ D1
2, and of type 2b if then y 6∈ D1

2. As b1 is not
adjacent with r1, there are at most ε − 1 = k − 3 girth-cycles of type 2b. To estimate
the number of girth-cycles of type 2a, observe first that y ∈ {b2, . . . , bn}. Let r denote
the unique vertex of D2

1 with h(r) = 0 and note that u and r are adjacent with each
bi (2 ≤ i ≤ n). Let b denote the unique vertex of D1

2 with h(b) = 0. Pick ri (2 ≤ i ≤ n).
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As h(ri) = 1 and ri is adjacent with b and b1, there exist exactly one j (2 ≤ j ≤ n), such
that ri and bj are not adjacent. The above comments shows that there are at most

(k − 3) + (k − 3) + (k − 3)(k − 4) = (k − 3)(k − 2)

girth-cycles of type 2a. This shows that

a1 ≤ n(b1w1) ≤ k − 3 + (k − 2)(k − 3) = k2 − 4k + 3.

On the other hand, we have a1 ≥ (k − 2)2 by Lemma 2.8, and so (k − 2)2 ≤ k2 − 4k + 3,
a contradiction. Therefore ε = 0, which implies that Γ is a complete bipartite graph
Kk,k.

4 The case g ≥ 6 even
In this section we study girth-regular graphs with girth g = 2d ≥ 6. With reference to
Notation 2.7, assume that g = 2d ≥ 6. For every z ∈ D2

1 we define

β(z) =
∑

r∈Dd
d−1∩Γd−2(z)

h(r).

Note that for z ∈ D2
1 we have |Dd

d−1∩Γd−2(z)| = (k−1)d−2 and that for z, z′ ∈ D2
1 (z 6= z′),

the sets Dd
d−1∩Γd−2(z) and Dd

d−1∩Γd−2(z′) are disjoint as the girth of Γ is 2d. Therefore,∑
z∈D2

1

β(z) =
∑

r∈Dd
d−1

h(r) = ε. (8)

In particular, β(z) ≤ ε.

Lemma 4.1. With reference to Notation 2.7, assume that g = 2d ≥ 6 and ε ≥ 1. Then

a1 ≥ (k − 1)d − kε.

Proof. Pick z ∈ D2
1 with n(vz) = a1 and let w1, w2, . . . , w(k−1)d−2 be the vertices of Dd

d−1∩
Γd−2(z). For 1 ≤ j ≤ (k−1)d−2 consider the 2d-cycles of the form (v, z, . . . , wj, b, r, r

′, . . .)
with b ∈ Dd−1

d , where (v, z, . . . , wj) is the unique path from v to wj of length d − 1.
Observe that for a fixed wj, b and r, there is only one such cycle, and that for a fixed
wj, b, we could choose r in (k − 1− h(b)) different ways. Therefore,

a1 = n(vz) ≥
(k−1)d−2∑
j=1

∑
b∈Γ(wj)∩Dd−1

d

(k − 1− h(b))

=

(k−1)d−2∑
j=1

∑
b∈Γ(wj)∩Dd−1

d

(k − 1)−
(k−1)d−2∑
j=1

∑
b∈Γ(wj)∩Dd−1

d

h(b).

(9)
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Furthermore, observe that for a fixed wj we could choose b in (k − 1 − h(wj)) different
ways, and so

(k−1)d−2∑
j=1

∑
b∈Γ(wj)∩Dd−1

d

(k − 1) = (k − 1)

(k−1)d−2∑
j=1

(k − 1− h(wj)) = (k − 1)d − (k − 1)β(z).

Finally, the sets Γ(wj)∩Dd−1
d and Γ(w`)∩Dd−1

d are pairwise different if j 6= ` (otherwise
we would get a cycle of length 2d− 2), and so

(k−1)d−2∑
j=1

∑
b∈Γ(wj)∩Dd−1

d

h(b) ≤
∑

b∈Dd−1
d

h(b) = ε.

This, together with β(z) ≤ ε, shows that

a1 = n(vz) ≥ (k − 1)d − (k − 1)β(z)− ε ≥ (k − 1)d − kε.

Lemma 4.2. With reference to Notation 2.7, assume that g = 2d ≥ 6 and ε ≥ 1. Then

a1 < (k − 1)d−2(kε− k + 2).

Proof. Pick a vertex r ∈ Dd
d−1 with h(r) ≥ 1 and abbreviate α = h(r). Let

A =
d−1⋃
i=0

(
Di
i+1 ∪Di+1

i

)
.

Pick w ∈ Γ(r) ∩ (Dd
d ∪ Dd+1

d ) and consider the set C of 2d-cycles (x0 = w, x1 =
r, x2, . . . , x2d−1, w) through wr. Note that at most 2d − 2 edges of such a cycle have
both endpoints in A. For 1 ≤ i ≤ 2d − 1 let Ci denote the subset of C defined as
follows. A cycle (x0 = w, x1 = r, x2, . . . , x2d−1, w) is an element of Ci, if and only if
{x1, . . . , xi} ⊆ A and xi+1 6∈ A, where the addition in subscripts is computed modulo 2d.
For example, cycles in C1 are those 2d-cycles (x0 = w, x1 = r, x2, . . . , x2d−1, w) , for which
x2 6∈ A, while cycles in C2d−1 are those for which {x1, x2, . . . , x2d−1} ⊆ A. Note that the
sets Ci are pairwise disjoint, and so

a1 ≤ n(wr) ≤ |C1|+ |C2|+ · · ·+ |C2d−1|.

Let us now estimate the above sum. To do this we introduce the following notation. For
i ∈ {1, 3, . . . , 2d− 1} we define

εi =
∑

h(b),

where the sum is over those vertices b ∈ Dd−1
d , for which d(r, b) = i. Note that

ε1 + ε3 + · · ·+ ε2d−1 ≤ ε.

11



We also define
κ = |Γ(w) ∩ (Dd

d−1 \ {r})| = |Γ(w) ∩Dd
d−1| − 1.

Note that α + κ ≤ ε.
Consider a 2d-cycle (x0 = w, x1 = r, x2, . . . , x2d−1, w) ∈ C1. Observe that there are

α−1 choices for x2. For each such choice of x2, there are, by Lemma 2.6, at most (k−1)d−1

girth-cycles containing both edges wr and rx2. Therefore,

|C1| ≤ (α− 1)(k − 1)d−1.

Consider a 2d-cycle (x0 = w, x1 = r, x2, . . . , x2d−1, w) ∈ C2 ∪C4 ∪ · · · ∪C2d−2. Assume
that this cycle is an element of C2j (1 ≤ j ≤ d−1). Observe that in this case we have that
x2j ∈ Dd−1

d and that d(r, x2j) = 2j − 1 (otherwise there would be a cycle of length less
than 2d). Therefore, we could choose an edge x2jx2j+1 in ε2j−1 different ways. For each
such choice of an edge x2jx2j+1, there are, by Lemma 2.6, at most (k − 1)d−2 girth-cycles
containing edges wr and x2jx2j+1, and so

|C2|+ |C4|+ · · ·+ |C2d−2| ≤ (ε1 + ε3 + · · ·+ ε2d−3)(k − 1)d−2 ≤ ε(k − 1)d−2.

Consider a 2d-cycle (x0 = w, x1 = r, x2, . . . , x2d−1, w) ∈ C3 ∪ C5 ∪ · · · ∪ C2d−3. If this
cycle is an element of C2j+1 (1 ≤ j ≤ d− 2), then it is easy to see that x2j+1 ∈ Dd

d−1, and
so x2j+2 ∈ (Dd

d ∪Dd+1
d ) \ {w}. Therefore, there are at most ε− κ− α choices for an edge

x2j+1x2j+2. For each such choice there are, by Lemma 2.6, at most (k− 1)d−3 girth-cycles
containing edges wr and x2j+1x2j+2, and so

|C3|+ |C5|+ · · ·+ |C2d−3| ≤ (ε− κ− α)(k − 1)d−3.

Finally, consider a 2d-cycle (x0 = w, x1 = r, x2, . . . , x2d−1, w) ∈ C2d−1. Note that we
have at most k − α choices for a vertex x2. For each choice of vertices x2, x3, . . . , xi−1,
where i ≤ d, we have at most k − 1 choices for vertex xi. Therefore, there are at most
(k−α)(k− 1)d−2 choices for vertices x2, x3, . . . , xd. On the other hand, there are at most
κ choices for a vertex x2d−1. For each such choice of vertices x2, x3, . . . , xd and x2d−1,
there is at most one girth-cycle containing the edges wr, rx2, x2x3, . . . xd−1xd and x2d−1w.
Therefore,

|C2d−1| ≤ κ(k − α)(k − 1)d−2.

To further estimate the sum |C1|+ |C2|+ · · ·+ |C2d−1|, we first note that

|C1|+ |C2d−1| ≤ (k − 1)d−3
(

(α− 1)(k − 1)2 + κ(k − α)(k − 1)
)

= (k − 1)d−3
(

(α− 1 + κ)(k − 1)2 − κ(α− 1)(k − 1)
)

≤ (k − 1)d−3(α− 1 + κ)(k − 1)2

≤ (k − 1)d−3(ε− 1)(k − 1)2,

while

|C2|+ |C3|+ · · ·+ |C2d−2| ≤ ε(k − 1)d−2 + (ε− κ− α)(k − 1)d−3

= (k − 1)d−3
(
ε(k − 1) + ε− κ− α

)
≤ (k − 1)d−3

(
ε(k − 1) + ε− 1

)
= (k − 1)d−3(kε− 1).
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Therefore,

a1 ≤ n(wr) ≤ |C1|+ |C2|+ · · ·+ |C2d−1|
≤ (k − 1)d−3

(
(ε− 1)(k − 1)2 + kε− 1

)
= (k − 1)d−3

(
ε(k2 − k) + ε− (k − 1)2 − 1

)
< (k − 1)d−3

(
ε(k2 − k) + (k − 1)− (k − 1)2

)
≤ (k − 1)d−2

(
kε− k + 2

)
.

The result follows.

Theorem 4.3. With reference to Notation 2.7, assume that g = 2d ≥ 6. Then ε = 0 and
Γ is either the incidence graph of a finite projective plane of order k− 1, or the incidence
graph of a finite generalized d-gon of order (k−1, k−1). Hence in the latter case we have
d ∈ {4, 6, 8}.

Proof. Suppose first that ε is positive. By Lemma 4.1 and 4.2 we have

(k − 1)d − kε ≤ a1 < (k − 1)d−2(kε− k + 2).

This implies

k − 1 > ε >
(k − 1)d−2(k2 − k − 1)

k(1 + (k − 1)d−2)
= (k − 2) + .

(k − 1)d−1 − k(k − 2)

k(1 + (k − 1)d−2)
.

As k(k − 2) < (k − 1)2 ≤ (k − 1)d−1, the above inequality implies

k − 1 > ε > k − 2,

contradicting the fact that ε is an integer. Therefore, ε = 0. It is now easy to see that Γ
is isomorphic to the incidence graph of a finite projective plane of order k− 1 if d = 3, or
the incidence graph of a generalized d-gon of order (k − 1, k− 1) if d ≥ 4 (a proof can be
found in [11, Theorem 12.33]). By the famous theorem of Feit and Higman [6], we have
that in the latter case d ∈ {4, 6, 8}.

5 Examples
In this section we provide examples shoving that the bound ε < k− 1 is tight in Theorem
3.6 for all k, it is sharp in Theorem 4.3 for some particular values of k and close to the
bound for some infinite families. These families arise from finite projective planes and
generalized quadrangles. Let us start with the g = 4 case.

Example 5.1. The complete bipartite graph minus a one-factor Kk+1,k+1 − (k + 1)K2 is
girth-regular with g = 4 and a1 = a2 = · · · = ak = (k − 1)2 − (k − 1) .

In the case g = 6 some graphs with small valency reach or are close to the bound
ε = k − 1. These examples belong to the family of cyclic Haar graphs. For the detailed
description of these graphs we refer to the book of Pisanski and Servatius [15]. It is known
that the girth of these bipartite graphs is at most 6 (see [15, Theorem 5.26]).
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Example 5.2 (Cyclic Haar graphs). Let 0 = d1 < d2 < · · · < dk = m and 1 ≤ s
be integers such that di+j − di = di′+j′ − di′ implies i = i′ and j = j′. Then the set
D = {d1, d2, . . . , dk} is a non-extendible almost difference set in Z2m+s. Let Γ be the Cayley
graph on the dihedral group D2m+s defined by the connection set S = {trdi : di ∈ D}. Then
Γ is a girth-regular graph on 2(2m+ s) vertices with g = 6 and valency k.

Recall that an almost difference set with parameters (v, k, λ, t) is a k-element subset
D in a group G with |G| = v such that the expressions gh−1, g, h ∈ D, g 6= h represent t
elements of G exactly λ times, and the remaining non-identity elements λ+ 1 times. So,
in our case, λ = 0. For almost difference sets, see the survey [12], and Chapter 5 of the
book by Ding [4].

There is no 4-cycle in Γ, because D is an almost difference set, hence

(trditrdj)(trdi′ trdj′ ) = r(dj−di)r(dj′−di′ ) = r(dj−di)−(di′−dj′ ) 6= id.

(i) For k = 3 and 4 let D = {0, 1, 3} and {0, 1, 4, 6}, respectively. Then for s = 1 we
get the Levi graph of the projective plane of order 2 and 3, respectively.

For s = 2 take the edge 1t and construct Γ and Γ′, Then the two vertices in Γ \ Γ′

are rm+1 and trm+1, and they are adjacent because

trm+1 · t = r−(m+1) = rm+1.

Thus there are 1 + 2(k − 1) edges in Γ \ Γ′. So Γ′ contains (k − 1)3 − (k − 1) edges
rb for which d(1, r) = d(t, b) = 2, hence ak = (k − 1)3 − (k − 1).

(ii) For k = 3 this is the generalized Petersen graph GP (8, 3), also called the Möbius-
Kantor graph. It is cubic girth-regular graph with girth 6 and signature (6, 6, 6).
Note that 6 = 8− 2 = (k − 1)3 − (k − 1).

(iii) For k = 4 the graph Γ is the Levi graph of a (144) configuration. In this case Γ is
a tetravalent girth-regular graph on 28 vertices with signature (24, 24, 24, 24). Note
that 24 = 27− 3 = (k − 1)3 − (k − 1).

(iv) For k = 5, D = {0, 1, 3, 7, 12} and s = 1 we get a girth-regular graph on 50 vertices
with signature (50, 50, 50, 51, 51). Note that a5 = 51 = (k− 1)3− (k− 1)(k− 2)− 1.

(v) For k = 6, D = {0, 1, 3, 7, 15, 20} and s = 1 we get a girth-regular graph on 82
vertices with signature (81, 87, 88, 88, 92, 92). Note that a6 = 92 = (k − 1)3 − (k −
1)(k − 2)− 13.

Unfortunately, cyclic Haar graphs have worse parameters for k > 6.

Example 5.3. The unique (7, 6)-cage Γ has 90 vertices. This graph was first discovered
by Baker [2], but it is usually named after O’Keefe and Wong [13]. It is a bipartite
girth-regular graph with a7 = 204 = (k − 1)3 − 2(k − 1).

Take any edge uv of Γ. Let A = {u, v}∪D1
2∪D2

1∪D2
3∪D3

2. Then |A| = 2(1+6+36) = 86.
Let x, y, w, z denote the four other vertices of Γ.We may assume without loss of generality
that x, y ∈ D4

3 and w, z ∈ D3
4. The seven neighbours of x must be in {w, z}∪D3

2. For any
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vertex t ∈ D2
1 there is at most one path of length two joining t and x, otherwise a cycle of

length four would appear. Hence at least one neighbour of x must be in {w, z}. It is easy
to see (or check by computer), that exactly one neighbour of x is in {w, z}. The same
argument shows that exactly one neighbour of y is in {w, z}, and exactly one neighbour
of w and z is in {x, y}.

Thus, by Proposition 2.5 (vi), we have ε = 2 · 6 = 2(k − 1). As uv was an arbitrary
edge, we also proved that the signature of Γ is (204, 204, . . . , 204).

Infinite families of graphs having ε ≈ (k− 1)2 can be constructed by removing subsets
of points and lines from projective planes. These methods work when k = q, a prime
power. The next two constructions were originally due to Abreu et al. [1], their geometric
description was given by Gács and Héger [8].

Example 5.4. If we remove a pencil P of k + 1 lines and the carrier P of P from an
affine plane of order k, then we get a truncated projective plane. Its incidence graph is a
girth-regular graph on 2(k2 − 1) vertices with g = 6, valency k, and signature a1 = a2 =
· · · = ak−1 = (k − 1)3 − (k − 1)(k − 2).

For any incident point-line pair (R, `) there are (k − 1)2 points which are collinear
with R but are not incident with `. Let T be one of these points. Then there are k lines
through T, one of them is RT. There are two possibilities for the remaining k − 1 lines:
Case 1. If PT is not parallel to `, then one of these lines is parallel to `, each other
line intersects ` in a unique point. There are (k − 1)(k − 2) choices for T, thus we get
(k − 1)(k − 2)2 girth-cycles.
Case 2. If PT is parallel to `, then each of these lines intersects ` in a unique point.
There are k − 1 choices for T, thus we get (k − 1)2 girth-cycles in this case.

So the total number of 6-cycles containing the edge corresponding to the pair (P, `) is

(k − 1)(k − 2)2 + (k − 1)2 = (k − 1)3 − (k − 1)(k − 2).

Let us remark that for k = 3 this construction results in the same graph as Example
5.2 (ii).

Example 5.5. Suppose that k is a square and a projective plane Π of order k has a
Baer subplane B of order

√
k. Remove the points and lines of B from Π. (For example, if

k = q = p2h, p prime, we can take Π as PG(2, q).) The incidence graph of the remaining
structure is a girth-regular graph on 2(k2 −

√
k) vertices with g = 6, valency k, and

signature a1 = a2 = · · · = ak−1 = (k − 1)3 − (k − 1)(k −
√
k − 1).

Take any incident point-line pair (P, `) in Π\B. In Π there is a unique point T = `∩B.
In Π \ B there are (k − 1)2 points which are collinear with P but are not incident with
`. Let R be one of these points. Then in Π there are k lines through R other than PR.
One of them is RT and one of them is a

√
k-secant of B. These two lines are the same

for (
√
k + 1)(k −

√
k) choices of R when RT is a secant of B in Π, otherwise we get two

distict lines.
So the total number of 6-cycles containing the edge corresponding to the pair (P, `) in

Π \ B is

(k − 1)2(k − 2) + (
√
k + 1)(k −

√
k) = (k − 1)3 − (k − 1)(k −

√
k − 1).
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Let us remark that for k = 4 this construction yields the same graph as Example
5.2 (iii).

Example 5.6. We get a biaffine plane of order k if we remove a parallel class of lines
from an affine plane of order k. The incidence graph of a biaffine plane of order k > 2 is
a girth-regular graph on 2k2 vertices with g = 6, valency k, and signature a1 = a2 = · · · =
ak = (k − 1)3 − (k − 1)2.

For any incident point-line pair (P, `) there are (k − 1)2 points which are collinear
with P but are not incident with `. Let R be one of these points. Then there are k lines
through R, one of them is PR and one of them is parallel to `, each other line intersects
` in a unique point. Thus in Γ the number of 6-cycles containing the edge corresponding
to the pair (P, `) is

(k − 1)2(k − 2) = (k − 1)3 − (k − 1)2.

In the case g = 8 our example comes from the incidence graph of a generalized quad-
rangle. For a detailed descriptions of generalized quadrangles, their ovoids and spreads
we refer the reader to the book of Payne and Thas [14].

Example 5.7. Let G = (P ,L, I) be a generalized quadrangle of order k which admits both
an ovoid O (a set of k2 + 1 points, no two of them are collinear) and a spread S (a set of
k2 + 1 lines, no two of them intersecting) . Delete the points of an ovoid and the lines of
a spread. Then the Levi graph of (P \ O,L \ S, I) is a girth-regular graph on 2k(k2 + 1)
vertices with g = 8, valency k and ak = (k − 1)4 − (2k − 3)(k − 1)2.

For any incident point-line pair (P, `) there are (k − 1)2 points in P \ O which are
collinear with P but are not incident with `, and there are (k − 1)2 lines in L \ S which
meet ` but are not incident with P.

Let R be one of these points and e be one of these lines. Then there is a unique
point-line pair (T, f) in G such that R I f IT I e. It could happen, that T ∈ O or f ∈ S or
both. Among these (k − 1)4 girth-cycles there are (k − 1)2(k − 1) for which f ∈ S (there
is a unique element of S through R, and no two elements of S intersect each other), and
dually, there are (k− 1)2(k− 1) girth-cycles for which T ∈ O. Each element of S incident
with a unique element of O, so there are (k− 1)2 cycles with f ∈ S and T ∈ O. Thus the
total number of girth-cycles through (P, `) in (P \ O,L \ S, I) is

(k − 1)4 − 2(k − 1)2(k − 1) + (k − 1)2 = (k − 1)4 − (2k − 3)(k − 1)2.

Among the known generalized quadrangles only one admits both an ovoid and a spread,
this is W (q) for q even. So this example gives graphs when k = 2h and h > 1.

It might be tempting to conjecture a bound of type (k− 1)d − c(k− 1)d−1, c ≈ 1, but
Examples 5.2 and 5.3 show that such a result can only be expected for k large enough.

Finally, let us remark that we cannot expect results similar to our main theorem if
the girth is odd. In these cases, by Proposition 2.3, the maximum number of girth-cycles
compared to the number of vertices is much less than in the even girth case.

• For g = 3 and k = 2m we have ak ≤ 2m − 2 and the complete graph minus a
one-factor K2m − mK2 is girth-regular with a1 = a2 = · · · = ak = 2m − 4, hence
ε = 2.
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• For g = 5 and k = 6 the (6, 5)-cage (see [20]) is girth-regular with a1 = a2 = · · · =
ak = 22 = (k − 1)2 − 3, hence ε = 3.
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